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Abstract

Recent works have shown that, when trained at scale, uni-
modal 2D vision and text encoders converge to learned fea-
tures that share remarkable structural properties, despite
arising from different representations. However, the role of
3D encoders with respect to other modalities remains un-
explored. Furthermore, existing 3D foundation models that
leverage large datasets are typically trained with explicit
alignment objectives with respect to frozen encoders from
other representations. In this work, we investigate the possi-
bility of a posteriori alignment of representations obtained
from uni-modal 3D encoders compared to text-based feature
spaces. We show that naive post-training feature alignment
of uni-modal text and 3D encoders results in limited perfor-
mance. We then focus on extracting subspaces of the cor-
responding feature spaces and discover that by projecting
learned representations onto well-chosen lower-dimensional
subspaces the quality of alignment becomes significantly
higher, leading to improved accuracy on matching and re-
trieval tasks. Our analysis further sheds light on the nature
of these shared subspaces, which roughly separate between
semantic and geometric data representations. Overall, ours
is the first work that helps to establish a baseline for post-
training alignment of 3D uni-modal and text feature spaces,
and helps to highlight both the shared and unique properties
of 3D data compared to other representations.

1. Introduction
Recent advances in multi-modal learning, particularly in
vision-language models such as CLIP [47], have sparked
interest in extending these successes to the 3D domain. Most
current approaches primarily focus on training 3D encoders
through triplet-based learning with pre-trained 2D vision and
language encoders [32, 64, 69], leveraging new large-scale
datasets such as Objaverse [9, 10], and showing promising
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results in tasks such as zero-shot shape recognition.
While CLIP [47] was trained with explicit alignment

objectives between text and image representations, recent
work has observed that even when trained independently,
vision and text encoders tend to exhibit significant similari-
ties [21, 37]. In particular, the learned latent spaces of pure
(uni-modal) text and vision encoders have similar proximity
structure [21] and can be aligned relatively easily after train-
ing with a small number of known anchor correspondences
[2, 37, 43]. Furthermore, the degree of similarity in learned
features across modalities strongly correlates with the quality
of performance in various downstream tasks. One prominent
interpretation of these results is that given sufficient scale of
training data and model complexity, different representations
are converging to a shared underlying structure of the physi-
cal world. This has given rise to the Platonic Representation
Hypothesis [21], where different representations are viewed
as projections of reality on particular modalities.

At the same time, as the physical world is inherently (at
least) 3-dimensional, a natural question is how the structure
of uni-modal vision or text encoders relates to the features
learned directly from 3D data. This question raises several
challenges: first, large-scale 3D datasets have only recently
become available [9, 10]; second, most existing 3D “founda-
tion models” are trained with explicit alignment objectives
with respect to frozen 2D and text encoders, which limits the
utility of post-training comparison. Finally, there is a lack of
universally agreed-upon architectures and training objectives
for 3D data, and many commonly-used architectures tend to
have limited generalization power [62].

In this work, we initiate the first study on the relation
between 3D and language representations. We formulate the
task of post-training alignment between a range of 3D and
text encoders and study the accuracy and utility of several
alignment strategies.

Our first insight is that when trained on pure 3D data
with self-supervised objectives, 3D encoders tend to lead
to representations that align only very weakly to text-based
representations. We believe that this observation already
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Figure 1. A visual overview of the proposed approach. is illustrated. From left to right: We begin with two distinct input collections—one
consisting of 3D shapes and the other of textual prompts. In the blue box, independent, frozen uni-modal encoders map each modality into
separate, high-dimensional latent spaces, shown in the red box. A dimensionality reduction procedure is applied to project these learned
spaces into low-dimensional subspaces, represented in the green box. Finally, an alignment method registers the two low-dimensional
subspaces, enabling cross-modal applications such as shape retrieval, with examples depicted in the yellow box.

highlights the difficulty of uni-modal training and sheds
light on the scarcity of “pure” 3D foundation models.

Additionally, we reveal that while 3D and text latent
spaces are not naturally aligned, effective cross-modal trans-
lation can be achieved through subspace projection and
alignment. Our key insight is that by identifying and operat-
ing in correlated subspaces, we can improve the latent space
alignment of 3D and text encoders without the need for ex-
pensive joint training. To achieve this, we introduce a simple
but effective approach that combines Canonical Correlation
Analysis (CCA) and existing alignment approaches such as
affine translation [36] and local CKA [37]. This approach
and our subsequent analysis extend previous works aimed
at comparing learned feature spaces, but shows that careful
subspace alignment can reveal subtle but important similar-
ities, which are otherwise obscured in global comparisons.
We provide a visual overview of the proposed approach in
Fig. 1.

