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Abstract

In this paper, we propose a new construction for the Mexican hat wavelets on shapes with applications to partial shape matching.

Our approach takes its main inspiration from the well-established methodology of diffusion wavelets. This novel construction

allows us to rapidly compute a multiscale family of Mexican hat wavelet functions, by approximating the derivative of the heat

kernel. We demonstrate that this leads to a family of functions that inherit many attractive properties of the heat kernel (e.g.,

local support, ability to recover isometries from a single point, efficient computation). Due to its natural ability to encode high-

frequency details on a shape, the proposed method reconstructs and transfers δ-functions more accurately than the Laplace-

Beltrami eigenfunction basis and other related bases. Finally, we apply our method to the challenging problems of partial and

large-scale shape matching. An extensive comparison to the state-of-the-art shows that it is comparable in performance, while

both simpler and much faster than competing approaches.

CCS Concepts

• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry; • Mathematics of

computing → Functional analysis;

1. Introduction

In the last decade, advances in 3D shape analysis have seen the
emergence of a class of methods falling under the umbrella of
diffusion geometry. Based on the seminal work of Coifman and
Lafon [CL06], such approaches leverage the relation between the
geometry of the underlying space and the diffusion process de-
fined on it, as encoded especially by the spectrum of the Laplace-
Beltrami operator (LBO, for short). This general strategy has
been successfully exploited for the construction of point signa-
tures [SOG09, GBAL09] and shape matching [OBCS∗12] among
other tasks. More recently, progress in this field has shifted towards
a more “local” notion of shape analysis [OLCO13, MRCB18],
where descriptors are computed only on small and properly se-
lected neighborhoods (Sect. 2). This choice is motivated by sev-
eral relevant settings dealing with real-world 3D data, where the
acquired shapes have missing subparts, due to self-occlusions, or
a wildly different mesh connectivity. To date, however, combining
informative diffusion-based geometric techniques with robust lo-
calized shape analysis has remained an elusive goal addressed by
few methods [OMMG10, HVG11, HQ12, OLCO13, MRCB18].

In this paper, we propose an extension to the classical diffusion-
based constructions by considering functions that are obtained as
time derivatives of the heat kernel (Sect. 3). Such functions have lo-
cal support, thus providing a natural tool for capturing multi-scale
shape properties. Furthermore, they inherit fundamental properties

of the heat kernel [OMMG10], such as an efficient computation to-
gether with the ability to recover isometries from a single point. Our
construction is also related to Mexican hat wavelets that we build
directly on the surface while avoiding spectral approximations.

From a functional standpoint, the resulting family of functions
forms an over-complete basis (a frame or, as we refer to below, a
dictionary) that provides a richer functional representation power,
compared to standard LBO eigenfunctions or heat kernel functions.
For example, delta functions supported at surface points are recon-
structed more faithfully through our representation under a lower
memory budget (Sect. 5). This aspect has direct consequences in
several applications, such as dense correspondence, function trans-
fer across shapes, and partial shape matching (Fig. 1 and Sect. 6).

Our contributions can be summarized (Sect. 7) as follows:

• we introduce heat kernel derivatives as a novel tool for localized
shape analysis;

• our proposed representation is compact and efficient to com-
pute, while allowing an accurate representation of Mexican hat
wavelets. Furthermore, it is demonstrably competitive with full-
fledged algorithmic pipelines for partial shape correspondence
and similarity, at a fraction of the computational cost;

• we compare our approach to popular Mexican hat wavelet for-
mulations and prove that it achieves the best trade-off between
efficiency and accuracy.
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Figure 1: Example functions from the proposed wavelet family on a pair of shapes, respectively a full model (left) and a partial near-isometry

(center). Each function is represented at three scales (from left to right) and localized around two different samples (1 for each row). The

rightmost column shows the point-to-point correspondence obtained using our wavelet family (top) and the standard Laplace-Beltrami (L-B)

eigenbasis (bottom). Both maps are estimated on the same set of 13 landmarks, and visualized by color coding. Our construction is designed

to be the preferred choice in the partial setting.

2. Related work

The definition of a compact and efficient representation of signals
is a fundamental task in geometry processing. By far, the most
common approach is to use the eigenfunctions of the Laplace-
Beltrami operator, which are a natural extension of the Fourier
basis to surfaces [Tau95, Lév06, VL08]. In most settings, a trun-
cated approximation consisting of the low frequency eigenfunc-
tions is used to guarantee numerical robustness and computational
efficiency. The LBO eigenfunctions basis lies at the core of many
global and pointwise shape signatures, such as [Rus07, RWP06,
SOG09,GBAL09,ASC11,MRCB16] and has been widely used for
shape deformation [RCG08], segmentation [RBG∗09], and func-
tional transfer [NMR∗18]. In [ABK15], Aflalo et al. showed that
the LBO eigenfunctions are the optimal for representing continu-
ous functions with bounded variation, thus providing a theoretical
justification for its versatility.

The LBO eigenfunctions are also commonly used in the func-
tional map framework [OBCS∗12], which relies on approximating
and transferring functions in reduced bases. Despite its prevalence,
the truncated LBO eigenfunction basis suffers from three main
limitations: (i) the support of its functions is global [MRCB18,
OLCO13], (ii) the truncated set of eigenfunctions provides a low-
pass filter on the signal and thus it is not able to approximate func-
tions composed of high frequencies [NMR∗18], and (iii) the LBO
eigenfunctions are defined up to sign and suffer from switches in
the sign and the order, even for near isometric shapes [SK14].

To address these challenges, several alternatives to the LBO
eigenfunction basis have been proposed. In [KBB∗13], Kovnatsky
et al. define a compatible basis on shape collections by performing
a simultaneous diagonalization of the LBO. The compressed man-
ifold modes [NVT∗14, OLCO13, KGB16] provide a set of sparse
and localised basis functions. Modifying the LBO, Choukroun et

al. [CSBK17] define a Hamiltonian operator, whose eigenfunctions
are localized in those regions that correspond to the modification of
the LBO. In [MRCB18], a similar solution is applied to define a ba-
sis that is also orthogonal to a given set of functions.

In [NMR∗18], Nogneng et al. use polynomial combinations of
the LBO eigenfunctions basis in conjunction with standard linear
combinations of functions to allow the representation of higher fre-

quencies. In [MMM∗20], the LBO eigenfunctions are extended us-
ing the coordinates of the 3D embedding. The resulting “Coordi-
nates Manifold Harmonics”, capture both extrinsic and intrinsic in-
formation, encoded in the standard LBO basis. Our use of an over-
complete functional dictionary is also related to the recent Binary
Sparse Frame [Mel19], where a set of non-orthogonal indicator
functions improve the approximation and the transfer of step func-
tions through sparse coding. Finally, a set of diffusion and harmonic
bases have been proposed recently in [Pat18], based on properties
of the heat kernel.

