
Supplementary Material: Physical Simulation Layer for Accurate 3D Modeling
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In this document we assemble the supplementary mate-
rials that, due to the lack of space, we could not include in
the main manuscript. The following sections are organized
as follows:

• Section 1 gives a discussion of the societal impact of
our work.

• Section 2 demonstrates the generalization power of our
approach to different shape representations.

• Section 3 provides an interpretation of the simulation
gradient derived in Section 3.5.2 in the main paper.

• Section 4 provides more visual results for the shape
optimization task.

• Section 5 discusses our random sampling strategy.

• Section 6 describes our simulation process for stability
annotation using Pybullet simulator [3] as well as the
learning of baseline surrogate models based on offline
simulation.

• Section 7 gives implementation details of our simula-
tor Ψ and shows a comparison to Pybullet [3].

• Section 8 presents our experimental data statistics.

• Section 9 describes a topological regularization ap-
proach to address the limitation of our model induced
by the rigid body assumption.

1. Societal Impact
In this work, we develop an approach to produce a phys-

ically realistic 3D content. We hope our work (or the prin-
ciples behind it) will contribute in lowering the barrier to
bringing the research efforts in 3D modeling to real-world
fabrication. We also hope that our work will inspire more
adjacent research fields, such as 3D object and scene un-
derstanding, to benefit from online physics as a rich and
universal cue.

However, at the same time, we note that working on gen-
erative models always bears the risk of creating false and
manipulating content. Besides, like all deep neural network
models, our approach requires a relatively large amount of
compute and hence may have a noticeable carbon footprint.

2. Generalization to other shape representa-
tions

The main focus of our work is physical plausibility and
we view our contribution as complementary to that of re-
cent papers that focus on improving geometric details. Our
choice of DeepSDF [12] is based on its flexibility and its
wide adoption as a building block in a generative pipeline.
However, our approach can easily be combined with other
methods. In the following, we combine our approach with
different shape representations.

Point Cloud (StructureNet [11]): We plug our simulation
layer SimL at the end of the point cloud shape decoder fθ:

fθ(z) = {xji}i,j and Cfθ(z) = {xji}i,j , (1)

where z ∈ R256 is the shape latent code and xji ∈ R3 is the
ith point of the jth point cloud part.

Mesh (AtlasNet [7]): we plug our simulation layer SimL
at the end of the mesh decoder fθ generating a surface from
a sphere:

fθ(z) = {vi}i and Cfθ(z) = {vi}i, (2)

where z ∈ R1024 is the shape latent code and vi ∈ R3 is the
ith mesh vertex.

Spherical Primitive (DualSDF [9]): we plug our simula-
tion layer SimL at the end of the spherical primitive decoder
fθ:

fθ(z) = {αi = (ri, ci)}i and Cfθ(z) = {ci+ri.Ij}i,j , (3)

where z ∈ R128 is the shape latent code, ri ∈ R∗
+ and

ci ∈ R3 are respectively the radius and center of primitive
i, and Ij ∈ R3 is a normalized constant vector.
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StructureNet [11] + SimL AtlasNet [7] + SimL DualSDF [9] + SimL

Figure 1. Qualitative results of shape optimization (SO) experiments using our simulation layer SimL. For each experiment, left and right
shapes correspond to the input and optimized shapes respectively. Input shapes are randomly sampled from the learned latent spaces. First
column StructureNet [11]: SO is performed on point cloud shapes. Second column AtlasNet [7]: SO is performed on mesh shapes. Third
column DualSDF [9]: the left and right representations correspond to the high resolution and the spherical primitive shapes respectively.
SO is performed on the spherical primitive shape. Our approach manages to improve the physical quality of the generated content.

Observe that in all of these cases fθ(z) 7→ Cfθ(z) has
a closed-form expression and, hence, that ∂x

∂fθ
is computed

via automatic differentiation.
We conduct shape optimization experiments (cf Section

3.8 in the main paper) based on each of the mentioned de-
coders using pre-trained models released by the respective
authors. Figure 1 illustrates qualitative results that reflect
the efficiency of our approach in improving the physical
quality of the generated content.