To summarize, our main contributions are as follows:

1. We extend the analysis of vision-text uni-modal latent
space alignment to 3D uni-modal encoders and text, high-
lighting the limited similarity between these latent spaces
and the low efficacy of current alignment approaches.

2. We propose an efficient approach for cross-modal align-
ment between text and 3D features that combines CCA
for subspace selection and existing alignment methods.
This approach improves alignment performance with min-
imal computational overhead, as demonstrated through

experiments in matching and retrieval tasks. Our method
establishes a baseline for 3D-text cross-modal understand-
ing, providing an alternative to explicit multimodal pre-
training for cross-modal tasks.

3. We observe a complementary structure between the
spanned subspaces and the original feature spaces, en-
abling a distinction between geometric and semantic rep-
resentations.

2. Related Work

Multi-modal representation learning. Multimodal repre-
sentation learning has surged in recent years, driven by the
success of image-language models [25, 30, 47, 52] that en-
able seamless cross-modal applications. These models serve
as the backbone for tasks spanning from text-based image
retrieval to generating high-quality visuals from natural lan-
guage prompts. By aligning visual and linguistic features in
a shared latent space, these models have paved the way for
advanced interactions between modalities, setting the stage
for applications where visual and textual information are
jointly processed and understood.

Building on these advancements, vision-language models
have recently been adapted for 3D point cloud representa-
tion, where 3D-image-text triplets [32, 63, 64, 69] enable
contrastive pre-training. These models leverage powerful
techniques such as momentum contrast [19] to align repre-
sentations across modalities, allowing point cloud encoders
to be pre-trained in a multimodal context. Additionally, tech-



niques that apply vision-language models directly to 2D pro-
jections of point clouds [68, 70] have expanded cross-modal
applications to 3D, including zero-shot shape classification,
where models trained on 2D-image-text data demonstrate
strong performance on 3D-related tasks.

In the domain of multimodal synthesis, recent efforts
in 2D and 3D model generation have leveraged diffusion
models to tackle complex generation tasks. These models
use robust priors, often trained on vast datasets, which al-
low them to create high-fidelity outputs in scenarios such as
novel view synthesis and realistic 3D reconstructions from
single RGB images [33, 65]. By combining synthetic data
with diffusion-based priors, these frameworks achieve im-
pressive zero-shot generalization and geometry-consistent
3D synthesis, opening new avenues for applications where
generating realistic 3D content from limited information is
critical.

Representational similarity. The study of representation
similarity across neural networks has seen a significant rise
in interest, spurred largely by seminal works originating in
neuroscience and computational cognitive science. These
fields have long been invested in understanding the nature
and alignment of cognitive representations, providing a foun-
dational basis that has influenced the current trajectory in
machine learning [42, 56]. Based on these insights, various
works [1, 31, 40, 41, 43, 44, 59] provide evidence of an in-
trinsic connection between independently trained networks;
the similarity is especially notable among large-scale models,
with works such as [39, 40, 55] exploring the phenomenon.
In the computer vision and pattern recognition areas, the
line of work on similarity-based representations, pioneered
by Duin and Pekalska [45], has also been seminal. This
line of research, which examines data through the lens of
similarity rather than feature attributes, has provided robust
frameworks for classification and clustering [5], enabling
models to generalize across patterns and variations in com-
plex datasets. Although mostly empirical in nature, these
observations find theoretical support in the study of harmon-
ics in neural networks weights [38], Independent Component
Analysis [22, 23, 26, 50] and Independent Mechanism Anal-
ysis [13, 14, 54]. These works suggest that, when capturing
the same underlying data generative factors, deep learning
models may converge towards similar structures despite their
complexity and non-linearity.

Latent space alignment. More recently, a range of ap-
proaches has been developed to align latent spaces within
the same modality [3, 7, 12], as well as across different
modalities [36, 58, 67], particularly between visual and tex-
tual domains. Techniques such as Procrustes analysis [60]
and several similarity metrics [27, 53, 57, 61], including
centered kernel alignment (CKA) [8, 28, 37], have proven in-
strumental in aligning representations. These methods offer

various strategies for quantifying similarity between feature
spaces, allowing us to examine cross-modal interactions at
a deeper level. HHowever, these methods often focus on
aligning entire latent spaces, potentially missing meaningful
similarities confined to specific subspaces.