Local and multi-scale processing More closely related to our
work are multi-scale shape analysis methods [HPPLG11] with
(i) local descriptors [Joh99, CJ97, BMP01, HSKK01, MHYS04]
and (ii) diffusion geometry [SOG09, VBCG10, BK10, Pat13, PS13,
Pat16]. These latter methods typically exploit the multi-scale nature
of the heat kernel, which captures progressively larger neighbor-
hoods of a given point while being able to characterize local geom-
etry efficiently. However, the signatures based on heat diffusion can
fail to capture important (e.g., medium frequency) shape details,
which has led to other descriptors, such as the Wave Kernel Signa-
ture [ASC11] and optimal spectral descriptors [Bro11, WVR∗14].

While these approaches focus on the discriminative power of
the computed descriptors, wavelet-based techniques aim explic-
itly to construct locality-aware functional families. With respect
to the spectral graph wavelet signature [LH13] and the spectral
graph wavelet transform [HVG11], our approach does not rely on
an eigen-decomposition and solves a small set of sparse linear
systems, which allows to capture local details and to operate on
complex geometries. We provide an extensive comparison with the
most closely related wavelet methods in [HVG11] (Sect. 3.2) and
show that our approach leads to a rich functional family that can be
computed more efficiently compared to [HVG11], while capturing
local high frequency details, crucial for partial shape matching.

Wavelets on surfaces Finally, our work is inspired by the
construction of wavelet-based functional families on triangle
meshes [Zho12, Ch. 4] based on subdivision [LDW97], diffu-
sion [CM06], and eigendecomposition [HVG11]. While our work
does not fit directly in this field, we base our construction on diffu-
sion wavelets and specifically propose to consider the negative time
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derivative of the heat kernel to construct our multiscale functional
family. In the Euclidean domain, this time derivative (or equiva-
lently second derivative in space) corresponds to the Mexican hat
wavelet. Moreover, since it is constructed without relying on the
LBO eigendecomposition [HQ12], it provides a very efficient and
powerful tool for local shape analysis.

2.1. Background & motivation

Our main goal is to construct a family of functions that is both lo-

cal and provides a multi-scale description of the shape geometry,
analogously to wavelets in Euclidean domains. The most classical
approach for generating a family of wavelet functions is via shift-
ing and dilation (or scaling) of a generating function, referred to
as the mother wavelet. Extending this approach to curved surfaces
is challenging because shifting and dilation are not canonically de-
fined on non-Euclidean domains. As a result, a large number of ap-
proaches [CM06, HQ12] circumvent these challenges by replacing
these operations with those easier to mimic on surfaces.

Our construction is based on the notion of diffusion wavelets,
which broadly exploit the link between diffusion and function dila-
tion. As a way of motivation, consider a standard zero-mean Gaus-
sian function on the real line: f0(x) = (σ

√
2π)−1 exp(−x2/(2σ2)).

If f0 is dilated and re-scaled by 1/s, then we obtain another Gaus-
sian 1

s f0(x/s), whose standard deviation is multiplied by s. On the

other hand, if we consider a diffusion process ∂t f (x, t) = ∂2
xx f (x, t),

then its fundamental solution is given by the classical heat ker-
nel f (x, t) = (4tπ)1/2 exp(−x2/(4t)). Recalling that the heat kernel
satisfies f (x,σ2/2) = f0 and noting that f (x,s2σ2/2) is a Gaussian
with standard deviation sσ, we get that: f (x,s2σ2/2) = 1

s f0(x/s).
This computation shows that in certain cases, dilation and scal-
ing can be equivalently computed by solving the diffusion equa-

tion starting with f0. While the above computation is done with a
Gaussian function f0, a similar result also holds for the Mexican
hat (Ricker) wavelet, which is defined as the negative second order
derivative of a Gaussian function.

According to these observations, the key idea of diffusion
wavelets [CM06, HQ12] is to replace dilation by diffusion, which
is particularly useful on curved surfaces. In fact, while defining di-
lation is itself difficult, diffusion is well defined by replacing the
Laplacian ∂2

xx f (x, t) with the Laplace-Beltrami operator. Following
this line of work, our main goal is to construct a multi-scale family
of functions that both have strong locality properties and exhibit
good approximation of other functions through linear combina-
tions. Previous approaches have exploited these links either by us-
ing a multi-scale family built directly from the heat kernel [CM06]
or by operating in the spectral domain, through a truncated repre-
sentation [HQ12]. Instead, we build a multi-scale functional fam-
ily using the derivative (in time or, equivalently, in space) of the
heat kernel and operate purely in the spatial domain by explicitly
simulating heat diffusion. This choice allows us to both avoid an
expensive eigen-decomposition necessary to approximate very lo-
cal functions and to achieve better function reconstruction accu-
racy, exploiting the multi-resolution properties of the Mexican hat
wavelet.

(a) (b)

(c) (d)

tmax ∈ R
∗

s ∈ S

nscales ∈ N
∗

Figure 2: (a-c) Illustration of our diffusion wavelets (orange) on

a 1D manifold (in black), and corresponding “scaling functions"

(red), which approximate the heat kernel evaluated at the same

sample. (d) Parameters of our approach: largest diffusion time tmax,

number of scales nscales, and samples s. The end of the support of

successive wavelets
{

ψM
s,n

}

n∈[1;nscales]
is represented by blue lines

and the light blue region is covered by the wavelet at tmax.

2.2. Continuous setting

In the spirit of [HQ12], we define a wavelet-like family by means of
a diffusion process on a manifoldM (Fig. 2(a-c), red curve). The
resulting family provides a dictionary of functions and the corre-
sponding linear vector space spanned by them is used for the repre-
sentation of a function in wavelet coefficients. Let u :M×R→ R

be the solution to the heat equation

∂tu(x, t) =−∆u(x, t), u(x,0) = u0(x), t ∈ R
+. (1)

If the initial condition is defined at a single point (i.e. u0(x) =
δy(x) with y ∈ M), then the solution of Eq. (1) is the heat ker-
nel Kt(x,y). Kt provides a family of Gaussian-like functions on
the surface M, with increasing standard deviation (or increas-
ing “scale“) as t grows. At a given scale, the negative first-order
derivative of such a function constitutes the diffusion Mexican hat
wavelet. Equivalently, the Mexican hat wavelets ψt(x,y) at scale t

can be computed from the heat kernel Kt(x,y) as follows:

ψt(x,y) =−∂tKt(x,y) = ∆xKt(x,y) , (2)

where ∆x denotes the Laplace-Beltrami operator with respect to the
point x.

