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Abstract

Learning-based isosurface extraction methods have re-
cently emerged as a robust and efficient alternative to ax-
iomatic techniques. However, the vast majority of such
approaches rely on supervised training with axiomatically
computed ground truths, thus potentially inheriting biases
and data artefacts of the corresponding axiomatic meth-
ods. Steering away from such dependencies, we propose
a self-supervised training scheme to the Neural Dual Con-
touring meshing framework, resulting in our method: Self-
Supervised Dual Contouring (SDC). Instead of optimizing
predicted mesh vertices with supervised training, we use
two novel self-supervised loss functions that encourage the
consistency between distances to the generated mesh up to
the first order. Meshes reconstructed by SDC surpass exist-
ing data-driven methods in capturing intricate details while
being more robust to possible irregularities in the input.
Furthermore, we use the same self-supervised training ob-
jective linking inferred mesh and input SDF, to regularize
the training process of Deep Implicit Networks (DINs). We
demonstrate that the resulting DINs produce higher-quality
implicit functions, ultimately leading to more accurate and
detail-preserving surfaces compared to prior baselines for
different input modalities. Finally, we demonstrate that our
self-supervised losses improve meshing performance in the
single-view reconstruction task by enabling joint training of
predicted SDF and resulting output mesh. We open-source
our code at https://github.com/Sentient07/SDC.

1. Introduction
Surface mesh extraction from implicit functions, often re-
ferred to as isosurfacing [30, 38, 46, 64], is a fundamental
problem in computer graphics and geometry processing as
the quality of reconstructed mesh impacts algorithms used
in numerous downstream tasks [50]. Prominent primal ax-
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Figure 1. We propose SDC, a data-driven self-supervised isosur-
facing method that reconstructs better feature-preserving meshes
from learnt implicit functions compared to the baseline NDC [13].
Our framework is extendable as a regularizer for training Deep
Implicit Networks (DINs) for improved reconstruction.

iomatic methods such as Marching Cubes [38, 46], are com-
putationally efficient but fail to reconstruct sharp features.
Dual methods [22, 30, 35, 64] achieve sharper reconstruc-
tions using Quadratic Error Function (QEF) but their per-
formance heavily relies on the data fidelity.

Following the ubiquitous success of neural methods in
2D and 3D applications, recent learning-based meshing ap-
proaches [11, 13] propose to predict mesh vertices and
connectivity from various inputs in a feed-forward man-
ner. When trained on extensive, augmented mesh col-
lections, these methods demonstrate enhanced generaliza-
tion and yield higher-quality reconstructions. However,
these approaches rely either directly on the ground truth
meshes [65] or on some intermediate pre-computed proxy
meshes, like complex tessellation templates [11] and out-
puts of axiomatic approaches [13].

Neural Dual Contouring (NDC) [13], the most relevant
method to our work, is a promising recent approach that en-
hances standard Dual Contouring (DC) [30, 64] with a data-
driven pipeline. It aims to replicate DC-produced meshes,
resulting in a framework capable of generating high-quality,

https://github.com/Sentient07/SDC


feature-preserving meshes. However, since vertex estima-
tion of DC follows QEF minimization, it requires precise
SDF values at grid points and normals at edge intersections
for training. Due to QEF minimization being ill-defined in
particular scenarios [30], and susceptible to irregularities in
the input SDF, NDC may exhibit a bias towards poor trian-
gulation quality for challenging inputs and intricate details.
Furthermore, its reliance on DC meshes for training restricts
its use in an end-to-end scenario where both the implicit
function and the explicit mesh can be optimized jointly.

To overcome these limitations, we propose Self-
Supervised Dual Contouring (SDC), a meshing framework
that extends Neural Dual Contouring with two novel ge-
ometrically motivated self-supervised losses to learn the
mesh vertex positions from SDF inputs while relying
on sign changes to extract connectivity. The first self-
supervised objective is a distance-based loss which min-
imizes the difference between the input implicit function
values at points close to the surface and distances from
the same points to the reconstructed mesh. This ensures
that the predicted reconstructed mesh agrees with the input
SDF. Secondly, we align the normals corresponding to re-
constructed faces to those estimated from the input grid of
SDFs. Since our training objective relies only on the in-
put SDF and is agnostic to any explicit representation of the
shape, e.g., based either on surface samples [26, 65] or on
mesh vertices [11, 13], we refer to our approach as Self-
Supervised. Together these two terms produce vertices that
best explain the input grid of signed distance function val-
ues up to the first order like dual methods, while avoiding
shortcomings of the quadratic error function (QEF) mini-
mization [13, 30]. In particular, unlike DC, our method
produces vertices that lie within each voxel-cell, and op-
timization of our self-supervised objectives leads to over-
all better results for input data with imperfections. As a
result, we demonstrate better performance than supervised
baselines in obtaining sharper meshes with negligible self-
intersections and better generalization to unseen input data.

