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Appendix

In this Appendix, we first provide additional details on our methods by
justifying the proposed decomposition of the rotations aligning a template
into a query, listing modifications made to the SabDab database, detailing
the neural network architecture used, providing a little primer on optimal
transport and showing elements in favor of using a 10Å threshold.

In a second part, we provide additional results consisting of additional
metrics regarding our detection performance, additional details on the
validation on apo systems, a precise description of the case studies we
chose to showcase our tool’s applicability and an extensive analysis of the
failure modes of our tool on its test set.

1 Methods

1.1 Proof of the validity of the decomposition

Following our notations, R∗
A is a rotation that aligns A onto T. We want

to show that R∗
A can be parametrized by the transformation of pT into

pA along with a rotation around pT.
By construction :

A = R∗
AT ⇒ pA = R∗

ApT. (1)

Let M be a rotation matrix of axis pA × pT and of angle ρ the angle
between these vectors, so that it transforms one into the other. We can
write :

pA = MpT (2)

M−1R∗
ApT = pT. (3)

Therefore, M−1R∗
A is a rotation around the axis pT by some angle

θ, and we can write :

R∗
A = MRotpT,θ. (4)

1.2 Modifications to the SabDab database

We removed a few non canonical systems, such as fusion proteins or 8gq5
that contains 16 VHHs arranged in an unusual way and the obsolete 7ny5.
We then fixed edgy situations, often encountered when VHHs and Fabs
are present in the system.

• When querying the Fabs, some chains were wrongly considered
separate : 7YVN chain HI 7YVP chains IJ, 8HHX chains HI, 8HHY
chains FW-GI, 8DXS chains FI-GJ, 7XOD chains RS-UV-XY, 7MLV
chains KF, 6XJA (missing chain AB and missing antigen)

• VHHs were present when querying Fabs. They were annotated as
having just one chain and no antigen partner : 7zlg-h-i-j chain K bound
to L, 8hii-j-k chain N bound to L, 7xw6 chain N bound to AB, 7sk7
chain K bound to C, 7sk5 chain E bound to C, 7zyi chain K bound
to L, 7xod chain T-W-Z bound to S-V-Y, 6ni2 chain A bound to B-V,
7wpe chain W-Z bound to V-Y, 6ww2 chain K bound to L, 7jhh chain
N bound to L, 7ul3 chain C bound to A, 7tuy chain K bound to L

• Fabs were present when querying VHHs (often interacting with this
VHH) : 7pij chain HL bound to N, 7wpd chain XY bound to A, 7wpf

chain RS, UV, XY, 7wpf chain AC-HL bound to EN, 7php chain HL
bound to N, 7m74 chain HL bound to A

• VHHs with no antigens were present in the VHH file (actually always
bound to a Fab) : 7pij K bound to L, 7wpd Z bound to Y, 7nkr F bound
to A, 7wpf T-W-Z bound to S-V-Y, 7wpf chain K-F bound to L-C,
7php-7m74-7jhg chain K, N, N bound to L, 7nis-7nk1-7nk2-7nk6-
7nkc-7nj4-7nka chain F bound to A/B-A-A/B-A/B-B/C-A-A

1.3 Detailed architecture

We used a 3D Unet architecture. First let us define a conv_block(i,o) as
three series of convolutions (with kernel size three and stride one), batch
normalization and PreLu activations. The first convolution goes from i to o
channels and the two others have o as a fixed number of channels.

In the encoding stage, we use a series of four conv_blocks of
successive dimensions (1, 32, 64, 128, 256), alternated by a max pooling
of kernel size 2 and stride 2.

In the decoding stage, we apply a transpose convolution (256, 256) with
kernel size of 3 and stride 2 to the output of the encoder. We concatenate
the result with the output from the third encoding conv_block to get 384
channels. We then run a conv_block(384, 128) on this concatenation.

Finally, we apply a last conv_block(128, 128) with only two series
on the resulting tensor and replace the third one by a linear layer going
from dimension 128 to dimension 10. The classification output dimensions
are followed by sigmoid activation.

