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Abstract
In this paper, we propose a novel method, which we call CONSISTENT ZOOMOUT, for efficiently refining correspondences
among deformable 3D shape collections, while promoting the resulting map consistency. Our formulation is closely related to
a recent unidirectional spectral refinement framework, but naturally integrates map consistency constraints into the refinement.
Beyond that, we show further that our formulation can be adapted to recover the underlying isometry among near-isometric
shape collections with a theoretical guarantee, which is absent in the other spectral map synchronization frameworks. We
demonstrate that our method improves the accuracy compared to the competing methods when synchronizing correspondences
in both near-isometric and heterogeneous shape collections, but also significantly outperforms the baselines in terms of map
consistency.

1. Introduction

Finding correspondences across 3D shapes is a fundamental task
in geometry processing and computer graphics that enables a wide
range of applications. Typically, users favor correspondences dif-
ferently according to their task at hand. For instance, conformal
(angle preserving) maps are suitable for texture transfer [APL15],
orientation-preserving maps are desired for surface or volume pa-
rameterization [RPPSH17], and maps of low metric distortion are
critical in shape retrieval [BBK06] and statistical shape analy-
sis [ASK∗05, HSS∗09].

Despite the large variability of specific preferences in practice,
there exist some universal principles in seeking high-quality maps
between shapes. One essential requirement is that a map should
be close to bijective, which allows transferring information across
shapes consistently, without directional bias. More generally, map
consistency is desirable in the context of shape collections. How-
ever, integrating the consistency or bijectivity constraint into objec-
tives tailored to practical applications is often non-trivial and can
lead to difficult optimization problems.

In this paper, we consider deformable 3D shape matching
where the goal is to find near-isometric maps between shapes.
To this end, many works have been proposed to promote consis-
tency (i.e., bijectivity) in the pairwise setting [ERGB16, HO17,
RPWO18,ESBC19]. Moreover, it has long been observed that con-
sistency can play an important role in map denoising [HG13], in
the context of shape collections. Stimulated by this observation,
various data-driven approaches [NBCW∗11, WHG13, CRA∗17,
HLW∗19] have been proposed for synchronizing shapes in col-
lections. Among these approaches, a noticeable recent trend is the
use of spectral techniques, especially through the notion of func-
tional maps [OBCS∗12]. By using multi-scale spectral bases, func-
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Figure 1: ZOOMOUT can fail in the presence of poor initializa-
tion quality or large non-isometric deformations, while our method
handles these challenging cases by jointly refining maps in a col-
lection.

tional maps encode correspondences as linear operators (small-
sized matrices in practice) that transfer real-valued functions across
shapes. The algebraic nature of functional maps makes this frame-
work well-suited for map manipulation, such as composition and
inversion, which in turn facilities formulating map consistency con-
straints.

It is worth noting, however, that functional maps are usually
expressed in low-dimensional spectral bases. Apart from the ef-
ficiency consideration, directly encoding and refining functional
maps in the high-dimensional spectral spaces can be unstable and
error-prone, especially in the presence of noisy initial constraints.
On the other hand, the reduced dimensionality can impede recov-
ering high-quality maps from the functional representation, due to
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the loss of details encoded in the medium and high-frequency parts
of the spectral bases.

The dimensionality issue has long been a bottleneck in shape
matching via functional maps. A recent framework tackles this is-
sue by proposing ZOOMOUT refinement [MRR∗19], which itera-
tively updates maps in the spectral domain and finally allows to re-
cover accurate point-wise correspondences from high-dimensional
functional maps. Nevertheless, ZOOMOUT refinement is unidirec-
tional, making it difficult to incorporate bijectivity constraints, let
alone map consistency in a shape collection.

In this paper, we formulate a novel multi-scale synchronization
approach, which can be seen as an extension of both ZOOMOUT to
promote consistency in a map collection, and an extension of the
basic functional maps synchronization [WHG13] to promote con-
sistency on every leading principal sub-block of the functional map
matrices. Beyond that, we further show that our formulation can be
adapted to recover the underlying isometry among near-isometric
shape collections with a theoretical guarantee, which is absent in
the other spectral map synchronization frameworks.

Based on our formulation, we propose a practical CONSIS-
TENT ZOOMOUT method, which gracefully incorporates map con-
sistency constraints into a simple iterative scheme. Fig. 1 shows
shapes from the SRHEC’07 [GBP07] dataset, for which given the
same initial maps, ZOOMOUT can fail in the presence of large non-
isometric deformations, while by jointly refining maps in the col-
lection, our CONSISTENT ZOOMOUT finds more accurate and con-
sistent correspondences.

Our CONSISTENT ZOOMOUT can be applied to refine maps both
between a pair of shapes and in the context of shape collections. We
show that our pipeline achieves similar or better accuracy than that
of competing methods in both near-isometric and heterogeneous
shape collections, and especially outperforms the baselines in terms
of consistency.

2. Related Work

Non-rigid shape matching or alignment is a core topic in geom-
etry processing [VKZHCO11, TCL∗13, BCBB16]. An exhaustive
review is beyond the scope of this paper. We review most closely
related techniques, focusing especially on matching heterogeneous
shape collections, map synchronization, and adaptive basis selec-
tion in functional map estimation.

Maps in Shape Collections While most non-rigid shape match-
ing techniques concentrate on the pairwise setting, several methods
have been proposed to find correspondences in the context of shape
collections. Such approaches typically leverage cycle-consistency
constraints to improve maps computed between each pair of
shapes. Early methods in this domain concentrated on detecting and
correcting inconsistent cycles to enforce consistency constraints
[Hub02, ZKP10, NBCW∗11]. This can be expensive as potentially
many cycles might need to be tested, and may fail in resolving lo-
cal errors. More recent approaches have tried to exploit the link
between cycle consistency and low-rank properties of matrices that
encode maps in the entire collection [HG13, WS13, LZD17] lead-
ing to relatively simple formulations that enjoy optimality guaran-

tees, e.g. [HG13]. To alleviate the computational burden of han-
dling potentially very large matrices various approaches have been
proposed using alternating minimization [ZZD15], sparse model-
ing [CRA∗17], reweighted least squares [CMG13, HLBH17], iter-
ative factorization [ARFF18, BTGT19], and relaxations based on
eigen-decomposition [PKS13, SHSS16] among others.