In addition, leveraging the connection between recon-
structed meshes and input SDF grids, we propose a mesh-
based regularization for training Deep Implicit Networks
(DINs) - MLPs which represent zero-level sets of a shape.
In a standard setup, training of DINs is completely decou-
pled from meshing, which is only performed a posteriori.
Thus, existing DINs might produce implicit functions that
do not correspond to a distance function arising from an
extracted mesh. This motivates us to use SDC as a regu-
larization to train DINs. In particular, we enforce the dis-
tance function produced by DINs during training to remain
as close as possible to the distance function arising from
the mesh produced by SDC. This forms the converse of our
self-supervised meshing losses, but now geared to produce
more coherent implicit functions. We demonstrate that this

regularization can be directly adopted into existing training
paradigms for Deep Implicit Networks and it that leads to
more plausible reconstructions.

Finally, since SDC training does not require ground truth
meshes, it can be seamlessly integrated within end-to-end
training paradigms. To highlight this, we consider the task
of mesh reconstruction from images where we first con-
struct an implicit representation given an image using an
existing approach [56, 62] and then reconstruct a mesh
using SDC. The resulting model is trained end-to-end by
jointly minimizing the standard surface reconstruction loss,
our self-supervised loss and the proposed regularization for
Deep Implicit Networks. The resulting approach demon-
strates compelling surface reconstruction efficacy across
multiple object categories from the ShapeNet dataset [9].
In summary, our contributions are as follows:
• We extend Neural Dual Contouring with two novel self-

supervised loss functions ensuring consistency between
input SDF and distance to output meshes, which is geo-
metrically better motivated than the standard QEF minin-
mization.

• We introduce a novel regularizer for training Deep Im-
plicit Networks (DINs), by penalizing SDFs that do not
correspond to underlying meshes.

• We show that SDC generalizes better than supervised
meshing methods, and further demonstrate its utility in
feature-preserving mesh reconstruction from images.

2. Related work

Surface reconstruction and meshing tasks have been exten-
sively studied within computer graphics and vision. Below,
we review the methods that are most closely related to ours
and refer interested readers to several surveys [5, 33, 68] for
a more in-depth discussion.

Axiomatic contouring techniques. The process of iso-
surface extraction from volumetric data is referred to as
contouring. The most widely-used pipeline for surface
reconstruction consists of two major steps. First, volu-
metric data is computed using a signed distance function
[14, 29, 32, 52]. In the second step, a mesh is extracted
from this representation, using Marching Cubes [46], Dual
Contouring [30] or related approaches [17, 53, 74]. This
pipeline can produce very high quality meshes, but is sen-
sitive to the quality of input data and is not differentiable
and thus does not easily fit within modern learning-based
pipelines [39]. Another line of approaches is based on De-
launay triangulations, [7, 8, 37], as well as closely-related
constructions [2, 3, 6, 19] which often come with strong
theoretical guarantees and are typically geared towards pre-
serving some input point set [1, 6]. Such methods, however,
provide little control over the output triangulation. More-
over, classical approaches are typically not differentiable
and thus cannot be easily integrated into learning pipelines.



Data-driven mesh reconstruction. To address differen-
tiability issues of classical mesh reconstruction approaches,
a number of data-driven techniques have recently been pro-
posed. This includes differentiable variants of contour-
ing methods, such as the Marching Cubes [11, 39], dual
Marching Cubes [67], Marching Tetrahedra [66], and Dual
Contouring [13]. Our approach can be categorized into
this family of differentiable contouring techniques. In ad-
dition, surface reconstruction has also been tackled using
template-based techniques which fit a template mesh to the
input [31, 40, 43], or deform an initial mesh while poten-
tially updating its connectivity [20, 55, 75]. Furthermore,
other local approaches propose to fit parameterized surface
patches to points [24, 76], or to decompose space into con-
vex sets [12, 16, 47]. Finally, several learning-based meth-
ods mesh an input point set [15, 45, 61, 65]. These ap-
proaches strongly rely on the given input point cloud and
can thus be sensitive to artifacts and noise.