1.4 Optimal transport loss

After normalization, we can view Ĝ and G as measures defined over the
regular grid g. The optimal transport cost between those measures is
defined as :

OT(Ĝ,G) def.
= min

π∈ΠĜ,G

∫
g2

∥x− y∥2dπ(x, y).

Where ΠĜ,G is the set of coupling measures on g with marginals Ĝ
and G. The actual computation of this term is prohibitively expensive,
hence we add a regularization term with weight ε > 0 and introduce :

OTε(Ĝ,G)
def.
= min

π∈ΠĜ,G

∫
X2

∥x− y∥2dπ(x, y) + εKL(π | Ĝ ⊗ G)

where KL(π | Ĝ ⊗ G) def.
=

∫
X2

log

(
dπ

dĜdG

)
dπ.

We notice that OT0 = OT and for any ε > 0, adding this
εKL regularization makes the computation tractable. However, this
regularization term also introduces the so-called entropic bias since for
a measure x, OTε(x, x) > 0. Sinkhorn divergences were introduced to
correct for this bias while remaining tractable, and that is what we use as a
loss :

L2(Ĝ,G) = OTε(Ĝ,G)−
1

2
OTε(Ĝ, Ĝ)−

1

2
OTε(G,G)

1.5 Finding the optimal threshold

We present the error in the number of Abs detected for different thresholds
in Figure A.1. Throughout datasets, persistence diagrams seem to give
a better estimate. The overall best value is achieved for a threshold of
approximately 0.2 and is not very sensitive to this threshold.
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Fig. A.2: Capped histogram of distances between predictions and experimental structures on Fabs. random is on the left and sorted on the right.
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Fig. A.1: Finding the best threshold for selecting the right number of
systems. x-axis represents the threshold value. y-axis represents the
mean absolute error in the number of predicted systems over the data
set. Different colors represent different data sets. Darker lines represent
a naïve approach for NMS while the lighter ones are computed using
persistence diagrams.

2 Results

2.1 Fab detection performance

We compute the distances from prediction to ground truth obtained
from our tool and dock_in_map. For a nicer visualization, we cap
all distances to 20Å. We also count failed systems and errors as 20Å
predictions so that the bar at 20Å represents all failures of a tool. We show
the result in Figure A.2

As can be seen, our tool widely outperforms dock_in_map. Under
the hit-rate metric, we have the following performances (by order of tools)
: random : 94.1, 88.8, 62.2, 19.4 sorted : 97.3, 93.9, 71.1, 8.5.

Based on this histogram analysis, we define a true positive as a
prediction whose center of mass is closer than 10Å to the ground truth
and usually report performance with the F1 score that is the harmonic
mean of precision and recall. In settings where the number of objects is

a given, each false negative (missed prediction) generates a false positive
(extra prediction) and hence precision, recall and F1 score are all equal.
We report the value of those metrics in the thresh setting in Supplementary
Table A.1.
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random Split sorted Split Mean
Performance on Fabs Metric sys ab sys ab sys ab

dock_in_map F1 66.6 61.9 71.3 66.0 69.0 64.0
CrAI num F1 97.3 96.7 96.9 95.7 97.1 96.2
CrAI thresh F1 98.1 97.6 96.1 95.7 97.1 96.7
CrAI thresh Precision 98.0 96.7 97.6 97.0 97.4 97.2
CrAI thresh Recall 99.0 98.5 96.6 94.4 98.8 97.6

Performance on VHHs F1 (sys) F1 (ab) F1 (sys) F1 (ab) F1 (sys) F1 (ab)

dock_in_map F1 77.8 68.8 90.5 89.1 84.2 79.0
CrAI num F1 100.0 100.0 90.9 90.6 95.5 95.3
CrAI thresh F1 99.4 99.3 90.3 88.4 94.9 93.9
CrAI thresh Precision 100.0 100.0 90.5 87.7 100.0 95.3
CrAI thresh Recall 99.1 98.7 92.7 89.1 98.9 95.7

Table A.1. Precision and recall values for the detection performance assessed on CrAI thresh. As explained in the text, in the num setting
and for dock_in_map, those values are equal, and equal to the F1 score since the number of false positive and false negative are the same.

