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In this supplementary material, we provide additional
theoretical insights and qualitative examples that could not
be fitted into the main paper due of lack of space. Specifi-
cally, we organize the material as follows. First in Section 1,
we provide the exact definitions of the geometric and func-
tional metrics that we have used to evaluate the results in
Tables 1 and 2 of the main paper. In section 2, we show
qualitative examples associated to Table 2, in which we vi-
sualize the obtained maps from different methods via color
transfer, error highlighting, and texture transfer (See Fig. 1)
on a pair of shapes from the remeshed SCAPE [6] dataset.
We further illustrate the effectiveness of our fast sinkhorn
filter on two pairs of non-isometric shapes in Figures 2 and
3, that complement the results of Table 1 of the main pa-
per. Furthermore, we also provide a short analysis on the
effect of number of sinkhorn iterations in comparison to the
nearest neighbor baseline in Fig. 4.

In Section 3, we have included additional complemen-
tary discussions to our main theory of regularized spectral
embedding alignment. In Section 4, we further general-
ize our iterative meta algorithm (IMA) (Algorithm 1 in the
main paper) with different choices of search spaces, such
that the existing work, including PMF [10] and VarMin [3]
also fit in this framework. Finally in section 5, we prove
that the energy of PMF is actually equivalent to the en-
ergy of VarMin thereby justifying the formulation of our
fast sinkhorn filters from a different perspective.

1. Geometric and Functional Metrics

Given two shapes S1 and S2 we evaluate the forward
(T12 : S1 → S2) and backward (T21 : S2 → S1) maps
respectively. We first define the geometric metrics of the
pointwise maps as follows.

Accuracy We measure the geodesic distance between T12

and the given ground-truth correspondence for a given
shape pair.

Bijectivity We construct the composite map T21 ◦ T12

which is therefore a map from the shape S1 to itself. We
measure the geodesic distance between this composite map
and the identity map.

Coverage For a given map T12 is the ratio between the
area of the covered vertices (i.e. the indices indexed by the
map T12) and the total surface area of the target shape.

Smoothness We evaluate the Dirichlet energy of the
transferred coordinate functions as a smoothness measure:

E
(
T12

)
=
∑

(u,v)∈E1 wuv ‖φ12(u)− φ12(v)‖22 (1)

where φ12 = T−1
12 ◦X2, andX2 ∈ Rn2×3 are the coordinate

functions of the shape S2, wuv are the stiffness weights of
the cotangent Laplacian for S1.

In addition, the following functional metrics are com-
monly used to evaluate given functional maps C:

Orthogonality As shown in [5], the functional map be-
tween an isometric shape pair is supposed to be orthogo-
nal. Therefore we can measure the orthogonality of a given
functional map as ||CTC − I||2.

Laplacian Commutativity Let Λi be discrete Laplacian
for shape Si. The Laplacian commutativity for a functional
map C is defined as:

‖C‖2L = ‖CΛ1−Λ2C‖2
‖C‖2 (2)

ZoomOut Energy It measures the orthonormality of each
principal sub-matrix of the functional map C [4].

‖C‖2ZO =
∑
k

1
k

∥∥CkCTk − Ik
∥∥2

F
(3)

Here Ck is the kth principal submatrix of C.

Spectral Chamfer Distance Let F1 = Φ1D
T
21 ∈ Rn1×k

and F2 = Φ2 ∈ Rn2×k be the aligned basis from the spec-
tral alignment procedure outlined in the paper and hence
treated as point clouds in k dimensional space. The Cham-
fer distance of this embedding is defined as:

CD (F1,F2)= 1
n1

∑
x∈F1

miny∈F2 ‖x− y‖22
+ 1
n2

∑
y∈F2

minx∈F1 ‖x− y‖22
(4)
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Figure 1. An example shape pair from the remeshed SCAPE dataset. (a) visualize the computed maps via color transfer (b) highlight the
map errors by red (c) visualize the computed maps via texture transfer.
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Figure 2. Top: map visualization between a horse and an elephant
via color transfer. Bottom: on the left we show the accuracy sum-
mary of the four methods, and on the right we visualize the ground
truth error on the horse shapes. Red corresponds to large and white
corresponds to smaller errors.