Neural fields. There has been a recent surge in meth-
ods for learning implicit functions, referred to as neural
fields [78]. This includes pioneering methods for predicting
grid occupancy and signed distance functions [10, 49, 56]
as well as their many follow-up works [21, 63, 69, 72].
Often, training Deep Implicit Networks introduces induc-
tive bias [60] thereby producing inexplicable surface be-
haviors. Multiple regularization techniques [4, 23, 41, 42,
44, 60, 69, 72] have been proposed to address that issue.
They largely focus on either learning high-frequency sig-
nals [41, 72] or designing loss functions based to guide the
gradient level-set [23, 42, 60]. While the latter category of
methods has convergence guarantees [42], the former helps
in producing detail preserving reconstruction. Our work,
on the other hand, provides a novel regularization by uti-
lizing a meshing framework to ensure that the predicted
signed distance field arises from a mesh. Similar to re-
cent works [25, 48, 57, 62, 66, 67, 80] which optimize the
mesh by controlling the underlying implicit function, our
approach also enables back-propagation from the mesh to
the input SDF. However, our approach is non-iterative and
produces a mesh in one feed-forward pass.

3. Background

We first begin by providing the notations used across the
paper in Section 3.1 and review the Dual Contouring and
Neural Dual Contouring algorithms in Section 3.2.

3.1. Notations

We let f : R3 → R be an implicit function that determines
the signed distance of a query point x ∈ R3 from an un-
derlying surface χ. We let fθ denote the implicit function
produced by a neural network parameterized by θ. We use
G to denote an l×m×n regular grid in the Euclidean space,

g ∈ G to be a node in the grid and eij ∈ G to be an edge be-
tween adjacent nodes gi, gj respectively. We denote SG as
the discretization of f on G i.e. SDF evaluated at every grid
node. Finally, we let λ denote the latent vector associated
with a shape computed using an encoder.

3.2. Dual contouring

The Dual Contouring (DC) [30] framework is designed to
produce quadrilateral meshes from input signed distance
functions discretized on a grid SG . It can be decomposed
into two main steps: (1) construction of mesh faces F ; (2)
computation of mesh vertices V . To construct mesh faces,
DC considers adjacent nodes gi, gj ∈ G such that their
signed distance are of opposite signs, f(gi) ̸= f(gj). Then,
for those pairs, a unique quadrilateral face qk is constructed
such that qk crosses the edge eij . Vertices of this quadrilat-
eral qk reside in adjacent grid cells. The faces of the result-
ing mesh are obtained as a union of all quadrilateral faces
F =

⋃
k∈I qk, where I is a set of indices of grid edges con-

necting grid vertices of different signs. Final mesh vertex
positions within each cell are obtained by minimizing the
Quadratic Error Function (QEF). More precisely, given pe
to be the intersection position between edge eij and the face
qij (along eij) and ne to be the gradients of the SDF at po-
sitions eij (or surface normals), vertices are determined for
each grid cell c by solving:

vc = arg
x

min
∑
e∈Ic

[ne ∗ (x− pe)], (1)

where Ic is a set of indices of intersected grid edges corre-
sponding to cell c. Recently introduced Neural Dual Con-
touring [13] attempts to emulate Dual Contouring via a
neural network in order to reduce the inference time while
achieving optimal reconstruction.

4. Method
We describe our Self-supervised Dual Contouring (SDC)
loss functions in Section 4.1, discuss how to use them for
regularization while training deep implicit networks in Sec-
tion 4.2, and apply them for mesh reconstruction from input
images in Section 4.3.

4.1. Self-supervised dual contouring (SDC)

We introduce a Self-supervised training scheme for Dual
Contouring, and refer to a model trained with it as to SDC.
It excludes the dependence on vertex positions obtained via
QEF minimization. SDC produces quad meshes from the
signed distance function discretized on a grid SG similarly
to any Dual Contouring method. We triangulate quadrilat-
erals by joining the top-left and bottom-right vertex as a
convention. SG can either be measured [27] or predicted
using a DIN [56] fθ. SDC consists of two main compo-
nents constructing faces and vertices. To construct faces,



we follow the Dual Contouring [30] algorithm to deter-
mine the connectivity based on signed distance value at grid
nodes. A quadrilateral face is constructed in the cells inci-
dent on every edge eij ∈ G connecting grid nodes of dif-
ferent signs sign(f(gi)) ̸= sign(f(gj)). For vertex predic-
tion, we use a 6-layered 3D Convolutional Neural Network
hϕ : SG → P ∈ R(l−1)×(m−1)×(n−1)×3, which takes the
grid of signed distance values as input and predicts a sin-
gle point per each grid cell as the output. Then, we apply
a masking to select grid cells, that bear node SDF values of
opposite signs. Please refer to Suppl. for more details.