Most closely related to ours are methods in this domain that use
the functional map representation [WHG13, HWG14, HAGO19,
SVBC19]. This representation is particularly well-suited for map
synchronization first because it allows to encode maps as small
size matrices in a reduced basis, and second because it naturally
enables an interpretation of maps as information carriers, allow-
ing both a rich set of regularization constraints coming from the
pairwise setting [OCB∗17] and enforcing consistency through map
re-routing via functional “latent shapes” [WHG13,HAGO19]. As a
result, existing functional map-based techniques for map synchro-
nization are particularly efficient due to the use of a compact map
representation. At the same time, their expressive power, and thus
the accuracy of the recovered point-wise maps, are limited as only
low-frequency functions can be transferred.

In this paper we show how this limitation can be lifted using a
recent spectral upscaling method [MMR∗19], while still benefiting
from the efficiency enabled by the functional map representation.

Basis Selection for Functional Maps. Our approach is also re-
lated to basis synchronization within the functional map frame-
work. In the pairwise setting, this has been exploited for matching
both complete [KBB∗13,KBBV15,KGB16] and partial [LRBB17]
shapes. These works aim to compute bases that both diagonalize
the respective Laplacians and satisfy given (e.g., descriptor preser-
vation) constraints. Such approaches can be particularly powerful
for non-isometric shape pairs where the standard Laplace-Beltrami
eigenfunctions are especially unstable. We also note a recent un-
published work in this domain [AL19] that proposes to simultane-
ously optimize for the basis and solve for a functional map between
a pair of shapes in a joint problem using the Alternating Direction
Method of Multipliers method.

Our work is different in that we jointly optimize for the bases
across all shapes by computing a consistent latent basis in the col-
lection. However, unlike other such approaches, e.g., [WHG13],
crucially we also modify the size of the latent basis through pro-
gressive spectral upsampling [MMR∗19], which allows us to cap-
ture higher frequency functional spaces and as we show, leads to
accurate and consistent maps even in challenging scenarios.

3. Preliminaries

In this paper, we assume to be given a collection of 3D shapes S =
{Si}n

i=1 represented as triangle meshes. To each shape Si we asso-
ciate a Laplacian matrixLi discretized using the standard cotangent
weight scheme [PP93, MDSB03], s.t. Li = M−1

i Li, where Li is the
cotangent weight matrix and Mi is the diagonal lumped area matrix.
We denote by Λi the diagonal matrix of the first k eigenvalues of Li
and by Φ

k
i = [φ1

i ,φ
2
i , · · ·φk

i ] the matrix of the corresponding eigen-
functions, where φ

l is the lth eigenfunction (e.g., Fig. 2 shows the
first few eigenfunctions of the airplanes in the top-middle). This
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Figure 2: Left: we show two airplanes with different style. The patch initialization from 11 landmarks is visualized via color transfer. Middle:
we show two sets of basis: the standard Laplace-Beltrami basis shown on the top, and our synchronized basis shown on the bottom. We can
see that after the synchronization, the basis of the two shapes aligns much better to each other. Right: the refined maps using different basis
sets visualized via color transfer. Our result (shown on the right bottom) is more accurate and smoother than the map refined by ZOOMOUT

using the standard Laplace-Beltrami basis.

eigen-decomposition admits LiΦ
k
i = MiΦ

k
i Λi, and the eigenfunc-

tions are orthonormal with respect to Mi: (Φk
i )

T MiΦ
k
i = Ik, the

identity matrix of dimension k.

Given two shapes S1,S2 and a point-wise map T21 : S2→ S1, we
denote by Π21 a binary matrix encoding T21, such that, Π21(p,q) =
1 if T21(p) = q and 0 otherwise. The two notations of point-wise
maps are used interchangeably hereafter. Based on the spectral
bases, functional maps can encode point-wise maps into compact
matrices, namely:

C12 = (Φk
2)
†
Π21Φ

k
1, (1)

which gives rise to a matrix representation of size k× k (here † in-
dicates the pseudo inverse). A functional map transfers real-valued
functions across shapes by translating the coefficients expressed in
the eigenbasis. Namely, let f be a coefficient vector representing a
function on S1 in basis Φ

k
1, then the corresponding function on S2

is simply given as a coefficient vector C12f in basis Φ
k
2.

On the other hand, for any vertex p ∈ S2, the corre-
sponding delta function δp is expressed in Φ

k
2 as Φ

k
2(p) =

[φ1
2(p),φ2

2(p), · · · ,φk
2(p)], i.e., the pth row of Φ

k
2. From this point

of view, Φ
k
2 can be regarded as a spectral embedding of S2, which

represents each p as a k−dimensional vector and the functional
map C12 plays a role of aligning spectral embeddings across differ-
ent shapes. Recovering the point-wise map from a given functional
map can therefore be formulated as solving the following optimiza-
tion problem:

T21(p) = arg min
q∈S1
‖C12Φ

k
1(q)

T −Φ
k
2(p)T ‖2,∀p ∈ S2 (2)

This recovery can be efficiently done through a nearest-neighbor
query for each row of Φ

k
2 in the space of rows of Φ

k
1, transformed

by C12.

Now, given a shape collection S, a functional map network

(FMN) G = (V,E) represents a set of functional maps relating
shapes in S. The ith node in V corresponds to shape Si, and
(i, j) ∈ E if and only if Si and S j are connected by a functional
map Ci j. The consistency of G is then defined as the deviation of the
composition of functional maps along a cycle in G from the identity
I – ideally, Ci1,ikCik ,ik−1 · · ·Ci2,i1 = I, ∀ cycle {i1, i2, · · · , ik, i1} ∈ G.
In [WHG13], the authors propose to extract a set of consistent la-
tent bases Yi for each Si, such that Ci jYi ≈ Y j,∀(i, j) ∈ E . Note that
Yi can be both thought of as functions on Si and as functional maps
from some underlying latent object to Si. From this point of view,
Ci j can be factored out as Y jY

−1
i , i.e., a functional map composi-

tion from Si to the latent shape, and then to S j. This latent shape is
formally analyzed in [HAGO19], where the authors show how to
endow it with a geometric structure (measure and metric), resulting
in a well-defined functional central shape, or so-called limit shape.
As shown in [HAGO19], although the limit shape might not admit
an actual embedding in the ambient space, it is fully characterized
by a canonical consistent latent basis, which, again, can be treated
as functional maps from the limit shape to each Si.