2. Additional Results

2.1. Qualitative Evaluation

In Fig. 1, we show a pair of human shapes from
the remeshed SCAPE dataset [6], corresponding to the
quantitative results of Table 2 in the main paper. The
last two columns visualize the maps corresponding to the
sinkhornized versions of ICP[5] and Zoomout[4] over the
original ones. We can see that the addition of the sinkhorn
filter into the iterative schemes lead to lesser errors (visually
evidenced by the reduced error profile at the middle-back of
the man) as well as a smoother result, visually apparent in
the texture transfer in the bottom row.
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Figure 3. Top: map visualization between a gorilla and a human
shape via color transfer. Bottom: on the left we show the bijectivity
error summary of the four methods, and on the right we visualize
the bijectivity error on the man-shape. Red corresponds to large
and white corresponds to smaller errors.

Figures 2 and 3 visualize one step of pointwise conver-
sion from a functional map on a non-isometric example. All
algorithms were imputed with the same aligned spectral ba-
sis and then registered to a pointwise correspondence using
the different methods (identical to the setup in Table 1 of the
main paper). Figure 2 focuses on the accuracy with respect
to the ground truth and Figure 3 on the bijectivity proper-
ties of different algorithms. As evidenced in Figure 2, the
sinkhorn algorithm shows an improved accuracy in com-
parison to the others for this non-isometric shape pair with
1.2k points per shape. In Figure 3, we can see that even
though the auction algorithm has a lower bijectivity error
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Figure 4. Sinkhorn Filtering: Effect of number of Sinkhorn iter-
ations on the mean ground truth error of the original and remeshed
versions of the FAUST dataset. A few iterations (∼ 10) show a
decrease the error in comparison to the nearest neighbor solution,
which is equivalent to no Sinkhorn filtering (0 iterations).

(since it approximately solves for a permutation), it shows a
significantly poor accuracy (highlighted by the considerable
map distortion on the legs of the man). In contrast to these
shortcomings, and re-emphasizing the main result in Table
1 of the main paper, our fast Sinkhorn filter demonstrates
higher accuracy and bijectivity with a significantly smaller
runtime: NN: 0.54, CPD: 18.73, Auction: 16.9, Sinkhorn:
0.95, all in seconds. Each shape has around 8k points with
different connectivity.

2.2. Analysis of the Fast Sinkhorn Filter

We study the effect of number of iterations of the
Sinkhorn procedure on the quality of the map on the FAUST
and FAUST remeshed datasets. See Figure 4. Firstly, we
remark that the output of the fast Sinkhorn procedure with
0 iterations yields the same solution as a nearest neighbor
approach. The matrix scaling procedure outlined in our
Sinkhorn filter has a filtering effect on the nearest neighbor
map, by injecting bijectivity and as a result improving the
overall map accuracy. Secondly, only a few iterations of the
filter are enough to yield a significant gain in the accuracy.
An excess filtering with a large number of iterations could
lead to a degradation of performance especially in scenar-
ios where the sampling and connectivity are not identical.
Relating to our earlier discussion about regularization for
pointwise map recovery, the number of Sinkhorn iterations
intuitively control the extent of bijective regularization im-
posed onto the map.

2.3. Runtime analysis

In Fig. 5, we make a runtime analysis of the three promi-
nent linear-assignment registration schemes: nearest neigh-
bor, auction and our fast sinkhorn method. In contrast to
an exponential growth in runtime as seen using the auc-
tion, both the nearest neighbor and our fast sinkhorn method
show a linear growth with respect to the mesh resolution.

Figure 5. Runtime comparison w.r.t. mesh resolution

This further illustrates the advantages of our method that
can achieve superior accuracy and bijectivity while main-
taining a modest computational complexity.