SDC is trained without explicit fitting to the ground truth
meshes using two loss functions. Firstly, to ensure formal
correspondence of produced surfaces to input SDF grids,
we propose a distance-based loss LD. This objective mini-
mizes the differences between 1) the absolute distance val-
ues at the nodes of the discretization grid f(gi) ∈ SG which
are provided as inputs and 2) the distance dp(gi,M) mea-
sured from the same point gi to the predicted mesh M. For
a smooth or gently undulating surface, this distance pro-
vides a reasonable approximation of the underlying geom-
etry [51, 58]. However, in the presence of sharp features,
the local geometry changes direction rapidly. Close query
points residing on different sides of a sharp feature have
similar distances to the mesh but may be projected to very
different locations on the actual surface. To address this,
we also introduce a normal consistency loss, which aims to
align the normals estimated at the nodes of the discretiza-
tion grid f(gi) ∈ SG and normals corresponding to the gen-
erated mesh face.

We refer to the losses proposed above as self-supervised
since the training signal for our pipeline comes from the in-
put alone. We do not use any explicit surface discretization
for training and our losses are solely based on the input im-
plicit function values and the generated mesh. In contrast,
we refer to methods that predict vertices to fit a specific
mesh structure as supervised meshing methods [11, 13].
We provide visual explanations of our loss functions in Fig-
ure 2. In summary, our combined self-supervised objective
for the vertex prediction network is given by:

LMesh = LD + α1LN , (2)

where α1 is a hyperparameter to weigh LN .

Distance loss. The objective of our distance loss is to min-
imize the discrepancy between surfaces produced by SDC
and zero-level sets defined by the input SDFs. In order
to achieve this, given grid nodes gi ∈ G, we measure the
distance between the grid nodes and the mesh produced by
SDC and penalize its deviation from the input absolute dis-
tance values f(gi). In summary, our distance loss is defined

(a) (b)

Figure 2. Illustration of our self-supervised losses. (a) Measure-
ments of dp between grid nodes and the closest point on a mesh
face. For visualization purposes, we only show this estimation at
one node. (b) Normal consistency loss is measured as the discrep-
ancy between interpolated normals (orange) and the face normal
(green). Red nodes denote negative SDF grid and green denotes
positive. The constructed quad is shown in transparent purple.

as:
LD =

∑
gi∈G

||abs(f(gi))− dp(gi,M)||22, (3)

where dp is the point-to-face distance, computed between
gi and its projection on M. For computational efficiency,
we compute LD only at grid nodes that are close to the sur-
face. Please refer to Suppl for details.

Normal consistency loss. We introduce a novel normal
consistency loss, LN which aims to align the level-sets
up to the first order. In particular, given the grid of
scalar SDFs, we compute normals as gradients n(gi) :=
f ′(gi)/||f ′(gi)||2 in grid nodes gi using Five-point stencil,
a commonly used finite difference approach for solving par-
tial differential equations on regular grids [70]. More de-
tails on gradient estimation is provided in the Suppl. Given
an edge eij ∈ G connecting nodes gi, gj of the opposite
signs, we first estimate a point p ∈ eij along the edge where
f(p) = 0. The point p can be represented in terms of gi and
gj as p = (1 − t)gi + tgj . where t is a parameter that de-
termines the position of p along the edge eij . Solving for
p = 0, the parameter t can be expressed in closed form as:

t =
f(gi)

f(gi)− f(gj)
. (4)

Similarly, we can estimate the normal at the point p by
linear interpolation. Using the previously computed param-
eter t, the normal at p can be represented as:

n(p) = sign(f(gi))(1− t)n(gi)+sign(f(gj))tn(gj). (5)

This expression combines the known gradients at the neigh-
boring nodes, weighted by the parameter t, to estimate the
gradient at a point p. Since the inward normal is oriented



opposite to the outward normal, we multiply by the sign
for consistency. As our mesh is constructed following Dual
Contouring [30], we denote the quad-face constructed dual
to the edge eij as qij and its normal as n(qij). With the aim
of aligning these two normals, our normal consistency loss
can be written as:

LN = 1− n(qij) · n(p)
∥n(qij)∥∥n(p)∥

. (6)

Training augmentation. At training time, we add syn-
thetic noise which is zero-mean Gaussian noise with a stan-
dard deviation equivalent to a third grid edge length eij to
the input SDF. Since SDC constructs mesh faces based on
Dual Contouring, a noise that induces a sign change to the
initial SDF will also lead to a topological change. More pre-
cisely, augmentation will lead to inclusion of vertices (and
faces) in cells whose nodes differ in sign. Similarly, faces
are removed dual to cells whose signs agree after augmen-
tation. More training details are provided in the Suppl.