4. Formulation

In this section, we first formulate our basic multi-scale map
synchronization approach as a variational optimization problem,
then we show how this formulation can be extended to more
strongly promote near-isometries in shape collections. Our for-
mulation is closely related to that of ZOOMOUT, but effectively
alleviates the directional bias of the former, giving rise to the
CONSISTENT ZOOMOUT pipeline described in Section 5.

Multi-scale shape collection synchronization We consider the
following multi-scale optimization problem:

min
G∈P

Ecol(G), (Pcol)
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where

Ecol(G) = ∑
∀{i1, i2, · · · , ip} ∈ Γ

∑
k

1
k
‖Ck

ip−1ip · · ·C
k
i2i1C

k
ipi1 − Ik‖2

F .

(3)

Here Ck
i j is the functional map of dimension k× k, and Ik is the

identity matrix of the same dimension, and Γ is the set of cycles in
G. We denote by P the set of functional maps that can be induced
by some point-wise map (see Eq. (1)), and G ∈ P implies all the
functional maps in G belong to P .

Our formulation can be viewed as a natural extension to that of
[WHG13] in two major ways. Firstly, in that work, the authors pro-
mote consistency for some specific fixed value of k. Instead, rather
than using a single arbitrary fixed k our formulation is of multi-
scale, encouraging each principal leading sub-block of the func-
tional maps to be consistent. Secondly, the optimization of Ecol is
subject to G ∈P , which introduces a very strong regularization. On
the other hand, [WHG13] refines cycle-consistency purely on the
spectral domain (via functional maps), and only converts to point-
wise maps at the last step.

Near-isometric shape collection synchronization While the for-
mulation in Eq. (1)) already provides a strong regularization on the
functional map, we further extend it to more strongly promote near-
isometric maps. First, we recall that in [MRR∗19], the authors con-
sider that the following optimization problem for recovering the
isometry between S1,S2:

min
C12∈P

Ezm(C12), where Ezm(C12) = ∑
k

1
k
‖(Ck

12)
TCk

12− Ik‖2
F ,

(Pzm)

As demonstrated in [MRR∗19], the global optimizer of Prob-
lem (Pzm) with zero error corresponds to the underlying isometry
between S1,S2, and ZOOMOUT refinement is proven to solve it ef-
ficiently. At the same time, however, this formulation is based on
a specific fixed direction between a source and target shape, which
can bias the results and lead to non-bijective maps if functional
maps in both directions are optimized independently.

Now we show how to remove this bias not only for a given shape
pair, but more generally in the context of shape collections and
functional map networks. For this we observe that since isometry is
defined locally (pairwise), we can regularize each Ci j by Ezm(Ci j),
and on the other hand inject global consistency by incorporating
Ecol(G) as defined above. This leads to the following problem:

min
G∈P

Ecol-iso(G), (Pcol-iso)

where

Ecol-iso(G) = ∑
(i, j)∈E

Ezm(Ci j)+Ezm(C ji)+Ecol(G), (4)

The following theorem (see proof in Appendix A) suggests that
the global optimizer of Ecol-iso is stronger than that of Ezm, since
it promotes maps that are both isometric and consistent.

Theorem 4.1 Given a shape collection S, in which all shapes
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Figure 3: We apply our method to refine pairwise maps. Due to
the large geometric difference between the target shapes and the
source shape, ZOOMOUT produces noisy maps with evident dis-
continuities, while our results are more accurate and smoother.

share the same non-repeated eigenvalues of Laplacian matrices.
A functional map network G ∈ P satisfies Ecol-iso(G) = 0 if
and only if the corresponding point-wise maps are all isome-
tries, and are the consistent with respect to all cycles in G, i.e.,
Πi1,ip Πip,ip−1 · · ·Πi2,i1 = I,∀{i1, i2, · · · , ip} forming a cycle.

5. CONSISTENT ZOOMOUT Pipeline

In this section, we propose our CONSISTENT ZOOMOUT

pipeline for synchronizing shape collections. In partic-
ular, we design two versions tailored for solving Prob-
lem (Pcol-iso) (CONSISTENT ZOOMOUT-iso) and Problem (Pcol)
(CONSISTENT ZOOMOUT) approximately. Obviously the latter is
a relaxed version of the former, so we start with the isometric case.

5.1. CONSISTENT ZOOMOUT-iso

At a high-level, we follow the same spectral upsampling scheme as
ZOOMOUT – instead of optimizing the energy Ecol-iso across all
scales, we first consider scale k, optimizing for the point-wise maps
among the shape collection, and then use them as an initial guess
for optimizing at a higher scale k+1.

However, optimizing Problem (Pcol-iso) at scale k is still chal-
lenging since an ideal solution should simultaneously satisfy: 1)
each Ck

i j ∈ Gk is near orthonormal; 2) Gk admits cycle-consistency,
where the high-order terms are heavily entangled; 3) each Ck

i j cor-
responds to some point-wise map. To address these challenges,
we propose the following three steps for approximately optimizing
Problem (Pcol-iso).