2.2 Validation on apo systems

The list of systems found by fetching UniProt codes present in our database
that were not included in SabDab and were not viruses is the following:
7Y1Q, 8HK5, 8U4N, 7SYF, 8F7S, 7YDQ, 7TX6, 8U8F, 8C03, 8DMI,
8DGS, 7PVD, 9F33, 7Y1R, 3J0G, 8JRU, 8DNG, 7ANW, 8IWP, 6DZY,
7ZJ6, 8D74, 8SAT, 7L89, 7PHR, 7RU2.

We fetched all corresponding cryo-EM maps and performed an
uncropped prediction on those maps. Among those systems, 12 are
predicted to include an antibody. Upon manual inspection, we found
that 8 actually contained antibodies, but were missing in the SabDab
database: 8C03, 9F33, 8JRU, 8HK5, 8U4N, 6DZY, 8SAT, 7L89. We find
it interesting that two thirds of our errors are actually labeling errors in the
SabDab database.

Among the four remaining systems, two of these false predictions
disappeared when using a custom threshold (8F7S, 7RU2) and two
persisted as fake predictions (7ANW, 8IWP).

2.3 Case study

Detailed evaluation results for 6 systems of the random split test set are
shown in Figure A.3. Those six systems were picked because of their
relevance in the context of drug discovery, at resolutions ranging from
3 to 8Å, and include four Fabs whose location was found by our tool
consistently and correctly. dock_in_map on the other hand, only finds
the right location in one case, predicts a shifted location on another and
completely fails its prediction on the last ones. The two remaining systems,
with resolutions of 3.1 and 3.8Å respectively, contain VHHs for which
CrAI detects the location correctly and for which dock_in_map fails.
There were no examples in which dock in map succeeded and CrAI failed.
Of the 6 systems shown, 4 used Chimera for manual docking, one doesn’t
mention the docking program and one uses MDFF (Trabuco et al., 2009),
a molecular dynamics software not commonly employed by experimental
structural biologists. It is hard to evaluate ChimeraX placement in the map
as the time and the success of placement isn’t automatic and it is user
dependent. For the lower resolution structures, chain building programs
are not suitable as resolutions better than 3.5 Å are needed.

The first two examples are low resolution illustrations of the structural
characterization of neutralizing antibodies, in the context of cervical
cancer for the Human papillomavirus type 58 pseudovirus (HPV58) in
complex with the Fab fragment of 5G9 at a resolution of 6.41Å (He et al.,
2021)(Figure 3a) and the viral infection with tetanus for the neurotoxin
LC-HN domain in complex with TT110- Fab1 at a resolution of 8.00Å
(Pirazzini et al., 2021) (Figure 3b). While the low resolution of the first