4.2. Deep implicit network regularizer

Deep Implicit Networks (DINs), commonly represented by
Multi-Layer Perceptrons (MLP), are trained to acquire an
implicit representation of a shape and are primarily utilized
for various inference-based surface reconstruction tasks. In
a traditional setup, DINs are trained by direct supervision
of the SDF values at query points sampled close to the sur-
face. Such a training scheme, as also observed by previous
works [23, 42, 60], is known to produce inexplicable behav-
ior, such as ambiguous level sets. To address this, we pro-
pose a novel mesh-based training regularization for DINs to
ensure that the Distance Field (DF) produced by DIN agrees
well with the resulting extracted mesh. Our regularization
minimizes the discrepancy between the predicted DF (ab-
solute value of SDF) and the distance computed from the
mesh corresponding to the SDF extracted using SDC.

We assume that we are endowed with a learnable DIN
fθ(λ, p) : p ∈ R3 → sp ∈ R, represented as an MLP,
whose weights θ encode the implicit surface of a shape con-
ditioned by a latent vector λ, p is a point in space such that
fθ(λ, p) = sp is its signed distance from the zero-level set.
Then, for a given SG - a discretization of fθ on a regu-
lar grid and M∗(SG) - a mesh that is produced following
any iso-surfacing algorithm, it is not necessarily true that
abs(fθ(p, λ)) = dp(p,M∗(SG)), where dp is the point-to-
face distance. While this disparity is viewed as an inher-
ent drawback of primal iso-surfacing methods [54], for dual
methods, this disparity can, in principle, be minimized due
to their ability to preserve sharp details in the reconstructed
meshes. This motivates us to use our SDC for iso-surface
extraction and regularize the training of DINs by minimiz-
ing the aforementioned disparity. Assuming we have ac-
cess to a dataset consisting of N shapes and a pre-trained

SDC with frozen weights, our regularization objective can
be summarized as follows:

LSDR =

N∑
j=1

∑
gi∈G

|| abs(fθ(λj , gi)− dp(gi,M) ||22. (7)

This regularization penalizes the discrepancy between the
DF at grid nodes predicted by the DIN fθ(gi) and the dis-
tance dp computed between the grid nodes and the mesh
M = SDC(SG). To obtain M, we first evaluate fθ over a
discrete grid G and obtain M = SDC(SG). Note that the
above regularization is similar to the signed distance loss
defined in Eq. (3), but with an important difference. Here
we do not use ground-truth SDF values but instead, regu-
larize the predicted signed distance. This regularization is
applied alongside the main objective function to reconstruct
the implicit surface commonly used to train DINs [18, 56]
as follows:

LSDF =

N∑
j=1

K∑
i

|| (fθ (λj , xi)− si| |22 +
1

σ2
∥λj∥22 , (8)

where K is the number of points with annotated SDF values
per shape j, si is the ground-truth SDF value, and σ is a
parameter used to promote compactness in latent space [56].

Combining the standard training loss for DINs [56]
alongside our regularization weighted with a scalar α2, our
learning objective is formulated as follows:

Ltrain = LSDF + α2LSDR. (9)

At the inference time, we reconstruct surfaces from point
clouds by first recovering the optimal latent vectors (See
Eq. (4) in [18]). Then, we predict a grid of SDF values SG
and extract the iso-surface using our SDC.

4.3. Joint learning of implicit surface and meshing

Differently from existing data-driven meshing methods,
SDC relies neither on explicit mesh data [61, 65] nor on ax-
iomatically produced proxy meshes [11, 13]. This means
that SDC can be used to optimize both SDF and recon-
structed meshes jointly in an end-to-end manner. To demon-
strate this we consider the task of predicting surface meshes
from images. We first model the SDF representation of a
shape given an image and then predict the mesh using SDC.
In terms of the architectures, we follow MeshSDF [62]: we
produce latent vectors λ from input images with a ResNet-
18 [28] encoder and learn an implicit shape representation
of shapes using DeepSDF [56] conditioned on the afore-
mentioned latent vectors. Instead of performing test-time
optimization like MeshSDF, we predict SDF values on a
regular grid fθ(G) and use SDC to reconstruct a mesh
M = SDC(SG) by a simple forward pass of our SDC net-
work. Initially, we train the networks (1) DeepSDF (with



an image encoder) and (2) SDC independently, then jointly
fine-tune them for 200 epochs. This fine-tuning uses an im-
age as input and the mesh M from SDC as output, while
minimizing the combined objective terms for surface recon-
struction and meshing as follows:

LSVR = LSDF + α3LSDR + α4LD, (10)

where LSDF and LSDR (defined in Eq. (8) and Eq. (7) re-
spectively) are used to reconstruct and regularize the im-
plicit representation, while LD, defined in Eq. (3), is used to
train SDC. Since the evaluated SDF might be noisy during
training, we observed that using LN results in instability.

5. Experiments, results and discussion
We show the effectiveness of SDC across three tasks,
namely, implicit function meshing, DIN training regulariza-
tion and joint SDF and mesh prediction from images.

Evaluation Metrics. We use Chamfer Distance (CD),
Normal Consistency (NC), Self-Intersection (SI), Edge
Chamfer Distance (ECD), 3D-IoU, Precise Level-Set Dis-
crepancy (LSD-P), and Approximate Level-Set Discrep-
ancy (LSD-A) as metrics to compare all approaches. For
measuring Level-Set discrepancy, we use two terms, Precise
(LSD-P) and Approximate (LSD-A). The former is used in
case where shapes are water-tight and analytical SDF can
be measured. In such cases, we measure the discrepancy
between the ground truth analytical SDF and the distance
function measured from the generated mesh. LSD-A is
used for non-watertight shapes and is measured by sam-
pling points on the ground truth mesh and measuring its
distance from the generated mesh’s faces. Self-intersection
is reported as the total number of intersecting triangles per
mesh averaged across the test set. For the single-view re-
construction task, we also measure the Structural Similarity
Index (SSIM) between the rendering of the reconstructed
mesh and the ground truth mesh. We measure 3D-IoU for
experiments where the generated mesh could topologically
differ from the ground truth. CD, ECD, LSD are scaled by
103 while NC, SSIM 3D IoU are in %. We provide more
details on all the metrics in the Suppl.

5.1. Meshing analytical implicit functions

We first consider the surface mesh reconstruction task given
the ground truth SDFs of shapes discretized on a regular
grid. For this task, we train SDC on 3000 shapes from
the 1st split of the ABC dataset [36] for 100 epochs. We
scale each shape to fit a unit sphere and estimate the SDF
on a regular grid of dimension 643 using SDFGen library 1.
We evaluate all methods on 300 shapes from the test set of

1https://github.com/christopherbatty/SDFGen
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Figure 3. We show three qualitative mesh reconstruction exam-
ples from the ABC dataset (Row 1,2) and the Thingi10k dataset
(Row 3). Self-intersecting faces are highlighted in red. QEF-based
learning methods NDC and UNDC show significantly higher self-
intersecting faces along sharp edges while ours does not.

MC NDC Ours GTNMC

Figure 4. Qualitative examples of meshing SDF produced by
NGLOD [71]. MC, NMC, and NDC produce noisy meshes while
SDC produces a smoother yet feature-preserving reconstruction.

the ABC dataset. Additionally, we evaluate on 300 shapes
from the Thingi10K [81] dataset to demonstrate generaliza-
tion to unseen data domains. We compare SDC against four
baselines including two axiomatic baselines, namely the im-
proved Marching Cubes (MC) [38] and the standard Dual
Contouring (DC) [30] where positions of each vertex are
estimated by solving the Quadratic Error Function (QEF),
and three of the recent Neural Meshing techniques, Neural
Marching Cubes (NMC) [11], Neural Dual Contouring [13]
and FlexiCubes [67] respectively. For fairness, we compare
to variants of comparable network capacity and for Flexi-
Cubes, we compare without test-time optimization.

