
FourieRF: Few-Shot NeRFs via Progressive Fourier Frequency Control

Diego Gomez, Bingchen Gong, Maks Ovsjanikov

LIX, ÂEcole Polytechnique, IP Paris

Palaiseau, France

FourieRF

T
im
e

TensoRF

Figure 1. FourieRF serves as an effective and simple baseline for tackling the few-shot rendering problem. The vanilla approach often

encounters high-frequency artifacts early in the optimization process. We introduce an explicit curriculum training procedure that gradually

incorporates higher frequencies to mitigate this. This method ensures a stable training trajectory, eliminating major artifacts and enhancing

overall rendering quality.

Abstract

We present a novel approach for few-shot NeRF estima-

tion, aimed at avoiding local artifacts and capable of ef-

ficiently reconstructing real scenes. In contrast to previ-

ous methods that rely on pre-trained modules or various

data-driven priors that only work well in specific scenar-

ios, our method is fully generic and is based on control-

ling the frequency of the learned signal in the Fourier do-

main. We observe that in NeRF learning methods, high-

frequency artifacts often show up early in the optimization

process, and the network struggles to correct them due to

the lack of dense supervision in few-shot cases. To counter

this, we introduce an explicit curriculum training proce-

dure, which progressively adds higher frequencies through-

out optimization, thus favoring global, low-frequency sig-

nals initially, and only adding details later. We represent

the radiance fields using a grid-based model and introduce

an efficient approach to control the frequency band of the

learned signal in the Fourier domain. Therefore our method

achieves faster reconstruction and better rendering qual-

ity than purely MLP-based methods. We show that our ap-

proach is general and is capable of producing high-quality

results on real scenes, at a fraction of the cost of compet-

ing methods. Our method opens the door to efficient and

accurate scene acquisition in the few-shot NeRF setting.

1. Introduction

The introduction of Neural Radiance Fields (NeRFs) [13]

has marked a significant milestone in the realm of 3D scene

generation from 2D images using neural networks. NeRFs

1



create continuous 3D scene representations by predicting

color and density from various viewpoints, allowing them to

synthesize photorealistic novel views from perspectives not

included in the training data. This breakthrough has rev-

olutionized applications in novel view synthesis, 3D asset

generation, and inverse rendering, enabling unprecedented

accuracy and realism in these domains [5, 6, 14].

However, one major challenge with NeRFs is their need

for a large number of input images to ensure accurate scene

reconstruction [22, 23]. This limitation highlights the im-

portance of the few-shot rendering problem, which aims to

perform novel view synthesis with only a limited set of in-

put views. Advancements in this domain are critical, as

they can expand the applicability of NeRFs to practical sce-

narios where data is sparse, effectively bridging the gap

between 2D and 3D data representation. Addressing the

few-shot rendering challenge requires robust reconstruction

techniques and a deep understanding of image data, given

the inherently under-constrained nature of the problem.

Several works tackle the few-shot rendering problem [2,

4, 8, 17, 18, 20, 22, 23], each with a unique approach but

sharing the common goal of addressing the ambiguities of

this ill-posed problem by introducing priors. Some methods

incorporate data-driven priors [2, 4, 20, 23] by pre-training

on diverse scenes [2, 23] or leveraging robust pre-trained

modules, such as vision-language [4] or depth models [20].

A limitation of data-driven priors is that they often have dif-

ficulty generalizing their knowledge to new, unseen scenes.

For example, these priors work well with scenes similar to

their training data on indoor objects but struggle with novel

or diverse scenes on wild natural or in vivo scenes due to

the huge domain gap between the scene’s distribution.

Unlike data-driven priors, some approaches rely solely

on the information available in the given training data and

use explicit regularization [8, 17, 18, 22]. Our work fol-

lows this latter direction, imposing a prior that constrains

the search space of learnable parameters, similar in spirit

to FreeNeRF’s use of frequency masking [22] or ZeroRF’s

application of the Deep Image Prior [18, 19].

Existing methods for few-shot rendering face signifi-

cant limitations in practical scenarios. Approaches lever-

aging data-driven priors are often computationally inten-

sive, restricting their real-world applicability. Beyond the

substantial computational cost of pre-training, most meth-

ods [2, 4, 20, 22, 23] are built on the original NeRF [13]

or Mip-NeRF [1] frameworks, which are notoriously slow

to train. While various techniques exist to accelerate NeRF

training [3, 7, 14], only ZeroRF [18]Ðto the best of our

knowledgeÐapplies accelerated representations, such as

grid-based methods, to the few-shot setting without data pri-

ors. ZeroRF adapts TensoRF [3] for this context but strug-

gles to handle real-world scenes effectively, as acknowl-

edged by its authors [18]. Other approaches address few-

Gradient Flow

1D Feature Clipping

2D Feature Clipping

Figure 2. Method illustration. From left to right. Feature vectors

and matrices are initialized in the spatial space. They are projected

using the FFT. The Fourier coefficients are clipped using the mask-

ing procedure. Finally, the inverse FFT is applied to retrieve the

smoothed features.

shot rendering using 3D Gaussian splatting [10, 24]; how-

ever, these rely on depth information, placing them outside

the scope of our comparisons.