3. Regularized Spectral Alignment

Here we will provide more details about the theoretical
background of the problem of regularized spectral align-
ment, which is complementary to Sec. 3 in the main pa-
per. Recall that in Sec. 3, we first introduced the definition
of the functional maps and adjoint operators in the smooth
setting. We also proved that the adjoint operators always
map Dirac deltas to Dirac deltas (see Theorem 1). We then
discussed how to discretize these two operators in discrete
settings with full or reduced basis, where Theorem 1 holds
exactly or approximately respectively.

3.1. Why use the adjoint for map conversion?

The original functional map paper [5] discussed a possi-
ble way to recover a pointwise map TXY from the functional
map TFXY (see Remark 4.1 in [5]), that is to use the func-
tional map to map indicator functions, i.e., functions that
equal 1 at some point and zero elsewhere. Unfortunately,
this has a major problem: in L2, such indicator functions
are equivalent to the zero function almost everywhere. This
means that in an orthonormal basis, such as the Laplace-
Beltrami eigenfunctions, such functions will be represented
as vectors of zeros. As a result, we cannot apply such a
method in practice directly.

A more principled approach can be obtained by using
the adjoint operators as justified by Theorem 1. Note that
the adjoint operator of functional maps has been consid-
ered, e.g., in [2] although its role in pointwise map conver-
sion was not explicitly addressed in that work. Specifically,
instead of transporting ill-defined indicator functions, we
can use the adjoint operator to map well-defined Dirac delta
functions in L2, which is guaranteed to get Dirac deltas af-
ter mapping.
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Algorithm 1: IMA variant: ICP
Input : A pair of shapes X ,Y with basis ΦX ,ΦY
Initialization : An initial guess of CYX
while Not converged do

(1) TXY = NNsearch
(
ΦYC

T
YX ,ΦX

)
(2) CYX = Φ†XΠYXΦY
(3) Project all singular values of CYX to 1

end

3.2. Another derivation for Eq. (5)

We could equivalently derive Eq. (5) in the main paper
using the definition of the adjoint operators directly. The
adjoint operators in the smooth setting is defined as

〈TFYX (f), g 〉X = 〈TAXY(g), f 〉Y .

In the reduced basis it would read:

〈CYXcf , cg 〉X = 〈DXYcg, cf 〉Y ,

where cf (cg) is the discrete representation of f(g) in the
reduced basis ΦY(ΦX ). Therefore, we know there exists
c1(c2) such that cf = ΦYc1 (cg = ΦXc2). Since in the re-
duced basis inner products of functions simply correspond
to standard inner products, we have

LHS = 〈CYXcf , cg 〉X = cTgCYXcf

=
(
ΦXc2

)T
CYXΦYc1 = cT2 ΦTXCYXΦYc1

RHS = 〈DXYcg, cf 〉Y = cT1 ΦTYDXYΦXc2

LHS = RHS⇒ DXY = CTYX

(5)

3.3. Additional discussion on IMA

The iterative meta algorithm (IMA) outlined in Sec. 3.4
in the main paper performs iterative alignment between the
spectral embeddings given some initial guess. It is easy to
see that this method is guaranteed to converge to some (pos-
sibly local) minimum. The reason is that at every iteration
(step 1-2 in IMA Algorithm), the overall distance between
spectral embeddings is guaranteed to not increase, since
DXY is the optimal linear transformation that aligns the
embeddings given the point-to-point map , and TXY is an
optimal point-to-point map given a linear functional trans-
formation. Algorithms 1, 2 and 3, provide a pseudocode of
the meta algorithm procedure corresponding to the iterative
algorithms: ICP, PMF and ZoomOut, emphasizing the un-
derlying common principle of the meta algorithm in their
action.