Our approach builds upon CCA [20, 49], a pivotal tool
in pattern recognition and multi-view learning applications
[16, 51]. This technique identifies maximally correlated sub-
spaces, enabling more refined alignment across modalities
by isolating core, mutually relevant components. Leverag-
ing CCA, alignment methods can extend into complex do-
mains, such as connecting 3D and textual latent spaces, as
we demonstrate in the following.

3. Method
We compare the similarity between latent (feature) spaces of
various 3D and text encoders, introducing a new approach
that builds on existing alignment methods to improve their
effectiveness. Below, we outline the tools used to measure
and align these latent spaces.

3.1. Preliminaries

Centered Kernel Alignment. CKA is a similarity mea-
sure frequently used in recent studies [8, 28] to compare
representations in neural network feature spaces. Given
feature matrices X ∈ Rn×p and Y ∈ Rn×q, we apply
kernel functions k and l to obtain kernel representations
K = k(X,X) ∈ Rn×n and L = l(Y,Y) ∈ Rn×n. CKA is
defined as:

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
(1)

where HSIC is the Hilbert-Schmidt Independence Criterion
[15] and can be written as

HSIC(K,L) =
1

(n− 1)2
tr(KHLH) , (2)

where H = I− 1
n11

⊤.

Canonical Correlation Analysis. CCA [20, 49] is a sta-
tistical method that finds linear projections of two datasets,
maximizing their correlation in a shared latent space.

Formally, given two sets of zero-centered variables X ∈
Rn×d1 and Y ∈ Rn×d2 , CCA seeks two projection matri-
ces WX ∈ Rd1×k and WY ∈ Rd2×k that map X and Y
into a common k-dimensional space, maximizing the cor-
relation between the projections XWX and YWY. The
optimization can be expressed as:

max
WX,WY

corr(XWX,YWY) , (3)

where corr(·, ·) represents the correlation between the pro-
jected variables.



3.2. Alignment approaches
Recent developments in latent space alignment have intro-
duced various methods. In this work, we examine both the
affine transformation approach in [36] and the CKA-based
matching approach from [37], observing their limited effec-
tiveness in 3D-text latent space alignment, and propose a
method to address these limitations.

Latent Space Translation through Affine Transforma-
tion [36]. It is possible to estimate an affine transformation
T that maps one latent space X onto another latent space
Y such that T (x) = Rx + b,∀x ∈ X . To compute T , we
assume access to an anchor subset consisting of ground-
truth paired samples from both latent spaces. These anchors
enable us to determine T by optimizing through gradient
descent or, if b = 0 by minimizing the least squares error. It
assumes that X and Y share the same dimensionality and are
normalized to zero mean and unit variance. These constraints
can be enforced by zero-padding the smaller latent space.

Local CKA-based retrieval and matching [37]. The CKA
metric computed between two sets of features is sensitive to
ordering and maximized when ground-truth pairs are aligned,
this insight can be used to match unseen data by including
them in a well-aligned anchors set. Formally, starting from
aligned set of features XA and YA, we compute for a query
pair (xq,yq) its local CKA defined as:

localCKA(xq,yq) = CKA(K[XA,xq ],K[YA,yq ]) , (4)

where [X,x] denotes the column-wise concatenation of ma-
trix X and vector x. Local CKA calculates similarity in a
pairwise manner, accounting for anchor alignment while be-
ing sensitive to ordering among query pairs. We introduce all
possible query pairs, where correctly matched pairs exhibit
the highest local CKA.

3.3. Proposed method.
Our goal is to reliably align the latent spaces of pre-trained
3D and text encoders. Given a dataset of n caption-point
cloud pairs, each embedded in the corresponding feature
space, and represented as matrices X ∈ Rn×p and Y ∈
Rn×q respectively, we first select a subset of anchor pairs
that will guide our translation process, denoted as XA ∈
RnA×p and YA ∈ RnA×q . Building upon the mathematical
foundations introduced in Section 3.2, we develop a pipeline
that combines dimensionality reduction with the previously
introduced alignment methods.

