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1. Introduction
This document serves as the supplemental material to our
main work “Self Supervised Dual Contouring”. We per-
form ablation studies on potential alternative reconstruction
losses in Section 2. Then, we provide additional implemen-
tation details pertaining to our three experimental settings
in Section 3. We elaborate on various evaluation metrics
used in the main paper in Section 4. Finally, we provide
additional quantitative evaluation and qualitative results in
Section 5. Our entire code will be released upon publica-
tion.

2. Ablation Studies
We perform Ablation studies over our self-supervised loss
function and sampling strategy for applying our proposed
mesh-based regularization.

2.1. Reconstruction losses

In this section, we compare alternative loss functions for
meshing a given implicit function. To recall, we refer to
our loss as Self-Supervised as our learning framework does
not rely on a reference object and our two loss functions are
computed purely in terms of input grid of SDF. Herewith,
we compare loss functions which uses explicit supervision
w.r.t. a reference mesh to our self-supervised loss function.
I.e., instead of aligning the generated surface to best fit the
input SDF, we compare our SDC with loss functions that
try best aligns the generated surface to some discrete set of
surface samples. These discrete surface samples are points
sampled on the mesh from ABC [9] dataset, which we used
for training SDC as stated in our main paper. We remove
our SDC losses and replace them with different loss func-
tions as elaborated below:
1. Random Sampling: We randomly sample points on

generated surface and ground truth surface and minimize
the Chamfer’s Distance between them.

2. Area Sampling: We use an area based sampling where
we sample the generated surface proportional to the area
of triangles. Then, Chamfer’s Distance is minimized be-
tween the aforementioned samples and ground-truth sur-
face samples.

3. Vert CD: We apply Chamfer Distance, between gener-
ated vertex (produced by SDC) and mean coordinate of
point samples within the same voxel as the generated
vertex. This loss function is local with locality defined
by voxel cell.

4. Second-Order CD: Minimizing the distance between
two surfaces has been well-studied in the context of

Type Method CD (↓) NC (↑) SI (↓) ECD (↓) LSD-P (↓)

Explicit
Supervision

Random Sampling 3.90 90.20 77.60 3.85 13.1
Area Sampling 3.72 91.60 50.44 3.70 12.6
Vert CD 3.52 91.70 72.70 3.54 11.9
2nd Order CD 3.47 91.00 14.55 3.49 11.8

Implicit
Supervision

W/o NC 3.40 93.80 11.64 3.40 11.3
Ours 3.30 94.90 9.67 3.20 11.3

Table 1. Ablation study on different unsupervised losses for the
task of meshing an implicit function.

shape registration with theoretical guarantees [11, 13,
14]. To that end, we consider quadratic approximation
of point-point distance proposed in [11] as our baseline.
In particular, [11] uses local curvature information of
the surface to incorporate second order information into
the function which measures the distance between query
point and reference surface. In our case, we consider the
query point to be the mesh vertex predicted by our net-
work hϕ and the reference surface to be the ground truth
mesh from our training dataset, ABC [9]. Since we ex-
plicitly use the mesh, we consider this to be supervised
baseline. This supervised training objective is given as
follows:

L =δ̂1 (e⃗1 · (x− y))
2
+ δ̂2 (e⃗2 · (x− y))

2
+

(n⃗ · (x− y))2,

where x denotes the query point, y denotes the closest
point on the surface where the surface normal is given
by n⃗ and the direction of principal curvature is given by
e⃗1, e⃗2. Finally, δ1, δ2 denote the magnitude of principal
curvatures at y.

