
PoNQ: a Neural QEM-based Mesh Representation

Nissim Maruani
Inria, Université Côte d’Azur

nissim.maruani@inria.fr

Maks Ovsjanikov
LIX, École Polytechnique, IP Paris
maks@lix.polytechnique.fr

Pierre Alliez
Inria, Université Côte d’Azur

pierre.alliez@inria.fr

Mathieu Desbrun
Inria Saclay - Ecole Polytechnique
mathieu.desbrun@inria.fr

Abstract

Although polygon meshes have been a standard rep-
resentation in geometry processing, their irregular and
combinatorial nature hinders their suitability for learning-
based applications. In this work, we introduce a novel
learnable mesh representation through a set of local 3D
sample Points and their associated Normals and Quadric
error metrics (QEM) w.r.t. the underlying shape, which we
denote PoNQ. A global mesh is directly derived from PoNQ
by efficiently leveraging the knowledge of the local quadric
errors. Besides marking the first use of QEM within a neu-
ral shape representation, our contribution guarantees both
topological and geometrical properties by ensuring that a
PoNQ mesh does not self-intersect and is always the bound-
ary of a volume. Notably, our representation does not rely
on a regular grid, is supervised directly by the target sur-
face alone, and also handles open surfaces with boundaries
and/or sharp features. We demonstrate the efficacy of PoNQ
through a learning-based mesh prediction from SDF grids
and show that our method surpasses recent state-of-the-art
techniques in terms of both surface and edge-based metrics.

1. Introduction

In recent years, learning-based methods have shown great
promise as an efficient means to handle ill-posed shape pro-
cessing tasks with complex priors [20, 23, 59]. Yet, de-
spite the slew of advanced architectures to analyze or pro-
cess 3D datasets, there is a lack of learnable 3D represen-
tations that can capture ridges and corners, while guaran-
teeing valid output meshes representing real 3D shapes for
even the most basic learning tasks.

Early works on shape representation for learning
predominantly relied on implicit volumetric representa-
tions [59, 60], which, while eventually yielding a mesh
through extraction, posed significant challenges. Notably,
their training can be costly due to the volumetric nature

(a) PoNQ over input (b) PoNQ mesh (c) Poisson mesh [26]

Figure 1. PoNQ representation. Quadric error metric (QEM)
matrices are fitted and visualized on a given shape (left). Note that
their aspect ratios (green to blue) capture the underlying surface
information: pancakes for flat regions, cigars for sharp edges and
balls for corners. Our mesh extraction outputs a watertight (or,
optionally, open, see bottom) and non-self-intersecting mesh that
preserves salient features of the input shape (center) and is more
concise and faithful than current implicit approaches (right).

of these representations. Moreover, the resulting mesh sur-
faces often lack detail, tending to generate overly smoothed
shapes even where sharp features are expected. In response
to these limitations, recent advancements have formu-
lated explicit representations that effectively encode shapes
through strategically chosen sample points and other geo-
metric entities such as normals, from which more accurate
meshes can be derived [35, 41]. While these representations
offer higher generalizability and greater control over the
generated surfaces, they often cannot guarantee important
properties such as watertightness (i.e., the mesh must be the
boundary of a non-degenerated volume), or the absence of

self-intersections (i.e., the surface is not just immersed, but
embedded in R3). Only very recently an approach has been
proposed that enforces these properties [35]. However, it
can suffer from overly complex output meshes (presence of
many spurious polygonal facets) and, at times, wrong occu-
pancy guesses create dents on the resulting shapes.

In this work, we propose PoNQ (short for point-normal-
QEM), a new learnable 3D representation which encodes
a shape through discrete points and other local geometric
quantities to ensure efficient training and sharp reconstruc-
tions. As we demonstrate, a global mesh can be extracted
from our PoNQ representation through a robust approach
that leverages the available geometric data so as to better
capture ridges and thin structures. Our key contributions
are as follows:

• our neural representation is the first to exploit the quadric
error metric (QEM), which has been instrumental in clas-
sical geometry processing tasks; consequently, PoNQ ex-
cels at capturing sharp features and boundaries, preserv-
ing the intricate details that are often lost in existing rep-
resentations (see Fig. 1);

• PoNQ meshes are guaranteed to be watertight and free of
self-intersections, thus broadening their applicability and
utility in downstream applications;

• our PoNQ representation can also easily reduce the ele-
ment count of the output shapes while preserving sharp
features due to its reliance on QEM;

• finally, our neural representation outperforms state-of-
the-art methods in mesh reconstruction from SDF grids
as measured with both surface and edge-based metrics.

2. Related Work

We begin with a review of related works, including popular
methods in shape learning, but also covering relevant parts
of shape reconstruction and shape simplification.

Shape Reconstruction. The literature abounds with shape
reconstruction methods (typically from input pointsets),
each distinguished by their unique priors – necessary to reg-
ularize the ill-posed nature of the task – and output rep-
resentations. In so-called continuous approaches, the re-
constructed shape is the fixed-point of a projection opera-
tor [2], an algebraic point set surface (APSS [18]), or the
isolevel of a 3D distance-like scalar field [26, 27], to men-
tion a few popular approaches. Approaches from the lat-
ter category (often referred to as implicit methods) further
require a mesh extraction from the scalar field, denoted
isosurfacing, typically through Marching Cubes (MC [33],
or its improved neural variant NMC [10]), Dual Contour-
ing (DC [25], or its neural variant NDC [8]), or through
the recently-proposed Reach-for-the-Spheres (RTS) tech-
nique [46] that leverages geometric properties of a signed
distance field to improve isosurfacing.

Combinatorial methods, popular in Computational Ge-
ometry, rely instead on 3D Delaunay triangulations or their
duals, Voronoi diagrams. The popular Crust approach, for
instance, proceeds by local filtering of (facets of) 3D De-
launay triangulations [3]. However, it requires dense point
samples to correctly capture thin features, and cannot han-
dle sharp edges. Its Powercrust [4] and Tight Cocone [13]
variants add filtering of the triangulation to improve vari-
ous properties, like the capture of holes in the reconstructed
surface, but they share the same limitations. A global graph-
cut extraction of the faces of the Delaunay triangulation of
the input samples [29] was also shown to be more robust
to noisy inputs, just like a recent Delaunay-based approach
that alternates between filmsticking and sculpting over a 3D
triangulation [56].