Common Subspace Projection. In our work, we show that
3D and text latent spaces can effectively be aligned in low-
dimensional connected subspaces. We begin by applying
CCA to the anchor pairs to identify a shared k-dimensional
subspace (with k < p, q) that connects point cloud and text
latent spaces. This yields projection matrices WXA ∈ Rp×k

and WYA ∈ Rq×k. All samples are then projected into this
reduced space:

Xr = XWXA
, Yr = YWYA

. (5)

In particular, we refer to the reduced anchors as
Xr

A ∈ RnA×k and Yr
A ∈ RnA×k.

Our experiments show that projecting 3D and text latent
spaces into a lower-dimensional, shared subspace improves
alignment by isolating features that are highly correlated
across modalities

Alignment of projected latent spaces. Given the projected
latent spaces, we can apply either of the previously described
alignment methods in the reduced space. For the affine trans-
formation approach, we learn a mapping between Xr and
Yr using the projected anchor pairs Xr

A,Y
r
A to optimize the

transformation parameters R and b:

T (Xr) = RXr + b, (6)

Alternatively, we can employ the local CKA-based matching
approach in the projected space. For a query pair (xr

q,y
r
q),

we compute its local CKA using the projected anchor sets:

localCKA(xr
q,y

r
q) = CKA(K[Xr

A,xr
q ]
,K[Yr

A,yr
q ]
), (7)

4. Experimental setup
4.1. Pre-training Dataset
Prior works in point cloud pre-training, particularly within
uni-modal frameworks, have relied heavily on ShapeNet [4],
a dataset of 51,300 annotated 3D synthetic shapes spanning
55 categories. ShapeNet has been instrumental in advancing
foundational methods, yet it remains limited by the relatively
narrow scope of categories. With the release of Objaverse
[9], which includes over 800,000 shapes across diverse real-
world categories, a new standard for large-scale represen-
tation learning in the 3D domain has emerged. Objaverse’s
extensive shape diversity makes it ideal for both uni-modal
and multi-modal learning. Despite these advantages, there is
a lack of works that explore uni-modal pre-training specifi-
cally on Objaverse.

4.2. Encoders
We explore both multi-modal and uni-modal 3D and text
encoders across varying levels of model complexity.

Multi-modal 3D Encoders. For multi-modal pre-training,
we use OpenShape, ULIP-2 and Uni3D [32] pre-trained mod-
els, trained on point cloud, image, and text triplets of Obja-
verse with a contrastive pre-text task to align 3D encoders
with frozen CLIP encoders. We adopt the Point-BERT-based



Method 3D Encoder CLIP RoBERTa BERT
Matching accuracy Top-5 retrieval Matching accuracy Top-5 retrieval Matching accuracy Top-5 retrieval

Multi-modal 3D encoder
Affine + Subspace Projection OpenShape 67.6 85.6 55.2 75.8 45.0 70.6
Affine + Subspace Projection ULIP-2 65.6 85.2 47.2 70.6 35.2 59.8
Affine + Subspace Projection Uni3D 61.4 81.6 45.8 63.8 34.4 47.2

Uni-modal 3D encoder
Affine PointBert 15.8 23.6 7.8 15.6 6.4 13.4
Affine SparseConv 11.0 34.4 6.0 20.0 4.2 16.2
Affine Pointnet 18.4 21.8 8.0 10.2 9.6 12.2

Affine + Subspace Projection (Ours) PointBert 30.8 42.2 23.2 28.4 15.6 18.2
Affine + Subspace Projection (Ours) SparseConv 21.4 45.6 19.2 16.8 15.8 15.0
Affine + Subspace Projection (Ours) Pointnet 25.2 36.6 22.4 20.8 16.6 16.0

Local CKA PointBert 5.8 15.2 1.8 1.4 1.0 4.39
Local CKA SparseConv 3.4 13.6 1.79 1.6 0.6 3.8
Local CKA Pointnet 6.6 18.0 2.4 2.0 1.0 5.0

Local CKA + Subspace Projection (Ours) PointBert 29.4 60.19 17.0 42.4 15.0 37.2
Local CKA + Subspace Projection (Ours) SparseConv 19.0 56.9 15.8 34.0 10.0 30.8
Local CKA + Subspace Projection (Ours) Pointnet 26.8 53.0 18.6 40.2 14.3 38

Table 1. Matching and retrieval performance across 3D and text encoders using different alignment approaches. We use 30,000
anchors for subspace projection and affine transformation approaches, and 1,000 anchors for local CKA. A query set of 500 is uniformly
sampled, with results averaged over 3 different seeds. The subspace dimension is fixed at 50. Our approach (Ours) consistently demonstrates
improved matching and retrieval performance, with multi-modal 3D encoders setting the upper bound for performance. Additional top-k
retrieval metrics are provided in the supplementary.

variant of each model [66]. We primarily focus on Open-
Shape for simplicity but generalize results to ULIP-2 and
Uni3D.

