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Point-wise map recovery

Task: Recover a point-to-point map from its functional representation

n

n

k

k

C

P

⇒

⇐

The inverse problem is highly underdetermined

Need to use priors on the expected structure of the underlying map
(e.g. bijectivity, smoothness, partiality, etc.)
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Mapping delta functions

Algorithm:

For each x ∈M construct the
delta function δx :M→ R

Compute its image δx 7→ Tδx

Find argmaxy∈NTδx(y)

Doing this for all points is costly

The maximum is delocalized due to
the band-limited approximation of T !

x ∈M
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Linear assignment problem

For orthogonal bases ΦM,ΦN we can write

C = Φ>NPΦM

If the underlying map is known to be bijective, solve the LAP:

min
Π∈{0,1}n×n

−〈Π,ΦNCΦ>M〉 s.t. Π>1 = 1 , Π1 = 1

The delta function δx has coefficients ai = φMi (x) (a column of Φ>M)
⇒ the image of all delta functions on M is simply CΦ>M

Interpretation: Seek the permutation aligning the k-dimensional spectral
embeddings CΦ>M and Φ>M in the `2 sense

Inefficient for large shapes

Lack of desirable properties on the recovered map (e.g. smoothness)

Rodolà et al. 2015

; Ovsjanikov et al. 2012
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Nearest neighbors

Relaxing bijectivity to stochasticity constraints:

min
P∈{0,1}n×m

‖CΦ>M −Φ>NP‖2F s.t. P>1 = 1

Can be solved efficiently by a nearest-neighbor search in Rk

CΦ>
M

Φ>
N

Rodolà et al. 2015

; Ovsjanikov et al. 2012
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Orthogonal refinement (ICP)

Orthogonal C ⇔ Area-preserving map

Idea: Treat C as a pre-alignment, do orthogonal refinement to improve
map quality

Algorithm (ICP):

P-step (nearest neighbors):

P∗ = arg min
P∈{0,1}n×m

‖C∗Φ>M −Φ>NP‖2F s.t. P>1 = 1

C-step (orthogonal Procrustes):

C∗ = arg min
C∈Rk×k

‖CΦ>M −Φ>NP∗‖2F s.t. C>C = I

Ovsjanikov et al. 2012
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Non-orthogonal refinement (CPD)

For more general deformations (e.g. non-area preserving, non-isometric),
do non-rigid refinement:

min
P∈{0,1}n×m

DKL(CΦ>M,Φ
>
NP)

︸ ︷︷ ︸
Kullback−Leibler

+ λ ‖CΦ>M −Φ>NP‖2Ω

︸ ︷︷ ︸
coherence

s.t. P>1 = 1

‖ · ‖2Ω promotes smooth displacements

λ controls the regularity (rigid for
λ→∞)

Solved by coherent point drift

Does not scale well

Rodolà et al. 2015

; Myronenko and Song 2010
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Comparison

Reference

Nearest neighbors

Ovsjanikov et al. 2012; Rodolà et al. 2015
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Product manifold filter (PMF)

Given P0 point-to-point (e.g. from nearest-neighbors), consider the LAP:

max
Π∈{0,1}n×n

trace(Π>KMP0K
>
N ) s.t. Π>1 = 1 , Π1 = 1

with KM = exp(−D2
M/σ

2) and KN = exp(−D2
N /σ

2)

Vestner, Rodolà, Litman, Bronstein, Cremers 2016

; Bertsekas 1998
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Examples

1% 3% 5% 7%

×diam

ICP CPD

Vestner, Rodolà, Litman, Bronstein, Cremers 2016
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Comparison
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Application: Point-to-point map improvement

Refinement can be used to improve noisy maps obtained with any
point-wise matching pipeline

reference input improved

Kim et al. 2011; Ovsjanikov et al. 2012
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Application: Segmentation transfer

Transfer indicator functions for each segment, without resorting to a
point-to-point correspondence

input segment image transfer

Ovsjanikov et al. 2012
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Application: Simultaneous shape editing

Coupled bases allow to solve for the deformation field in the functional
domain, and transfer pose to multiple shapes simultaneously

Kovnatsky, Bronstein, Bronstein, Glashoff, Kimmel 2013; Rong et al. 2008



14/24

Application: Partial scanning

Litany, Rodolà, Bronstein, Bronstein, Cremers 2016
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Application: Shape retrieval

The average ratio of the norms of the diagonal and off-diagonal elements
of C can be used as a global similarity criterion

Kovnatsky, Bronstein, Bronstein, Glashoff, Kimmel 2013
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Application: Object detection and recognition