5. W/o NC: We do not use the normal consistency loss and
only use LD defined in Eqn.3 of the main paper.

6. Ours: Denotes the loss function which we report in the
paper.

Our quantitative results are summarized in Table 1. We
observe a noticeable improvement in performance when
using our self-supervised loss function compared to su-
pervision with surface sampling. As discussed in related
works [18, 19] sampling surfaces with discrete points could
lead to attraction of points to a single source (or sink) at
regions of uneven sampling density. This could potentially
explain the higher self-intersection. Also, more importantly,
Self-Supervised loss (Ours) shows a significant improve-
ment over supervised baseline (Second-Order). The re-
ported experiments were performed on the test-set of the
ABC dataset defined in the main paper.



Figure 1. Depicting point samples (in green) at which our signed distance based regularization is applied. The implicit function is meshed
using SDC and rendered in purple. (A) denotes surface sampling, (B) Denotes irregular near-surface sampling and (C) is regular near-
surface sampling.

Sampling Type
CD ↓
(x10ˆ3)

NC ↑
(%)

IoU ↑
(%)

LSD-A ↓
(x10ˆ3)

Time ↓
(m-sec)

Surface 3.6 74.2 84.9 2.8 2.3
Volume 2.8 77.5 86.9 2.8 2.3
Reg Grid 2.6 79.0 87.3 2.7 2.1

Table 2. Comparing quantitative reconstruction results and timing
between different sampling strategies for applying our mesh-based
regularization.

2.2. Sampling for regularization

In this section, we ablate various sampling strategies which
could be used to establish the points for which LSDR (c.f
Eqn.7, main paper) can be computed. In particular, we com-
pare between three types of sampling points in space for
which SDF prediction is regularized w.r.t. the mesh pro-
duced by SDC. Firstly, we compare between points that are
defined on a regular grid, close to the surface of the mesh.
Secondly, we consider points sampled uniformly on the sur-
face of the mesh produced by SDC. Thirdly, we add small
random displacement along the normal vector such that the
points on the mesh are close to but not necessarily on the
surface of the mesh. The three sampling strategies men-
tioned above are visualized in Figure 1. We sample 20,000
points for each strategy. We compare the reconstruction
accuracy of the implicit surface while using the proposed
regularization along with different sampling strategies. The
quantitative results are summarized in Table 2. We observe
that a regular sampling along the grid shows overall better
performance compared to random sampling. We also re-
port the average time for performing a single forward pass
using the aforementioned regularization. We observe that
using a regular sampling strategy is less time-consuming in
comparison to other sampling strategies. This is because,
we can re-use the SDF values computed at those grid points
as SDC requires SDF values at grid points to reconstruct a
mesh. This is unlike the latter two cases where another for-
ward pass through CSDF [4] is required to determine the
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Figure 2. Detailed depiction of SDC framework. Starting from
input SDF defined on a regular grid, we predict the vertices of the
mesh while constructing the faces following the Dual Contour-
ing [7] technique.

SDF values. All experiments were performed on Ampere-
A100 GPUs for fairness in comparison.

3. Additional implementation details

We first provide additional details on estimating normals
and then provide implementational details for the three ex-
periments performed in our main paper.

3.1. Meshing implicit surfaces

Normal Estimation. We estimate the normals from grid
of SDF using Finite-Difference gradient estimation. Given
a 3D scalar field (SDF in this case) f(x, y, z), where x, y, z
are grid coordinates, we can compute the gradient at each
grid point using finite differences.



For an interior grid point, we use the 5-point stencil:

∂f

∂x
=

−f(x+ 2h, y, z) + 8f(x+ h, y, z)

12h

− 8f(x− h, y, z)− f(x− 2h, y, z)

12h
,

∂f

∂y
=

−f(x, y + 2h, z) + 8f(x, y + h, z)

12h

− 8f(x, y − h, z)− f(x, y − 2h, z)

12h
,

∂f

∂z
=

−f(x, y, z + 2h) + 8f(x, y, z + h)

12h

− 8f(x, y, z − h)− f(x, y, z − 2h)

12h
.