Given the Laplacian eigensystem {λk,Φk}+∞
k=0 , an exact spectral

formulation of the heat kernel in the continuous setting exists and
is given by:

Kt(x,y) =
∞
∑
k=0

exp(−tλk)Φk(x)Φk(y) . (3)

Therefore, the associated family of wavelets is defined as:

ψt(x,y) =
∞
∑
k=0

λk exp(−tλk)Φk(x)Φk(y) . (4)

In [HQ12], this property is used to define Mexican hat wavelets
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Algorithm 1 Computation of a dictionary of Mexican hat-like
functions for a set of samples S. ΩM is the area of M. AM
and WM designate the normalized area and cotangent weight ma-
trices, computed using Neumann boundary conditions. ρ ∈ (0;1] is
an adjustment ratio, and ||.||1 the L1 norm w.r.t. AM.

Input: set of samples S, number of scales nscales, maximal diffu-
sion time tmax, ratio ρ

Output: ΨS (multi-scale dictionary for all s ∈ S)
t← ρ tmax

nscales

√
ΩM

ΨS ←{}; ψM
S ← A

†
MWMδS ; ψM

S,0 ← ψM
S

for n← 1 to nscales do

ψM
S,n ← (AM+ tWM)†AMψM

S,n−1; ΨS ← {ΨS ,ψ
M
S,n}

end for

Normalize each column c of Ψs with ||c||1
Normalize each column c of Ψs by max(c)−min(c)

onM as a truncated version up to N = 300 LBO eigenpairs:

ψt(x,y) =
N

∑
k=0

λk exp(−tλk)Φk(x)Φk(y), (5)

In this work, we construct a dictionary of localized functions,
based on the same intuition but avoiding the eigen-decomposition,
and instead solving the diffusion equation directly. Our dictionary
shares the following properties (Fig. 2d) with the spectral Mexican
hat diffusion wavelets:

• it is based on the same defining relation (through derivatives
in time or space) between the heat kernel and the Mexican hat
wavelets as in the Euclidean setting;

• our functions are located at a set of chosen sample positions S,
and the resulting dictionary provides a multi-scale representa-
tion via a maximum diffusion time tmax and a chosen number of
scales nscales.

3. Proposed approach

We introduce our construction of diffusion wavelets on discrete
surfaces (Sect. 3.1). We compare their accuracy to other diffusion
wavelet constructions (Sect. 3.2), their conversion to a point-to-
point map (Sect. 3.3), and analyze their main properties (Sect. 3.4).
In Sect. 4, we perform an in-depth empirical study of these proper-
ties.

We assume that shapes are represented as triangle meshes in the
discrete setting. We also assume that each shape M is endowed
with the Laplace-Beltrami Operator LM = AM

†WM, where AM
and WM are respectively the area and cotangent weight matrices
[MDSB03] and A

†
M is the pseudo-inverse of AM.

3.1. Discrete setting

For convenience, in the following we consider the case with one
sample location at vertex s. To build a dictionary of functions at
various scales, we make three observations.

1. Given the δ-function at s, denoted δs, in the discrete setting, one
can compute a Mexican hat wavelet by applying the LBO to δs.

2. Given a function f , one can compute a scaled version of f by
applying the diffusion operator Dt to f . Additionally, the “scal-
ing factor” is controlled by the diffusion time t.

3. Dt can be approximated precisely and efficiently via a
backward-Euler scheme.

Observation 1. follows from the relation between the heat ker-
nel and the Mexican hat wavelet summarized in Eq. (2) and the
fact that the Laplace-Beltrami and diffusion operators commute.
In other words, computing the heat kernel Kt(s,x) and then ap-
plying the LBO to obtain ψs(x) = ∆Kt(s,x) is equivalent to com-
puting Dt∆δs. This approach leads to an analogue of the “mother
wavelet” and provides the means to save computational effort, since
it avoids applying the Laplacian to each scale of the heat kernel
independently. In practice, the mother wavelet is obtained by com-
puting ψM

s = A
†
MWMδs, where AM and WM are computed using

Neumann boundary conditions and the vertex coordinates ofM are
divided by ΩM which is the total area ofM. By applying Obser-
vation 2, for increasing diffusion times t to ψM

s , we obtain a set

of multi-scale Mexican hat-like functions Ψs =
{

ψM
s,n

}

n∈[1;nscales]
.

Finally, Observation 3 provides an efficient way to compute 2.
In practice, we found that 10− 50 Euler-steps allow to approxi-
mate Dtψ

M
s better than a truncated spectral formulation (Sect. 3.2).

Moreover, we directly use each intermediate function ψM
s,n ob-

tained at the n-th backward Euler step as a function of our dictio-
nary. In other words, the number of scales nscales represents the
number of backward-Euler steps that we use to produce the Mex-
ican hat wavelet associated to a diffusion time tmax. Given a func-
tion f on M, applying one backward-Euler step to approximate
the effect of the discretized diffusion operator Dt amounts to com-
puting the quantity fdi f f = (AM+ tWM)†AM f . Therefore, given
the (n− 1)-st wavelet at a sample s, we compute the n-th wavelet
as : ψM

s,n = (AM+ tWM)†AMψM
s,n−1.

In our applications, we use a linear time sampling: t =
ρ tmax

nscales

√
ΩM

. If two shapes N and M are involved in the com-

putation, the ratio parameter ρ is set to ρ =
√

ΩN√
ΩM

. ρ adjusts the

diffusion scales on the two shapes so that they relate well in prac-
tice. If a single shape is involved, ρ = 1. This ratio is especially
useful in the case of partial shape matching, whereN is the partial
shape andM the full shape.

Storing the set of sample locations S =
{

s1, ...,s|S|
}

in the

matrix δS (the kth column of this matrix is δsk ) allows us to
compute the wavelets at all sample locations in parallel: in-
stead of computing a single mother wavelet ψM

s , we com-
pute a set of mother wavelets, stored as the columns of a ma-
trix ψM

S : ψM
s ← A

†
MWMδS , which are propagated via backward

Euler steps to tmax. This procedure (Algorithm 1) enables us to
compute the full dictionary ΨM

S = Ψs1 , . . . ,Ψs|S| efficiently.