Restricting the search space First, we relax the original optimiza-
tion problem by restricting the search space to the following sub-
space:

Ω = {(Ck
i j,C

k
ji) ∈ P and Ck

i j = (Ck
ji)

T ,∀k and (i, j) ∈ E}

c© 2020 The Author(s)
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ALGORITHM 1: CONSISTENT ZOOMOUT Iteration
Input : An FMN Gk relating a shape collection S, in

which Ci j ∈ Rk×k.
Output: A refined FMN Gk+1

(1) For each (i, j) ∈ E , if ‖Ck
i j

T
Ck

i j− Ik‖F ≤ ‖Ck
ji

T
Ck

ji− Ik‖F , set
Ck

ji = (Ck
i j)

T , otherwise set Ck
i j = (Ck

ji)
T

# For CONSISTENT ZOOMOUT-iso only.
(2) Compute the weight matrix ω for Gk via the consistency

voting scheme from [NBCW∗11]
(3) Construct a set of latent bases via Eq. (6) with ω, and then

apply the canonicalization proposed in [HAGO19] to obtain
the CCLB {Y k

i } (see Appendix C for details)
(4) Let Ψi = Φ

k
i Y k

i ,∀i, and recover the point-wise maps
Ti j : Si→ S j,∀(i, j) ∈ G via Eq. (5)

(5) Encode the computed point-wise maps Ti j via Eq. (1) using
Φ

k+1
i . This results in a new FMN Gk+1 with

Ci j ∈ R(k+1)×(k+1)

Remark that in Ω, the orthonormality terms are equivalent to those
of pairwise consistency – ∀(i, j)∈ E ,‖(Ck

i j)
TCk

i j− I‖2
F = ‖Ck

jiC
k
i j−

Ik‖2
F .

Enforcing global consistency Secondly, we leverage the formu-
lation of [HAGO19] to handle the global consistency, which ex-
tracts a set of canonical consistent latent bases (CCLB) {Yi}n

i=1
from G. As formulated in [HAGO19], the CCLB can be seen
as functional maps from a well-defined central (limit) shape that
are consistent with respect to G i.e., ideally Ci j = Y jYi

†,∀(i, j) ∈
E . The global consistency follows from Cip−1ip · · ·Ci1i2Cipi1 =

YipY
†
ip−1

Yip−1 · · ·Yi2Y
†
i1Yi1Y

†
ip
= I,∀{i1, i2, · · · ip} ∈ Γ3.

Solving for the point-wise maps On the one hand, the search
space restriction turns the orthonormality terms into pairwise con-
sistency terms; on the other hand, we drop all the high-order (i.e.,
≥ 3-cycle) consistency terms by incorporating the CCLB in the
same spirit as [HG13]. Together, this leads to a simplified energy
that consists of pairwise consistency terms along edges in E , along
with constraints introduced in the first two steps. For simplicity we
consider a shape pair, arriving at the following optimization:

min
Πi j,Π ji

‖Ck
i jC

k
ji− Ik‖2

F +‖Ck
jiC

k
i j− Ik‖2

F , (Psingle)

s.t. Ck
i j = (Φk

j)
†
Π jiΦ

k
i ,C

k
ji = (Φk

i )
†
Πi jΦ

k
j,

Ck
i j = Y k

j (Y
k
i )
†,Ck

ji = Y k
i (Y

k
j )
†,Ck

i j = (Ck
ji)

T .

The two independent representations (via Eq. (1) and the CCLB
decomposition) of Ck

i j in the constraint allow us to decouple Πi j
and Π ji during optimization. In particular, we obtain the following
theorem.

Theorem 5.1 If Gk ∈ Ω and admits CCLB decomposition: Ck
i j =

YiY
†
j ,∀(i, j) ∈ E , then under appropriate regularization, the opti-

mal solution of Problem (Psingle) is given by:

Π
k
i j = argmin

Π

‖ΠΦ
k
jY

k
j −Φ

k
i Y k

i ‖2
F

Π
k
ji = argmin

Π

‖ΠΦ
k
i Y k

i −Φ
k
jY

k
j ‖2

F

Theorem 5.1 leads to the following simple procedure of comput-
ing Πi j, which reduces to nearest neighbour searches of each row
of Φ

k
i Y k

i among the rows of Φ
k
jY

k
j .

Ti j(p) = arg min
q∈S j
‖Ψ j(q)

T −Ψi(p)T ‖2,∀p ∈ Si, (5)

where Ψi = Φ
k
i Y k

i and Ψ j = Φ
k
jY

k
j . As we demonstrate in Sec-

tion 5.4, this novel point-wise map conversion procedure leads to
increased robustness while removing the directional bias, compared
to the one used in [OCB∗17, MRR∗19] (c.f., Eq. (2)).

Overall pipeline Putting the above together, we propose our spec-
tral upsampling scheme CONSISTENT ZOOMOUT-iso, which takes
as input an FMN Gk:

1. Restrict Gk into Ω, such that Ck
i j = (Ck

ji)
T ,∀(i, j) ∈ E .

2. Compute CCLB {Yi} of Gk;
3. Compute point-wise maps according to Eq. (5), and then convert

to Gk+1 via Eq. (1).
4. Set k = k+1 and repeat until k hits the given upper bound.

In Alg. 1, we summarize a single iteration of the practical imple-
mentation of CONSISTENT ZOOMOUT-iso, including the restric-
tion Step (1) and the additional weighting that we use via the con-
sistency voting [NBCW∗11]. We refer reader to Section 5.3 for fur-
ther details.

5.2. CONSISTENT ZOOMOUT

In fact solving Problem (Pcol) is easier than the above one: since
now the orthonormality terms are dropped, the only constraints are
global consistency and compatibility between point-wise maps and
functional maps. Following the same argument in Section 5.1, the
algorithm of CONSISTENT ZOOMOUT is the same as Alg. 1, but
skips the first step of search space restriction.

5.3. Implementation Details

Consistency voting for FMN Given a FMN Gk, the consistency
of the CCLB is enforced by the following optimization, proposed
originally in in [WHG13]:

Y =argmin
Y ∑

(i, j)∈E
ωi j‖Ci jYi−Y j‖2

F ,

s.t. Y TY = nIk,Y = [Y1;Y2; · · · ;Yn].

(6)

Here ωi j is the weight assigned to each functional map Ci j, re-
flecting the relative confidence (the higher, the more confident). Of-
ten the initial maps vary widely in quality, especially in the pres-
ence of large deformations in the collection. It is thus natural to
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Figure 4: Another example of applying CONSISTENT ZOOMOUT

for Pairwise Shape Matching.

assign larger weights to the “good” maps, so that the extracted la-
tent bases are less perturbed by the noisy maps. In this paper, fol-
lowing the approach proposed in [OBCS∗12], we adapt the con-
sistency voting scheme introduced in [NBCW∗11]. This scheme
outputs a distance-like measure di j to each Ci j ∈ Gk. We then ob-
tain a weight matrix ω by letting ωi j = exp(−d2

i j/2σ
2), where σ is

the median of all d′i js. The consistency voting is conducted through
all the iterations, since the FMN is consistently updated. On the
other hand, this scheme is efficient since it only involves a linear
optimization after light computation for consistency evaluation of
functional maps along 3-cycles in Gk.