Implicit Field Learning. Most pioneering 3D learning
methods [36, 39, 42] represented a shape as a scalar field
(very often, a signed distance field in fact), later converted
into a mesh via Marching Cubes [33] or directly rendered.
These methods need to process the global shape, limiting
their generalizability beyond ShapeNet [7]. More recent
implicit-based approaches [16, 49] showed that neural net-
works can be overfitted to single-shape Signed Distance
Fields (SDF), and as such, they cannot learn from mul-
tiple shapes. Adding point-based convolutions [6], hash
tables [37], octree structures [32, 52, 57] or kernel meth-
ods [22] have also been proposed to further refine these im-
plicit methods, while the use of unsigned distance fields was
leveraged to represent surfaces with boundaries [11, 19, 61].
Although using continuous fields provides topological guar-
antees, the lack of control of the final locations of mesh
vertices yields a distinctively “blobby” aspect that smooths
out sharp features and small details. Furthermore, implicit
fields are trained over the whole volume around and inside
the shape, while most applications are only interested in the
reconstructed surface.

Explicit Shape Learning. To overcome the limitations
of implicit fields and offer better control over the el-
ements of the output mesh, end-to-end differential iso-
surfacing approaches were proposed [31, 45, 48]. Yet these
approaches still rely on regular grids and often do not guar-
antee intersection-free output meshes. Methods that best
fit a set of canonical geometric primitives [9, 12, 58] or
an explicit mesh [38] to an input shape manage to pro-
duce concise meshes and preserve sharp features if these
primitives (planes, quadric patches, etc) are diverse enough
to describe the input mesh. However, they are rapidly
compute-intensive even for a limited number of primitives.
Deforming template shapes [17, 51] or regular tetrahedral
meshes [14, 47] often constrains the output mesh genus
and connectivity, and cannot guarantee intersection-free
meshes. Another line of contributions approaches the de-
sign of learnable 3D representations from a different stand-

point: provided a known reconstruction algorithm, what ge-
ometric estimates should the neural network predict in order
to extract a mesh off of it? Methods relying upon the pop-
ular Poisson surface reconstruction algorithm to extract a
mesh [41, 43] for instance inherit the topological advan-
tages of an implicit surface representation, but they also
suffer from their limitations by exhibiting overly-smoothed
sharp features and a large amount of mesh elements. The
Neural Marching Cubes (NMC [10]) and Neural Dual Con-
touring (NDC [8]) methods reduce some of these limita-
tions, at the price of losing topological guarantees. Re-
cently, VoroMesh [35], computes a Voronoi diagram so that
a subset of the 3D Voronoi facets best fit the input mesh,
guaranteeing watertight results; but VoroMeshes are littered
with small faces with spurious normal orientations, caus-
ing both visual artifacts and large mesh element counts. A
few learning methods rely on a Delaunay triangulation in-
stead [34, 44, 50, 62], but they are limited to the case of a
fixed input pointset. We recap in Tab. 1 some typical prop-
erties of explicit learnable 3D representations.

Arbitrary Sharp Watertight, Open
connectivity features no self-int. surfaces

NDC [8] ✓ ✓
DMT [47] ✓
SAP [41] ✓
DPF [43] ✓ ✓

VoroMesh [35] ✓ ✓ ✓
PoNQ ✓ ✓ ✓ ✓

Table 1. Properties of explicit learnable 3D representations

Quadric Error Metrics. Finally, we review a workhorse
of surface approximation. In the context of mesh decima-
tion, Garland and Heckbert [15] introduced a Quadric Error
Metric (QEM), encoded as a 4×4 matrix Q, which evalu-
ates the sum of squared distances to a (possibly large) set
of tangent planes. The use of QEM for their application
was particularly appropriate: the sum Q of two matrices Qi

and Qj represent the sum of the squared distances to the
union of the tangent planes used for Qi and those used for
Qj – a very economical proxy to all these tangent planes.
Consequently, they proposed to use these QEM matrices
to perform an efficient mesh decimation: the updated ma-
trices encode the squared distances of all nearby removed
facets, thus offering a very fast and low-memory evaluation
of the distance to the original mesh throughout the decima-
tion. After a few rounds of simplifications, the ϵ-isovalue
of QEM error near a vertex vi (i.e., the set of 3D positions
x such that [x, 1]tQi[x, 1] = ϵ) thus encodes the local re-
gion around vi of the initial surface: it will look like a pan-
cake if the original region was flat, an elongated ellipsoid
if the region was a sharp feature (and the ellipsoid will pre-
cisely match the alignment of the sharp feature), or a sphere
if the original region was near a corner. While QEM was
adapted to deal with colors and texture coordinates [21],
spherical distances [53], mesh filtering [30] and even vari-
ational mesh reconstruction from 3D pointsets [63], the au-

thors of [54] recently suggested a probabilistic version of
QEM as a potential representation for learning-based tasks,
while [1] used QEM as a loss function. As we will see
next, we will use a QEM matrix per discrete sample point in
our learnable representation for 3D shapes instead, to better
learn the shape of local regions.

3. Method
We now delve into our PoNQ representation by first offering
a more in-depth introduction to QEM and how we use it in
Sec. 3.1. We then describe our representation in Sec. 3.2
along with its use in learning tasks, and finally introduce
our PoNQ mesh extraction approach in Sec. 3.3.

3.1. Motivation: Quadric Error Metrics

Given a sample point sk ∈ R3 and a normal n(sk) ∈ R3,
the signed distance from a given location x to the plane
passing through sk that is normal to n(sk) is given simply
as dsk,n(sk)(x) = (x−sk)

tn(sk). The squared distance can
thus be rewritten as dsk,n(sk)(x)

2 = xtAkx − 2btkx + ck,
where 3× 3 matrix Ak, vector bk, and scalar ck are:

Ak = n(sk)n(sk)
t, bk = Aksk, ck = stkAksk. (1)

The sum of squared distances to a set of planes thus yields:

QEM(x) =
∑
k

d2sk,n(sk)(x)

= xt
(∑

k

Ak

)
:=A

x− 2
(∑

k

bk
)

:=b

t
x+

(∑
k

ck
)

:=c

(2)

= [x, 1]t

 A −b

−bt c

:=Q

[x, 1]. (3)

The summed distances to a fine sampling {sk}k :=S of
a small surface patch can then be concisely encoded by the
QEM matrix Q∈R4×4 from Eq. (3). Moreover, Q can also
indicate the best possible position to represent this surface
patch with a single vertex: assuming the submatrix A to
be invertible (which is true in the general case [54]), the
quadratic QEM function reaches its unique minimum at a
location v∗ = A−1b. We leverage these quantities as part of
a powerful 3D representation suitable for machine learning.

3.2. PoNQ representation

The PoNQ representation consists in a set P= {pi ∈ R3}
of points, augmented with their local normals N = {ni ∈
R3} and quadrics Q= {Qi ∈R4×4} – hence its name. In
order to remove possible ambiguities, we will use a bold
font to refer to the different quantities involved in the PoNQ
representation, i.e., what will be optimized or learned.