3.2. Comparison to other wavelet formulations

Our approach has two main competitors: the Mexican hat
wavelets [HQ12] and the spectral graph wavelets [HVG11]. We
also compare our construction to an alternative approach using the
wFEM diffusion operator [Pat13], which replaces the backward
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Figure 3: Comparison of the scalability of eigen-decomposition-

based wavelet computation method [HQ12] and our approach. The

wavelets are computed at 10 sample locations, using 25 scales.

Euler approximation scheme in the generation of the Mexican hat
wavelets. Note that we do not compare our method with the work
of Coifman et al. [CM06], which defines orthogonal wavelets, but
not Mexican hat wavelets, using a diffusion operator. Moreover,
their construction does not allow to select a set of samples from
which to compute the wavelet functions, whereas we rely on this
information. Finally, their method is performed via a full bottom-
up approach, starting from all vertices of the considered shape, to
large-scale orthogonal wavelet functions. This process uses a costly
iterative procedure that is not well suited to our applications that in-
volve dense meshes.

To illustrate the scalability of our approach compared to meth-
ods leveraging an eigen-decomposition of the Laplace-Beltrami op-
erator, we measure in Fig. 3 the time required to compute a dic-
tionary at 10 sample locations and 25 scales for [HQ12] and our
method. We use 8 shapes from the SHREC’19 data set (connectiv-
ity track) [MMR∗19], – see the Appendix (Sect. 8.2) for details on
the data sets used in our experiments – with an increasing num-
ber of vertices, to which we add an additional shape of around
1.2M. vertices, produced by applying the Catmull-Clark subdivi-
sion method [CC78] to the largest shape of this data set. A table of
the computed values is provided in the Appendix (Table 7, Sect. 8).

Our comparison to the competing definitions is based on three
criteria: (i) L2 error to the ground truth Mexican hat wavelets
(Fig. 4 (left), Table 1), (ii) L∞ error to the ground truth Mexican
hat wavelets (Fig. 14 of the Appendix, Table 1), (iii) computation
time (Fig. 4 (right), Table 1). The first and second criteria provide a
way to assess how well the compared approaches approximate the
ground truth Mexican hat wavelet functions, while the third crite-
rion measures the computational efficiency of the approaches. We
compute the ground truth Mexican hat wavelet family in Eq. (5)
with the complete Laplacian spectrum, and the intermediate dif-
fusion times tGT

n = log(nt), where t is introduced in Algorithm 1.
The evaluations are performed on all 100 shapes of the FAUST data
set (remeshed to shapes with 5K vertices), using the average error
at 10 sample locations, picked using farthest point sampling with
random initialization.

As shown in Figures 4 (as well as Fig. 3 and Table 1 and Fig. 14
of the Appendix), our approach produces the most accurate approx-
imation with respect to the ground truth and moreover is more com-
putationally efficient than the competitors. Note that our approxi-
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Figure 4: Comparison between various Mexican hat diffusion

wavelet definitions and our approach as L2 error to ground truth

wavelets (left) and computation time (right), on the complete set

of 100 shapes of the FAUST data set (remeshed to shapes with 5K

vertices). See the averaged values in Table 1.

Table 1: Comparison of four Mexican hat wavelet formulations on

the FAUST data set (100 remeshed shapes with 5K vertices). The L2
and L∞ norms are used as accuracy error measures.

Ours [Pat13] [HQ12] [HVG11]

Av. L2 1.7×10−2 9.7×10−2 2.3×10−2 9.9×10−2

Av. L∞ 9.7×10−2 6.3×10−1 5.1×10−1 7.1×10−1

Av. t.(s) 1.14 2.2×101 2.46 9.89

mation of the ground truth diffusion wavelets is the best at small
scales in terms of both L1 and L∞ norms. This is especially im-
portant for partial matching where local details must be captured
faithfully. Nevertheless, we note that [HQ12] provides the best rep-
resentation of Mexican hat wavelets at large scales (≥ 54 scales).

3.3. Reconstruction and point-to-point map recovery

We use two approaches to perform point-wise signal recovery on
shapes N andM, equipped with their dictionaries ΨN

S and ΨM
S .

The choice of the approach is conditioned by the task we deal with.

δ-function reconstruction on a single shape In the case of δ-

function reconstruction on a shape M, the mapping T that asso-
ciates to each vertex index ofM its image provided by ΨM

S can be
computed as

T = argmax
rows

ΨM
S (ΨM

S )
†
. (6)

The left pseudo-inverse of ΨM
S , denoted (ΨM

S )
†
, is used here as

the representation in dictionary space of all δ-functions of M:

the k-th column of ΨM
S

†
corresponds to the coordinates in the

dictionary space of the δ-function located at vertex k. To con-
vert back this dictionary representation in the basis of δ-functions

on M, ΨM
S (ΨM

S )
† ∈ R

nM×nM is computed. The k-th col-
umn of the resulting nM × nM matrix is the image of the δ-
function at vertex k. Taking the argmax over the rows of this ma-
trix provides the location of the δ-function according to the dic-
tionary ΨM

S . Since ΨM
S is rank deficient, the computation of

its pseudo-inverse via Eq. (6) is unstable. To remedy this, we
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use a Tikhonov (or ridge) regularization-like approach, that in-
troduces the variable α in T = argmax

rows
ΨM

S α, which is the so-

lution to argmin
α
||ΨM

S α− IM||2 + ||Γα||2, where Γ is an nM ×

(|S| × nscales) matrix, whose columns contain the values 1
k2 ,

with k ∈ [1;nscales] repeated |S| times each, and IM is the iden-
tity matrix on M. Then, the solution satisfies the linear system
[

ΨM
S ;Γ

]

α =
[

IM;0nM×(|S|×nscales)

]

, where the semi-colon nota-

tion represents the column-wise concatenation of two matrices.

δ-function transfer and shape matching for multiple shapes

For shape matching (or δ-function transfer) from a source shapeM
to a target shape N , we do not rely on the “spectrum” of the dic-
tionaries. Instead, we use as a representation of a vertex k on a
shapeM the set of values taken by each function constituting ΨN

S .

In other words, instead of using (ΨM
S )

†
as a representation in our

dictionary, we simply use (ΨM
S )

⊤
. In this last representation, the

embedding of the k-th vertex consists of the value taken by each
wavelet of the dictionary at the k-vertex. Note that we do not as-

sume the dictionary to be an orthogonal family (which it is not
in most cases). To recover the mapping T that associates to each
vertex index of M its image on N , we perform a nearest neigh-

bor search T = NN-search
rows

(

ΨN
S ,ΨM

S
)

, i.e., compute for each row

of ΨM
S its nearest neighbor among the rows of ΨN

S .