Acceleration techniques First of all, we notice that our pipeline
is highly parallelizable in the recovery of point-wise maps in
each iteration, which gives a considerable boost in practice.
Beyond that, several strategies are proposed in [MRR∗19] to
accelerate ZOOMOUT as well as improve its scalability. Our
CONSISTENT ZOOMOUT benefits from the strategies immediately.
Among those, the subsampling strategy is critical in our imple-
mentation. Namely, we only maintain the conversion between func-
tional and point-wise maps among a set of subsampled vertices and
only compute the dense point-wise maps in the final step as output.
This strategy is especially useful in the scenarios where the shape
collection is large, or the input shapes are of high complexity.

Network Topology In theory, our method can handle input G with
arbitrary topology as long as being connected. Though, it is ob-
served in practice that a denser FMN is more robust to the noise
present in initialization. By default, we only maintain the maps, ei-
ther point-wise or functional ones, that are present in the initial G
through the refinement (thus the topology of G is unchanged). Fi-
nally, via Eq. (5), we can output all the pairwise maps, regardless
of it being present in the initialization or not.

5.4. CONSISTENT ZOOMOUT for Pairwise Shape Matching

While our framework is geared towards synchronizing maps in
shape collections, it can naturally accommodate shape pairs as a
special case. We have observed that the resulting method is more
robust to challenging input than ZOOMOUT by promoting bijectiv-
ity and exploiting maps in both directions.

For instance, in Fig. 2, we consider refining maps be-
tween two airplanes with different styles from the SHREC’07
dataset [GBP07]. The rough patch-based initialization is shown
in the bottom-left via color transfer. As shown in the top-middle,
the Laplace-Beltrami bases of the shapes demonstrate distinc-
tive modes, due to the geometric difference. As a consequence,
ZOOMOUT fails to produce accurate and smooth maps (as shown
in the top-right).

In contrast, CONSISTENT ZOOMOUT handles the non-isometric
deformations more gracefully and produces a better map as
shown in the bottom-right. This is thanks to two factors: 1)
CONSISTENT ZOOMOUT is capable of refining maps in both di-
rections simultaneously in a coupled manner; 2) the limit shape
formulation exploited by CONSISTENT ZOOMOUT makes the cor-
responding spectral embeddings of the shapes more comparable
– as shown in the bottom-middle, facilitating the point-wise map
computation.

We demonstrate more examples in Fig. 3 and Fig. 4, where the
initial maps, obtained via a set of sparse landmarks, are shown
in the respective top row. Due to the large geometric difference
between the target shapes and the source shape, ZOOMOUT pro-
duces noisy maps with evident discontinuities, while the results
of CONSISTENT ZOOMOUT are consistently more accurate and
smoother.

6. Results

In this section, we first describe different baseline methods and the
datasets that we used for comparison. We then provide multiple
quantitative and qualitative results in Section 6.1 and 6.2. In the
end, we analyze and discuss the results in Section 6.3.

Baselines. In our experiments, we compare our method to different
baselines, which can be categorized into two groups 1) computing
maps in a collection of shapes, or 2) computing pairwise maps.

• Collection: we mainly compare to the following two methods
that synchronize maps in a collection of shapes.

– Functional-Map Network (FN) [HWG14]: is a state-of-the-
art map synchronization framework that employs low-rank
matrix recovery with the functional map representation.

– ICSM [NBCW∗11]: as briefly introduced in Section 5.3,
ICSM is an approach based on consistency voting that refines
a network of maps by replacing inconsistent maps with com-
positions of more consistent ones. We implement the version
adapted to functional map framework as in [OBCS∗12].

• Pairwise: we also show some comparison to the pairwise map
refinement techniques including:

– Iterative Closet Point (ICP) [OBCS∗12]: this is the standard
ICP registration applied in the spectral domain for map re-
finement.

– Product Manifold Filter (PMF) [VLR∗17] solves for a map
based on a series of linear assignment formulations.

– Reversible Harmonic Maps (RHM) [ESBC19] proposes a bi-
directional geodesic Dirichlet energy to regularize the maps.
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Figure 5: Accuracy evaluation of our method and baselines on 7 categories of the SHREC’07 dataset. We compare our result and that of
FN [HWG14] and ICSM [NBCW∗11]. The curves read the fraction (y-axis) of computed correspondences that fall within certain (normal-
ized) geodesic distance to the ground-truth ones (x-axis). The numbers in the legends show the average error. Our method achieves the best
results in all the categories and overall at least 26.2% improvement over the baselines.

– BCICP [RPWO18] uses some heuristics to improve the
smoothness, bijectivity, and coverage of the maps.

– ZOOMOUT [MRR∗19] applies an upsampling strategy in the
spectral domain to refine the maps. This is the current state-
of-the-art method in near-isometric shape matching.

Datasets. We use the following datasets from various sources to
evaluate our method.

• SHREC’07: this dataset consists of 20 categories of shapes in-
cluding humans, animals, and man-made objects. Each category
has 20 shapes in different triangulation. Each shape within the
same category has a sparse set of landmarks for accuracy eval-
uation. For each tested category, we evaluated all the pairwise
maps.
• Remeshed FAUST & SCAPE: The FAUST [BRLB14] and

the SCAPE [ASK∗05] dataset consist of multiple human shapes
that are near-isometric to each other with the same triangula-
tion, which makes it easy to overfit for some refinement methods.
Therefore, in our setting, we remeshed those human shapes inde-
pendently such that different shapes have different triangulation
and different number of vertices. For both datasets, we compare
different methods on more than 100 shape pairs.
• SHREC’19: this dataset collected 44 different human shapes

from 11 independent datasets with very different connectiv-
ity and mesh resolution. Each shape is aligned to the SMPL
model [LMR∗15] and thus dense ground-truth correspondences
are given for accuracy evaluation. We tested on 430 shape pairs
as in [MMR∗19].