3.2.1 QEM-based representation via optimization

In a pure optimization-based setting, we want PoNQ to fit a
watertight and non-self-intersecting input shape finely dis-
cretized by samples sk ∈S with their local normals n(sk).
We initialize the points P on a regular grid around the in-
put shape (other initializations work equally well), and op-
timize their position to minimize the bi-directional Chamfer
Distance CD:

CD(P, S) =
1

|P|
∑
pi∈P

min
sk∈S

∥pi − sk∥2 (4)

+
1

|S|
∑
sk∈S

min
pi∈P

∥pi − sk∥2, (5)

The resulting point set will thus lie close to (and spread out
over) the target surface. These points define a partition of
R3 into Voronoi cells V (pi) for which any location x ∈
V (pi) has pi as its closest point from P, see [5].

Once the positions are optimized, we enrich each point
pi ∈P with a normal ni and a QEM matrix Qi, where ni

represents the average of the sample normals n(sk) for all
the samples sk contained within V (pi) (see Fig. 2), i.e.,

ni =
1

|S ∩ V (pi)|
∑

sk∈S∩V (pi)

n(sk). (6)

Similarly, Qi is assembled using Eqs. (2) and (3) using
the tangent planes implied by each sample (and its normal)
within V (pi), i.e., Qi is the QEM matrix such that

[x, 1]t Qi [x, 1] =
∑

sk∈S∩V (pi)

d2sk,n(sk)(x). (7)

Note that these additional variables are thus proxies for the
local geometry around each point pi; points with no input

pi

sk

ni

iQ

(a) Optimized PoNQ point set

pi

ni

iQ

(b) PoNQ meshing

Figure 2. 2D illustration of PoNQ: (a) a sampled ground-truth
shape S (blue dots) is represented by PoNQ as points pi (whose
Voronoi diagram (dotted lines) partitions the input samples), along
with normals ni and quadrics Qi encoding the shape within each
Voronoi cell. (b) The PoNQ mesh (black solid lines) is the bound-
ary of the union of labeled tetrahedra from the Delaunay trian-
gulation of the QEM-optimal vertices, providing a better fit than
simply interpolating the points (black dotted lines).

samples within their Voronoi cell are simply discarded. As
explained in Section 2, each matrix Qi implies, through its
sub-matrices Ai and bi, an optimal location v∗ :=A−1

i bi

with respect to the input surface, hinting at the fact that stor-
ing v∗ instead of bi is a possible alternative, which we will
use in the learning context in the next section. We then rely
on Q and N to extract the connectivity of the optimal ver-
tices v∗, which will be explained in Sec. 3.3.

3.2.2 Learning with PoNQ

Points, QEM, Normals PoNQNeural NetworkSDF

Figure 3. Overview of our learning pipeline with PoNQ.

We demonstrate the benefits of PoNQ in a learning con-
text by applying it to reconstruction from Signed Distance
Fields (SDF) (see Fig. 3). As shown in several recent
works [8, 10, 35], this task is especially interesting as it en-
ables the training of a local model that can truly generalize
to novel shapes outside the training set.

We use an architecture similar to NDC [8], consisting
of several convolutional neural networks (CNN). Unlike
NMC [10] (which uses eight points per voxel) and NDC
(which uses only one), we can use an arbitrary number P of
predicted points per cell since our representation does not
depend on a regular grid — in practice, we found that P = 4
can represent sub-voxel details nicely without requiring too
large networks. We use a shared 5-layer encoder that con-
verts the (N+1)3 input SDF grid into a N3-sized grid of
128 features. These features are processed by five separate
6-layer decoders (which do not share weights) to predict a
PoNQ, i.e., P × N3 points pi, along with their associated
local normals ni and QEM matrices Qi, to which we add
a set O of N3 binary “occupancies” oi to mark the voxels
containing the surface at inference time.

To stabilize the learning process and avoid having to
perform matrix inversions, we do not store QEM matri-
ces directly but only use the quadratic form Ai and the
QEM-optimized vertex location v∗ instead, from which one
can reconstruct Qi =

(Ai −Aiv
∗
i

−(Aiv
∗
i)

t 0

)
. Furthermore, we

store instead of Ai a 3× 3 upper triangular matrix Ui such
that Ai = UiU

t
i is the reversed Cholesky decomposition

of Ai, guaranteeing that Ai remains invertible.
We supervise our training with a collection of watertight

shapes, each converted into a dense sampling S. We pre-
process the data by computing the ground-truth occupancy
set Ogt of the m voxels containing samples, to which we re-
strict our loss terms (except for Locc, which checks how well
the trained occupancy set matches the ground-truth one). At

training time, we apply the sum of the following losses and
backpropagate their gradients w.r.t. the bold variables:
LCD = CD(P, S) (see Eq. (5)) (8)

Ln =
1

m

m∑
i=1

∑
sk∈S∩V (pi)

∥ni − n(sk)∥2 (9)

LA =
1

m

m∑
i=1

∑
sk∈S∩V (pi)

∥UiU
t
i − n(sk)n(sk)

t∥2 (10)

Lv∗ =
1

m

m∑
i=1

∑
sk∈S∩V (pi)

(
n(sk)

t(v*
i − sk)

)2
(11)

Lreg =
1

m

m∑
i=1

∥v*
i − pi∥2 (pi assumed fixed here) (12)

Locc = ∥O−Ogt∥2 (13)

In the order in which they are listed above, these losses
were designed to: help spread around the pointset P and
best fit the inputs; enforce that each normal is the mean nor-
mal of the local sample normals; enforce that the quadratic
forms Ai correspond to the proper submatrix of the QEM
of the local samples and normals around point pi; enforce,
similarly, that v*

i minimizes the sum of squared distance to
the local tangent planes around point pi; regularize (with a
very small coefficient) the positions of the optimal points v*

i

in flat regions — as in this case, any point on this flat region
is optimal in theory, so we force it to stay close to pi; and
make sure that we match the ground-truth occupancy set.
See §2.3 of the supplementary material for ablation studies.

3.3. Meshing our representation

Given a PoNQ representation (either optimized or pro-
duced by a trained network), one can easily extract a mesh
by combining two approaches from computational geom-
etry [3, 29] to ensure robustness. Note that we do not
even use the pointset P which only served to build a shape-
adapted partition: we construct a mesh whose vertices are
the QEM-optimal positions v*

i as they capture features best.
We present here a concise overview of our meshing method;
see our supplemental material for details.

Pre-processing We first compute the Delaunay tetrahe-
dralization of the optimal vertices v*

i deriving from the
QEM matrices Q. The next two steps will tag each tetra-
hedron as either inside or outside based on local informa-
tion, so that our final PoNQ mesh will be simply the triangle
mesh forming the inside/outside boundary — ensuring wa-
tertightness and no self-intersections by design.