In this work, we present FourieRF a method to parame-

terize the features of grid-based NeRF methods using a gen-

eral prior based on the Fourier Transform. Our approach

has virtually no computational overhead since we apply it

per iteration. FourieRF is fast, robust, and effective across

a range of scenes, from synthetic to real. To showcase

our method we compare FourieRF against the best existing

learning-free methods and show that FourieRF establishes

a new state-of-the-art by delivering robust results in record

time. In summary, our contributions are as follows:

• We demonstrate that by constraining the maximum

Fourier frequency, it is possible to regulate the level of

details in NeRF’s scene representations in an artifact-free

manner.

• We show that the smooth shapes learned with low fre-

quency accurately capture the scene’s coarse geometry,

providing robust and stable initialization in both few-shot

and dense inputs.

• We introduce a fast grid-based NeRF representation that

band-limits feature grids’ frequency with a novel training

curriculum. Our simple approach produces results on par

with state-of-the-art while requiring a fraction of the time

to converge.

2. Related Work

Radiance Field Representations The seminal work Neu-

ral Radiance Fields (NeRF) [13] uses deep neural architec-

tures and a set of given images to produce photo-realistic

novel-view synthesis (NVS). Subsequent grid methods, ac-

celerate the pipeline by replacing the deep neural architec-

ture with a 3D grid of features [3], or a multi-resolution hash

grid [14]. These grids’ NeRF approaches were shown to

converge orders of magnitudes faster than the original work

while maintaining high-quality results. Encoding the infor-

mation in an explicit 3D representation is a weak prior that

leads to significantly easier learning. However, a common

2



(a) Flower 3 Views

(c) Flower 9 Views

(b) Mic 4 Views

(d) Mic 6 Views

Figure 3. Coarse Geometry Extraction. Our method is capable of extracting correct coarse geometry from as little as 3 views. This

coarse geometry remains relatively stable regardless of the number of views we input.

struggle of all NeRF representations is that they are data

hungry, they require several images to perform the NVS

task properly. When given limited images, say 3 or 6, these

models are extremely prone to overfitting; they produce in-

coherent geometry and images from novel points of view.

Few-shot Novel View Synthesis The problem described

above is commonly referred to as the few-shot rendering

problem. Approaches to address it can be categorized into

two groups: methods that rely on data priors, such as scene

depth [10, 20, 24] or diffusion models [21] to mitigate re-

construction ambiguities; and methods that operate without

external data [2, 4, 8, 17, 18, 22, 23]. In this work, we focus

on comparing our approach with state-of-the-art methods

that do not rely on data priors, applying solely explicit reg-

ularization, specifically FreeNeRF [22] and ZeroRF [18].

We demonstrate that our method achieves state-of-the-art

results while setting new records for speed, leveraging the

Fourier transform to effectively control the complexity of

features in a 3D grid.

Compression Neural Fields The work FreeNeRF [22]

shows there exists a link between the failure of few-shot

neural rendering and the positional encoding used by deep

neural network-based NeRF methods. Their method pro-

poses to mask the encoding and progressively give it to the

network. This allows for a coarse-to-fine reconstruction.

Nevertheless, their take is specific to NeRF representations

that are based on deep neural architecture, it is not trivial

to apply it to accelerated grid methods. Therefore making

FreeNeRF extremely slow to train.

On the other hand, ZeroRF [18] leverages the Deep Im-

age Prior [19] to parameterize a grid NeRF representation.

This work constitutes, to our knowledge, the first instance of

an accelerated NeRF representation that specifically tackles

the few-shot rendering problem. The authors, however, ac-

knowledge the limited applicability of their method to real

(i.e., non-synthetic) scenes.

We present FourieRF a method to parameterize the fea-

tures of grid-based NeRF representations. Our method

trains in record time (approximately 10 minutes) and can

tackle real and synthetic scenes.

3. Motivation and Overview

The few-shot rendering problem is inherently ill-posed.

With only a few images, there is insufficient information to

uniquely determine the reconstructed 3D scene. As a result,

training a standard NeRF model on very limited data will

inevitably lead to overfitting, where the model memorizes

the few input images and captures noise instead of learning

an underlying 3D structure. When an overfitted NeRF tries

to synthesize new views, the results will be inaccurate or un-

natural, producing distorted images that are unrealistic and

inconsistent with the true 3D structure of the scene [22, 23].

The problem highlighted by the FreeNeRF paper is that

the vanilla NeRF’s use of high-frequency positional encod-

ings can cause the model to overfit drastically during the

initial training iterations when given only a few input views.

These high-frequency positional encoding inputs allow the

model to quickly learn to fit the available data (the few train-

ing views) too well, but in doing so, it generates unrealis-

tic or degenerate geometries, such as floaters. These ge-

3



Test View

(b
) 

O
u

rs
(a

) 
T

en
so

R
F

Train View

Ours Training

Figure 4. Overfitting on the few-shot rendering problem. ªCatastrophic overfittingº is a common behavior for standard NeRF repre-

sentations on the few-shot rendering problem. Degenerate geometry is learned, which might result in plausible views near train inputs but

does not generalize to novel views.

ometries do not accurately represent the true structure of

the scene but are instead arbitrarily constructed patches that

help the network mimic patterns in input views.