Metrics. In our tests, we mainly measure the accuracy w.r.t. the
given ground-truth, the consistency error, and the runtime of the
computed maps from different baselines.

• Accuracy: we measure the geodesic distance from the mapped
vertex to the given ground-truth as the accuracy evaluation.
• Bijectivity/Consistency: with the computed maps Ti j from

shape Si to shape S j , we take the compound map Tji ◦ Ti j as a
map from Si to itself. We then measure the Euclidean distance
between this compound map to the identity map as the consis-
tency or bijectivity error.
• Runtime: we also evaluate the average runtime per shape pair

for different baselines.

Initialization & Parameters. As our method is one of map syn-
chronization, it requires a set of approximate initial maps as in-
put. We provide the details on the exact procedure for initializa-
tion along with all of the parameters used in our implementation
in Appendix D. We will release a complete implementation of our
method upon acceptance.

6.1. Synchronizing Heterogeneous Shape Collections

We first apply our algorithm, CONSISTENT ZOOMOUT, on het-
erogeneous shape collections. In particular, we consider the
SHREC’07 dataset and mainly compare to the shape collection
matching methods including FN and ICSM. We tested on 7 cate-
gories of SHREC’07 including Armadillo, FourLeg, Teddy, Hand,
Cup, Human, and Airplane. The cumulative matching error per cat-
egory is reported in Fig. 5 where in the legend we report the average
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Figure 6: Here we show some qualitative results of the cup category in SHREC’07. The source shape is shown on the left top corner, we
then show 12 maps on the target cups via color transfer. We can see that our results are much more smooth and accurate than the other two
baselines. This improvement is not fully illustrated in Fig. 5 due to the limited given ground-truth landmarks for accuracy evaluation.

error across 380 shape pairs for each category and each method. We
also include a summary of all the tested categories in Fig. 5.

Specifically, we achieved 26.2% improvement in matching accu-
racy w.r.t. the best baseline averaged over 7 categories. In Fig. 6 we
show a qualitative comparison of the Cup category. We can see that
even though the accuracy curve in Fig. 5 does not reveal a signifi-
cant improvement of our method over the other two methods, our
results are actually more accurate, smoother, and more consistent.
Finally, regarding runtime, our method on average takes 0.59s per
map in the refinement, while FN takes 0.50s and ICSM takes 0.79s
on average. The statistics are collected over 7 categories, including
2433 maps.

Remark that we also achieved 84.3% improvement in map con-
sistency w.r.t. the best baseline. We refer readers to Appendix E for
more detailed results, as well as some qualitative comparison on
map consistency.

6.2. Synchronizing Near-isometric Shape Collections

In this part, we test our CONSISTENT ZOOMOUT-iso for synchro-
nizing near-isometric shape collections including SCAPE, FAUST
and SHREC’19. Besides the baselines used in Section 6.1, we in-
troduce three more: our CONSISTENT ZOOMOUT and two hybrid
baselines, which apply ZOOMOUT refinement on top of the maps
synchronized by FN and by ICSM.

We report the results on the three different datasets in Table 1,
and in Fig. 7 we demonstrate a qualitative comparison on map con-
sistency. Overall, we conclude that:

• Our CONSISTENT ZOOMOUT-iso achieves the best accuracy
across all tests, and the best consistency in two out of three.
• As shown in the initialization row of Table 1, the initializa-

tion quality of FAUST (sparse) test is relatively lower than the
other two. In this case, we can see that most of the pairwise re-
finement baselines struggle to produce good results, except for

BCICP. On the other hand, by leveraging the consistency regu-
larization across the whole collection, CONSISTENT ZOOMOUT

achieves already slightly better result than BCICP, while being
about 500× faster.
• Moreover, our CONSISTENT ZOOMOUT-iso improves the per-

formance upon CONSISTENT ZOOMOUT by 16%, which sug-
gests the effectiveness of our specified formulation for near-
isometric collections.
• We observe that our method outperforms the baselines for col-

lection synchronization, FN, ICSM, by a large margin across all
tests. That is still true even after their outputs are further refined
by ZOOMOUT.
• Unlike BCICP, PMF, our method does not enforce the point-wise

map consistency explicitly, while achieving better or comparable
performance in the bijectivity evaluation. It is also worth not-
ing that our method indeed promotes global consistency among
shape collections, instead of merely in map bijectivity.

6.3. Discussion and Analysis

• Our results highlight that conducting map refinement in the con-
text of shape collections is beneficial. This is especially true
when the input maps are noisy (e.g., the test on FAUST in Sec-
tion 6.2), or the shapes undergo significant deformations (see,
e.g., Fig. 1).
• Similar to our method, the two baselines on map synchronization

are both designed to promote the cycle-consistency of functional
maps among shape collections. As mentioned in Section 4, the
strength of our method comes mainly from the fact that 1) we
take a multi-scale approach, while the baselines process the func-
tional maps at a fixed scale all the time; 2) the baselines promote
only the consistency of functional maps, which not necessarily
corresponds to high-quality point-wise maps. On the other hand,
our method relates to both map representations, leading to much
more accurate and consistent results.
• It is worth noting, however, our method will be affected if the
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Table 1: Near-isometric Datasets Summary.We compare with the pairwise refinement techniques ICP, PMF, BCICP, and ZOOMOUT, the
collection refinement methods including FN, ICSM, and hybrid baselines combining both types of methods on three different datasets. For
PMF and BCICP, we pick the sampling size (1k and 5k respectively) with the best accuracy shown in [MRR∗19] as our baselines. The
numbers in the table indicate the mean normalized geodesic distance to the ground-truth for the accuracy evaluation. As for the bijectivity
evaluation, we use the normalized Euclidean distance instead.