Tagging obvious inside/outside tetrahedra. We lever-
age the circumcenter criterion put forth in the Crust algo-
rithm [3]. In our case, each vertex v∗

i and its assigned nor-
mal ni define an oriented plane: we tag a tetrahedron as out-
side (resp., inside) if both its circumcenter and barycenter

(a) SAP (b) DPF (c) VoroMesh (d) PoNQ (e) Gr. Truth

Figure 4. Optimization-based results (323).

are determined to be in the outside (resp., inside) half-space
of each of the four vertices. Considering that the shape is
contained within the convex hull of the v∗

i and that each ver-
tex of the Delaunay tetrahedralization must be part of the
final surface allows us to further tag a series of tetrahedra
where there is no ambiguity; see our supplemental material
for a detailed rationale.

Tagging remaining tetrahedra. Delaunay-based mesh-
ing approach (like Crust [3]) require a dense point sampling
(formally, an ϵ−sampling), which is not compatible with
our desire to deal with thin structures, sharp features and
corners — and this is the main reason why our earlier phase
can end up not providing a tag for every tetrahedra. To finish
our tetrahedron tagging based on the ones we already have,
we use a graph cut approach, inspired by (but simpler than)
an existing spectral graph partitioning [29]. For each De-
launay triangle T , we compute a likelihood score S(T) that
evaluates how confident we are that this triangle is to ap-
pear on the final output mesh: this triangle score evaluates
the fitness of T based on the local normals N and quadric
matrices Q as explained in the supplemental material. We
now tag the remaining undetermined tetrahedra through a
minimum cut of the Voronoi graph (in which each dual of a
tetrahedron is a node, and each dual of a Delaunay triangle
T is an edge with weight S(T)) using the already-tagged
”inside” ones as a source and the ”outside” one as a drain.

Surface extraction. We extract the final PoNQ mesh as
the triangle mesh forming the boundary between the inside
and outside tetrahedra (see Fig. 2). As mentioned above,
this automatically enforces by design the fact that our mesh
is watertight and intersection-free.

4. Experimental Results
We implemented PoNQ for both optimization and learn-
ing tasks in Python, using PyTorch [40], SciPy [55] and
libigl [24] — our code is available on our project page.
All timings were computed on a single workstation with 54
cores, a NVidia A6000 GPU and 512 GB of RAM.

https://nissmar.github.io/projects/ponq/

4.1. Optimization-based 3D Reconstruction

For our tests in optimization-based 3D reconstruction, we
use the 30 watertight shapes from the Thingi10k [64]
dataset chosen in VoroMesh [35] as it is arguably the most
related and most recent neural representation with which
to compare. We consider three grid resolutions res ∈
[323, 643, 1283], and sample 1024× res2/3 surface samples.
As described in Sec. 3.2.1, we use the chamfer distance as
a loss to optimize the points for 400 epochs with the Adam
optimizer before computing the mean normals and quadrics
with our GPU-based implementation. We then extract the
PoNQ representation as explained in Sec. 3.3.

Baselines. Besides VoroMesh, we also compare our re-
sults with Shape As Points (SAP) [41] and Dynamic Point
Field (DPF) [43] as these three point-based neural represen-
tations all guarantee watertight outputs. We add a variant
of DPF, trained with the Chamfer distance only (i.e., with-
out the image-based loss), which we denote DPFchamfer. For
each method, we use the same number of optimized points.

Metrics. We use the most common surface-based met-
rics, i.e., chamfer distance (CD), F-score (F1, with a thresh-
old of 0.003), and normal consistency (NC). In order to as-
sess the reconstruction quality of sharp edges, we sample
105 points on the edges featuring a dihedral angle larger
than π

6 , and compute the edge-chamfer distance (ECD) and
edge-F-score (EF1, with a threshold of 0.005) between the
ground truth and the reconstruction samples (see supple-
mental material for details). We also report the number of
triangles and faces of the extracted 3D models. Finally, we
provide timings of the optimization step for all methods,
as it is systematically the most time-consuming phase; see
supplemental material for additional timings.

Results. As SAP and DPF both rely on Poisson surface
reconstruction, they smooth out sharp edges and small de-
tails. DPF does not optimize the extracted field, but rather
leverages local information from which the mesh is assem-
bled without supervision, leading to faster convergence and
better scores than SAP for all metrics. As the evaluation

Method Grid CD ↓ F1 ↑ NC ↑ ECD ↓ EF1 ↑ # V # F Time
Size (×10−5) (×103) (×103) (×103) (×103) (s)

SAP [41], 323 6.475 0.589 0.894 0.235 0.058 1.6 3.2 51.2
DPF [43] 323 2.256 0.724 0.935 0.147 0.115 5.8 11.6 45.5
DPFchamfer [43] 323 2.077 0.717 0.933 0.160 0.104 5.7 11.3 2.5
VoroMesh [35] 323 0.802 0.919 0.957 0.257 0.242 5.9 11.8 2.0
PoNQ 323 0.972 0.892 0.961 0.106 0.447 2.3 4.6 2.6
SAP [41], 643 1.912 0.858 0.949 0.119 0.267 7.0 13.9 106.3
DPF [43] 643 0.795 0.909 0.971 0.104 0.435 22.6 45.1 51.5
DPFchamfer [43] 643 0.797 0.907 0.970 0.094 0.415 24.1 48.3 4.0
VoroMesh [35] 643 0.645 0.938 0.975 0.251 0.249 23.4 46.9 4.1
PoNQ 643 0.655 0.936 0.981 0.061 0.645 10.1 20.1 4.1
SAP [41], 1283 0.671 0.934 0.978 0.060 0.619 28.8 57.7 191.3
DPF [43] 1283 0.644 0.938 0.986 0.089 0.665 90.0 180.0 71.0
DPFchamfer [43] 1283 0.644 0.938 0.986 0.086 0.664 97.3 194.5 17.7
VoroMesh [35] 1283 0.634 0.939 0.982 0.264 0.213 91.3 182.6 36.3
PoNQ 1283 0.637 0.939 0.988 0.039 0.795 42.3 84.6 17.9

Table 2. Optimization-based results. Quantitative comparisons of
Chamfer distance (CD), F1 score, and normal consistency (NC)
on the Thingi30 dataset for three different grid resolutions.

point cloud is sampled from the reconstructed Poisson mesh
(rather than the predicted points), the image-based loss does
not significantly improve results, and DPFchamfer is faster
than DPF with comparable performance.

VoroMesh exhibits finer details and better sharpness
overall. With the same number of points as SAP, DPF and
PoNQ, it has the best overall surface fitting scores due to the
large number of Voronoi vertices and faces. However many
of these faces have spurious normals and create undesired
sharp edges, thus impacting the NC, ECD, and EF1 scores.