3.4. Theoretical guarantees

Our construction of the Mexican hat wavelets above inherits
many attractive properties of the heat kernel, including isometry-
invariance (due to invariance of the LBO), locality and its multi-
scale nature. Moreover, as we demonstrate below, generically the
relation to a single seed point through the Mexican hat wavelet
ψM

t (p,x) is enough both to encode each point on the surface and
to recover an isometry across a pair of shapes. Specifically, we
call a point p generic if it does not belong to any nodal set of
the Laplace-Beltrami eigenfunctions, i.e. if φi(p) 6= 0 for all i. As
shown in [OMMG10], the set of generic points has full measure.
Moreover, a surface is called generic if its Laplace-Beltrami eigen-
values are non-repeating. It is well-known [BU83] that an infinites-
imal perturbation to a metric of any surface makes it generic. With
these definitions, the following theorem guarantees that the unique-
ness properties of the heat kernel also apply to our wavelet family
construction.

Theorem 1 Let M be a generic connected compact manifold
without boundary and p a generic point on M. For any two
points x,y, x = y if and only if ψM

t (p,x) = ψM
t (p,y) for all t.

IfM andN are two generic connected compact manifolds and p a
generic point onM, then a map T :M→N where T (p) is generic
is an isometry if and only if ψM

t (p,x) = ψN
t (T (p),T (x)) for all t.

The proof of Theorem 1 follows the same reasoning as the proof of
the main theorem in [OMMG10]. For the sake of completeness, we
provide it in the Appendix (Section 8).

Theorem 1 implies that generically every point x on a surface
can be uniquely characterized by its relation to some fixed point p

via ψt(p,x). Furthermore, an isometry can be recovered given a
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Figure 5: Mean geodesic matching error (geo. err.) on the complete

set of shapes from the SHREC’16 Partial cuts data set using various

sampling strategies using 25 scales.

correspondence between a single pair of seed points, analogously
to the heat kernel [OMMG10]. As we demonstrate below, how-
ever, our wavelet-inspired construction provides a more informa-
tive characterization in practice, while retaining the locality and
multi-scale nature of the heat kernel.

4. Experimental analysis

We now study different aspects of the proposed approach, such as
the sample placement, the number of scales, the computational ro-
bustness, and the choice of tmax. The details of all the datasets are
provided in Section 8.2 of the Appendix.

Sample selection First, we assess the effect of the sampling strat-
egy on the outcome of our method. To this end, we compare far-
thest point sampling (Euclidean and geodesic), Poisson disk sam-
pling (computed using the gptoolbox Matlab package [J∗18]) and
random sampling on the SHREC’16 Partial cuts data set, with the
geodesic matching error. According to Fig. 5, all sampling strate-
gies behave in a similar fashion, and adding more samples improves
the reconstruction error significantly by injecting more local infor-
mation to the wavelet family. In all other experiments, we therefore
use the Euclidean farthest point sampling strategy for its simplic-
ity and more uniform localization of samples compared to random
sampling. In the Appendix (Fig. 15, Sect. 8), we provide a com-
plementary experiment on the SHREC’19 connectivity track data
set with the δ-function reconstruction error, from which we draw
identical conclusions.

Sample robustness Second, we verify the resilience of our ap-
proach to noise in the sample placement. We consider a set of 10
samples, among which we displace 1, 2, 3, 5 or all samples within a
geodesic radius around the original sample location (noise radius).
Six different scales are compared: 1, 2, 3, 5, 25 and 50 with noise
radii varying between 1.0× 10−2 and 1.0× 10−1 of the greatest
geodesic distance on the shape. Fig. 6 summarizes our results col-
lected on the complete SHREC’16 Partial cuts data set. As a base-
line, we display the matching error produced by using a dictionary
of wavelets from [HQ12] and heat kernel functions, both with 25
scales. This experiment furthermore illustrates the representative
power of our approach in the case of partial shape matching.
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Figure 6: Geodesic matching error as a function of the noise level applied to the positioning of the samples on the complete SHREC’16

Partial cuts data set. The level of noise is given as a noise radius (noise rad.), representing the geodesic disc centered around the original

sample, which the noisy sample is drawn from. The geodesic radius is expressed as a fraction of the maximum geodesic distance. In each

column, an increasing number of samples are noisy (from left to right: 1, 2, 3, 5 and 10, out of a total of 10 samples).

Table 2: Mean geodesic error on 200 shape pairs of the FAUST

data set and 212 pairs of the TOSCA Isometric data set (original,

with edges flipped and remeshed to 5K vertices in both cases), us-

ing 25 scales and 10 samples.

Data set Mean geodesic error

Faust (original) 9.96×10−2

Faust (remeshed) 6.15×10−2

Faust (edges flipped) 9.77×10−2

TOSCA (original) 4.78×10−2

TOSCA (remeshed) 4.99×10−2

TOSCA (edges flipped) 6.02×10−2

Number of scales Fig. 6 empirically indicates that choosing 25
scales is a good trade-off between robustness to noise and computa-
tional efficiency, especially when the sample position is inaccurate.

Robustness to topological changes We verify the robustness of
our method to topological changes by comparing three versions of
the FAUST and TOSCA Isometric data sets: (i) the original data
sets, with shapes counting respectively 6890 and around 25K ver-
tices, (ii) the data sets remeshed to shapes with close to 5K ver-
tices and (iii) the original data sets with random edge flips applied
to 12.5% of the original edges. Table 2 demonstrates that our com-
putation is robust to these changes leading to similar low error in
all these scenarios.

Choice of tmax The maximum diffusion time tmax remains a free
parameter of our method. Throughout the experiments that we
present, we choose to fix its value to 1, since it provides good re-
sults on the data sets that we are using. However, selecting its value
depending on the shape could allow to improve the quality of the
matching, in particular in situations where the samples cannot be
placed regularly on the shape’s surface. To illustrate this aspect,
we conducted an experiment on the humerus bones data set. All
shapes have been remeshed to count 1K vertices. Fig. 7 shows that
the geodesic error varies substantially depending on tmax. Its value
is the smallest for tmax = 14. Furthermore, to highlight the repre-
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Figure 7: Left: mean geodesic error on 30 shape pairs of the

humerus bones data set, remeshed to 1k shapes.The minimum

matching error of 7.35× 10−2 is attained for tmax = 14 (red dot).