SCAPE (dense) FAUST (sparse) SHREC’19
Methods\Metrics Acc. (×10−3) Bij.(×10−3) Acc. (×10−3) Bij. (×10−3) Acc. (×10−3) Bij. (×10−3) Runtime (s)
Initialization 50.0 35.3 99.2 108.8 60.4 31.4 -
ICP 32.6 20.5 58.6 50.0 47.0 18.6 87.3
RHM 33.6 13.7 56.4 25.5 51.8 4.0 118.1
PMF (1k) 98.0 0 101.5 0 30.1 4.3 437.9
BCICP (5k) 29.7 8.8 34.0 8.7 42.6 4.5 2313
ZOOMOUT 27.0 13.8 45.9 36.8 28.8 8.1 1.5
FN 38.1 33.4 114.5 122.3 60.9 24.2 3.8
ICSM 33.4 21.2 71.2 70.3 42.9 18.5 10.0
FN + ZOOMOUT 27.2 18.9 36.5 28.1 28.9 7.1 6.7
ICSM + ZOOMOUT 27.2 19.2 45.9 38.9 28.5 7.7 13.3
Ours 22.6 6.6 33.4 8.7 28.9 3.7 4.5
Ours-iso 22.5 5.3 28.0 6.8 27.0 4.5 4.5

Source INI ICP PMF BCICP RHM ZOOMOUT FN ICSM Ours

S1

S2

Figure 7: We demonstrate the bijectivity of the resulting maps from various baselines and our method. In the top row, we compare the texture
transferred from S1 to itself via the map composition going through S2 in the second row, i.e. T21 ◦T12 (and similarly for S2 in the bottom
row). Under perfect bijectivity, the map composition should be an identity map. It is then evident that our method significantly outperforms
the collection map refinement baselines and even achieves comparable results with the frameworks aiming to optimize for bijectivity in the
pairwise setting. Compared to them, our method is far more efficient (see Table 1) and without any specific pairwise refinement.

given initial maps are heavily inaccurate and inconsistent, espe-
cially in the presence of symmetries. Fig. 8 shows some qual-
itative results of the Teddy class from SHREC’07 dataset (see
the quantitative result in Fig. 5). When the initial maps are par-
tially symmetrical or even wrong, our method fails to correct all
maps but instead returned twisted maps. We also refer readers to
Appendix. F for the results of the more challenging Ants class.

7. Conclusion and limitations

In this paper, we proposed an efficient map synchronization
method, CONSISTENT ZOOMOUT. Our method is based on a
multi-scale functional map consistency energy and results in a sim-
ple iterative upsampling scheme in practice. Our method results in
high-accuracy maps, compared to various often sophisticated base-
lines in different settings, but also significantly improves the map
consistency, without any additional post-processing.
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Figure 8: Qualitative results of the Teddy shapes from the
SHREC’07 dataset, where the corresponding quantitative evalu-
ations are shown in Fig. 5. In this example, the initial BIM maps
are not accurate enough. For example, some shapes are mapped
from left to right, back to front, or even foot to head. Starting from
this challenging initialization, our method returns twisted maps,
where the bodies are correctly mapped but the legs are consistently
mapped from left to right. On the other hand, the results of the base-
lines are less consistent (see, for example, how the ears are mapped
in ICSM) than ours, while either being noisy (FN) or suffering from
multiple symmetries (ICSM).

Source
INI

Ours

Figure 9: CONSISTENT ZOOMOUT can utilize the collection in-
formation to refine the initial maps with large outliers. In this ex-
ample, the initial maps computed on the armadillo pairs involve
left-to-right ambiguity, partial shape distortions, and large errors.
Our method can avoid those errors by enforcing the circle consis-
tency and produce high-quality refined maps.

Our method still possesses a few limitations. First, as mentioned
in Section 6.3, our method’s performance depends on the quality
of the initial maps. Also, since the canonical consistent latent basis
formulation assumes implicitly that bijective maps exist across the
shape collection, our method cannot provide theoretical guarantees
on processing collections of partial shapes (though, interestingly,
as shown in Fig. 9, our method works well with armadillos having
missing parts). In the future, we also plan on improving scalability
by better exploiting its potential for parallelization.
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Appendix A: Proof of Theorem 4.1

Proof We let Π ji,Πi j be respectively the point-wise maps corre-
sponding to Ci j,C ji.
First, if Ecol-iso(G) = 0, then ∀(i, j) ∈ E ,Ezm(Ci j) = 0 and
Ezm(C ji) = 0. Following Theorem 4.1 of [MRR∗19], Π ji,Πi j are
isometries between Si,S j. Regarding the consistency argument, in
the complete cotangent Laplacian basis, we have

I =Cip,i1Cip−1,ip · · ·Ci1,i2 = Πi1,ip Πip,ip−1 · · ·Πi2,i1 ,

for any cycle {i1, i2, · · · , ip} ∈ G, which proves that Ecol-iso(G) =
0 implies cycle consistency as well.
Now we prove the converse, i.e., if Πi j,Π ji are isometries
and Πi1,ip Πip,ip−1 · · ·Πi2,i1 = I holds for any cycle in G, then
Ecol-iso(G) = 0.
Again, according to Theorem 4.1 of [MRR∗19], since Πi j,Π ji are
isometries, then

∑
(i, j)∈E

Ezm(Ci j)+Ezm(C ji) = 0. (7)

Now we prove the consistency terms also vanish. Following Theo-
rem 4.1 of [MRR∗19], Ck

i j,C
k
ji are both diagonal and orthonormal

matrices, which implies that the non-zero entries of them are ei-
ther 1 or −1. On top of that, by the definition of functional maps
(Eq. (1)), we have

Πi jΦ
k
j = Φ

k
i Ck

ji. (8)

Without loss of generality, we assume that {1,2,3} forms a cycle
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in G, then according to Eq. (8):

Φ
k
1Ck

21Ck
32Ck

13 = Π12Φ
k
2Ck

32Ck
13

= Π12Π23Φ
k
3Ck

13

= Π12Π23Π31Φ
k
1

= Φ
k
1,

which implies that Ck
21Ck

32Ck
13 = Ik, and similarly we can prove all

the cycle-consistency terms vanish, i.e., Ecol-iso(G) = 0.

Appendix B: Proof of Theorem 5.1

Proof We prove the follow equality:

‖Π jiΦ
k
i Y k

i −Φ
k
jY

k
j ‖2

A = ‖Ck
i jC

k
ji− Ik‖2

F

+‖(I−Φ jΦ
†
j )(Π jiΦiYi−Φ jY j)‖2

A, (9)

where A is the mass matrix of S1.
According to the constraints and Eq. (1), we have:

‖Ck
i jC

k
ji− Ik‖2

F = ‖(Φk
j)
†
Π jiΦ

k
i Y k

i (Y
k
j )
†− Ik‖2

F .