Qualitatively, PoNQ is better at dealing with sharp fea-
tures than SAP and DPF and does not generate surface ar-
tifacts like VoroMesh (see Figure 4). Quantitatively, our
method yields the best normal consistency and sharp edge
fitting scores (see Tab. 2). In terms of surface fitting, it
matches the considered baselines at resolution 1283, and
comes close second behind VoroMesh at resolutions 323

and 643, but with significantly lower face counts. We will
discuss in Sec. 4.3 how one can further lower the face count
of PoNQ meshes at very little cost on the scores (see Fig. 7),
setting PoNQ apart even more prominently.

4.2. Learning-based 3D reconstruction

4.2.1 Reconstruction from SDF

We now assess the behavior of our PoNQ representation
in the learning-based task of 3D shape reconstruction from
SDF grids. We train and evaluate our method on the CAD
shapes of the ABC dataset [28]. We also assess the gen-
eralizability of our method on the free-form shapes of the
Thingi10k [64] dataset, without any fine-tuning. For fair-
ness, we use the train/test split provided in VoroMesh [35]:
3,843/962 in the training and testing set for ABC, with 30
watertight validation shapes for Thingi10k. We train our
network for 600 epochs while increasing the number of
sampled points and decreasing the learning rate and regu-
larization – see supplemental material for additional details.

Baselines. We compare our method against the three
most closely related baselines: NMC [10], NDC [8] and
VoroMesh [35] using the authors’ code and their best pre-
trained model (we also discuss comparisons with RTS [46]
and DMTet [47] in the supplementary material).

Metrics. We use the same evaluation metrics that were
already mentioned in Sec. 4.1.

Results. Our key results are reported in Tabs. 3 and 4,
where PoNQ outperforms state-of-the-art methods on every
resolution, dataset, and metric while guaranteeing water-
tight output meshes that are devoid of self-intersections. We
note that NMC and NDC both rely on a regular-grid based
meshing. As a result, they fail to capture thin structures and
exhibit aliasing artifacts (see Figs. 5 and 6), which impacts
their surface, normal and sharp-edge fitting scores.

VoroMesh does not rely on a regular grid, so its abil-
ity to capture thin surfaces leads to better results than NMC

(a) NDC (b) NMC (c) VoroMesh (d) PoNQ (e) Gr. Truth

Figure 5. Learning results (top: 323; bottom: 643) on ABC.

Method Grid CD ↓ F1 ↑ NC ↑ ECD ↓ EF1 ↑ Watertight ↑ # V # F
Size (×10−5) no self-int. (×103) (×103)

NDC [8] 323 66.004 0.787 0.941 0.445 0.658 44% 1.3 2.6
NMC [10] 323 60.755 0.833 0.954 0.350 0.693 26% 9.7 19.3
VoroMesh [35] 323 2.228 0.835 0.941 0.802 0.232 100% 10.0 20.0
PoNQ-lite 323 3.539 0.810 0.953 0.296 0.658 100% 1.3 2.6
PoNQ 323 1.514 0.852 0.964 0.184 0.713 100% 5.1 10.2
NDC [8] 643 2.211 0.882 0.975 0.223 0.855 23% 5.5 11.0
NMC [10] 643 2.138 0.891 0.980 0.254 0.854 18% 42.8 85.5
VoroMesh [35] 643 1.219 0.886 0.966 0.796 0.207 100% 38.4 76.9
PoNQ-lite 643 1.074 0.888 0.978 0.128 0.858 100% 5.5 10.9
PoNQ 643 0.886 0.892 0.980 0.109 0.866 100% 21.2 42.3
NDC [8] 1283 1.889 0.896 0.983 0.095 0.947 14% 22.1 44.2
NMC [10] 1283 1.888 0.896 0.984 0.349 0.859 12% 175.9 351.9
VoroMesh [35] 1283 1.069 0.894 0.974 0.792 0.189 100% 149.1 298.2
PoNQ-lite 1283 1.007 0.896 0.984 0.043 0.933 100% 21.9 43.8
PoNQ 1283 0.920 0.896 0.984 0.191 0.878 100% 85.7 171.2

Table 3. Results on ABC with our network trained on ABC.

and NDC for the complex ABC dataset or on low-resolution
models of Thingi30. However, as noticed in Tabs. 3 and 4,
it suffers from local surface artifacts leading to sharp edges
and spurious normals, resulting in worst NC, ECD and EF1.
Moreover, its two-stage training implies that its encoder is
not trained for occupancy prediction; as a result, it can mis-
label Voronoi generators, leading to either missing parts or
floating volumes around the shapes (see Figs. 5 and 6).

In contrast, our method is able to capture fine details due
to our use of QEM, which helps to capture surface char-
acteristics, and it does not visually exhibit any of the ar-
tifacts of other approaches due to our PoNQ mesh being
extracted from a Delaunay tetrahedralization. Ultimately,
PoNQ leads to more faithful reconstructions while guaran-
teeing 100% watertight and intersection-free results.

4.3. Additional extensions

We conclude this section with other examples leveraging
the unique nature of our neural representation.

Surfaces with boundary. With minor modifications,
PoNQ can output surfaces with boundaries as well (Fig. 1
and supplementary material). To optimize or train our rep-
resentation for this case, we simply compute a boundary
sampling Sb of the input surface boundaries, and duplicate it

(a) NDC (b) NMC (c) VoroMesh (d) PoNQ (e) G. Truth

Figure 6. Learning results (top: 323; bottom: 1283) on Thingi30.

Method Grid CD ↓ F1 ↑ NC ↑ ECD ↓ EF1 ↑ Watertight ↑ # V # F
Size (×10−5) no self-int. (×103) (×103)

NDC [8] 323 6.390 0.745 0.920 0.172 0.245 40% 1.3 2.6
NMC [10] 323 5.188 0.796 0.936 0.148 0.271 0% 8.7 17.3
VoroMesh [35] 323 2.825 0.758 0.902 0.263 0.156 100% 9.9 19.9
PoNQ-lite 323 1.705 0.754 0.934 0.154 0.270 100% 1.3 2.6
PoNQ 323 1.344 0.810 0.942 0.137 0.314 100% 4.8 9.7
NDC [8] 643 0.849 0.908 0.961 0.106 0.441 3% 5.4 10.8
NMC [10] 643 0.776 0.923 0.969 0.115 0.467 0% 36.8 73.6
VoroMesh [35] 643 1.021 0.906 0.939 0.259 0.192 100% 39.4 78.9
PoNQ-lite 643 0.769 0.914 0.968 0.090 0.495 100% 5.3 10.6
PoNQ 643 0.758 0.924 0.971 0.100 0.511 100% 19.9 39.9
NDC [8] 1283 0.650 0.937 0.980 0.065 0.644 0% 22.0 44.1
NMC [10] 1283 0.642 0.939 0.984 0.131 0.574 0% 151.7 303.3
VoroMesh [35] 1283 0.731 0.932 0.959 0.260 0.198 100% 157.2 314.5
PoNQ-lite 1283 0.644 0.938 0.984 0.055 0.699 100% 21.7 43.3
PoNQ 1283 0.641 0.939 0.984 0.123 0.592 100% 80.8 161.8

Table 4. Results on Thingi30 with our network trained on ABC.

to create a sampling S′
b where we just rotate all the normals

by π/2 around the boundary. Changing S into S ∪ Sb ∪ S′
b

will thus enforce that all the QEM matrices on the bound-
aries will generate elongated ellipsoids aligned with the lo-
cal boundary. Meshing can proceed as before; but the output
mesh will automatically close the holes. We further cull any
triangle T of the extracted mesh for which the anisotropy of
the QEM of each of its vertices is above 40%. In practice,
we measure the anisotropy through the ratio ri = λ2/λ1 of
the two largest eigenvalues of the matrix Ai. Obviously,
the surface no longer bounds a volume since we cut holes
in the original PoNQ mesh extraction, but it remains devoid
of self-intersections. Note that this PoNQ variant cannot
handle special cases such as a single square sheet.