Right: illustration of a matching estimated between two bones us-

ing the best tmax value. Corresponding points are depicted with the

same color. The target shape was rescaled by a factor of ×0.8 to

match the size of the source shape.

sentative power of our construction, we use the heat kernel and the
diffusion wavelets of [HQ12] as a baseline. For all diffusion time
selected in this experiment, we outperform both approaches.

5. Experimental Comparisons

To illustrate the benefits of the proposed approach, we discuss self-
(Sect. 5.1) and regular (Sect. 5.2) shape matching, and compare our
performance to the heat kernel (Sect. 5.3).

5.1. Self-matching

One feature of our approach is that it provides a better representa-
tion for δ-functions. With only a small number of sample points,
we provide an approximation of δ-functions that is significantly
more accurate than traditional functional bases, such as the LBO
eigenfunctions. To illustrate this aspect, we consider self-matching,
in which we evaluate the expressive power of our family in re-
constructing δ functions, thereby matching the vertices of a shape
to itself. Fig. 8 presents the results obtained on all shapes of the
SHREC’16 Partial cuts data set and all shapes of the TOSCA non
Isometric data set (remeshed version). The evaluation indicates
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Figure 8: Geodesic error (self-matching) on all shapes of the SHREC’16 Partial cuts data set (top row) and on all shapes of the TOSCA non-

isometric data set (category 8) (bottom row). Averaged values are reported respectively in Tables 3 and 4). Each column is with a different

number of sample points/non constant basis functions. Our functional dictionary recovers points on the surfaces much more accurately for

the same basis budget.

Table 3: Average geodesic error for the SHREC’16 Partial cuts

data set (self-matching), corresponding to the top row of Fig. 8.

# Gt Corres. 2 4 6

LBOB 3.84×10−1 2.27×10−1 1.69×10−1

LMH 4.09×10−1 2.32×10−1 1.80×10−1

CMM 7.03×10−1 6.22×10−1 5.08×10−1

Ours 2.28×10−1 1.00×10−1 3.75×10−2

the error in terms of geodesic radius, identically to the procedure
in [KLF11] but using the same shape as source and target.

To build our family of functions, we use 2, 4, or 6 samples,
placed using Euclidean farthest point sampling, 25 scales, tmax = 1
for the maximum diffusion scale, and the point-to-point map con-
version for δ-function reconstruction described in Sect. 3.3. We
compare the performance of our dictionary to the LBO eigen-
functions basis (LBOB), the Localized Manifold Harmonic ba-
sis (LMH) [MRCB18] and the Compressed Manifold Modes
(CMM) [NVT∗14], using |S|+ 1 basis functions, to take into ac-
count the constant function of the LBOB. For each of these meth-
ods, the δ-function location is determined by taking the position at
which its approximation in the basis considered is maximal. Ac-
cording to the mean geodesic error for all approaches (Tables 3, 4),
the proposed method outperforms significantly the other methods.

5.2. Pairwise shape matching

In a more practical application, we study how well our family of
functions recovers δ-functions basis after being transferred from
a source M to a target shape N via shape matching. This cor-
responds to the scenario of extending a set of known seed point
correspondences to the entire shapes.

For our family of functions, we employ the same setup as for
the δ-function reconstruction with a few adjustments: we use 3, 10

Table 4: Average geodesic error (self-matching) for all 24 shapes

from the TOSCA non isometric data set (category 8), corresponding

to the bottom row of Fig. 8.

# Gt Corres. 2 4 6

LBOB 5.55×10−1 3.17×10−1 2.03×10−1

LMH 4.73×10−1 2.98×10−1 1.81×10−1

CMM 7.66×10−1 7.34×10−1 5.80×10−1

Ours 3.94×10−1 6.9×10−2 3.1×10−2

or 20 samples and the transfer point-to-point conversion introduced
in Sect. 3.3. The remaining parameters stay identical (25 scales
and tmax = 1).

In all cases we assume that the ground truth correspondences
between the bases. For landmark-aware bases such as ours, this
means that we assume the knowledge of ground truth correspon-
dences between |S| sample points on source and target shapes.
For global bases such as the LBO, we assume the ground truth
correspondence between |S| first non-constant basis functions. In
the latter setting, we follow the procedure used in [MRCB18] and
leverage this known correspondence to build a ground truth func-
tional map [OBCS∗12], given as Cgt = φN

⊤AN ΠgtφM, where
Πgt is the ground truth point-to-point map. We then use this ground
truth functional map Cgt to compute the dense point-to-point map
following the the standard nearest-neighbor procedure [OCB∗17]
(Chapter 2).

Fig. 9 presents the results on pair of shapes from the same data
sets as for the δ-function reconstruction experiment and comparing
again against the LBOB, LMH and CMM bases. The evaluation,
performed according to the standard protocol proposed in [KLF11],
indicates the error in terms of geodesic radius. According to the av-
erage values in Tables 5, 6, our dictionary outperforms the compet-
ing bases by a substantial margin.
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Figure 9: Matching geodesic error on all pairs of the SHREC’16 Partial cuts data set (“SHREC’16”, top row, see averaged values in Table 5)

and 190 shape pairs of the TOSCA non-isometric data set (“TOSCA n.I.”, bottom row, see averaged values in Table 6) using an increasing

number of ground truth sample points/non constant basis functions correspondences. On all plots, the x-axis represents the normalized

geodesic distance and the y-axis is the fraction of correspondences in percent.

Table 5: Average geodesic error (partial shape matching) for all

shape pairs of the SHREC’16 Partial cuts data set, corresponding

to the bottom row of Fig. 9.

# Gt Corres. 3 10 20

LBOB 4.94×10−1 1.93×10−1 9.68×10−2

LMH 5.22×10−1 2.75×10−1 1.59×10−1

CMM 7.06×10−1 6.01×10−1 3.02×10−1

Ours 8.88×10−2 2.82×10−2 1.94×10−2

5.3. Comparison with the heat kernel

The construction of our functions is closely related to those pro-
vided by the heat kernel. While both function types share the abil-
ity to characterize uniquely every point on a surface, our heat kernel
derivatives are more informative in practice. To assess this practi-
cal advantage, we conduct the following experiment on a set of 10
pairs of the dog class from the TOSCA data set. Given an increasing
number of samples, we compute for each pair of shapes the AUC
(Area Under the Curve: the probability that a point is matched with
an error less or equal to 0.25 in normalized geodesic distance) and
the mean geodesic error using the proposed family and the heat
kernel, associated with the conversion of a point-to-point map.