(1) We first prove that

‖(Φk
j)
†
Π jiΦ

k
i Y k

i (Y
k
j )
†− Ik‖2

F = ‖(Φk
j)
†
Π jiΦ

k
i Y k

i −Y k
j ‖2

F (10)

According to the constraint, Ck
i j = (Ck

ji)
T , then according to the

construction of the CLB, we have

Y jY
†
i = (YiY

†
j )

T

⇒ Y jY
†
i = (Y †j )

TY T
i

⇒ (Y T
j Y j)

†(Y T
i Yi) = I

(11)

Note that Eq. (11) holds for any i, j, and that ∑i Y
T
i Yi = nI by the

construction of CCLB, one can conclude that Y T
i Yi = I, i= 1, · · · ,n,

which implies Eq. (10).
(2) Once Eq. (10) is proven, we borrow the following equation
proven in [MRR∗19]:

‖X‖2
A = ‖B†X‖2

F +‖(I−BB†)X‖2
A,

where BT AB = I, i.e., B† = BT A. We then let X = Π jiΦ
k
i Y k

i −Φ
k
jY

k
j

and B = Φ
k
j , finishing the proof.

Appendix C: Computing CCLB

We give a brief overview of the details for computing CCLB, which
is used in step 3 of Alg. 1. Given an FMN G and the corresponding
weight matrix ω computed via the consistency voting [NBCW∗11],
we follow the formulation of [WHG13] and construct the following
block-wise matrix W of size nk×nk:

Wi, j =

 ∑
(i, j′)∈G

ωi j′(I +CT
i j′Ci j′) if i = j,

−(ω jiC ji +ωi jCT
i j) otherwise.

(12)

We then perform an eigen-decomposition on W to compute the

smallest k eigenvectors and stack them into a nk× k matrix Y . Let-
ting Y = [Yi;Y j; · · · ;Yn], as proven in [WHG13], this is the optimal
solution for Eq. (6).

Now, in order to obtain the CCLB formulated in [HAGO19],
we let E = ∑i Y

T
i ΛiYi and do eigen-decomposition on E, yielding

EU =UΛ. Finally, the CCLB is obtained by letting Ỹi = YiU . Note
that, for simplicity, we denote by Yi the CCLB in our main paper
directly.

Appendix D: Initialization & Parameters

Initialization.

In our tests, we used the same initialization for different baseline
methods.

• SHREC’07: for the tests involving this dataset, we always use
the maps computed using BIM [KLF11] as initialization.
• SCAPE (dense): we pick 18 shapes from this dataset, and use

a learning-based framework, SURFMNet [RSO19], to compute
the densely pairwise maps as initialization.
• FAUST (sparse): we use the provided maps in [RPWO18],

which contains 300 pairs of maps among the whole 100 shapes.
• SHREC’19: we use the provided maps in [MMR∗19] as initial-

ization, which are computed from 5 given landmarks.

Parameters. Throughout all the experiments, we use the same set
of parameters except for the way of augmenting dimension of func-
tional maps: For computing the canonical consistent latent basis,
we consistently use the first d0.9ke canonical consistent latent ba-
sis, where k is the dimension of functional maps at current iteration.
We use Euclidean farthest point sampling starting from a random
seed point, and always sample 1000 vertices from each shape in the
collection through all experiments. The intermediate refinement it-
erations are maintained only among the sampled points, and dense
point-wise maps are only computed at the output stage.

In Section 6.1, we augment the dimension of functional maps
from 30× 30 to 80× 80 with step size of 2, while in Section 6.2,
we augment from 20×20 to 100×100 with step size of 5.

Appendix E: Consistency Evaluation of Results on SHREC’07

We plot in Fig. 10 the accumulative consistency error curves for
each of the 7 categories we evaluated. It is evident that the bijectiv-
ity of our results outperform that of the baselines by a large margin.

Beyond the quantitative evaluation above, we also select the cat-
egory of Hands and compare the cycle-consistency of the maps
from different methods qualitatively in Fig. 12. Specifically, for a
shape collection

{
Si
}

with the computed maps Tk−1,k from Sk−1

to Sk, we compute the compound map T (k)
11 in a circle of k shapes

by T (k)
11 = Tk1 ◦Tk−1,k ◦ · · ·T23 ◦T12, which is a map from S1 to it-

self (see the top-left for an example). We then visualize the maps
T (k)

11 with different k, ranging from 2 shapes to 20 shapes (the
whole shape collection). we compare the cycle consistency of the
our maps to those obtained from other baselines. We can see that,
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Figure 10: Bijectivity evaluation on 7 categories of SHREC’07. We accumulate the bijectivity error as the deviation from Tji ◦Ti j to Tii –
the identity map on Si – for all pairs of (i, j). Note that the curves read in the same way as Fig. 5 and the errors are computed in Euclidean
space. Our method significantly outperforms the competing baselines by a large margin: overall 84.3% percent improvement over the best
baseline.

even though the input maps are highly inconsistent, our method can
achieve consistent maps in a shape collection. As a comparison,
even though the baseline methods FN and ICSM use circle consis-
tency to regularize the map quality, the final maps are not in a con-
sistent manner. Moreover, when compare to the pair-wise refine-
ment baseline ZOOMOUT, we can see that when the initial maps
are inaccurate and inconsistent, the pair-wise refinement method
can barely work, while the collection-based refinement method can
still work.

Appendix F: Failure Case due to Symmetry

Fig. 11 shows some example ant pairs, where we can see that the
initial maps have mixed symmetries and wrong matches between
the legs and the antennas. In this case, our method can produce
more accurate maps. However, the symmetry is not fully corrected.

Source BIM
(Ini)

Ours

Figure 11: Here we show an example of our failure case on the
Ant category of SHREC’07 dataset. The initial maps are computed
from BIM [KLF11], where there are a lot of symmetry ambiguities
and mismatching between the legs and the antennas. In this case,
our method can fail to output correct maps directly.
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Figure 12: Qualitative comparsion of cycle-consistency of various map syntonization/refinement results (see text for details).
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