PoNQ-lite. While using P =4 predicted points per voxel
yielded the best performances in our learning-based tests as
mentioned in Sec. 3.2.2, we can trivially provide a “lite”
version of our output PoNQ with a single point per cell us-
ing the same network: due to our reliance on QEM matrices,
one can simply sum the P matrices Qi within a cell to di-
rectly create a single QEM matrix per cell, from which is
derived a new optimal position v*

i for each cell. The nor-
mals ni are also trivially averaged into the new one. Sharp
features are still well preserved due to our use of quadric er-
ror metrics (see Fig. 7), and these PoNQ-lite meshes in fact
outperform NDC for an equal level of element count (see
Tabs. 3 and 4), proving the superiority of grid-free methods.
If even coarser meshes are desired, one can also construct,
at nearly no cost, a whole hierarchy of PoNQ meshes by
first applying PoNQ-lite, and then merging each group of
eight cells into a single larger one to form a twice-coarser
grid (2× 2 average pool; see Fig. 8).

(a) PoNQ (b) PoNQ-lite
Figure 7. For a network trained on ABC with P = 4 predicted
QEM matrices per cell (left), one can sum these matrices – i.e.,
via average pooling – per cell to produce a more compact mesh
(right) that still naturally preserves the detected sharp features.

Although PoNQ outperforms PoNQ-lite on almost all
metrics, the latter slightly pulls ahead on ECD and EF1 on
Thingi30 at 1283 resolution. This opens the door to a se-
ries of further investigations, out of scope for this paper:
one could potentially simplify a PoNQ output adaptively
depending on the contents of the cell.

5. Discussion

The QEM matrices, encoded via points v∗i and SPD matri-
ces Ai are essential to our work: besides their role in captur-
ing sharp features and second-order shape properties, they
(a) disambiguate meshing compared to just point+normals
to achieve state-of-the-art results (see supplementary ma-
terial), (b) allow direct simplification through quadric col-
lapses (PoNQ-lite, Fig. 7 & 8), and (c) allow open bound-
aries (Fig. 1). Yet, compared to SAP or VoroMesh, one may
wonder if the added quadric information are worth a higher
network size. In fact, producing QEM information does not

significantly affect network size since 80% of the weights
are concentrated in the shared encoder. Moreover, the task
of fitting points, QEM and normals is quite straightforward
and does not require overly large networks (e.g., VoroMesh
requires 8.4M parameters while PoNQ only requires 2.7M).

Another possible perceived limitation is that our PoNQ
mesh extraction may create non-manifold vertices or edges
despite being watertight – for instance, a 1-ring of a vertex
may contain two non-adjacent tetrahedra both labeled as
inside. However, one can simply duplicate these few non-
manifold elements and connect them to their neighboring
mesh elements to enforce manifoldness [35]. In addition,
final results can be affected by two types of flaws: wrong
estimates of geometric quantities (CNN failure, noise in the
motor plate in Fig. 5), or tetrahedra mislabelling (recon-
struction failure, unwanted link elbow-body Fig 6).

There are also exciting aspects of PoNQ we have not ex-
plored yet. For example, our meshing of open boundaries
can potentially be further refined to extract directly the sur-
face through a tagging of boundary edges, instead of relying
on a potentially brittle final score-based filtering. A nice ex-
tension to our work would be to integrate the PoNQ repre-
sentation in a differentiable rendering pipeline. Finally, the
naturally multiscale nature of PoNQ through average pool-
ing is also bound to be exploitable in a number of contexts.

Figure 8. Learning-based results. From PoNQ-lite (1283), to
power-of-two simplifications down to 163 via average pooling.

6. Conclusion
We proposed a novel learnable 3D shape representation,
coined PoNQ which combines the power of the quadric er-
ror metric (QEM) originally devised for mesh decimation
and insights from computational geometry. PoNQ relies on
points, normals, and QEM matrices to represent local geo-
metric information, which are later leveraged to construct a
triangle mesh that is guaranteed to be the boundary of a vol-
ume and devoid of self-intersections. We demonstrated the
representation power of PoNQ through optimization-based
tasks and learning-based reconstruction experiments, show-
ing significant improvement upon previous 3D representa-
tions. We thus believe that PoNQ is poised to find many
applications and extensions in neural shape processing.

Acknowledgments. Work supported by 3IA Côte d’Azur
(ANR-19-P3IA-0002), ERC Starting Grant 758800 (EX-
PROTEA), ERC Consolidator Grant 101087347 (VEGA),
ANR AI Chair AIGRETTE, Ansys, Adobe Research, and a
Choose France Inria chair.

References
[1] Nitin Agarwal, Sung-eui Yoon, and M. Gopi. Learning

Embedding of 3D models with Quadric Loss, July 2019.
arXiv:1907.10250 [cs]. 3

[2] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and
C.T. Silva. Point set surfaces. In Proceedings Visualization,
2001. VIS ’01., pages 21–537, San Diego, CA, USA, 2001.
IEEE. 2

[3] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A
new Voronoi-based surface reconstruction algorithm. In Pro-
ceedings of the 25th annual conference on Computer graph-
ics and interactive techniques - SIGGRAPH ’98, pages 415–
421, Not Known, 1998. ACM Press. 2, 5

[4] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The
power crust. In Proceedings of the sixth ACM symposium on
Solid modeling and applications, SMA ’01, pages 249–266,
New York, NY, USA, May 2001. Association for Computing
Machinery. 2

[5] Franz Aurenhammer. Voronoi diagrams—a survey of a fun-
damental geometric data structure. ACM Computing Surveys,
23(3):345–405, Sept. 1991. 4

[6] Alexandre Boulch and Renaud Marlet. POCO: Point Con-
volution for Surface Reconstruction. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6292–6304, New Orleans, LA, USA, June
2022. IEEE. 2