For boundary grid points, using a 2-point stencil:

At the start boundary:

∂f

∂x
=

f(x+ h, y, z)− f(x, y, z)

h
,

∂f

∂y
=

f(x, y + h, z)− f(x, y, z)

h
,

∂f

∂z
=

f(x, y, z + h)− f(x, y, z)

h
.

At the end boundary:

∂f

∂x
=

f(x, y, z)− f(x− h, y, z)

h
,

∂f

∂y
=

f(x, y, z)− f(x, y − h, z)

h
,

∂f

∂z
=

f(x, y, z)− f(x, y, z − h)

h
.

The resulting gradient vector at any grid point is then given
by:

df =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

To get the normal vector, normalize the gradient:

n =
df

||df ||
.

Training Details. We train our SDC with ADAM opti-
mizer [8] for 200 epochs with a learning rate of 0.0001.
The final layer of SDC is a scaled-sigmoid, with scaling
factor of σ = 10 to facilitate learning. We use sigmoid ac-
tivation so that the predicted vertex does not leave the cell.
For all experiments in our main paper, we train on 3,000
shapes from the ABC dataset. All shapes are scaled to fit
a unit-sphere. We pre-compute SDFs of all clean shapes at
643 resolution and apply augmentation on-the fly. We used
α1 = α2 = α3 = α4 = 0.01 in all our experiments. De-
tailed architecture depicting SDC is illustrated in Figure 2.

Method Pre-Process Training Inference

NDC 9.0 0.07 0.025
UNDC 9.0 0.14 0.05
SDC 2.7e-3 0.10 0.025

Table 3. We compare timing between our meshing method (SDC)
and two supervised Dual Contouring based baselines, NDC and
UNDC. Reported timings are in seconds per-shape for 643 grid.

Why avoid supervision? The supervised data-driven ap-
proach NDC [3] emulates standard Dual Contouring using
a local augmentation strategy for individual grid-cells, mit-
igating noisy triangulation from DC (refer to Figure 5 in
[3]). Though this augmentation effectively enhances tri-
angle quality, it remains an ad-hoc and heuristic solution.
Conversely, SDC determines vertex positioning through a
loss function mirroring the motivation of standard Dual
Contouring, without relying on ad-hocs. Instead of address-
ing vertex positioning as a potentially ill-posed Linear Least
Squares problem, we employ iterative optimization, a fit-
ting choice for training neural networks. The axiomatic
method’s supervision is limiting since training is feasible
only with pristine input data. SDC neither relies on clean
input data nor a heuristic augmentation to circumvent poor
triangulation.

Why less self-intersection? As mentioned above,
NDC [3] is trained to emulate standard Dual Contouring
vertices. Since Dual Contouring computes the intersec-
tion of the surface inside each voxel cube using a linear
interpolation scheme, this implies, DC assumes the surface
to be a smooth function that can be approximated by a
linear function. However, at sharp edges and corners, the
surface is not smooth, and this linear interpolation produces
self-intersecting faces. On the other hand, the zero-level set
of any function is free of self-intersection. Therefore, since
SDC produces vertices to minimize discrepancy between
SDFs, it is geometrically better motivated and as a result
produces fewer self-intersections.

Timings. We report pre-processing, training and infer-
ence timing of our SDC and compare against supervised
baselines NDC and UNDC [3] in Table 3. SDC has a neg-
ligible pre-processing time as it only involves scaling of
the mesh. On the other-hand, NDC and UNDC computes
dual-contouring ground-truth vertices which involves solv-
ing a linear system of equation for every occupied voxel and
hence their pre-processing time is costlier. However, since
our approach relies on point-to-face distance estimation (c.f.
Eqn.7, main paper), our training is slightly costlier than both
NDC and UNDC. On the other-hand, UNDC requires twice
the training effort as it separately learns connectivity infor-
mation. In practise, we require roughly 10hrs for train-



ing SDC. Similarly, for inference, UNDC requires twice
the amount of time per-shape while SDC and NDC have
similar inference time. All experiments were performed on
Ampere-A100 GPU on a grid of resolution 643, averaged
across our training set.