The final energy can be used as an indicator that the object is present in
the scene; localization does not require a point-wise correspondence

query retrieved object query retrieved object

Cosmo, Rodolà, Masci, Torsello, Bronstein 2016
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Application: Improving map collections

The pairwise maps can be improved by considering the context

Compose maps along cycles

mX,Y = mZ,Y ◦mX,Z = CZ,Y CX,Z

Compare to the identity

‖C− I‖F
Replace faulty maps with composites along shortest paths

Optimize over cycle-consistent functional maps

minC ‖C‖∗ + λ
∑

(i,j)∈G ‖CijAij −Bij‖2,1

Nguyen et al. 2011; Ovsjanikov, Ben-Chen, Solomon, Butscher, Guibas 2012;
Kovnatsky, Glashoff, Bronstein 2016

; Huang, Wang, Guibas 2014
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Application: Analysis of shape collections

Find structural similarities in heterogeneous shape collections

consistent basis functions

⇒

Huang, Wang, Guibas 2014

; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013; Boscaini, Eynard, Kourounis, Bronstein 2015
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Application: Analysis of shape collections

Find structural similarities in heterogeneous shape collections

co-segmentation

⇒

Huang, Wang, Guibas 2014

; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013; Boscaini, Eynard, Kourounis, Bronstein 2015
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Application: Analysis of shape collections

With shape differences we can compare shapes as well as deformations,
and therefore

find similar shapes

find similar deformations

/ synthesize new deformations

query ROI 1 2 3 4

query ROI 1 2 3 4

Huang, Wang, Guibas 2014

; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013; Boscaini, Eynard, Kourounis, Bronstein 2015



18/24

Application: Analysis of shape collections

With shape differences we can compare shapes as well as deformations,
and therefore

find similar shapes

find similar deformations

/ synthesize new deformations

Huang, Wang, Guibas 2014; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013

; Boscaini, Eynard, Kourounis, Bronstein 2015



18/24

Application: Analysis of shape collections

With shape differences we can compare shapes as well as deformations,
and therefore

find similar shapes

find similar deformations

/ synthesize new deformations

Huang, Wang, Guibas 2014; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013

; Boscaini, Eynard, Kourounis, Bronstein 2015



18/24

Application: Analysis of shape collections

With shape differences we can compare shapes as well as deformations,
and therefore

find similar shapes

find similar deformations / synthesize new deformations

Huang, Wang, Guibas 2014; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013; Boscaini, Eynard, Kourounis, Bronstein 2015



18/24

Application: Analysis of shape collections

With shape differences we can compare shapes as well as deformations,
and therefore

find similar shapes

find similar deformations / synthesize new deformations

Huang, Wang, Guibas 2014; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013; Boscaini, Eynard, Kourounis, Bronstein 2015



19/24

Application: Shape exploration

Using shape differences we can interpolate/extrapolate the difference
between corresponding regions of a shape pair

source target

interpolate extrapolate

Huang, Wang, Guibas 2014

; Rustamov, Ovsjanikov, Azencot, Ben-Chen, Chazal,
Guibas 2013
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Application: Shape exploration

Using shape differences we can interpolate/extrapolate the difference
between corresponding regions of a shape pair

source interpolated target
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Application: Shape interpolation

Linear interpolation in shape differences space:

Dα = (1− α)I + αD

α
=

1

α = 0

α
=
0.
5 α

=
1.5
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Application: Image co-segmentation

Network of maps can be used for co-segmentation of images

consistent functional maps segmentations

Wang, Huang, Guibas 2013; Wang, Huang, Ovsjanikov, Guibas 2014
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Things we did not cover

Point-wise map recovery by vector field flow

Point-wise map recovery for partial functional maps

Functional fluids

Visualization and analysis of functional maps

Matching via quotient spaces

Permuted sparse coding

Functional correspondence via matrix completion

Coupled functional maps

Functional maps for image data

. . .

Corman et al. 2015; Rodolà et al. 2016; Azencot et al. 2015; Vantzos et al. 2016;
Ovsjanikov et al. 2013; Pokrass et al. 2013; Kovnatsky et al. 2015; Eynard et al.
2016; Wang et al. 2013
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Summary

Considering mappings through their action on functions is simpler
and more flexible

The size of these objects can be controlled in the discrete setting

Shape differences provide a way to compare shapes and
deformations in an informative way

Functional maps provide a common language in which many
problems in geometry and data processing can be expressed

Very easy to pick up!

Code and course notes available at:
http://www.lix.polytechnique.fr/~maks/fmaps_course/

http://www.lix.polytechnique.fr/~maks/fmaps_course/
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Thank you!