[7] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository, Dec. 2015. arXiv:1512.03012 [cs]. 2

[8] Zhiqin Chen, Andrea Tagliasacchi, Thomas Funkhouser, and
Hao Zhang. Neural dual contouring. ACM Transactions on
Graphics, 41(4):1–13, July 2022. 2, 3, 4, 6, 7

[9] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. BSP-
Net: Generating Compact Meshes via Binary Space Parti-
tioning. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 42–51, Seattle, WA,
USA, June 2020. IEEE. 2

[10] Zhiqin Chen and Hao Zhang. Neural marching cubes. ACM
Transactions on Graphics, 40(6):1–15, Dec. 2021. 2, 3, 4, 6,
7

[11] Thor V. Christiansen, Jakob Andreas Bærentzen,
Rasmus R. Paulsen, and Morten R. Hannemose.
Neural Representation of Open Surfaces. Com-
puter Graphics Forum, 42(5):e14916, 2023. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14916.
2

[12] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien
Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi.
CvxNet: Learnable Convex Decomposition. In 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 31–41, Seattle, WA, USA, June
2020. IEEE. 2

[13] Tamal K. Dey and Samrat Goswami. Tight cocone: a water-
tight surface reconstructor. In Proceedings of the eighth ACM
symposium on Solid modeling and applications, pages 127–
134, Seattle Washington USA, June 2003. ACM. 2

[14] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Learning Deformable
Tetrahedral Meshes for 3D Reconstruction. In Advances in
Neural Information Processing Systems, volume 33, pages
9936–9947. Curran Associates, Inc., 2020. 2

[15] Michael Garland and Paul S. Heckbert. Surface simplifica-
tion using quadric error metrics. In Proceedings of the 24th
annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’97, pages 209–216, Not Known,
1997. ACM Press. 3

[16] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit Geometric Regularization for Learn-
ing Shapes. In Proceedings of the 37th International Confer-
ence on Machine Learning, pages 3789–3799. PMLR, Nov.
2020. ISSN: 2640-3498. 2

[17] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. A Papier-Mache
Approach to Learning 3D Surface Generation. In 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 216–224, Salt Lake City, UT, USA, June
2018. IEEE. 2

[18] Gaël Guennebaud and Markus Gross. Algebraic point set
surfaces. In ACM SIGGRAPH 2007 papers, page 23, San
Diego California, July 2007. ACM. 2

[19] Benoı̂t Guillard, Federico Stella, and Pascal Fua. MeshUDF:
Fast and Differentiable Meshing of Unsigned Distance Field
Networks. In Shai Avidan, Gabriel Brostow, Moustapha
Cissé, Giovanni Maria Farinella, and Tal Hassner, editors,
Computer Vision – ECCV 2022, Lecture Notes in Com-
puter Science, pages 576–592, Cham, 2022. Springer Nature
Switzerland. 2

[20] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,
and Mohammed Bennamoun. Deep Learning for 3D Point
Clouds: A Survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(12):4338–4364, Dec. 2021. 1

[21] Hugues Hoppe. New quadric metric for simplifying meshes
with appearance attributes. In Proceedings Visualization ’99
(Cat. No.99CB37067), pages 59–510, San Francisco, CA,
USA, 1999. IEEE. 3

[22] Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja
Fidler, and Francis Williams. Neural Kernel Surface Re-
construction. In 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4369–4379,
Vancouver, BC, Canada, June 2023. IEEE. 2

[23] Zhangjin Huang, Yuxin Wen, Zihao Wang, Jinjuan Ren, and
Kui Jia. Surface Reconstruction from Point Clouds: A Sur-
vey and a Benchmark, May 2022. arXiv:2205.02413 [cs].
1

[24] Alec Jacobson and Daniele Panozzo. libigl. 5
[25] Tao Ju, Frank Losasso, Scott Schaefer, and Joe Warren. Dual

contouring of hermite data. In Proceedings of the 29th an-
nual conference on Computer graphics and interactive tech-
niques, SIGGRAPH ’02, pages 339–346, New York, NY,
USA, July 2002. Association for Computing Machinery. 2

[26] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson Surface Reconstruction. The Eurographics Associa-
tion, 2006. Accepted: 2014-01-29T08:14:02Z ISSN: 1727-
8384. 1, 2

[27] Michael Kazhdan and Hugues Hoppe. Screened poisson

surface reconstruction. ACM Transactions on Graphics,
32(3):1–13, June 2013. 2

[28] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. ABC: A Big CAD
Model Dataset For Geometric Deep Learning, Apr. 2019.
arXiv:1812.06216 [cs]. 6

[29] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and
James F. O’Brien. Spectral surface reconstruction from noisy
point clouds. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 11–
21, Nice France, July 2004. ACM. 2, 5

[30] Hélène Legrand, Jean-Marc Thiery, and Tamy Boubekeur.
Filtered Quadrics for High-Speed Geometry Smoothing and
Clustering. Computer Graphics Forum, 38(1):663–677, Feb.
2019. 3

[31] Yiyi Liao, Simon Donne, and Andreas Geiger. Deep March-
ing Cubes: Learning Explicit Surface Representations. In
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2916–2925, Salt Lake City, UT, June
2018. IEEE. 2

[32] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, Peng-Shuai Wang,
Xin Tong, and Yang Liu. Deep Implicit Moving Least-
Squares Functions for 3D Reconstruction. In 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1788–1797, Nashville, TN,
USA, June 2021. IEEE. 2

[33] William E. Lorensen and Harvey E. Cline. Marching
cubes: A high resolution 3D surface construction algorithm.
ACM SIGGRAPH Computer Graphics, 21(4):163–169, Aug.
1987. 2

[34] Yiming Luo, Zhenxing Mi, and Wenbing Tao. DeepDT:
Learning Geometry From Delaunay Triangulation for Sur-
face Reconstruction. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(3):2277–2285, May 2021. Num-
ber: 3. 3

[35] Nissim Maruani, Roman Klokov, Maks Ovsjanikov, Pierre
Alliez, and Mathieu Desbrun. VoroMesh: Learning Wa-
tertight Surface Meshes with Voronoi Diagrams. In 2023
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 14565–14574, 2023. 1, 2, 3, 4, 6, 7, 8

[36] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy Net-
works: Learning 3D Reconstruction in Function Space, Apr.
2019. arXiv:1812.03828 [cs]. 2

[37] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics,
41(4):1–15, July 2022. 2

[38] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Peter
Battaglia. PolyGen: An Autoregressive Generative Model of
3D Meshes. In Proceedings of the 37th International Confer-
ence on Machine Learning, pages 7220–7229. PMLR, Nov.
2020. ISSN: 2640-3498. 2

[39] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
Continuous Signed Distance Functions for Shape Represen-
tation. In 2019 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 165–174, Long