We setup our dictionary using the same parameters as for the δ-
function transfer experiment, using ground-truth correspondences
between the sample points on the source and target shapes. The
quantitative and qualitative evaluation of this experiment is de-
picted in Fig. 10. Relying on a diffusion process to define both
families of functions, we emphasize that this experiment can be
seen as an additional comparison to standard diffusion wavelets.
This result highlights that heat kernel derivatives are more infor-
mative than heat kernel functions.

Table 6: Average geodesic error (full shape matching) for 190
shape pairs from the TOSCA non-isometric data set, corresponding

to the bottom row of Fig. 9.

# Gt Corres. 3 10 20

LBOB 6.70×10−1 4.04×10−1 3.44×10−1

LMH 6.94×10−1 4.51×10−1 3.82×10−1

CMM 7.36×10−1 6.87×10−1 5.98×10−1

Ours 2.14×10−1 1.08×10−1 7.97×10−2

6. Application to Partial Shape Matching

As the main application of our method, we tackle the problem of
partial shape matching, one of the challenging scenarios in non-
rigid shape matching. We experiment on the SHREC’16 Partial
Correspondence benchmark [CRB∗16] (Sect. 6.2) and on a new
set of partial shapes, namely FARM partial (Sect. 6.1). If not speci-
fied, we adopt as sparse set of correspondences for our approach
the fully automatic result obtained with the pipeline proposed
in [RBA∗12], initialized with the SHOT descriptor [TSDS10]. We
highlight that our main contribution is an informative, localized
functional family, which leads to a remarkably simple and effec-
tive shape matching approach. In the following experiments we
compare our approach to existing full-fledged optimization and
learning-based strategies, specifically designed for partial match-
ing. Thus, the simplicity and efficiency of our approach should be
taken into account when comparing to more advanced and highly
tuned methods.

6.1. FARM partial dataset

We first evaluate our method on the FARM partial dataset. This
dataset contains partiality and shapes undergoing non-isometric de-
formations and extremely different connectivities. This makes this
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Figure 10: (1st, 2nd Rows) Comparison with heat kernels in point-

to-point map conversion with the same number of scales and a

small number of point samples. Four scales of the heat diffusion

from a sample on a pair of shapes; the colormap ranges from blue

(negative) to red (positive) with values close to zero in white. (3rd

Row) Qualitative comparison of the resulting maps for 1, 4, 8 sam-

ples (left to right), using color correspondence to show the resulting

point-to-point map between a source and a target shape. (4th Row)

Performance of our approach compared to the heat kernel in terms

of Area Under the Curve (AUC) and mean geodesic error. Results

are averaged over 10 pairs of the dog class from the TOSCA data

set. The evaluation highlights the better performance of our repre-

sentation over the heat kernel.

dataset particularly challenging as many shape matching pipelines
are known to overfit to similar mesh connectivities. On the left of
Fig. 11, we show a quantitative comparison on FARM partial to
state-of-the-art Partial Functional Maps [RCB∗17] (PFM) method.
For a fair comparison, we additionally evaluate the performance of
PFM when it is initialized with the same sparse correspondence
that we exploit to generate our family of functions (PFM sparse).
We also provide a qualitative illustration of the computed maps in
Figure 12.

Note that the state-of-the-art PFM does not perform well on these
challenging pairs. In contrast, our method is robust, significantly

simpler and more efficient, leading to a dramatic improvement in
accuracy.

6.2. SHREC’16 Partial Cuts benchmark

We also evaluate our method In the evaluation on the SHREC’16
Partial Cuts data set, where each partial shape is matched to the full
shape of the same shape category. Remark that this dataset con-
tains shape pairs undergoing near-isometric deformations, which
are well-captured by the LBO basis.

The quantitative evaluation is shown in Fig. 11 (middle and
right). On the left, we compare our approach on the entire cuts set
from SHREC’16 [CRB∗16] with all the methods that were consid-
ered in the challenge. Our performance is comparable with partial
functional maps [RCB∗17] (PFM) the state-of-the-art for partial
matching. The constrained optimization performed by PFM pro-
duces more accurate correspondences because it is able to solve the
inaccuracies contained in the initial sparse correspondence. Note,
however, that due to the way the data set was produced, the shape
pairs of this data set have similar connectivity, which is a known
factor of overfitting for shape matching techniques.

In Fig. 11 (right), we compare our approach to PFM when both
are initialized with 20 and 30 ground-truth correspondences only on
the cat class. As can be seen, if the sparse correspondences are cor-
rect, our method is comparable to PFM and even better. We high-
light that this is the only evaluation in which we use a ground-truth
initialization. According to the qualitative results in Fig. 13, our
performance is comparable to PFM.

Computational Efficiency When considering the computational
efficiency (in seconds), our method outperforms PFM by a sig-
nificant margin. On the complete SHREC16 data set, PFM sparse
takes on average 138.2s per shape pair, PFM takes 240.9s, while
our method requires 46.2s. Moreover, the sparse set of samples
takes on average 38.7s per shape to be computed. Therefore, most
of the computation overhead lies in this preprocessing step for
our method. Once a set of sparse correspondences is available,
we require an average computation time of 7.5s per shape pair,
which represents an improvement of 13x compared to PFM sparse
(99.5s).

7. Conclusions

In this work, we have proposed an extension to the basic diffu-
sion (heat kernel) construction by considering its derivatives in
time, or equivalently in space. The resulting family of diffusion-
based Mexican hat wavelets is local and allows to find accurate
point-to-point correspondences between shapes; this includes par-
ticularly challenging settings such as partial shape correspondence,
and matching between shapes with highly different triangulations.
At the same time, the efficient use of diffusion-based methods al-
lows to solve these difficult problems at a fraction of the compu-
tational cost compared to other approaches. We further proved that
our functions inherit properties of the heat kernel map, such as the
ability of only requiring one sample point to recover an isometry.

Our experiments on δ-function reconstruction and transfer indi-
cate that our family can be thought of as an over-complete basis

submitted to COMPUTER GRAPHICS Forum (11/2020).