example does not preclude both CrAI and dock_in_map to correctly
predict the position of the Fab, at 8.0 Å, only CrAI correctly positions
the Fab. Membrane proteins are notoriously difficult to characterize
structurally and are often solved at lower resolutions than soluble ones.
Structural information is important to decipher the signaling and regulatory
mechanisms of this class of proteins. G protein-coupled receptors (GPCRs)
in Figure 3c and d play a crucial role in signaling and are one of the major
target families of drugs. Three Fabs are present in the density of beta-
arrestin2 (Figure 3c) in complex with a phosphopeptide corresponding to
the human C5a anaphylatoxin chemotactic receptor 1 C5aR1 at a resolution
of 4.40Å (Maharana et al., 2023). CrAI correctly finds all of them while
dock_in_map misses to correctly predict two out of three. In Figure
3d, the class A orphan GPCR (GPR139), (Zhou et al., 2021) is captured
with and stabilized by Nb35 in different conformational states highlighting
allosteric modulation roles of VHHs in GPCRs. In this first example with a
VHH in a protein complex, CrAI correctly finds the location of the VHH
while dock_in_map fails. In the fight against covid-19, a search for
potent and broad-spectrum coronavirus blockers was initiated and many
antibodies were shown to block the entry of several variants of SARS-
CoV-2 (SARS-CoV-2, SARS-CoV-2-D614G, B.1.1.7, B.1.351, B.1.617.1,
P.1, SARS-CoV, and HCoV-NL63) by binding to human ACE2, without
causing severe side effects. In Figure 3e, ACE2 is found in complex with
targeting monoclonal antibodies at a resolution of 3.2Å (Chen et al., 2021).
This system illustrates CrAI correctly finds the two Fabs in the density,
while dock_in_map is unsuccessful. The final example in Figure 3f is
the Cryo-EM structure of SPCA1a in E1-Ca-AMPPCP state subclass 3 at a
resolution 3.14Å (Chen et al., 2023). In this case, with a medium resolution,
the location of the VHH Nb14 is properly found by CrAI, however, its
orientation is not correct. When analyzing this protein complex, it appears
that the binding mode of Nb14 to its antigen, the Calcium transporting
ATPase type 2C member 1, is non-conventional, with the framework
region of Nb14 lying on the surface of the antigen while the CDRs are not
oriented toward the epitope. The prediction made by CrAI followed the
conventional binding mode of a VHH, with the CDRs facing the epitope
of the antigen. This specific example highlights a potential bias of CrAI
in correctly predicting the orientation and the binding mode of antibodies
and VHH. It can be noted that in this specific case, dock_in_map fails
to identify the correct location of Nb14.
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Fig. A.3: In this Table, columns correspond to 1) PDB code and EM resolution; 2) Protein structures from the PDB (the antigen is displayed in orange, the
heavy chain in blue and the light chain in green); 3) EM map and corresponding structure; 4) Superimposition of the Fab or the VHH from the PDB
structure (blue/green) with the CrAI results (purple); 5) Superimposition of the Fab or the VHH from the PDB structure with the dock_in_map results
(red).
The rows correspond to six systems of our test set: (a) Human papillomavirus type 58 pseudovirus (HPV58) in complex with the Fab fragment of 5G9 at a
resolution of 6.41Å, (b) Tetanus neurotoxin LC-HN domain in complex with TT110- Fab1 at a resolution of 8.00Å, (c) Structure of beta-arrestin2 in
complex with a phosphopeptide corresponding to the human C5a anaphylatoxin chemotactic receptor 1 C5aR1 at a resolution of 4.40Å, (d) Cryo-EM
structure of a protein complex containing a class A orphan GPCR (GPR139), stabilized by a VHH (Nb35) at a resolution of 3.80Å, (e) ACE2 -Targeting
Monoclonal Antibody as Potent and Broad-Spectrum Coronavirus Blocker at a resolution of 3.2Å, (f) Cryo-EM structure of SPCA1a in E1-Ca-AMPPCP
state subclass 3 at a resolution 3.14Å.
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Error type
Count

sys ab

Extra Abs 13 14
- correctly placed 5 6
Missing Abs 14 26

- bad density 7 9
Others 2 2

Table A.2: A complete classification
of all errors by CrAI on the sorted
split for both Fabs and VHHs.

  
  

  
 

Fig. A.4: Illustration of the two main modes of failures in two examples. The first row corresponds
to 8E8R and the second to 8HEC. Most errors result from predicting more abs - including
scenarios where these extra predictions are reasonable like for 8E8R - or fewer abs - including
scenarios where the missing ab falls in a region with very poor density like in 8HEC.

2.4 Failure analysis

Since the number of failed systems with CrAI is relatively low, we
visualized all all of them (for the sorted split) in Figure A.6. After
inspecting these failures, we identified two dominant sources of errors as
reported in Table A.2. A visual depiction of these two error categories is
also shown in Figure A.4.

The vast majority of failures amount to either predicting too many
antibodies or not predicting enough.

When predicting too many Abs, interestingly, the right ones are always
included in our prediction. Moreover, in 5 out of these 15 errors, the extra
predictions were found to correspond to an antibody that actually appears
in the density, such as an element from another asymmetrical unit, and
thus can be considered as accurate detections. In the eight remaining cases,
two extra predictions result from a wrong ordering (the wrong prediction
is ranked first) and four result from a faulty thresholding: the artifacts
have lower probabilities but fail to be automatically discarded. Overall, we
remark that these additional predictions are both infrequent and can easily
be discarded by practitioners.