Beach, CA, USA, June 2019. IEEE. 2
[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imper-
ative Style, High-Performance Deep Learning Library, Dec.
2019. arXiv:1912.01703 [cs, stat]. 5

[41] Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer,
Marc Pollefeys, and Andreas Geiger. Shape As Points: A
Differentiable Poisson Solver. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages 13032–13044.
Curran Associates, Inc., 2021. 1, 3, 6

[42] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional Occupancy
Networks, Aug. 2020. arXiv:2003.04618 [cs]. 2

[43] Sergey Prokudin, Qianli Ma, Maxime Raafat, Julien
Valentin, and Siyu Tang. Dynamic Point Fields. In 2023
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 7964–7976, 2023. 3, 6

[44] Marie-Julie Rakotosaona, Paul Guerrero, Noam Aigerman,
Niloy Mitra, and Maks Ovsjanikov. Learning Delaunay Sur-
face Elements for Mesh Reconstruction. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 22–31, Nashville, TN, USA, June 2021.
IEEE. 3

[45] Edoardo Remelli, Artem Lukoianov, Stephan Richter, Benoit
Guillard, Timur Bagautdinov, Pierre Baque, and Pascal
Fua. MeshSDF: Differentiable Iso-Surface Extraction. In
Advances in Neural Information Processing Systems, vol-
ume 33, pages 22468–22478. Curran Associates, Inc., 2020.
2

[46] Silvia Sellán. Reach For the Spheres: Tangency-Aware Sur-
face Reconstruction of SDFs. ACM Transactions on Graph-
ics, 2023. 2, 6

[47] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep Marching Tetrahedra: a Hybrid Rep-
resentation for High-Resolution 3D Shape Synthesis. In
Advances in Neural Information Processing Systems, vol-
ume 34, pages 6087–6101. Curran Associates, Inc., 2021.
2, 3, 6

[48] Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue
Yin, Zian Wang, Wenzheng Chen, Zan Gojcic, Sanja Fidler,
Nicholas Sharp, and Jun Gao. Flexible Isosurface Extraction
for Gradient-Based Mesh Optimization. ACM Transactions
on Graphics, 42(4):1–16, Aug. 2023. 2

[49] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit Neural Represen-
tations with Periodic Activation Functions. In Advances in
Neural Information Processing Systems, volume 33, pages
7462–7473. Curran Associates, Inc., 2020. 2

[50] Raphael Sulzer, Loic Landrieu, Renaud Marlet,
and Bruno Vallet. Scalable Surface Reconstruc-
tion with Delaunay-Graph Neural Networks. Com-
puter Graphics Forum, 40(5):157–167, 2021. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14364.
3

[51] Qingyang Tan, Lin Gao, Yu-Kun Lai, and Shihong Xia. Vari-

ational Autoencoders for Deforming 3D Mesh Models. In
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5841–5850, 2018. 2

[52] Jia-Heng Tang, Weikai Chen, Jie Yang, Bo Wang, Songrun
Liu, Bo Yang, and Lin Gao. OctField: Hierarchical Implicit
Functions for 3D Modeling, Nov. 2021. arXiv:2111.01067
[cs]. 2

[53] Jean-Marc Thiery, Émilie Guy, and Tamy Boubekeur.
Sphere-Meshes: shape approximation using spherical
quadric error metrics. ACM Transactions on Graphics,
32(6):1–12, Nov. 2013. 3

[54] Philip Trettner and Leif Kobbelt. Fast and Robust QEF Min-
imization using Probabilistic Quadrics. Computer Graphics
Forum, 39(2):325–334, May 2020. 3

[55] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wil-
son, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J.
Nelson, Eric Jones, Robert Kern, Eric Larson, C. J. Carey,
İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, De-
nis Laxalde, Josef Perktold, Robert Cimrman, Ian Henrik-
sen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, and Paul van Mul-
bregt. SciPy 1.0: fundamental algorithms for scientific com-
puting in Python. Nature Methods, 17(3):261–272, Mar.
2020. Number: 3 Publisher: Nature Publishing Group. 5

[56] Pengfei Wang, Zixiong Wang, Shiqing Xin, Xifeng Gao,
Wenping Wang, and Changhe Tu. Restricted Delaunay Tri-
angulation for Explicit Surface Reconstruction. ACM Trans-
actions on Graphics, 41(5):1–20, Oct. 2022. 2

[57] Peng-Shuai Wang, Yang Liu, and Xin Tong. Dual Octree
Graph Networks for Learning Adaptive Volumetric Shape
Representations. ACM Transactions on Graphics, 41(4):1–
15, July 2022. arXiv:2205.02825 [cs]. 2

[58] Ji Wu, Huai Yu, Wen Yang, and Gui-Song Xia. QuadricsNet:
Learning Concise Representation for Geometric Primitives
in Point Clouds, Sept. 2023. arXiv:2309.14211 [cs]. 2

[59] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or
Litany, Shiqin Yan, Numair Khan, Federico Tombari,
James Tompkin, Vincent Sitzmann, and Srinath Sridhar.
Neural Fields in Visual Computing and Beyond. Com-
puter Graphics Forum, 41(2):641–676, 2022. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14505.
1

[60] Guandao Yang, Serge Belongie, Bharath Hariharan, and
Vladlen Koltun. Geometry Processing with Neural Fields.
In Advances in Neural Information Processing Systems, vol-
ume 34, pages 22483–22497. Curran Associates, Inc., 2021.
1

[61] Congyi Zhang, Guying Lin, Lei Yang, Xin Li, Taku Ko-
mura, Scott Schaefer, John Keyser, and Wenping Wang. Sur-
face Extraction from Neural Unsigned Distance Fields. In
2023 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 22531–22540, 2023. 2

[62] Chen Zhang, Ganzhangqin Yuan, and Wenbing Tao. DMNet:
Delaunay Meshing Network for 3D Shape Representation.
In 2023 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 14418–14428, 2023. 3

[63] Tong Zhao, Laurent Busé, David Cohen-Steiner, Tamy
Boubekeur, Jean-Marc Thiery, and Pierre Alliez. Variational
Shape Reconstruction via Quadric Error Metrics. In ACM
SIGGRAPH 2023 Conference Proceedings, Aug. 2023. 3

[64] Qingnan Zhou and Alec Jacobson. Thingi10K: A Dataset of
10,000 3D-Printing Models, July 2016. arXiv:1605.04797
[cs]. 6

	. Introduction
	. Related Work
	. Method
	. Motivation: Quadric Error Metrics
	. PoNQ representation
	QEM-based representation via optimization
	Learning with PoNQ

	. Meshing our representation

	. Experimental Results
	. Optimization-based 3D Reconstruction
	. Learning-based 3D reconstruction
	Reconstruction from SDF

	. Additional extensions

	. Discussion
	. Conclusion