We summarize our quantitative results in Table 1. Our
self-supervised method SDC shows better performance and
generalization to unseen data domains compared to the
data-driven baselines across all metrics. While Marching

https://github.com/christopherbatty/SDFGen


Dataset Input SDF Method CD (↓) NC (↑) #SI (↓) ECD (↓) LSD-P (↓)

ABC Analytical

MC [38] 4.7 92.1 0 4.8 16.1
NMC [11] 3.7 94.7 34.5 3.6 12.1
DC [30] 3.5 93.5 96.3 3.4 11.6
NDC [13] 3.6 94.3 43.1 3.5 11.9
FlexiCubes [67] 4.5 92.4 0 4.8 15.8
Ours 3.3 94.9 9.7 3.2 11.3

Thingi10K Analytical

MC [38] 5.1 61.4 0 13.3 15.3
NMC [11] 4.1 66.0 32.4 11.9 12.2
DC [30] 4.0 63.8 105.6 11.5 11.8
NDC [13] 4.0 64.9 70.4 11.3 12.0
FlexiCubes [67] 5.2 55.3 0 13.6 15.4
Ours 3.6 68.0 15.7 10.9 11.6

Thingi10K Predicted [71]

MC [38] 5.8 56.7 0 14.2 16.5
NMC [11] 4.7 63.2 30.1 12.6 12.9
DC [30] 6.2 54.0 230.4 14.8 15.0
NDC [13] 4.7 62.8 42.6 12.8 13.1
Ours 4.2 65.7 15.9 12.2 12.4

Table 1. Quantitative mesh reconstruction results on the ABC and
the Thingi10k datasets. The best scores are highlighted in bold
and the second-best scores are in italics. The first two row-blocks
correspond to input SDF which was computed analytically while
in the last row-block, we mesh the SDF predicted by NGLOD [71]

.

Cubes [38] and FlexiCubes [67] do not produce any self-
intersecting faces, the vertex placement is restricted for
these methods, leading to inferior results with respect to
other reconstruction metrics. In the qualitative examples
visualized in Figure 3, we highlight an inherent issue with
NDC and UNDC - they produce a considerable number of
self-intersections along sharp edges. We reason this to be
an undesirable trait that is inherited from the standard Dual
Contouring as previously elaborated. SDC, on the other
hand, bears a minimal number of self-intersections, as our
training objective for mesh prediction is geometrically well-
motivated. Additionally, we report quantitative and qualita-
tive results for 1283 grid resolution in the Suppl.

5.2. Meshing predicted implicit functions

Differently from the previous section, where the SDF is
computed analytically, here, we use an open-source im-
plementation (with suggested hyperparameters) of a recent
deep implicit network NGLOD [71] to predict SDF values
on a regular grid. We evaluate the meshing efficacy of SDC
over a set of 300 shapes from the Thingi10k [81] dataset.
To avoid possible biases, we chose these 300 shapes to be
different from the ones used in the previous section. Our
quantitative results are summarized in Table 1. Consistent
with our observation from the previous section, SDC out-
performs all baselines. We provide a qualitative example of
meshing a noisy SDF in Figure 4. To generate the noisy
SDF, we prematurely terminate NGLOD [71] fitting to
the shape and evaluate different Neural Meshing methods.
While all baselines produce a noisy reconstruction, SDC
recovers a smoother surface while preserving sharp edges,
thanks to our regularization and self-supervised losses. This
suggests that our self-supervised training objectives and
data augmentation are capable of generalizing to noisy im-
perfect predicted data without explicit training on this data.

5.3. Regularizing implicit surface learning

As illustrated in the previous section, SDC successfully pro-
duces sharp meshes from both analytical and parameterized
implicit functions. We now employ SDC for regularizing
DIN training, focusing on the task of surface reconstruction
using the ShapeNet dataset [9]. In particular, we evaluate
over 4 categories of objects, namely, cars, planes, tables,
and cabinets with 1000 shapes per category as our train-
ing set, and set aside a separate set of 200 unseen shapes
for evaluation. We compare our regularization against three
possible baselines. Firstly, we train Curriculum DeepSDF
(CSDF) [18] over each category separately. Secondly, we
re-train the same network by enforcing the Eikonal con-
straint, i.e. enforcing a unit norm for SDF’s gradient in
a setup similar to Implicit Geometric Regularization [23].
Thirdly, we use the supervised Dual Contouring baseline
NDC [13] as the mesh-based regularizer. More specifically,
we replace SDC with NDC in computing the regularization
introduced in Eq. (7). For each shape, we sample 400,000
points in the shape volume, aggressively near the surface
following [56] to supervise the SDF prediction. For fair-
ness, we use the same sampled points for all methods we
compare.