4. Pointwise Conversion as Linear Assignment
4.1. Search Spaces for Pointwise Maps

As suggested by IMA (Algorithm 1 in the main pa-
per), in order to minimize the spectral embedding alignment

Algorithm 2: IMA variant: PMF
Input : A pair of shapes X ,Y with basis ΦX ,ΦY
Initialization : Initial pointwise map ΠYX
while Not converged do

(1) set X = ΦXΦ†XΠYXΦYΦ†Y
(2) compute ΠYX = arg min

Π is bijective
‖Π−X‖

(3) kX ← kX + 1, kY ← kY + 1
end

Algorithm 3: IMA variant: ZoomOut
Input : A pair of shapes X ,Y with basis ΦX ,ΦY
Initialization : Initial pointwise map TXY
while Not converged do

(1) CYX = Φ†XΠYXΦY
(2) TXY = NNsearch

(
ΦYC

T
YX ,ΦX

)
(3) kX ← kX + 1, kY ← kY + 1

end

error, we can iterate between extracting a pointwise map
from a functional/adjoint map, and then estimate the func-
tional/adjoint map from the obtained pointwise maps. As
shown in section 3.4 of the main paper, the adjoint operator
is the optimal linear operator that aligns the spectral em-
beddings of two shapes given a pointwise correspondence
between them.

The spectral embedding alignment error is given by:

ΠYX = arg min
Π∈Q

∥∥ΦXDT
XY −ΠΦY

∥∥ (6)

where Q is the regularized search space of the pointwise
map ΠYX . We remark that the spectral embedding align-
ment error given by equation 6 can be reformulated as a
linear assignment cost:

ΠYX = arg min
Π∈Q

〈
d , Π

〉
F

(7)

where 〈 ·, · 〉F is the matrix Frobenius inner product, defined
as 〈 A,B 〉F =

∑
i

∑
j AijBij for matrix A,B with the

same size, and d is a cost matrix with size nX × nY which
is defined as d =

[
dij
]
i=1,··· ,nX ,j=1,··· ,nY

where

dij =
∥∥ΦX (i, :)DTXY − ΦY(j, :)

∥∥ (8)
Therefore, different algorithms for pointwise conversion

(like nearest neighbor search, auction etc) can be viewed as
different search spacesQ for the linear assignment problem
of equation 7 which we enumerate below:
Vertex-to-Vertex maps This is the simplest setting where
we only enforce that each vertex on the source shape can be
mapped to a single vertex on the target:

Q1 =
{

Π
∣∣Π ∈ { 0, 1

}nX×nY
, Π1nY = 1nX

}
4



where 1n is a vector with size n where all the entries are
1. For this type of search space, a pointwise map can be
typically solved by a nearest-neighbor search.

Permutations When the two shapes X ,Y have the same
resolution, we can naturally enforce the pointwise map to
be bijective. i.e., Π is a permutation matrix:

Q2 =
{

Π
∣∣Π ∈ { 0, 1

}n×n
, Π1n = 1n, ΠT1n = 1n

}
where n = nX = nY by assumption. Usually, such a search
space is computationally intensive to implement in practice,
and typically approximation algorithms like the auction [1]
are employed.

Transport plans We can also enforce Π to be a transport
plan that maps the distribution µY on shape Y to the distri-
bution µX on shape X

Q3 =
{

Π
∣∣Π ∈ RnX×nY

≥0 , Π1nY = µX , ΠT1nX = µY

}
where µX and µY are initial masses for X and Y predefined
on each vertex.

5. Additional Links to Spectral Alignment
In this section we provide an insight into another promi-

nent correspondence method: [3], which can be seen under
the general principle of spectral alignment promoted in this
paper. Similar in spirit to [7, 8], correspondence is modelled
by a probabilistic mixture of gaussians, in which the vari-
ance is iteratively refined in order to localize the uncertainty
and achieve dense correspondence.