3.2. Regularizing DIN

As mentioned in the main paper, we used Curriculum
DeepSDF [12] as our choice of DIN and followed the same
hyper-parameters and training strategy advocated by the re-
spective author. Since the curriculum learning strategy in-
creases the level-of-detail of the reconstructed SDF gradu-
ally, we apply our regularization for the last 200 epochs. We
use the weighting factor of our regularization term ϵ = 10.
We used points sampled on a regular grid that are closer to
the surface as illustrated in Figure 1. To construct a mesh by
SDC, we used a regular 643 grid. We trained all baselines,
including ours for a total of 2000 epochs.

3.3. Mesh from Image(s)

We jointly train a ResNet-18 [6] and DeepSDF [12] to learn
an implicit surface for each image from the training set.
We train over ShapeNet [1] dataset and use the rendering
provided by [20] as the input to ResNet-18 encoder. Ren-
dering of each shape is encoded into a latent vector using
ResNet-18, which is then concatenated along with a query
point for which SDF is learnt by DeepSDF. To obtain query
points, we sample 400,000 points close to the surface simi-
lar to [12]. We train for a total of 2,000 epoch per-category
using ADAM [8] optimizer. For the baselines, use same
hyper-parameters provided by the author for a fair compar-
ison. We visualize the network used for end-to-end training
in Figure 3.

ResNet-18 DeepSDF
SDC

Input Image SDF on Grid Output Mesh

Figure 3. Network architecture for joint training for the task of
Single View Reconstruction. Starting from an image, we construct
an implicit representation via a latent code and then reconstruct the
mesh using SDC.

4. Evaluation Metrics

We provide more details on various evaluation metrics used
throughout the paper.:
• Chamfer Distance (CD) calculates a symmetric distance

between two sets of points. Given χ1 and χ2 to be two

point clouds,

CD(χ1, χ2) =
1

|χ1|
∑
x∈χ1

min
y∈χ2

||x− y||2

+
1

|χ2|
∑
y∈χ2

min
x∈χ1

||y − x||2.

• The Normal Consistency (NC) is often used as a metric
for 3D surface reconstruction tasks to measure how well
the estimated surface is consistent with the underlying ge-
ometry of the object:

NC =
1

N

N∑
i=1

(1− cos(Ni, N
∗
i ))× 100%,

Ni and N∗
i are the estimated and ground truth surface

normals, respectively, for the ith point on the surface, and
cos(Ni, N

∗
i ) represents the cosine similarity between the

two vectors. The normalization term 1
N ensures that the

metric is independent of the number of points on the sur-
face.

• Edge Chamfer distance (ECD) is similar to the regu-
lar Chamfer Distance, but it is calculated for two sets
of points, sampled on the edges of considered meshes.
This metric better gauges how well the edges are recon-
structed, or, another way of measuring sharpness.

• 3D Intersection-over-Union (IoU) is a metric used to
compare pairs of 3D shapes, represented as 3D voxel
grids G1, G2. It considers a ratio of the number of occu-
pied voxels in the intersection of two occupancy grids to
the number of occupied voxels in the union of occupancy
grids:

IoU(G1, G2) = 100 ∗
∑

ijk G
1
ijk ∧G2

ijk∑
ijk G

1
ijk ∨G2

ijk

,

where, i, j, k are indices of voxel-cell along x,y,z dimen-
sions.

• Precise Level Set Discrepancy (LSD-P). We propose this
metric to gauge the discrepancy in the signed distance val-
ues between a reconstructed mesh and the ground truth
mesh at fixed points in space. The fixed points are sam-
pled on a regular grid G that are close to the surface of the
ground truth mesh. This metric is defined as follows:

LSD-P =
∑
g∈Ḡ

||abs(dp(M∗, g))− abs(dp(M, g))||2,

where Ḡ denotes the grid points sampled close to the
ground truth surface M∗. Following the similar defini-
tion in our main paper, dp denotes the distance between
g and its closest point on a given surface. M refers to the
reconstructed surface.