3. Simulation gradient interpretation
We recall the formulation of the Ψ gradient with respect

to the decoded SDF value at x ∈ Cfθ(G,z) (cf Equations 4
and 5 in the main paper):

∂Ψ

∂fθ
(x) = −gx.nx, (4)

where gx = ∂Ψ
∂x and nx = ∇xfθ are respectively the sim-

ulation gradient and the normal surface vector at point x.
To give an intuition about the gradient value and the need
for nx, we provide the example in Figure 2 illustrating the
same simulation gradient gx for opposite surface normal di-
rections.

Given nx direction, one can understand that in Figure
2a (gx.nx > 0), gx points towards extending the shape
surface, while in Figure 2b (gx.nx < 0), gx points to-
wards shrinking the shape surface. This is equivalent to
saying that in Figure 2a gx tends to decrease fθ(z, x)

(a) (b)

Figure 2. Example visualization of simulation gradient for op-
posite normal vector directions. Blue and Red colors correspond
respectively to negative and positive SDF values.

(
∂Ψ
∂fθ

(x) < 0
)

, while in Figure 2b gx tends to increase the

fθ(z, x)
(
∂Ψ
∂fθ

(x) > 0
)

. This is is in line with the simula-
tion gradient in Equation 4.

Note that this observation motivates the use of SDF
shape decoder in our work since it provides the normal di-
rection: ∇xfθ = nx.

4. Shape optimization

We provide additional experimental results in Figure 3
for the task of shape optimization using Phys-DeepSDF
model (cf Section 3.8 in the main paper) to illustrate the
relevance of our stability loss.

The different visual examples illustrate a large variety
of input stability failures. We observe that the optimization



process converges to plausible solutions that a human might
naturally suggest. This is due to constraining the search
space to the latent space of shapes which embeds useful
information about the target shape category. Besides, the
comparison of the input shape to the closest training shape
in terms of Chamfer Distance (for 10K randomly sampled
surface points) proves that physical control leads to explore
the learned latent space and to discover new and diverse
shapes that go beyond training examples.

5. Random shape generation
We follow the fixed generator method to sample vectors

from the latent space of shapes. In other words, a sampled
vector zs is the sum of a randomly selected training vector
zt to which we add a Gaussian noise vector ε:

zs = zt + ε.

One can understand that ‖ε‖2 should be big enough to ex-
plore the latent space of shapes and small enough to ensure
that zs is plausible and lies within the latent space of shapes.
We control ε norm such that ‖ε‖2 ≤ η with η > 0. Hence,
η depends on Ztrain vectors pairwise distances’ L2 norms:

Zdists = {‖zt − zt′‖2; zt, zt′ ∈ Ztrain}.

We consider η as an hyperparameter and we found empir-
ically that setting η to the 90% quantile of Zdists gives
the best performance for the task of shape reconstruction.
This observation motivates our sampling approach. Fig-
ure 4 shows a t-SNE visualization of 1K shapes’ embed-
dings associated with training and sampled vectors for dif-
ferent shape categories. We observe that sampled vectors
lie among the training shapes neighborhood and cover dif-
ferent zones of the learned latent space of shapes.

6. Stability annotation and surrogate model
learning

6.1. Stability annotation using Pybullet [3]

To assess whether a given mesh shape is physically sta-
ble, we use the Pybullet simulator [3] to perform a dropping
simulation that reveals whether the shape maintains its up-
right position when subjected to gravity and to trivial per-
turbations. To this end, we import the shape and the ground
plane to the simulator with URDFs including the center of
mass, the mass and the inertia matrix. We model the colli-
sion between the shape and the plane as perfectly inelastic,
and consider the default Coulomb friction model. The drop-
ping is then simulated from a height equal to 0.1 times shape
height for T = 3000 simulation steps of ∆t = 0.008s time
step (cf Figure 5). We set the initial horizontal orientation to
random small values to penalize shapes in unstable equilib-
ria. If the shape doesn’t recover its initial upright position,

Class Accuracy
Chair 0.9307
Table 0.9203
Bench 0.9043

Table 1. Quantitative stability classification results.

then it is unstable (label=0), otherwise the shape is labeled
stable (label=1).

6.2. Surrogate model h

Our paper provides a comparison of our online
simulation-based approach to the standard offline simula-
tion setting where a neural network is trained to imitate the
behavior of a physical simulator while being suitable for
learning [1, 10, 14].