In order to prove a link between the optimization cost in
[3] and the Iterative Meta Algorithm of this paper, we es-
tablish two steps: First we argue that the form of Eq. (7) is
similar to the iterations of PMF [9, 10] (PMF is a special
case of the IMA as shown earlier). Secondly, the cost func-
tion of the variance minimizing transport plan in [3] can be
written in terms of Eq. (7) by modelling a different cost ma-
trix d.

Variance-Minimization Optimal Transport (VarMin)
Given some initial correspondences (named ”the projected
centers” in the paper), the goal is to minimize the sum of
local variances defined on all the vertices. The energy (de-
fined in equation (3) in [3]) is:

C(π, η) =
∑n1

i=1 mivar

[
πX

(
Wxi

µ∑
k mkWxi

(xk)

)
, ηxi

]
+

∑n2

j=1 njvar

[
πY

(
Wyj

ν∑
k nkWyj

(yk)

)
, ηyj

] (9)

where πX, πY are transport plans from the opposite di-
rections, m,n are initial mass defined on the two shapes,
the weighting function Wxi

,Wyj
are defined in Eq.(3) and

discussed in detail in Section 3.2. in [3]. The goal is to solve
a transport plan that minimize the transport cost that defined
from the local variance:

min
η,π∈Q3

E(π, η) =
〈
C(π, η), π

〉
F

(10)

Let Mi denote the distance matrix, that stores the pair-
wise squared distances on shape i. With the definition of
var(·) (Eq. (2) in [3]), it is easy to check that the cost matrix
for VarMin equals to:

C(π, η) =
∑
i

∑
jmi

(
W1diag

(
a
)
M2
)
ij
πij+∑

i

∑
j nj

(
M1diag

(
b
)
W2

)
ij
πij

=
∑n1

i=1

∑n2

j=1

(
C1
ij + C2

ij

)
πij

=
〈
C1 + C2, π

〉
F

(11)

where Wi is a weighting matrix that is supposed to be neg-
atively proportional to the distance matrix, and

ai=
mi(∑

k mkW1
ik

)(∑
j πij

) ∈ Rn1 , i = 1, · · · , n1

bj=
nj(∑

k njW2
jk

)(∑
i πij

) ∈ Rn2 , j = 1, · · · , n2

C1= diag
(
m
)
W1diag

(
a
)
M2 ∈ Rn1×n2

C2= M1diag
(
b
)
W2diag

(
n
)
∈ Rn1×n2

(12)

Product Manifold Filter The goal is to find a permu-
tation matrix Π ∈ Rn×n(with the assumption that two
meshes have the same resolution, i.e., n1 = n2 = n),
such that the form does not change too much after being
smoothed by the diffusion kernels. Therefore, we aim to
maximize the similarity before and after the diffusion, which
is defined as 〈K1ΠK2,Π〉F . Therefore, the goal is to max-
imize:

max
Π∈Q2

〈
K1ΠK2,Π

〉
F

(13)

Equivalence between VarMin and PMF We claim that
the two energies, Eq. (10) and (13) are related to each other.
More specifically, the two problems are equivalent to each
other (up to first order) under the following assumptions:
(1) The input two shapes have the same resolution. (2) Two
problems are initialized with the same set of correspon-
dences. (3) Two problems are solved in the same search
space. Recall that the original search space for VarMin is
Q3 and for PMF is Q2. (4) The weighting matrix and dis-
tance matrix in VarMin are consistent with the diffusion ker-
nel in PMF. (5) The VarMin adopts unweighted local vari-
ances.

Note that, for the assumption (4), in general, for any dis-
tance measure, there exists a corresponding weighting ma-
trix in VarMin setting, and a corresponding kernel in PMF
setting. Therefore, the two problems are equivalent w.r.t.
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the choices of the distance measure, weighting function and
the kernel. Here we only show the equivalence when both
formulations use geodesic distances, whereas the case of
using other distance measure such as diffusion distance can
be similarly proved.