• Approximate Level Set Discrepancy (LSD-A). We intro-
duce this metric to gauge the discrepancy in zero-level
set between generated mesh and the ground truth mesh
in circumstances where ground truth mesh might not be
water-tight. This metric was used in our main paper for
experiments pertaining to ShapeNet [1] dataset since it
contains meshes that are non-watertight and estimating
analytic SDF is ill-defined. We first sample points on the
ground truth mesh and then measure the point-to-face dis-
tance to the generated mesh’s closest face. It is defined as
follows:

LSD-A =
1

N

∑
q∈M∗

dp(q,M).

• SSIM (Structural Similarity Index) is a quality metric that
measures the similarity between two images. The met-
ric measures three components of image similarity: lumi-
nance, contrast, and structure. The structural information
of two images include features such as edges, contrast,
and texture.

• Self-Intersection. We use VCGlib 1 to determine face
self-intersections. Initially, the algorithm employs spa-
tial indexing using a grid to efficiently organize the mesh
faces. This structure allows for identification of po-
tentially intersecting faces by comparing their bounding
boxes, thereby significantly reducing the number of de-
tailed intersection tests required. Once potential intersect-
ing pairs are identified, the algorithm determines actual
geometric intersections. It first assesses the number of
shared vertices between each pair of faces. If no vertices
are shared, a direct triangle-to-triangle intersection test is
performed. For pairs with a single shared vertex, the algo-
rithm evaluates by creating segments from the non-shared
vertices of each face, offset towards the shared vertex, and
then examines these segments for intersections with the
opposite triangle. For pairs of triangles that share an edge,
intersection test is performed by checking the position of
the third vertex.

5. Additional Results

Dataset Method CD (↓) NC (↑) SI (↓) ECD (↓) LSD-P (↓)

ABC

MC [10] 3.62 93.69 0 2.72 9.60
NMC [2] 3.53 96.18 12.00 2.16 9.02
NDC [3] 3.39 95.70 14.61 2.22 9.26
Ours 3.15 96.34 6.84 2.04 8.60

Thingi10K

MC [10] 3.89 64.10 0 11.70 10.98
NMC [2] 3.58 68.34 27.40 10.92 10.56
NDC [3] 3.52 67.20 40.82 11.08 10.60
Ours 3.41 69.8 14.80 10.21 9.96

Table 4. Quantitative mesh reconstruction results on the ABC and
the Thingi10k dataset evaluated on a 1283 SDF grid.

In this section, we provide additional qualitative and

1https://github.com/cnr-isti-vclab/vcglib/

quantiative results. Throughout our main paper, we con-
sidered regular grids of size 643 for all our experiments.
Now, we show that our method can be scaled to grid res-
olution of 1283 without any additional training. SDC still
produces minimal self-intersection and superior reconstruc-
tion in comparison to supervised baselines. We summarize
our quantiative results in Table 4 and provide qualitative il-
lustration in Figure 4.

In Figure 5 we show additional qualitative examples of
meshes predicted from the learnt SDF grids of size 1283.
To show generalization of SDC, we use three Neural Fields,
namely SIREN [15], Fourier Feature Network [17] and
NGLOD as our neural field to produce implicit functions.
Finally, in Figure 6 we show the additional qualitative com-
parison of our proposed regularization to the relevant base-
lines.

https://github.com/cnr-isti-vclab/vcglib/


DC NDC UNDC Ours GT

Figure 4. Qualitative comparison between meshes reconstructed from an input SDF of 1283 resolution between DC [7], NDC and
UNDC [3]. Self-intersecting faces are highlighted in red. Please zoom-in to see the detailed tessellation. First three rows are from
Thingi10K dataset and last two rows are from the ABC dataset.
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