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Abstract

In this document we collect additional details about the
proposed method and results that were not included in the
main manuscript. We evaluate our method on a dataset
with non-uniform sampling in Section 1. We demonstrate
the generalization power of our method in Section 2 by pro-
viding additional quantitative and qualitative results on the
ShapeNet dataset. In Section 3 we illustrate our method
with more qualitative results. In Section 4 we show example
shapes from our dataset. We provide additional details on
the architecture of our pipeline in Section 5, show the typ-
ical runtime of our method in Section 6, provide ablation
of the learned Logmap component in Section 7, and show
experiments with different neighborhood sizes in Section 8.

1. Non-uniform sampling

We provide additional results on a non-uniformly sam-
pled variant of the FAMOUSTHINGI dataset. We sample
points following a density gradient along the y-axis (hori-
zontal in the figures), where point density correlates with
the y-coordinate. A few examples are shown in Figure 1
(bottom). We did not retrain on this dataset variant and
evaluate the same model we used for the uniform point
clouds. In Table 1 we show that our method remains robust
even with this non-uniform sampling, with only a small de-
crease in performance compared to uniform sampling. IER
meshing takes the largest performance hit with over twice
as many non-manifold triangles and significantly increased
Chamfer distance. Overall our method shows a similar im-
provement over the baselines as in uniform sampling. The

Figure 1. Examples of uniformly sampled point clouds (top) and
non uniformly sampled point clouds. The density of points follows
a gradient along the y axis (horizontal).

angle distribution of triangles produced by our method is
compared to all baselines in Figure 2. Our method achieves
the best performance with angles more centered around 60
degrees.

We show qualitative comparison in Figure 3. We ob-
serve that ball pivoting and IER meshing are particularly
impacted by the non uniform sampling while our method
achieves the best quality reconstructions.



Table 1. Quantitative comparison the FAMOUSTHINGI testset
where points are sampled non-uniformly. We compare the percent-
age of non-watertight edges (NW), the Chamfer distance (CD),
and the normal reconstruction in degrees (NR) to all baselines.

Method NW (%) CD ∗1e−2 NR
Ball pivoting 31.5 0.396 6.84
PointTriNet 14.2 0.383 6.59

IER meshing 13.5 0.487 7.00
RVE 11.0 0.396 9.08

α-shapes 1% 3.5 3.228 63.21
α-shapes 3% 2.7 0.971 28.88
α-shapes 5% 1.7 1.061 17.71

Ours 1.3 0.356 6.02
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Figure 2. Triangle angles distribution. Our method produces trian-
gles with angles more centered around 60 degrees and fewer very
obtuse or very acute angles.

2. Results on ShapeNet

We compare our method to PointTriNet and IER mesh-
ing. Both our method and PointTriNet are trained on the
FAMOUSTHINGI dataset, showing their generalization per-
formance, while IER meshing was trained on ShapeNet
(since IER meshing requires more shapes for training than
the other two methods). Even though this gives IER mesh-
ing an advantage, we observe in Table 2 that our method
still produces shapes with better manifoldness and Chamfer
distance than other methods.

Additional qualitative results are provided in Figure 4.
We observe that our method produces meshes with better
manifoldness and preserves details such as the drawer han-
dles (row 2) or the two sides of the plane wings (row 1)
more accurately. Finally, our method produces fewer large
holes in the reconstructed mesh.

Table 2. Quantitative comparison on 100 random shapes from
ShapeNet. We compare our three main metrics to learning-based
baselines. IER meshing was specifically trained on ShapeNet,
while our method trained on a different dataset (FAMOUSTHINGI).
Even with this handicap, our method obtains better manifoldness
and Chamfer distance.

Method NW (%) CD ∗1e−2 NR
PointTriNet 22.33 0.416 10.95

IER meshing 6.96 0.456 6.54
Ours 5.51 0.396 9.44

3. More Qualitative Results
We provide additional qualitative results by meshing

point clouds of well-known monuments obtained from Fa-
mous Paris Buildings. Results are shown in Figure 5.
Since these shapes are geometrically more complex than
the shapes in FAMOUSTHINGI or ShapeNet, we uniformly
sample 50k points from each monument. We do not re-train
on this dataset. Our method generalizes well to unseen data
and denser point clouds.

We also include a real scan reconstruction in Figure 6.
We reconstruct a point cloud with 50k sampled points and
compare to other learning-based methods. Since IER mesh-
ing can not handle 50k points, we sample 12k points for
comaring to IER meshing.

4. Dataset Examples
A few examples of shapes from our FAMOUSTHINGI

dataset are shown Figure 7. In Figure 1, we show two exam-
ples of uniformly sampled point clouds we use as input to
our method, and two non-uniformly sampled point clouds
that we use in the experiments described in Section 1.