Uni-modal 3D Encoders. For the uni-modal setup, we
pre-train PointBERT on Objaverse using its original pre-
text tasks, which include masked point reconstruction and
a uni-modal contrastive loss to encourage robust shape rep-
resentation. We also explore two additional architectures: a
Sparse convolution (MinkowskiNet [6]) model and a sim-
pler architecture in PointNet [46], each pre-trained using a
shape-level contrastive learning method [18]. This approach
contrasts different partial views of input shapes. Across all
3D encoders in this setup, we fix the latent dimension at 512
to maintain consistency in representation space comparisons.

Text encoders. We use the text encoder from OpenCLIP ViT-
bigG-14 [24], chosen to match text encoder used in Open-
Shape. Additionally, we examine alignment with purely uni-
modal text encoders by including BERT [11] and RoBERTa
[34], we also evaluate the alignement with T5 [48] in the
supplementary.

Across all pre-training setups, parameters are kept consis-
tent to facilitate direct comparisons. We detail the technical
details in the supplementary.

4.3. Downstream tasks

We evaluate our alignment approach on Objaverse-LVIS [17],
a human-verified test subset of Objaverse that contains 1,156
object categories. This subset is specifically reserved for
evaluation and is unseen during pre-training. The captions
are generated with Cap3D [35], which provides enhanced
descriptive text for each 3D shape. Our evaluation frame-
work consists of two main tasks: matching and retrieval. The

matching task involves finding the correct permutation of
captions for perfect matching given a shuffled set of query
images and their corresponding captions; we utilize the lin-
ear sum assignment approach to perform this task [29]. For
the retrieval task, the model must identify the correct 3D
object from the query set based on a text caption. These
tasks are particularly effective in measuring the cross-modal
capabilities of encoders, and have been evaluated in prior
Vision-Text studies [37]. While our main results emphasize
the matching and top-5 retrieval tasks, we provide evaluation
of top-1 and top-10 retrieval metrics in the supplementary.

5. Results

5.1. Are 3D and Text Latent Spaces similar ?

To evaluate the inherent similarity between 3D and text fea-
ture spaces without alignment, we compute linear CKA
scores for both unimodal and multimodal encoders. The
results are shown in Fig. 2.

Comparison of 3D-Text and Vision-Text alignment. Prior
work [21] reports CKA alignment values ranging from ap-
proximately 30% to 48% between different uni-modal vision
and text encoders (see Figure 13 in [21]). In stark contrast,
we find that the default alignment between 3D and text latent
spaces is significantly weaker, with a maximum score of 0.12
observed for the uni-modal PointBERT and CLIP pair. This
substantial gap underscores a key insight: unlike vision and
text encoders, 3D encoders did not converge to structures
similar to text.

Alignment favors multi-modality. We observe that 3D
multi-modal encoders demonstrate the highest CKA score
with text encoders, particularly with CLIP’s text encoder.
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Figure 2. Linear CKA scores between text and 3D encoders
without alignment. Higher scores reflect stronger alignment be-
tween encoder pairs, with the strongest alignment observed between
multi-modal 3D encoders (OpenShape) and CLIP text encoder due
to their shared training on aligned representations. Uni-modal 3D
encoders show significantly lower alignment with text encoders,
although slightly higher with the CLIP text encoder.
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Figure 3. Linear CKA scores between text and 3D encoders
after affine translation. Affine translation results in a consistent
increase in similarity for both 3D-to-text and text-to-3D directions.

This behavior is expected, given that 3D multi-modal en-
coders are explicitly trained to align with CLIP latent spaces,
which share the same textual modality. Even among uni-
modal 3D encoders, alignment with the CLIP text encoder is
notably higher (e.g. 0.12 for PointBERT-CLIP) compared to
alignment with uni-modal text encoders like RoBERTa (e.g.,
0.04 for PointBERT-RoBERTa). This suggests that the visual
understanding embedded in CLIP’s text encoder extends be-
yond image and text domains to include 3D representations,

despite the lack of explicit alignment during pre-training.