This overfitting behavior is not limited to MLP-based

NeRFs with positional encodings but is also observed in

other NeRF representations. TensoRF [3] is an improved

NeRF design that utilizes tensor decomposition to reduce

computational complexity and memory usage while main-

taining quality for 3D scene reconstruction. However, when

directly used in few-shot scenarios, TensoRF also suffers

from the overfitting problem. In Fig. 1, we can see that

TensoRF quickly fills the space with floaters that help the

reconstruction on the set of limited views. These floaters do

not generalize well to new views, but since they fit correctly

the input views, removing them is challenging.

FreeNeRF [22] addresses overfitting by masking posi-

tional encodings for the MLP scene representation. This

method is not directly applicable to grid-based methods like

TensoRF [3], limiting its application given the long training

times of MLP-based NeRF. ZeroRF [18] is the first work

to use accelerated NeRF structures to tackle the few-shot

rendering problem. It employs a convolutional network to

generate feature maps of a TensoRF [3] representation, re-

sulting in quickly trained ªcleanº feature maps. However,

this approach doesn’t generalize well to real scenes [18], as

its strong prior is not valid for non-synthetic scenes.

FourieRF deals with these two issues: it is an accel-

erated method, training in less than 10 minutes, that can

tackle a wide variety of scenes, from synthetic to real. See

Fig. 2 for an illustration of our method. Using our ap-

proach, we can obtain correct coarse geometry from simple

and complex scenes, see Fig. 3.

Overall, our method is built on two key observa-

tions. First, we note that both strong overfitting and high-

frequency artifacts typically occur early in the optimization

process (see Fig. 4), and, if avoided in these early stages,

they are significantly less prominent in the final result. Sec-

ond, we note that by gradually increasing the maximal

Fourier frequency of the learned signal both significantly

regularizes the learned NeRF, while at the same time, pro-

viding the network enough degrees of freedom to learn the

fine details (in the final stages of the optimization).

In other words, progressively increasing the available

frequencies builds a robust trajectory to maintain the cor-

rectness of the shape as well as produce photo-realistic re-

sults 1. This coarse to fine prior is not specific to any data

type, and thus works in both real and synthetic scenes.

4



(a) GT (b) Ours (c) FreeNeRF (d) ZeroRF

Figure 5. Comparison on Blender Dataset. In the Lego scene, trained with 4 views, we compare the performance of FreeNeRF, ZeroRF,

and our method. ZeroRF renders a compact and clean reconstruction of the scene, however, at the cost of omitting some key details.

FreeNeRF fails in this new setting due to its reliance on complex occlusion regularization. Despite employing a simple prior, FourieRF

accurately captures both geometry and appearance, demonstrating a faithful reconstruction of the scene’s details.

4. Method

We apply our Fourier parameterization to representations

introduced by TensoRF [3], increasing the maximal Fourier

frequency in tensor decomposition gradually.

4.1. Preliminaries

The key idea behind grid-based NeRF representation is to

represent the scene using a decomposed feature grid rather

than a deep neural network. We denote the 3D tensor of

features that represents the scene as T ∈ R
I×J×K . In

our NeRF representation, we experiment with two different

methods to decompose this 3D tensor:

CANDECOMP/PARAFAC (CP) Decomposition In the

CP decomposition, T is decomposed as a sum of outer

products of vectors:

T =

R
∑

r=1

v1r ◦ v
2

r ◦ v
3

r

where v1r ◦ v2r ◦ v3r corresponds to a rank-one tensor com-

ponent, and v1r ∈ R
I , v2r ∈ R

J , v3r ∈ R
K are factorized

vectors of the three modes for the r-th component.

CP factorization reduces space complexity from O(n3)
to O(n), and offers low-rank regularization at the same time

in the optimization, making it a good candidate NeRF rep-

resentation for few-shot reconstruction. On the other hand,

CP sacrifices the rendering quality to minimize the rank of

the decomposition.

Vector-Matrix (VM) Decomposition Unlike CP factor-

ization, VM decomposition enriches the product by using

matrices. The decomposition is expressed as:

T =

R1
∑

r=1

v1r ◦M
2,3
r +

R2
∑

r=1

v2r ◦M
1,3
r +

R3
∑

r=1

v3r ◦M
1,2
r ,

where M2,3
r ∈ RJ×K ,M1,3

r ∈ RI×K ,M1,2
r ∈ RI×J are

matrices for two of the three modes.

The VM decomposition reduces space complexity from

O(n3) to O(n2). For complex scenes, the VM decomposi-

tion reduces the number of components required to achieve

the same expressivity as CP, leading to faster reconstruction

and better rendering. Our method can be applied to any of

these decompositions. In practice, applying our method to

the VM decomposition allows us to model more complex

effects, leading to better quantitative performance (See Ta-

ble 1).