To this end, we learn a surrogate model for physical sta-
bility prediction following the approach in [10]. Specifi-
cally, we train a voxel-based neural stability predictor for
each shape category to predict the physical stability prob-
ability of an input shape. We first proceed with using the
pre-trained baseline DeepSDF [12] to randomly sample N
shapes following the distributionZtrain+εη (cf Section 3.8
in the main paper). Each decoded shape is an evaluation of
the decoder fθ on a regular grid G of resolution RG = 32.
This results in N voxel shapes of signed distance field values
of resolution RG. Second, we convert each of the decoded
shapes into a mesh using Marching Cubes algorithm, and
annotate each mesh to be stable (1) or unstable (0) using the
Pybullet simulator [3] as described in Section 6.1 above. Fi-
nally, the annotated data is used to learn a surrogate model
h (binary classifier) that takes as input a voxel of resolution
32 and returns a stability probability p. In our implementa-
tion, h has a similar architecture to the voxel-based neural
stability predictor in [10]. Specifically, h consists of 3 con-
volutional layers followed by two fully connected layers.
All layers are followed by the ReLU activation except for
the last layer where we use a Sigmoid activation to output a
probability value. Moreover, we empirically found that ap-
plying a sigmoid function to the input SDF values improves
the classification performance of h to a significant extent.

For each category we collect N = 20K shapes equally
distributed between stable and unstable shapes, and work
with train/validation/test splits of a 80%-5%-15%. Table 1
reports the accuracy on the test set for each of the trained
surrogate models employed in the current work experi-
ments.

7. Implementation details about our simulator
Ψ & Comparison to Pybullet simulator [3]

For Ψ simulation setting, we set time step ∆t = 0.01
to accurately estimate the shape trajectory, and set simula-
tion steps T = 200 so that the simulation process reaches



Figure 3. Visual results of shape optimization using Phys-DeepSDF model. From left to right: the initial shape, 3 intermediate shapes, the
final shape and the closest training shape to the final shape in terms of Chamfer Distance (for 10K randomly sampled surface points). All
shapes are obtained by randomly sampling from training vectors neighborhood using Phys-DeepSDF. Our optimization approach manages
to correct stability failures while delivering visually plausible results and discovering novel geometries that go beyond the training samples.



(a) Chair (b) Table (c) Bench

Figure 4. We show a t-SNE [15] embedding of the training and the sampled latent vectors from the pre-trained DeepSDF [12] latent space.
The sampling process follows the Ztrain + εη distribution explained in Section 3.8 from the main paper.

its end. Note that decreasing ∆t would increase the ac-
curacy of the trajectory estimation but would also require
higher T and hence increase the simulation time (similarly
to Pybullet [3] setting interpretation). Besides, we assume
frictionless collision with the ground and consider uniform
mass density by defining the shape mass m as the sum of
masses of particles {xp}, where {xp} are the G grid points
such that fθ(xp, .) ≤ 0 (cf Section 3.5.1 in the main pa-
per): m =

∑
xp
mp with constant mp. However, one can

also define mp(xp) to account for the material at volume
defined by xp when considering shapes with non uniform
density. The shape is simulated from a height equal to 0.1
times shape height, an initial velocity vector of (0, 0,−1),
a null initial torque and an initial rotation r0 along the hori-
zontal axes of small random values in [-5◦, 5◦].

To illustrate the performance of our differentiable sim-
ulator Ψ, we provide a visual comparison to a reference
physical engine Pybullet [3] for the example of dropping
simulation under the gravity force. The Pybullet [3] simu-
lation setting is described in Section 6.1 above.

Figure 5 shows the behavior across the simulation pro-
cess for stable and unstable shapes. Pybullet [3] requires
as input a mesh file that we obtain by decoding shapes at a
resolution of 256 and using Marching Cubes to recover the
surface. Whereas Ψ takes as input surface points computed
following Equation (3) in the main paper. We observe that
Ψ, as well as Pybullet [3], consistently detect instabilities,
and also predict overall shape trajectories. Crucially, our
differentiable simulator Ψ records the gradient over simula-
tion steps, which is not possible using Pybullet directly.