5.2. Latent Space Alignment results
We evaluate the performance of the alignment approaches
outlined in Sec. 3 using matching and retrieval tasks, and
analyze their effectiveness in aligning 3D and text encoders.
Unless otherwise specified, we fix the subspace dimension
to d = 50 and the number of anchors to 30, 000. For down-
stream tasks, we uniformly sample a query set of size 500
and average results over 3 different seeds. For the affine
transformation approach, we present results for the text-to-
3D direction, noting that similar performance is achieved in
the 3D-to-text direction as seen in Fig. 3.

Existing approaches enable limited alignment We first
assess whether previous successful approaches—affine trans-
formation and local CKA—can achieve meaningful 3D-text
alignment. As shown in Tab. 1, both methods yield mod-
est alignment improvements over the unaligned baseline,
where uni-modal 3D encoders start near zero in matching
and retrieval tasks. These results suggest a small alignment
shift. However, even with this improvement, alignment re-
mains significantly lower than the alignment achieved in
vision-text benchmarks [37]. This finding hints at the limits
of uni-modal 3D encoders in achieving similar Vision-Text
alignment performance, and might necessitate a different
approach to align their latent space with text encoders.

Importance of subspace projection (Ours). While align-
ing the latent spaces of 3D and text encoders achieved some
success with existing methods, results remained well below
vision-text alignment benchmarks. Motivated by this limi-
tation, we propose aligning lower-dimensional subspaces,
based on the hypothesis that 3D and text representations
might intersect within a shared latent subspace. Using a
validation set, we report in Fig. 4 the impact of subspace di-
mension, obtained through our CCA approach (see Sec. 3.3)
combined with the affine transformation on the top-5 re-
trieval accuracy of uni-modal PointBert. While affine align-
ment alone yields better performance at higher dimensions,
our subspace projection approach significantly outperforms
it when the subspace dimension is reduced. This finding in-
dicates that alignment quality is optimized within carefully
chosen lower-dimensional spaces, reinforcing our hypoth-
esis that 3D-text alignment is more successful within tar-
geted subspaces. The results in Tab. 1 further validate this
approach, showing a substantial increase in matching and
retrieval performance across all 3D and text encoder pairs,
outperforming both alignment approaches when they operate
on the original latent space.

Multi-modal encoders as an upper bound of perfor-
mance. We include 3D multi-modal encoders for two main
reasons: (1) As an upper bound for alignment performance,
(2) To study how alignment degrades across different text



encoders, including those that were not used during pre-
training. In this context, the inclusion of ’Affine + Subspace
Projection’ multi-modal results in Tab. 1 shows how using
our approach significantly narrows the gap between multi-
modal and uni-modal performance. However, to illustrate
point 1. above, we also measured with cosine similarity the
alignment of OpenShape (a multi-modal 3D encoder) and the
same CLIP text encoder used during pre-training, achieving
0.94 for top-5 retrieval accuracy, an expected result since 3D
and text encoders are explictly aligned during pre-training.

3D encoder complexity’s low impact on alignment. Point-
BERT outperforms the more complex SparseConv among
uni-modal 3D encoders, suggesting that increasing model
complexity alone does not guarantee improved alignment
in 3D-text tasks. Surprisingly, even PointNet—a relatively
simple model—achieves similar alignment scores, showing
that factors other than model complexity may play a pivotal
role in 3D-text alignment. This observation contrasts with
vision-text alignment results [21, 37], where complex mod-
els typically leverage large datasets more effectively. Our
findings thus indicate a distinctive aspect of 3D-text align-
ment: model simplicity does not impede, and may even aid,
the interpretability and compatibility of learned features for
cross-modal alignment.

Different alignment techniques have different
strengths. Our experiments reveal that different alignment
techniques offer complementary strengths across tasks. For
instance, affine transformation proves particularly effective
for matching tasks across all 3D encoders, while local CKA
shows superior performance in top-5 retrieval accuracy.
This suggests that while some methods excel in precision
tasks, others might better capture broader semantic nuances,
making them more suitable for retrieval. Together, these
observations imply that a hybrid approach could leverage
the unique strengths of each method, opening up promising
directions for future cross-modal applications.