4.2. Fourier Parameterization

As mentioned in Section 3, the key observation behind our

method is that objects’ geometry and appearance can be

learned in a coarse-to-fine manner based on their corre-

sponding low to high frequencies in the underlying NeRF

representation. Our work makes the following claims: (i)

5



(d) ZeroRF(c) FreeNeRF(b) Ours(a) GT

N/A

Figure 6. Comparison in LLFF Dataset. In the horns scene, we evaluated the performance of FreeNeRF, ZeroRF, and our method under

a 3-view training setup. ZeroRF struggled to reconstruct coherent geometry, resulting in significant inconsistencies. FreeNeRF, while more

stable, produced renders with notably blurred geometry, failing to capture fine details accurately. In contrast, FourieRF delivers sharper

renders, faithfully reconstructing the key geometric elements of the scene with high fidelity.

There are enough constraints in few-shot inputs to learn an

accurate coarse geometry under low-frequency constraints;

(ii) Lower frequencies are easier to learn correctly than

higher frequencies; (iii) Learning the next set of higher fre-

quencies is more straightforward given a correct set of lower

frequencies.

Let us illustrate the above claims: in Fig. 3 we can see

that using our method we can establish a good base for

scenes, even in the case of complex real scenarios. More-

over, Fig. 1, shows that given a good estimation of the

low-frequencies of the scene, we can progressively add

complexity to the object while maintaining a clean recon-

struction. In the following section, we demonstrate the

process of parameterizing 1D and 2D features using our

method. This parameterization allows us to begin with well-

established coarse geometry and progressively incorporate

fine details. In both cases, the principle remains the same:

project the features into Fourier space and remove high fre-

quencies up to a certain threshold. We make use of the dis-

crete Fourier transform, so given a fixed grid size, there is

a finite number of Fourier coefficients after transformation.

The threshold we use is proportional to this finite number,

please refer to the supplementary for typical values.

1D Features. For 1D features we have v ∈ Rd, a d-

dimensional feature. At time t, given a feature threshold ft
we perform the following operations. The feature v is pro-

jected into the Fourier space, then the Fourier coefficients

are clipped using the threshold ft; finally, we apply the in-

verse Fourier transform,

v̂ = IFFT(FFT(v)⊙ α(ft)) (1)

Call df the dimension of FFT(v), then in practice the mask

α(ft) corresponds to an array of the same dimension where

we keep cells up to index tα(ft) = df × ft. Each cell i is

given by,

αi(ft) =











1 if, i < tα(ft)

tα(ft)− ⌊tα(ft)⌋ if, i = tα(ft)

0 otherwise

(2)

The same 1D feature parameterization is applied to both,

the CP and the VM decompositions.

2D Features. For 2D features, we have w ∈ Rd1×d2 a

matrix feature. We proceed as above,

ŵ = IFFT(FFT(w)⊙ β(ft)) (3)

The difference mainly lies in the mask β(ft). In this

case, we define a 2D mask with a circle centered at c =
⌊

d1

2

⌋

,
⌊

d2

2

⌋

, of radius r = ft
2

√

2max(d1, d2)2 This ensures

that when ft reaches 100% all parameters are used. The val-

ues outside of the circle are set to 0 to clip the corresponding

coefficients. The 2D feature parameterization is only used

in the VM decomposition.

Progressive Inclusion of Coefficients. To smoothly con-

trol the frequency of our feature grid decomposition, we de-

fine a mask to clip the corresponding Fourier coefficients

and progressively increase the frequency using a clipping

threshold. The illustration in Fig. 1 shows the progressive

increase effects. When setting the clipping parameter, it is

important to keep it sufficiently low initially to ensure the

correct coarse geometry. Examples of successful choices

of clipping can be seen in Fig. 3. In our method, we ini-

tially start with only f0 = 0.01% of Fourier coefficients and

then linearly increase the clipping parameter during train-

ing. To be specific, we update it every iteration as follows:

6



Table 1. Quantitative comparison on Blender.

Method Prior
PSNR ↑ SSIM ↑ LPIPS ↓

4 views 6 views 4 views 6 views 4 views 6 views

DietNeRF [4] CLIP 10.92 16.92 0.557 0.727 0.446 0.267

RegNeRF [4] RealNVP 9.93 9.82 0.419 0.685 0.572 0.580

TensoRF [3] No Prior 18.656 21.652 0.798 0.844 0.216 0.165

ZeroRF [18] Deep Network 21.94 24.73 0.856 0.889 0.139 0.113

FreeNeRF [22] Frequency 18.81 22.77 0.808 0.865 0.188 0.1495

Ours - CP Frequency 20.799 22.496 0.825 0.849 0.217 0.195

Ours Frequency 21.728 23.927 0.858 0.879 0.147 0.136

Table 2. Quantitative comparison on LLFF.

Method
PSNR ↑ SSIM ↑ LPIPS ↓

3 views 6 views 9 views 3 views 6 views 9 views 3 views 6 views 9 views

DietNeRF [4] 14.94 21.75 24.28 0.370 0.717 0.801 0.496 0.248 0.183

RegNeRF [15] 19.08 23.10 24.86 0.587 0.760 0.820 0.336 0.206 0.161

TensoRF [3] 14.292 18.183 23.677 0.315 0.576 0.777 0.545 0.370 0.213

ZeroRF [18] 16.74 21.371 22.425 0.434 0.698 0.750 0.470 0.302 0.275

FreeNeRF [22] 19.63 23.73 25.13 0.612 0.779 0.827 0.308 0.195 0.160

Ours 19.303 23.595 25.011 0.636 0.790 0.830 0.299 0.210 0.193

ft = ft−1 + ∆,with ∆ = 1−f0
N

Where t is the iteration

number, f0 is the initial clipping, and N is the number of

iterations. The update is applied at the start of every itera-

tion, before any gradient is accumulated, thus avoiding any

differentiability problems.