Proof of the equivalence With assumption (3) as dis-
cussed above, where two problems are solved in the same
search space, to prove the equivalence, it is sufficient to
show the energy functions have the same characterizations.
Moreover, since two algorithms are designed in an alternat-
ing fashion, given assumption (2), we only need to show
that the two problems are equivalent with fixed projected
centers η for VarMin and fixed correspondences P12 and
P21 for PMF. Specifically we need to prove that the follow-
ing two problems have the same optimizer:

π∗ = arg min
π∈Q

〈
C(η), π

〉
F

Π∗ = arg max
Π∈Q

〈
B
(
P12,P21

)
,Π
〉
F

(14)

where the benefit matrix for PMF is modified according to
assumption (4) as B

(
P21,P12

)
= K1

(
P12 + PT21

)
K2.

To prove the equivalence, we only need to show that for
any given

(
η,P12,P21

)
(derived from the same set of cor-

respondences), the summation of the cost matrix C and the
benefit matrix B is a constant matrix (i.e., independent of
the initial correspondences). In this case, for any input cor-
respondences, it would be equivalent to minimize over the
cost matrix or to maximize over the benefit matrix.

According to Assumption (4), we have that the distance
in VarMin is set to geodesic distance: dX = dS1 ,dY =
dS2 . We then have

M1
pq=

(
dS1

p,T21(q)

)2

⇒M1 =
(
dS1
)2
P12

M2
pq=

(
dS2

T12(p),q

)2

⇒M2 = PT21

(
dS2
)2 (15)

For simplicity, we set the weighting function Wi =

−
(
dSi
)2

, which is supposed to be negatively proportional
to the distance matrix.

Similarly, the kernel for PMF that is defined from the

geodesic distance satisfies: Ki
pq = exp−

(
d

Si
pq

)2
2σ2

i
which can

be expanded as:

Ki = exp−
(
dSi

)2
2σ2

i
=
∑∞
k=0

1
k!

(
−
(
dSi

)2
2σ2

i

)k
(16)

With Assumption (5) where the local variances are un-
weighted, the cost matrix for VarMin can be simplified as:

C= W1M2 + M1W2

= −
(
dS1
)2
PT21

(
dS2
)2 − (dS1

)2
P12

(
dS2
)2

= −
(
dS1
)2(

PT21 + P12

)(
dS2
)2 (17)

Define new kernels K̄i = Ki − Ini . The benefit matrix
derived from kernels K̄i is:

B̄=
(
K1 − In1

)(
P12 + PT21

)(
K2 − In2

)
=
(
− In1

+ In1
−
(
dS1

)2
2σ2

1
+ · · ·

)(
P12 + PT21

)(
− In2

+ In2
−
(
dS2

)2
2σ2

2
+ · · ·

)
= 1

4σ2
1σ

2
2

(
dS1
)2(

PT21 + P12

)(
dS2
)2

+H.O.T

Therefore, we have C + 4σ2
1σ

2
2B̄→ 0.

When the initial correspondence is close to the ground-
truth, the two benefits matrices B and B̄ will give the same
maximum. In this case, the minimizer of VarMin is the
maximizer of PMF.

Let’s call the energies in Equation (14) PMF-VarMin
energy. Given the equivalence (up to some assumptions)
discussed aboved, we can see that, PMF proposes to opti-
mize PMF-VarMin energy in the search space ofQ2, whilte
VarMin tries to optimize the same energy in the search space
of Q3. A very natural trial is to optimize PMF-VarMin
in the search space of Q1 where no additional constraints
are added to the pointwise map. Unfortunately this ap-
proach does not yield satisfactory results, since the global
optimizer of the unconstrained PMF-VarMin energy is a
degenerated pointwise map, where all the points from the
source are map to the same vertex on the target shape.
Therefore, it is interesting to investigate how the spectral
alignment energy can be optimized w.r.t. different search
spaces. Our Sinkhorn filter can be viewed in a similar light,
where we identify a more suitable search space (with the
objective of achieving higher bijectivity and leading to im-
proved accuracy) in order to achieve optimal spectral align-
ment.
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