Scaling of our approach. In Fig. 5, we explore the scal-
ability of our approach by analyzing how performance re-
sponds to increasing the number of anchors. Notably, our
subspace projection method scales effectively with anchor
count, reaching a plateau before requiring the full dataset
(over 800,000 shapes). This scalability highlights the ap-
proach’s efficiency in learning robust 3D-text mappings with
a limited subset of anchor pairs. However, we observe a lev-
eling off in performance gains beyond a certain anchor count,
likely due to the constraints imposed by the low-dimensional
subspace. This suggests that while our approach is compu-
tationally efficient and data-efficient, its reliance on a fixed
lower-dimensional subspace could limit its adaptability to
larger, more diverse datasets.
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Figure 4. Impact of subspace dimensionality on retrieval per-
formance. Comparison of three approaches: our proposed CCA
+ affine translation method (blue), affine translation without sub-
space projection (red), and baseline feature space alignment with-
out transformation (orange). Results are shown for the uni-modal
PointBERT and CLIP text encoder, with generalizations to other
encoders provided in the supplementary.
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Figure 5. Effect of anchor set size on retrieval performance.
Validation set results with different subspace dimensions show that
retrieval performance improves as the anchor subset size increases
but eventually reaches a plateau. Results are shown for the uni-
modal PointBERT and CLIP text encoder.
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Figure 6. Pearson correlation between shape query chamfer
distances and pairwise distances in the projected text latent
subspace. We observe a higher Pearson correlation in the projected
text latent subspace with optimal subspace dimension. Results are
shown for the uni-modal PointBERT and CLIP text encoders.
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Figure 7. Shape retrieval comparison between original and re-
duced latent spaces. For a given query shape, we retrieve the
closest match based on cosine similarity. Results demonstrate a
higher semantic understanding in the reduced 3D latent subspace
compared to the original latent space. Shown for uni-modal Point-
BERT and CLIP.

5.3. Geometries vs. semantics.
Our quantitative evaluation shows that low-dimensional sub-
space projection significantly improves latent space align-
ment in the 3D-Text setting. To better understand the charac-
teristics of these subspaces spanned relative to the original
spaces, we analyze the increase in semantic and geometric
knowledge within the projected spaces.

Increased geometric awareness of the text latent sub-
space. To quantify the increase in geometric awareness
within the projected text subspace, we compute the Pearson
correlation between the Chamfer distances of a query set
of 500 shapes and the pairwise distances between feature
vectors within the text subspace and compare these results
to those obtained from the original text latent space. Results

in Fig. 6 show that the optimal subspace dimension yields
a high correlation with Chamfer distances, signaling an in-
crease in the sensitivity of the text encoder to geometric
properties when projected into this specific subspace.

Increased semantic understanding of the 3D latent sub-
space. To assess the improved semantic capacity of the
3D subspace, we conducted a qualitative analysis of shape
retrieval performance in both the reduced and the original la-
tent spaces (Fig. 7). Given a set of query shapes, we observe
that the reduced subspace retrieves shapes with stronger se-
mantic similarity (e.g., retrieving animals for a query sheep
shape), while the original latent space primarily favors ge-
ometric resemblance (e.g retrieving stacked square shapes
when querying a ’3D model of a CPU’). This shift suggests
that our subspace projection method enables the 3D encoder
to capture semantic relationships that are absent in the full la-
tent space. This effectively enables cross-modal applications
and explains its higher matching and retrieval performance.

6. Conclusion, Limitations and Future Work

In this work, we present the first study investigating latent
space alignment between 3D and text pre-trained encoders.
Building on the hypothesis that these modalities share se-
mantic connections within lower-dimensional subspaces, we
propose an effective approach combining CCA projection
with affine transformation estimation to translate between
modalities’ latent spaces. Our empirical results show that
optimal cross-modal performance is achieved through low-
dimensional subspace projection, and our method success-
fully improves alignment across diverse 3D and text uni-
modal encoders. While CLIP-based multi-modal encoders
establish performance upper bounds, we enable significant
cross-modal capabilities in uni-modal encoders previously
limited to single-modality tasks. We also demonstrate that se-
mantic understanding can be extracted from geometry-aware
latent spaces of uni-modal 3D encoders.