M. Kirgo, S. Melzi, G. Patanè, E. Rodolà and M. Ovsjanikov / Wavelet-based Heat Kernel Derivatives 11

Different connectivity Similar connectivity Similar connectivity
FARM partial SHREC16 cuts SHREC16 cuts cat shapes

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Geodesic error

%
C

or
re

sp
on

de
nc

es

PFM
PFM sparse
Ours

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Geodesic error
%

C
or

re
sp

on
de

nc
es

PFM
PFM sparse
Ours
RF
IM
EN
GT

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Geodesic error

%
C

or
re

sp
on

de
nc

es

PFM 20
PFM 30
Ours 20
Ours 30

Figure 11: Quantitative comparison on the FARM partial data set (shapes with different connectivity) and SHREC’16 partial cut benchmark

(composed of shapes with similar connectivity). In all plots, the x-axis is the mean geodesic distance to the ground truth. Abbreviations

used: PFM (partial functional maps), PFM sparse (PFM initialized with the same sparse correspondence used to compute our frame), RF,

IM, EN, GT. For PFM and ours applied to SHREC’16 cuts on the cat shape, an additional number specifies the number of ground-truth

correspondences that were used for initialization (20 or 30).

that provides a richer functional representation power compared to
LBO eigenfunctions, diffusion functions, and other bases. More-
over, the application of wavelet-like functions on partial and large-
scale shapes show promising results compared to state-of-the-art
methods, especially when taking into consideration its simplicity.

The main limitation of our approach currently lies in the depen-
dency on an initial sparse correspondence, which is assumed to be
roughly accurate. Although further progress in deformable sparse

matching would have a direct and positive impact on our method,
we believe that this problem can be solved jointly within our frame
calculation algorithm, and leave this challenge as an exciting direc-
tion of future research.
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8. Appendix

8.1. Proof of Theorem 1

Both statements of the theorem follow directly from the spectral
expansion of ψM

t (p,x) = ∑i λi exp(−tλi)Φi(p)Φi(x) and the fol-
lowing lemma, proved in [OMMG10] (Lemma 3.2, Remark 3.3).

Lemma 1 Given two strictly increasing sequences λi and µi of
non-negative numbers that tend to infinity, if a(t) = ∑i ai exp(−tλi)
and b(t) =∑i bi exp(−tµi) where ai,bi 6= 0 then a(t) = b(t) for all t

if and only if λi = µi and ai = bi for all i.

Applying this lemma to the spectral expansion of ψ while recalling
that only the first eigenvalue on a connected manifold is zero, we
immediately get the first statement of Theorem 1 (using the same
proof as of Theorem 3.1 in [OMMG10]). The second statement
follows from the same argument as Theorem 3.5 in [OMMG10]).
Namely, by first applying this lemma to x = p, and y = q, which
implies preservation of eigenvalues and second to other points on
the surface implying preservation of all but first eigenfunction. To-
gether this implies that T preserves ψ if and only if it preserves the
Laplace-Beltrami operator, which is equivalent to an isometry.

8.2. Data sets

The FAUST training data set [BRLB14] consists of 100 human
shapes, with 10 different humans in 10 different poses. All shapes
have a consistent manifold mesh structure, with 6890 vertices.

The TOSCA data set [BBK08] is composed of 80 shapes of var-
ious categories: 11 cats, 9 dogs, 3 wolves, 8 horses, 6 centaurs, 4
gorillas, 12 female figures, and 2 different male figures, in 7 and 20
poses. The mean vertex count is about 50K. If not explicitly men-
tioned, the shapes of this data set are remeshed to count around 5K
vertices each. In the TOSCA Isometric data set, we consider shape
pairs within the same category (e.g., cats matched to cats), whereas
in the TOSCA non-Isometric data set, we consider matches between
the gorilla shapes and the two human categories (male and female).
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Figure 14: Comparison of the L∞ error to the ground-truth diffu-

sion wavelets for various Mexican hat wavelets. See Table 1.

The Humerus Bones data set is composed of a collection of 15
humerus bone models of wild boars acquired using a 3D sensor.
Each bone was scanned independently, with 24 consistent land-
marks provided by experts in the field [GM13] on each shape. The
original resolution of the shapes is around 25K vertices.

The SHREC’16 partial cuts correspondence bench-

mark [CRB∗16], is the most adopted data set for non-rigid
shape matching. The shapes belong to 8 different classes (5
animals and 3 humans). Each class contains pose deformations and
partiality transformations, i.e., regular cuts and irregular holes. We
limit our evaluation to the cuts set (120 pairs), which are resampled
independently to ∼10K vertices and share a similar density.

The SHREC’19 connectivity track benchmark [MMR∗19] is
composed of 44 shapes of humans. The complete benchmark con-
sists in 430 shape pairs composed by meshes that represent de-
formable human body shapes. Shapes belonging to these categories
undergo changes in pose and identity. The meshes exhibit varia-
tions of two different types: density (from 5K to 50K vertices) and
distribution (uniform, non-uniform). For each shape, the full SMPL
model [LMR∗15] (6890 vertices) serves as our ground-truth.

The FARM partial data set is a collection of partial shapes that
we extract from a subset of 5 meshes of the SHREC’19 con-
nectivity track [MMR∗19]. These shapes belong to different data
set: TOSCA [BBK08] (around 50K vertices), SPRING [YYZ∗14]
(12.5K vertices) and K3DHUB [XZC18] (around 10K ver-
tices). We randomly cut five patches from each of these shapes
(Fig. 12) and each partial mesh is matched with the full SMPL
model [LMR∗15] (6890 vertices). The ground-truth correspon-
dence is extended to these partial shapes from the FARM registra-
tion [MMRC18], which provides a ground truth dense correspon-
dence between SMPL and each of the full shapes involved.

8.3. Comparison to other wavelets & sampling

Scalability As a complement to Fig. 3, Table 7 displays the com-
putation time required by [HQ12] and our approach for various
order of magnitude. In all cases, the proposed method outper-
forms [HQ12] by at least a factor 2.

L∞ error In addition to the L2 error displayed in Fig.4, we also
measured the L∞ of the error, using the same experimental setup

Table 7: Computation time (in sec.) of [HQ12] compared to our

approach on 5 shapes (Fig. 3) from the SHREC’19 data set.

# vertices [HQ12] (s.) Ours (s.) Improv.

103 2.03 0.38 ×5.34
104 9.00 3.05 ×2.95
105 73.39 25.00 ×2.94
106 524.63 247.02 ×2.12
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Figure 15: Mean reconstruction error (recon. err.) as a function of

the number of samples (# samples) on all δ-functions for 26 shapes

of the SHREC’19 connectivity track data set, using 25 scales.

as in Sect.3.2. The result, shown in Fig.14, is similar to what we
observe for the L2 error.

Sampling strategy To furthermore illustrate the independence of
our method to sampling, we compute the mean reconstruction error
as a function of the number of samples on all δ-functions for 26
shapes of the SHREC’19 connectivity track. The outcome of this
experiment (Fig.15) is similar to what we observed in Sect.4.
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