View Dependence In the few-shot learning setting, it is

extremely challenging to learn view-dependent information.

We hypothesize that the model can use directional informa-

tion (d) and positional encodings to overfit to a limited set

of views. In practice, we have found it sufficient to restrict

the directional information provided to the model. We adopt

a similar approach to ZeroRF [18] by using a simplified de-

coder that does not use positional encodings for features or

view directions.

5. Experiments

5.1. Setup

Datasets & metrics. Our method FourieRF can process

a wide variety of scenes. We thus test it on synthetic and

real scenes. The NeRF-synthetic dataset [13] was rendered

using Blender containing 8 objects with complex material

and geometric information. We use ZeroRF’s [18] same

setting to train and evaluate our method (with the number

of views ranging from 4 to 6). The LLFF [12] contains 8

real scenes. We use RegNeRF’s [15] same setting to train

and evaluate our method (training on 3, 6, or 9 views).

Implementation. FourieRF can be easily added to the

TensoRF [3]. Our method can enhance both the perfor-

mance of the CP and VM decomposition, and in each case

we create a class that inherits from the respective TensoRF

decomposition. We find in practice that the VM decomposi-

tion leads to better results (See Table. 1), so we use it in all

the experiments unless otherwise stated. Please see the sup-

plementary material for more information about our code

and the hyper parameters used.

Baselines Our first baseline is vanilla TensoRF-VM [3],

as it is the foundation upon which our method is built.

We also compare our method to ZeroRF [18] and FreeN-

eRF [22], the most recent and directly comparable base-

lines. ZeroRF specializes in the reconstruction of syn-

thetic scenes and is an accelerated method that trains in

around 30 minutes, but, as noted earlier, it struggles with

real scenes. In contrast, FreeNeRF can process any type of

scene [22], but its training time is extremely long (approx-

imately one day). For completeness, we also include quan-

titative comparisons with well-established baselines such

as DietNeRF [4], which leverages data priors, and RegN-

eRF [15], which relies on geometrical regularizations.

7



5.2. Results

Our method achieves performance that is on par with the

state-of-the-art (SOTA) approaches, while being signifi-

cantly faster than comparable methods. We refer the reader

to the supplementary material, where we showcase a video

presentation and animated results.

Indeed in Table 3, we can see that our method’s training

time is even faster than TensoRF. Our Fourier parameteriza-

tion is done per iteration at virtually no cost. Moreover, as

seen in Fig. 4, TensoRF’s scene representation is filled with

floaters. This hinders training, filling the scene with noise,

thus slowing down the whole procedure. When compared

to the other accelerated method, ZeroRF [18], we see that

their Deep Image Prior [19], comes at the cost of evaluating

an expensive convolutional neural network. Our method is

by far the fastest to converge in the few-shot rendering task.

The results of our quantitative evaluation are showcased

in Table 1 and Table 2. In the synthetic dataset, we greatly

outperform all MLP-based methods by a significant margin.

We achieve this while training an order of magnitude faster,

and without the use, of the hard-to-tune, occlusion regular-

ization used by FreeNeRF [22]. The SOTA in this dataset is

the accelerated method ZeroRF [18]. However, we achieve

similar results while training over 5 times faster, and Fig. 5

shows that ZeroRF’s prior can lead to the omission of key

geometry. Despite its state-of-the-art performance on syn-

thetic datasets, ZeroRF [18] fails to handle real scenes effec-

tively. This goes to show, that their Deep Image Prior [19]

does not generalize to diverse scenes. Our method achieves

results that are on par with FreeNeRF [22], while training

over 30 times faster. Moreover, in Fig. 6, we see that the

shapes we extract are in some cases smoother than FreeN-

eRF’s.

These results demonstrate that we have introduced an ex-

ceptionally simple and flexible baseline. Our method per-

forms well across a variety of scenes while training at record

speeds, highlighting its practicality and ease of use.

Ablations. The progressive inclusion of complexity is a

key aspect of our method. In Fig. 1, we illustrate a suc-

cessful training trajectory. However, determining ªhow

quicklyº this complexity is integratedÐi.e., setting the pa-

rameter ∆ defined in Section 4.2Ðis crucial. Fig. 7 shows

the relationship between the choice of this parameter and

the PSNR obtained when training and testing across all

scenes from the Blender synthetic dataset (both using 6

views). Fig. 7 shows that for large ∆, the method converges

to the baseline, TensoRF. In practice, choosing a sufficiently

small increment should yield adequate performance. We

observe a slight decrease in performance for smaller values

of ∆, which is likely due to the fixed 10k training iterations

used in the experiment. For the smallest increments, the

model simply did not have enough training time.

10 4 10 3 10 2 10 1 100
Increment per iteration 

22.0

22.5

23.0

23.5

M
ea

n 
PS

N
R

Increment per iteration vs performance

Figure 7. Choice of ∆ vs performance. We investigated the ef-

fect of varying the speed at which high-frequencies are integrated

during training, using the Blender Dataset with 6 views. The base-

line performance without our method is highlighted in red, while

our best result is shown in green.