Timing Furthermore, we note that our differentiable sim-
ulator Ψ takes 0.537 seconds for one simulation applied on
C sampled from a grid G of resolution 32 (cf Equation(3)
in our manuscript) on Intel Xeon 5220 Gold CPU. As for
Pybullet, the simulation process takes 0.05 seconds without
producing gradient, to which must be added the time for

Class Train Val Test
def exp def exp def exp

Chair 4744 4718 678 673 1356 1350
Table 5956 5908 851 847 1702 1692
Bench 1271 1095 181 152 364 308

Table 2. Experimental data statistics. We report the size of the
default (def) and the experimental (exp) datasets after the stability
filtering step.

mesh and URDF file reconstruction, that are not required
when using Ψ.

8. Experimental datasets

We use 3D models from ShapeNet Core dataset (v1) [2].
We consider the Chair, Bench and Table categories and use
the default train/validation/test splits provided in [8]. Fur-
thermore, we filter unstable shapes for each category to en-
sure that SR=100% for learning data. Table 2 reveals data
size for each category before and after stability filtering.
Figure 6 illustrates examples of filtered unstable shapes.

9. Limitation of the rigid shape assumption
and topological regularization

Although the rigid-body assumption has proved benefi-
cial to build a scalable and time efficient physical simulator
and to improve the validity of the generated content, insta-
bilities caused by disconnected parts are discarded. In fact,
our simulator assumes that the distance between each two
shape points is constant. We show how this limitation can
be addressed using a topological regularization as a post-
processing step to enforce shape connectivity.

We follow the approach described in [10] that proposes
a topological loss operating on implicit 3D shape represen-
tation values {f(x);x ∈ G} predicted by a generative net-
work f and estimated on a voxel grid G; where the shape
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Figure 5. Comparison between results obtained using our differentiable rigid body simulator Ψ and simulations obtained using Pybullet
[3] simulator. From left to right: initial state, 4 intermediate states, and the final state. The visual comparison demonstrates sufficient
performance of our simulator Ψ for both: trajectory estimation and instability detection.

Figure 6. Visual examples of filtered unstable shapes. We show
two examples of each category of (from left to right) Chair, Table
and Bench.

surface corresponds to the λ-isosurface for λ ∈ R. The idea
is to explore tools from persistent homology [4–6, 13, 16]
to build a loss that enforces f to have a single minimum
(or maximum); or equivalently to produce a geometry with
a single component. We briefly describe the loss formula-
tion in our context and refer the interested reader to [10]
for a more comprehensive overview. Here, f is −fθ(., z).
We proceed with building the persistent diagram Pλfθ(.,z) =



(a) (b) (c)

Figure 7. Visual examples of shape optimization experiments us-
ing our model Phys-DeepSDF. (a) The input unstable shape (b)
The optimization result of Shape (a) using Ls (c) The optimiza-
tion result of Shape (b) using Lc. Stability loss Ls manages to
recover missing parts and to stabilize shape under rigid body as-
sumption, while topological regularization Lc addresses possible
disconnections.

(bλi , d
λ
i )1≤i≤mλ withmλ ∈ N∗ that records the birth bλi and

death dλi values of connected components such that the iso-
surface value λ (here equals 0) lies in the birth-death inter-
val. Intuitively, enforcing the shape associated with fθ(., z)
to have a single connected component boils down to con-
straining Pλfθ(.,z) to have a single element. Assuming that
bλj − dλj ≥ bλi − dλi for i > j, the connectivity loss can be
expressed as follows:

Lc =
∑

2≤i≤mλ

bλi − dλi , (5)

which is differentiable as demonstrated in [6, 10, 13].
We propose to relax the rigid body assumption by apply-

ing the topological regularization as post-processing step.
Specifically, a produced disconnected shape undergoes an
additional shape optimization experiment as described in
Section 3.8 from the main paper where we replace our sta-
bility loss Ls by Lc.

Figure 7 illustrates an example of shape optimization ex-
periment using our Phys-DeepSDF model. The optimiza-
tion of input shape in Figure 7a using our simulation-based
physical loss Ls leads to shape in Figure 7b that is deemed
stable under rigid body assumption only. By further op-
timizing the resulting shape in Figure 7b using Lc we ef-
ficiently address the disconnection limitation as shown in
Figure 7c.
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