We summarize our quantitative results in Table 2. We
observe that regularizing the network using SDC produces a
noticeable improvement in reconstruction across all metrics
in comparison to baselines. Moreover, we observe a poorer
reconstruction when using NDC [13] for regularization. We
argue that this is due to their inability to handle noisy pre-
dicted SDF values as inputs as this approach learns to em-
ulate solution to QEF (c.f. Eq. (1)), which is ill-defined
for imperfect implicit functions. Our self-supervised loss
functions do not rely on the ill-defined vertices produced
by QEF minimization and align produced meshes to the in-
put SDF grids, resulting in more plausible surface predic-
tions. We believe this difference to be the key reason behind
SDC’s efficacy as a regularizer for training DINs. We also
show three qualitative results in Figure 5. In some exam-
ples, we also observe topological differences although our
regularization does not explicitly penalize it. Since the loss
function which we minimize is highly non-convex, we be-
lieve that our regularization has aided in discovering more
“plausible” latent space which could lead to better quality
of implicit surfaces. We report additional qualitative and
quantitative results in Suppl demonstrating the regularizer’s
generalization capabilities with other DINs.

5.4. Single view reconstruction

In this section, we consider the task of reconstructing sur-
face meshes from images. We use 4 categories from the
ShapeNet dataset [9], namely planes, chairs, rifles, and ta-
bles. We train and evaluate our approach and baseline (us-
ing the official codebase) on the same training and evalua-



Figure 5. Qualitative examples comparing surface reconstruction
from the ShapeNet [9] dataset. The columns compare different
methods, whose training objectives differ. Our mesh-based regu-
larization produces reasonable results compared to baselines.

Method CD (↓) NC (↑) 3D IoU (↑) LSD-A (↓)

CSDF [18] 3.0 78.1 83.9 3.1
+ Eikonal [23] 3.2 78.0 83.0 3.2
+ NDC [13] 2.9 78.4 84.8 2.9
+ SDC 2.6 78.9 86.0 2.7

Table 2. Comparison of surface reconstruction accuracy across ob-
ject categories from the ShapeNet dataset [9]. Methods are trained
with different regularization (see text) while evaluated alike.

tion split for a fair comparison. We compare against three
baselines, namely, MeshSDF [62], DISN [79], and a vari-
ant of our approach referred to as WoBW. More specifi-
cally, WoBW meshes the implicit function produced by pre-
trained SV-DIN using SDC, without the joint fine-tuning.
For MeshSDF [62] and DISN [79] we use the official code-
base for re-training and evaluation.

Quantitative results averaged across 4 object categories
are summarized in Table 3. Notably, our SDC outperforms
MeshSDF [62] without additional test-time optimization fit-
ting a mesh to the rendering. In addition, our end-to-end
model consistently outperforms the WoBW baseline, imply-
ing the efficacy of our mesh-based regularization and end-
to-end training. We also show three qualitative examples in
Figure 6. Our SDC demonstrates an improved ability to re-
construct sharp features in the predicted meshes, resulting
in surfaces more faithful to the ground truth. In the third
row, we highlight an example showing significant improve-
ments in the quality of predicted geometry. It shows that
our method is capable of better thin surface reconstructions
for the same inputs.

6. Conclusion and future work
We introduced SDC, a Self-Supervised training approach
for Neural Dual Contouring. Differently from previous

Figure 6. Qualitative comparison of Single View Reconstruction
(SVR) accuracy among three objects from ShapeNet [9] dataset.
Input denotes the input view and GT denotes ground-truth mesh.
SDC produces more sharper and plausible surfaces in comparison
to baselines.

Method CD (↓) NC (↑) SSIM (↑) LSD-A (↓)

DISN [79] 13.0 70.2 82.0 10.5
MeshSDF [62] 11.3 71.4 84.1 9.1
WoBW 9.9 72.0 86.4 8.1
Ours 9.1 72.8 88.5 7.7

Table 3. Quantitative results for single-view reconstruction across
different object categories from ShapeNet [9] dataset.

work, we do not fit the generated mesh to an axiomaticly
produced proxy mesh but instead use geometrically moti-
vated self-supervised losses which only depends on the in-
put SDF. SDC shows consistent improvements over base-
lines when applied to end-to-end surface reconstruction and
meshing tasks. In addition, our work forges a link between
signed distance fields and meshes and shows how the former
can be regularized by guiding the network to produce dis-
tance fields better corresponding to resulting meshes. Our
meshing and regularization are applied on a regular grid,
which limits the resolution of a reconstructed mesh. It
would be interesting to explore adaptive grids within the
learning framework. Finally, another related and interest-
ing scope for future work is the exploration of strict mani-
foldness conditions [64] and theoretical guarantees of self-
intersection free surfaces.
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