Although our work focused on Objaverse, which is the
first large-scale 3D dataset, it would be interesting to con-
sider how scaling on Objaverse-XL [10] would affect the
alignment quality between 3D and text encoders. Moreover,
in this work we do not distinguish object-level vs. scene-level
annotations, and decomposing objects or scenes into their
composing blocks could shed light onto the compositionality
of the learned representations. Finally, the subspace align-
ment method that we introduce in this work can be broadly
applicable to other representations as well. In the future,
we plan to use it to investigate the limitations of alignment
observed in other representations. In particular, even when
trained at significantly higher data scales, images and text
representations do not align perfectly [21], and it would be
interesting to reveal the unique and complementary nature
of different modalities via subspace analysis.
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hard Schölkopf, and Michel Besserve. Independent mecha-
nism analysis, a new concept? In Advances in Neural Infor-
mation Processing Systems, 2021. 3

[15] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard
Schölkopf. Measuring statistical dependence with hilbert-
schmidt norms. In International conference on algorithmic
learning theory, pages 63–77. Springer, 2005. 3

[16] Chenfeng Guo and Dongrui Wu. Canonical correlation anal-
ysis (cca) based multi-view learning: An overview. arXiv
preprint arXiv:1907.01693, 2019. 3

[17] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset
for large vocabulary instance segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 5356–5364, 2019. 5

[18] Souhail Hadgi, Lei Li, and Maks Ovsjanikov. To super-
vise or not to supervise: Understanding and addressing the
key challenges of 3d transfer learning. arXiv preprint
arXiv:2403.17869, 2024. 5

[19] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. arxiv e-prints, art. arXiv preprint
arXiv:1911.05722, 2019. 2

[20] Harold Hotelling. Relations between two sets of variates.
In Breakthroughs in statistics: methodology and distribution,
pages 162–190. Springer, 1992. 3

[21] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip
Isola. The platonic representation hypothesis. arXiv preprint
arXiv:2405.07987, 2024. 1, 5, 7, 8

[22] Aapo Hyvarinen and Hiroshi Morioka. Unsupervised Fea-
ture Extraction by Time-Contrastive Learning and Nonlinear
ICA. In Advances in Neural Information Processing Systems.
Curran Associates, Inc. 3

[23] Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Non-
linear ICA Using Auxiliary Variables and Generalized Con-
trastive Learning. In Proceedings of the Twenty-Second Inter-
national Conference on Artificial Intelligence and Statistics,
pages 859–868. PMLR. 3

[24] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal
Shankar, Hongseok Namkoong, John Miller, Hannaneh Ha-
jishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, 2021.
If you use this software, please cite it as below. 5



[25] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In International confer-
ence on machine learning, pages 4904–4916. PMLR, 2021.
2

[26] Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and
Aapo Hyvarinen. Variational Autoencoders and Nonlinear
ICA: A Unifying Framework. In Proceedings of the Twenty
Third International Conference on Artificial Intelligence and
Statistics, pages 2207–2217. PMLR. 3

[27] Max Klabunde, Tobias Schumacher, Markus Strohmaier, and
Florian Lemmerich. Similarity of neural network models: A
survey of functional and representational measures, 2024. 3

[28] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network representations
revisited. In International conference on machine learning,
pages 3519–3529. PMLR, 2019. 3

[29] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 5

[30] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei
Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei
Zhang, Jenq-Neng Hwang, et al. Grounded language-image
pre-training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10965–
10975, 2022. 2

[31] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and
John Hopcroft. Convergent learning: Do different neural
networks learn the same representations? arXiv preprint
arXiv:1511.07543, 2015. 3

[32] Minghua Liu, Ruoxi Shi, Kaiming Kuang, Yinhao Zhu, Xu-
anlin Li, Shizhong Han, Hong Cai, Fatih Porikli, and Hao
Su. Openshape: Scaling up 3d shape representation towards
open-world understanding. Advances in neural information
processing systems, 36, 2024. 1, 2, 4

[33] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov,
Sergey Zakharov, and Carl Vondrick. Zero-1-to-3: Zero-shot
one image to 3d object. 2023. 3

[34] Yinhan Liu. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 364, 2019. 5

[35] Tiange Luo, Chris Rockwell, Honglak Lee, and Justin John-
son. Scalable 3d captioning with pretrained models. Advances
in Neural Information Processing Systems, 36, 2024. 5

[36] Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco
Fumero, Francesco Locatello, and Emanuele Rodolà. Latent
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