Table 3. Global execution time comparison relative to TensoRF.

Training on the Blender Dataset for 10k iterations.

Method Training Time

TensoRF 1.0×
ZeroRF 5.181×
FreeNeRF 35.71×
Ours 0.93×

Finally, our method stands as the fastest baseline avail-

able for the few-shot rendering problem. As shown in Ta-

ble 3, our execution time is virtually identical to that of

vanilla TensoRF [3], with our method being slightly faster

because we do not predict ªuselessº floaters. Additionally,

we are more than five times faster than ZeroRF [18], the

only other accelerated method addressing the few-shot ren-

dering problem.

6. Conclusion & Future Work

In this work, we introduce FourieRF, a novel approach for

achieving fast and high-quality reconstruction in the few-

shot setting. Our method effectively parameterizes features

through an explicit curriculum training procedure, incre-

mentally increasing scene complexity during optimization.

Experimental results show that the prior induced by our ap-

proach is both robust and adaptable across a wide variety

of scenes, establishing FourieRF as a strong and versatile

baseline for the few-shot rendering problem. While our ap-

proach significantly reduces artifacts, it may still lead to re-

construction errors in severely under-constrained scenarios,

particularly where view occlusion leaves parts of the shape

uncovered. In the future, our method could be enhanced

by integrating foundation models to complete missing parts

using large data-driven priors.

Acknowledgement. Parts of this work were supported by

the ERC Consolidator Grant 101087347 (VEGA) and the

ANR AI Chair AIGRETTE.

8



References

[1] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Pe-

ter Hedman, Ricardo Martin-Brualla, and Pratul P. Srini-

vasan. Mip-NeRF: A multiscale representation for anti-

aliasing neural radiance fields. ICCV, 2021. 2

[2] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,

Fanbo Xiang, Jingyi Yu, and Hao Su. MVSNeRF: Fast

generalizable radiance field reconstruction from multi-view

stereo. In Proceedings of the IEEE/CVF international con-

ference on computer vision, pages 14124±14133, 2021. 2,

3

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. TensoRF: Tensorial radiance fields. In European

Conference on Computer Vision (ECCV), 2022. 2, 4, 5, 7, 8,

1

[4] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf

on a diet: Semantically consistent few-shot view synthesis.

In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 5885±5894, 2021. 2, 3, 7

[5] ClÂement Jambon, Bernhard Kerbl, Georgios Kopanas,

Stavros Diolatzis, Thomas LeimkÈuhler, and George Dret-

takis. NeRFshop: Interactive editing of neural radiance

fields. Proceedings of the ACM on Computer Graphics and

Interactive Techniques, 6(1), 2023. 2

[6] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Song-

fang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu, and Hao Su.

TensoIR: Tensorial inverse rendering. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2023. 2

[7] Bernhard Kerbl, Georgios Kopanas, Thomas LeimkÈuhler,

and George Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics, 42

(4), 2023. 2

[8] Mijeong Kim, Seonguk Seo, and Bohyung Han. InfoNeRF:

Ray entropy minimization for few-shot neural volume ren-

dering. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 12912±

12921, 2022. 2, 3

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[10] Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun

Zhou, and Lin Gu. Dngaussian: Optimizing sparse-view 3d

gaussian radiance fields with global-local depth normaliza-

tion. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 20775±20785,

2024. 2, 3

[11] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 1

[12] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and

Abhishek Kar. Local light field fusion: Practical view syn-

thesis with prescriptive sampling guidelines. ACM Trans.

Graph., 38(4):1±14, 2019. 7

[13] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, 2020. 1, 2, 7

[14] Thomas MÈuller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. ACM Trans. Graph., 41(4), 2022. 2

[15] Michael Niemeyer, Jonathan T Barron, Ben Mildenhall,

Mehdi SM Sajjadi, Andreas Geiger, and Noha Radwan. Reg-

nerf: Regularizing neural radiance fields for view synthesis

from sparse inputs. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

5480±5490, 2022. 7

[16] Julien Philip and Valentin Deschaintre. Floaters no more:

Radiance field gradient scaling for improved near-camera

training. arXiv preprint arXiv:2305.02756, 2023. 1

[17] Seunghyeon Seo, Yeonjin Chang, and Nojun Kwak. Flipn-

erf: Flipped reflection rays for few-shot novel view synthe-

sis. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 22883±22893, 2023. 2, 3

[18] Ruoxi Shi, Xinyue Wei, Cheng Wang, and Hao Su. Zerorf:

Fast sparse view 360deg reconstruction with zero pretrain-

ing. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 21114±21124,

2024. 2, 3, 4, 7, 8, 1

[19] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 9446±9454,

2018. 2, 3, 8

[20] Guangcong Wang, Zhaoxi Chen, Chen Change Loy, and Zi-

wei Liu. Sparsenerf: Distilling depth ranking for few-shot

novel view synthesis. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 9065±9076,

2023. 2, 3

[21] Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong

Park, Ruiqi Gao, Daniel Watson, Pratul P Srinivasan, Dor

Verbin, Jonathan T Barron, Ben Poole, et al. Reconfusion:

3d reconstruction with diffusion priors. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 21551±21561, 2024. 3

[22] Jiawei Yang, Marco Pavone, and Yue Wang. FreeNeRF: Im-

proving few-shot neural rendering with free frequency reg-

ularization. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 8254±8263,

2023. 2, 3, 4, 7, 8, 1

[23] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.

pixelNeRF: Neural radiance fields from one or few images.