5. Architecture Details
We show the detailed architecture of our geodesic patch

classification network and the 2D log map projection net-
work in Figure 8. The classification network implements
a function cj := fθ([q

i
j , d

i
j ] | Qi) that classifies if each

point qi in the euclidean patch Qi is part of the geodesic
patch Pi, while the projection network implements a func-
tion uij := gφ([p

i
j , d

i
j ] | P i) that projects points pij in the

geodesic patch Pi to their 2D log map coordinates uij . Here
di is the euclidean distance from a point to its patch center.

Both networks use the same architecture based on Fold-
ingNet [4], except for their output dimension. They take
as input a 3D point concatenated with the distance to the
patch center and proceed to compute a 1024-dimensional
global feature vector for the input patch with a PointNet [3].
Each input point is then augmented with this global fea-
ture vector and transformed by two blocks of per-point
MLPs into a one-dimensional (classification network) or
two-dimensional (projection network) per-point output.
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Figure 3. Surface reconstructions from non-uniform point clouds. Non-manifold triangles are marked in red. Shapes are sampled more
densely to the left and more coarsely to the right. We can see that methods struggle to reconstruct the coarsely sampled parts of the point
cloud. While our method also has slightly more errors in the coarsely sampled regions, the mesh quality drops by a much smaller amount
from densely to coarsely sampled regions.



Figure 4. Qualitative results on ShapeNet testset. We do not retrain our method on the ShapeNet dataset while IER meshing was trained
on this dataset. Even so, our method produces more manifold meshes and preserves details such as the drawer handles (row 2) more
accurately. We better separate the two sides (top and bottom) of the plane wings (row 1). Finally, our method presents fewer large holes in
the reconstructed mesh.



Figure 5. Meshing well-known monuments. We show the ground truth (top), the reconstructed mesh (middle), the reconstructed mesh with
non manifold triangles colored in red (bottom). Our method generalizes well this more complex data that is also sampled more densely
than our training set.



Figure 6. Reconstructing real scans from Tanks and Temples [2]
Figure 7. Examples from our dataset. We show ground truth
meshes from both the training set and the test set.
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Figure 8. Detailed architecture of our pipeline. We first select a small geodesic patch using the classification network (purple). The
projection network (blue) then applies a 2D projection to this patch that approximates a log map.



Table 3. Average runtime estimation per step on 10k point clouds
in seconds.

Log map est. Log map align. Selection Total
5.8 24.8 2.1 32.8

Table 4. Quantitative comparison our our learned logmap compo-
nent to two logmap approximation methods.

geodesic distance ∗1e−3 2D position ∗1e−2

Projection 1.943 2.627
Rotation 1.943 2.835
Ours 0.471 0.835

6. Runtime
We measure the average runtime of our method on point

clouds of 10k vertices in Table 3, including the runtime for
each step of the method.

7. Ablation of the Learned Logmap
We compare the performance of our learned logmap

component to two baselines. The first baseline approx-
imates the logmap by projecting neighboring points onto
the tangent plane computed from the ground truth normal.
The second baseline is the approach proposed in [1], where
points are rotated onto the tangent plane. Please note the
both of these baselines use ground truth normal information,
while our method does not. We evaluate the methods on
a subset of 33 manifold shapes from our FAMOUSTHINGI
testset and sample 2k patches of k=30 geodesic neigh-
bors per shape. We measure the MSE of the geodesic
distance and of the 2D coordinates after patch alignment.
Our method produces significantly better logmap estimates
compared to other baselines as we show in Table 4.

8. Ablation of Neighbor Counts k and K

We evaluate our method on different values of the
geodesic neighbor count k (20, 30, and 50) and different
values for the euclidean neighbor count K (80, 120, 160) in
Table 5. For each pair of (k,K) values, we train our models
for 30 epochs. The choice of the geodesic neighbor count
k affects the performance of our method significantly. If
k is small, the Delaunay element approximation quality is
affected. If k is large, it is more difficult for the logmap esti-
mation network to produce a usable logmap. Changes in the
choice of the euclidean neighbor countK lead to less signif-
icant performance drops. In our experiment we choose the
parameter values k = 30 and K = 120 which produce the
best results for the non-watertightness and normal recon-
struction metrics. Please note that for k = 30 the difference
in Chamfer distance values is negligible.

Table 5. Ablation of different values for the geodesic and euclidean
and neighbor counts k and K.

k K CD(∗1e−2) NW(%) NR
20 80 0.3437 5.569 5.921
20 120 0.3394 4.381 5.845
20 160 0.3496 4.712 6.483
30 80 0.3274 0.509 5.682
30 120 0.3276 0.485 5.661
30 160 0.3272 0.524 5.690
50 80 0.3335 1.822 6.046
50 120 0.3282 0.667 5.856
50 160 0.3286 0.728 5.883
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