Furthermore, predictions for 14 systems lack one or more Ab. In over
a third of the cases, this could be explained by a poor density of the
map around the missing antibody. Forcing CrAI to produce additional
predictions on those 12 systems, we observe that 16 out of 20 missing
Abs can be found, often after just one or two extra predictions. Thus,
our software offers the option to predict a certain number of predictions
instead of relying on automatic thresholding, to allow practitioners to
capture potential missing annotations.

In summary, we noticed that most of our errors originate from the
ordering and thresholding of the predictions and not from the detection of
antibodies.

To further validate this observation, we performed a study of the
accuracy of CrAI and dock_in_map across a varying number of
predictions. For this, we forced both methods to output up to ten predictions
and then computed the recalls obtained when keeping the k-best predictions.
While our method can easily output ten predictions, to get this result for
dock_in_map we independently ran it on a growing set of inputs. The
first few inputs correspond to the observed structures of antibodies while
additional ones are copies of these structures in a random order.

In Figure A.5 we plot the fraction of all antibodies captured by different
approaches, when making a growing number of predictions per system.
The blue curve represents the best achievable results. It does not always
equal one as some systems contain multiple antibodies. As can be seen in
this figure, a small discrepancy exists between the ground truth and our tool.
However this discrepancy disappears around k = 6 predictions, suggesting
that with this number of detections per system our method captures all
antibodies. This further justifies that most of our errors originate from the
thresholding. Thus, if our tool fails to detect an antibody, practitioners
can ask for more predictions with a high chance of seeing it predicted.
dock_in_map has a much wider gap that tends to stay consistent despite
allowing it to output more predictions.
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Fig. A.5: Recalls of different approaches (y axis) as a function of the number of predictions (x axis) in our four data settings. The solid lines represent the
mean performance of systems and shaded regions correspond to the variance. Even if we observe a small discrepancy between our prediction and the
ground truth line, note that most errors originate from the automatic thresholding feature, and our method achieves near perfect recall with as few as 6
detections, compared to dock_in_map, which fails to capture a significant number of present structures.
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Predicted PDB Ground truth PDB File &
Details of the error

Metrics computation was wrong
7YVN

Not an error

Too many objects
7YM8

1 extra VHH fit in a
helical domain

=> extra ranked 2

7YVP
1 extra Fab
Not a clear density
for the extra Fab

=> extra ranked 4
(last)
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8CXI
1 extra placed
correctly

8D0Z
2 extra placed
correctly

8DEF
1 extra placed
correctly for which
the density is weak.

8E8R
1 extra placed
correctly



i
i

“output” — 2025/4/7 — 9:36 — page 18 — #18 i
i

i
i

i
i

18 Finding Antibodies in Cryo-EM maps with CrAI

8E8X
1 extra placed
correctly

8D7E
1 extra VHH

-> ranked 3rd

8GOC
1 extra VHH

-> ranked 4th

8GNJ
1 extra VHH

=> ranked 0th



i
i

“output” — 2025/4/7 — 9:36 — page 19 — #19 i
i

i
i

i
i

Finding Antibodies in Cryo-EM maps with CrAI 19

8GW8
1 extra VHH

=> ranked 0th

8HJO
1 extra VHH

-> ranked 2nd

8HMP
1 extra VHH

=> extra is ranked 2nd
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Missing objects
7YAJ

1 less
1 nanobody badly
placed

Bad density 1

7XDB
1 less with no density

Bad density 1

7XJ6
1 less with bad
density

Bad density 1

=> ranked 5th

7YVI
1 less
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7YVO
1 less with bad
density

Bad density 1 for the
4th Fab

8DWW
3 less

=> ranked 6, missed

8DWX
3 less

=> ranked 2,4,5

8DWY
3 less

=> ranked 2,8,missed
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8EQB
3 less
Fab in place of a
nanobody

=> ranked 2,4,6

8G8W
1 less
Atypic system
(megabodies)

=> ranked 2

8GTP
1 less with weak
density

bad density 1

-> ranked 3rd
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8H07
5 less including 3
with bad density

bad density 3

8HEC
1 less with bad
density

=> ranked 4th

bad density 1

8J1N
1 less

1 more Fab (but there
is a density that
seems like a Fab)

=> ranked 2nd
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Wrong positioning
8GNI

Wrong position in a
helical region

=> ranked 2nd

Fig. A.6: All failures, split by error type
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