In CVPR, 2021. 2, 3

[24] Zehao Zhu, Zhiwen Fan, Yifan Jiang, and Zhangyang Wang.

Fsgs: Real-time few-shot view synthesis using gaussian

splatting. In European conference on computer vision, pages

145±163. Springer, 2025. 2, 3

9



FourieRF: Few-Shot NeRFs via Progressive Fourier Frequency Control

Supplementary Material

A. Supplementary Results on NeRF Synthetic

and LLFF dataset

First, we note that as part of the supplementary materials we

have included a interactive website, which provides quali-

tative comparisons with two closest baselines to our method

(methods that have comparable running times): TensoRF

[3] and ZeroRF [18]. As can be seen in the provided web-

site, our method significantly outperforms those baselines

in terms of quality of reconstructions in the few-shot set-

ting, and has fewer artefacts, especially when considering

very few input views. We provide qualitative comparisons

both in terms of the novel view synthesis (RGB) as well

as depth estimation compared to these baseline approaches.

We encourage the reader to consider the videos provided in

the interactive website (please allow a few seconds to load

the videos) to see the improvement provided by our method.

In addition, below we include details on the statistics of

our evaluations on the LLFF dataset in tables 4,5,6 and on

the NeRF synthetic dataset in tables 7 and 8. For the LLFF

dataset we reproduced the ZeroRF experiments to obtain the

per scene score.

B. Details on Implementation and settings

Finally, we provide details surrounding the settings of our

implementation and experiments. All of our experiments

were run in an nvidia RTX 4090 graphics card. We build

our code base in top of the TensoRF [3] repository. Our

repository can be found in the following link: https://

github.com/diego1401/FourieRF.

Our method uses the AdamW optimizer [9, 11] with

β1 = 0.9, β2 = 0.98, and a weight decay of 0.2 for

synthetic scenes and 0 for real scenes. When performing

frequency-control on real scenes we have to deal with mat-

ter appearing in front of the camera as a form of overfitting,

as highlighted by FreeNeRF [22]. We find that applying

their occlusion regularization works without any modifica-

tion in our pipeline, thus we use their hyper parameters to

compute our metrics. Moreover, we note that it is also ef-

ficient to use the gradient scaling introduced in the Floaters

No More paper [16], this approach does not require to set a

hyper parameter. We train for 10k iterations to match with

our baselines, mainly ZeroRF [18].

The key hyper parameters of our method differ in the

synthetic and real datasets. This can be attributed to the

fact that the synthetic dataset has a solid color, white back-

ground, which alters the behavior of our method.

For the synthetic dataset, the clipping threshold is ini-

tialized as f0 = 0.3, and it is linearly increased with

δ = 1

2000
= 2 × 10−3. We use the same configuration pa-

rameters as TensoRF [3] with the following differences. We

apply a TV loss (with weight wTV = 1.0) on the appear-

ance and density features. We find that setting the weight

decay to 0.2 in the optimizer is the key to removing floaters

(in our method and in ZeroRF [18]).

For the real dataset, the clipping threshold is initialized

as f0 = 0.01, and it is linearly increased until the end of

training, i.e. δ = 1

10000
= 10−4. We use the same config-

uration parameters as TensoRF [3] with the following dif-

ferences. We apply a TV loss (with weight wTV = 1.0) on

the appearance and density features, and an L1 loss (with

weight wL1 = 10−4) on the density features. We find that

applying the L1 loss in this type of scenes is more efficient

than setting a weight decay for the optimizer.

1

https://github.com/diego1401/FourieRF
https://github.com/diego1401/FourieRF


Table 4. Details quantitative comparison on the LLFF real dataset 3 views.

Method Statistic fortress room horns orchids leaves fern flower trex mean

FreeNeRF [22]

PSNR ↑ 23.437 22.020 18.506 15.286 16.250 21.187 20.413 19.941 19.630

SSIM ↑ 0.583 0.834 0.585 0.407 0.521 0.662 0.617 0.687 0.612

LPIPS ↓ 0.319 0.190 0.355 0.377 0.350 0.286 0.291 0.297 0.308

ZeroRF [18]

PSNR ↑ 20.633 18.833 13.688 13.900 16.275 18.700 17.880 16.786 17.087

SSIM ↑ 0.435 0.663 0.233 0.275 0.533 0.523 0.490 0.517 0.459

LPIPS ↓ 0.386 0.392 0.612 0.527 0.398 0.422 0.423 0.451 0.451

Ours

PSNR ↑ 22.109 20.271 18.290 15.103 16.524 20.965 21.062 20.103 19.303

SSIM ↑ 0.573 0.792 0.627 0.422 0.587 0.667 0.674 0.745 0.636

LPIPS ↓ 0.305 0.294 0.336 0.359 0.290 0.271 0.266 0.271 0.299

Table 5. Details quantitative comparison on the LLFF real dataset 6 views.

Method Statistic fortress room horns orchids leaves fern flower trex mean

FreeNeRF [22]

PSNR ↑ 28.728 27.302 23.592 17.263 19.047 24.647 24.665 24.596 23.730

SSIM ↑ 0.832 0.910 0.792 0.555 0.685 0.796 0.797 0.864 0.779

LPIPS ↓ 0.162 0.117 0.218 0.291 0.260 0.196 0.162 0.154 0.195

ZeroRF [18]

PSNR ↑ 23.767 27.083 19.188 14.425 18.475 23.533 21.780 21.957 21.276

SSIM ↑ 0.802 0.880 0.606 0.318 0.670 0.753 0.712 0.796 0.692

LPIPS ↓ 0.195 0.211 0.387 0.519 0.319 0.280 0.277 0.279 0.308

Ours

PSNR ↑ 29.031 28.792 23.273 17.484 19.187 24.466 24.510 22.019 23.595

SSIM ↑ 0.878 0.920 0.815 0.558 0.727 0.792 0.822 0.810 0.790

LPIPS ↓ 0.144 0.165 0.217 0.313 0.214 0.210 0.174 0.243 0.210

Table 6. Details quantitative comparison on the LLFF real dataset 9 views.

Method Statistic fortress room horns orchids leaves fern flower trex mean

FreeNeRF [22]

PSNR ↑ 29.421 29.927 25.154 19.083 20.678 26.073 26.182 24.522 25.130

SSIM ↑ 0.865 0.938 0.846 0.662 0.756 0.831 0.843 0.875 0.827

LPIPS ↓ 0.124 0.091 0.174 0.237 0.222 0.159 0.133 0.139 0.16

ZeroRF [18]

PSNR ↑ 24.350 26.883 21.675 16.125 19.200 24.400 23.240 24.629 22.563

SSIM ↑ 0.797 0.903 0.733 0.465 0.700 0.787 0.762 0.850 0.750

LPIPS ↓ 0.195 0.189 0.314 0.424 0.300 0.242 0.250 0.229 0.268

Ours

PSNR ↑ 29.567 29.011 24.799 19.046 20.839 25.774 26.488 24.562 25.011

SSIM ↑ 0.881 0.931 0.860 0.636 0.775 0.825 0.854 0.876 0.830

LPIPS ↓ 0.153 0.171 0.194 0.283 0.200 0.187 0.158 0.198 0.193

2



Table 7. Details quantitative comparison on the NeRF synthetic dataset 4 views.

Method Statistic chair drums ficus hotdog lego materials mic ship mean

FreeNeRF [22]

PSNR ↑ 20.22 14.99 17.35 23.58 20.43 21.36 15.05 17.52 18.81

SSIM ↑ 0.843 0.746 0.809 0.899 0.818 0.857 0.802 0.687 0.808

LPIPS ↓ 0.109 0.280 0.144 0.108 0.156 0.174 0.218 0.318 0.188

ZeroRF [18]

PSNR ↑ 23.04 16.91 20.12 29.11 22.11 20.50 24.76 19.01 21.94

SSIM ↑ 0.880 0.791 0.866 0.944 0.868 0.848 0.944 0.707 0.856

LPIPS ↓ 0.074 0.131 0.100 0.075 0.085 0.132 0.050 0.256 0.113

Ours

PSNR ↑ 24.13 17.33 18.56 27.26 22.41 21.15 23.35 19.64 21.73

SSIM ↑ 0.895 0.804 0.848 0.933 0.871 0.858 0.929 0.724 0.858

LPIPS ↓ 0.107 0.206 0.120 0.088 0.122 0.129 0.056 0.283 0.139

Table 8. Details quantitative comparison on the NeRF synthetic dataset 6 views.

Method Statistic chair drums ficus hotdog lego materials mic ship mean

FreeNeRF [22]

PSNR ↑ 26.72 18.16 18.46 27.18 24.32 21.63 25.64 20.23 22.77

SSIM ↑ 0.916 0.827 0.840 0.929 0.887 0.853 0.942 0.729 0.865

LPIPS ↓ 0.071 0.176 0.161 0.096 0.132 0.202 0.066 0.290 0.149

ZeroRF [18]

PSNR ↑ 27.62 20.88 22.21 29.93 26.26 21.41 27.40 22.13 24.73

SSIM ↑ 0.926 0.869 0.898 0.949 0.913 0.849 0.954 0.756 0.889

LPIPS 0.074 0.131 0.100 0.075 0.085 0.132 0.050 0.256 0.113

Ours

PSNR ↑ 26.62 19.30 19.43 28.84 27.09 21.46 25.78 22.89 23.93

SSIM ↑ 0.918 0.838 0.860 0.939 0.915 0.856 0.942 0.767 0.879

LPIPS ↓ 0.095 0.182 0.124 0.108 0.103 0.141 0.072 0.261 0.136

3


	. Introduction
	. Related Work
	. Motivation and Overview
	. Method
	. Preliminaries
	. Fourier Parameterization

	. Experiments
	. Setup
	. Results

	. Conclusion & Future Work

