Maps in Shape Collections

Descriptor and Subspace Learning

- Feature selection for shape matching
- Extraction the most stable correspondences from a collection of mappings

Networks of Maps

- Cycle consistency constraint
- Latent spaces
- Application to co-segmentation

Metrics and Shape Differences

- A functional representation of intrinsic distortions introduced for analysis purposes
- Potential application to geometry synthesis

Part I

Descriptor and Subspace Learning

- Feature selection for shape matching
- Extraction the most stable correspondences from a collection of mappings

Functional Map Approximation

Functional map approximation [Ovsjanikov et al., 2012]:

$$\mathbf{C}_{i}^{\star} = \operatorname*{arg\,min}_{\mathbf{C}} \|\mathbf{C}\mathbf{A}_{0} - \mathbf{A}_{i}\|_{F}^{2} + \alpha \|\mathbf{C}\boldsymbol{\Delta}_{0} - \boldsymbol{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

- \mathbf{A}_i functions on \mathcal{N}_i
- $\mathbf{\Delta}_i$ Laplacian on \mathcal{N}_i

Functional Map Approximation

Functional map approximation [Ovsjanikov et al., 2012]:

$$\mathbf{C}_{i}^{\star} = \underset{\mathbf{C}}{\arg\min} \|\mathbf{C}\mathbf{A}_{0} - \mathbf{A}_{i}\|_{F}^{2} + \alpha \|\mathbf{C}\mathbf{\Delta}_{0} - \mathbf{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

• Probe functions

Any functions stable by nearly-isometric deformation In practice: HKS [Sun et al., 2009], WKS [Aubry et al., 2011], Curvatures...

▶ Non-unique solution

Functional Map Approximation

Functional map approximation [Ovsjanikov et al., 2012]:

$$\mathbf{C}_{i}^{\star} = \operatorname*{arg\,min}_{\mathbf{C}} \|\mathbf{C}\mathbf{A}_{0} - \mathbf{A}_{i}\|_{F}^{2} + \alpha \|\mathbf{C}\mathbf{\Delta}_{0} - \mathbf{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

• Probe functions

Any functions stable by nearly-isometric deformation In practice: HKS [Sun et al., 2009], WKS [Aubry et al., 2011], Curvatures...

• **Regularization:** Assume nearly isometric deformations Commutativity of **C** with the Laplace-Beltrami operator:

$$\mathbf{C} \mathbf{\Delta}_0 = \mathbf{\Delta}_i \mathbf{C}$$

▶ It can be difficult to a obtain good approximation

$$\mathbf{C}_{i}^{\star} = \operatorname*{arg\,min}_{\mathbf{C}} \|\mathbf{C}\mathbf{A}_{0} - \mathbf{A}_{i}\|_{F}^{2} + \alpha \|\mathbf{C}\mathbf{\Delta}_{0} - \mathbf{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

▶ The probe functions can be inconsistent

(a) Smoothed Gaussian curvature.

(b) Logarithm of the absolute value of Gaussian Curvature.

$$\mathbf{C}_{i}^{\star} = \operatorname*{arg\,min}_{\mathbf{C}} \|\mathbf{C}\mathbf{A}_{0} - \mathbf{A}_{i}\|_{F}^{2} + \alpha \|\mathbf{C}\mathbf{\Delta}_{0} - \mathbf{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

▶ The probe functions can be inconsistent

Weight the probe functions [Corman et al., 2014]:

$$\mathbf{C}_{i}^{\star}(\mathbf{D}) = \underset{\mathbf{C}}{\operatorname{arg\,min}} \|\mathbf{C}\mathbf{A}_{0}\mathbf{D} - \mathbf{A}_{i}\mathbf{D}\|_{F}^{2} + \alpha \|\mathbf{C}\boldsymbol{\Delta}_{0} - \boldsymbol{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

$$\mathbf{C}_{i}^{\star} = \operatorname*{arg\,min}_{\mathbf{C}} \|\mathbf{C}\mathbf{A}_{0} - \mathbf{A}_{i}\|_{F}^{2} + \alpha \|\mathbf{C}\boldsymbol{\Delta}_{0} - \boldsymbol{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

▶ The approximation is not reliable on the entire functional space

$$\mathbf{C}_{i}^{\star} = \operatorname*{arg\,min}_{\mathbf{C}} \|\mathbf{C}\mathbf{A}_{0} - \mathbf{A}_{i}\|_{F}^{2} + \alpha \|\mathbf{C}\boldsymbol{\Delta}_{0} - \boldsymbol{\Delta}_{i}\mathbf{C}\|_{F}^{2}$$

▶ The approximation is not reliable on the entire functional space

Learn the functional subspace $S_p \subset L^2(\mathcal{M})$ of dimension p such that:

 $\mathbf{C}_T \mathbf{f} \approx \mathbf{C}^* \mathbf{f}, \quad \forall \mathbf{f} \in \mathbf{S}_p$

$$\mathbf{D}^{\star} \in \operatorname*{arg\,min}_{\mathbf{D}} \sum_{i=1}^{N} \|\mathbf{C}_{i}^{\star}(\mathbf{D}) - \mathbf{C}_{i}\| \quad ; \quad \mathbf{Y}_{p} \in \operatorname*{arg\,min}_{\mathbf{Y}^{\top}\mathbf{Y} = \mathbf{I}_{p}} \sum_{i=1}^{N} \|(\mathbf{C}_{i}^{\star}(\mathbf{D}^{\star}) - \mathbf{C}_{i})\mathbf{Y}\|_{F}^{2}$$

Stable function subspace

Reduced basis extraction:

Correspondences:

December 6, 2016

Non-Isometric matching

- 100 basis functions
- 310 probe functions
- Training set: 10 shapes of women + 1 reference shape of man
- 50 functions in the reduced basis

Results: Non Isometric matching

Conclusion

- ▶ The functional maps quality can be improved by weighting the probe functions
- ▶ Learning makes the functional maps more stable with respect to large deformations

Part II

Network of Maps

A non-supervised regularization for shape matching

- Cycle consistency constraint
- Latent spaces

Graph of Maps

► Compact description the entire network by composition (e.g. $C_{45} = C_{05}C_{40}$)

Graph of Maps

► Compact description the entire network by composition (e.g. $C_{45} = C_{05}C_{40}$)

- ▶ Suppose a star graph structure
- ▶ The results depends on the reference shape

Graph of Maps

How to use general graph structure? How to impose coherence and consistency? How a shzpe collection help solving shape matching problem?

Cycle Consistency Constraint

Cycle Consistency Constraint

Cycle Consistency Constraint

- ▶ Strong regularization
- ▶ Allows detection and correction of errors
- ▶ Characterized by: $\mathbf{C}_{ij} = \mathbf{C}_{kj} \mathbf{C}_{ik}$

Cycle Consistency and Low Rank Matrix

▶ Can be difficult to enforce in an optimization problem:

 $\mathbf{C}_{ij} = \mathbf{C}_{kj} \mathbf{C}_{ik}$

▶ Equivalent to a low rank or semi-definiteness condition on a big mapping matrix [Huang et al., 2014]

$$\mathbf{C} := \begin{pmatrix} \mathbf{C}_{11} & \cdots & \mathbf{C}_{N1} \\ \vdots & \ddots & \vdots \\ \mathbf{C}_{1N} & \cdots & \mathbf{C}_{NN} \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_1^+ \\ \vdots \\ \mathbf{Y}_N^+ \end{pmatrix} \begin{pmatrix} \mathbf{Y}_1 & \cdots & \mathbf{Y}_N \end{pmatrix} \succeq \mathbf{0}$$

Cycle Consistency and Low Rank Matrix

▶ Can be difficult to enforce in an optimization problem:

$$\mathbf{C}_{ij} = \mathbf{C}_{kj} \mathbf{C}_{ik}$$

▶ Equivalent to a low rank or semi-definiteness condition on a big mapping matrix [Huang et al., 2014]

$$\mathbf{C} := \begin{pmatrix} \mathbf{C}_{11} & \cdots & \mathbf{C}_{N1} \\ \vdots & \ddots & \vdots \\ \mathbf{C}_{1N} & \cdots & \mathbf{C}_{NN} \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_1^+ \\ \vdots \\ \mathbf{Y}_N^+ \end{pmatrix} \begin{pmatrix} \mathbf{Y}_1 & \cdots & \mathbf{Y}_N \end{pmatrix} \succeq \mathbf{0}$$

 $\bullet~{\bf C}$ is semi-definite

• Rank of C is very low compared to the number of shapes

Computation of a Functional Map Network

Given descriptors on each shape, we can compute the functional map network:

$$\mathbf{C}^{\star} = \min_{\mathbf{C}} \sum_{(i,j) \in \mathcal{G}} \|\mathbf{C}_{ij}\mathbf{A}_i - \mathbf{A}_j\|_{2,1} + \operatorname{Reg}(\mathbf{C}_{ij}) + \lambda \|\mathbf{C}\|_{\star}$$

Computation of a Functional Map Network

Given descriptors on each shape, we can compute the functional map network:

$$\mathbf{C}^{\star} = \min_{\mathbf{C}} \sum_{(i,j) \in \mathcal{G}} \|\mathbf{C}_{ij}\mathbf{A}_i - \mathbf{A}_j\|_{2,1} + \operatorname{Reg}(\mathbf{C}_{ij}) + \lambda \|\mathbf{C}\|_{\star}$$

- ▶ Nuclear norm $\|\mathbf{X}\|_{\star} = \sum_{i} \sigma_i(\mathbf{X})$ is the convex regularization of the rank
- ▶ Convex optimization problem solved with ADMM

Computation of a Functional Map Network

Given descriptors on each shape, we can compute the functional map network:

$$\mathbf{C}^{\star} = \min_{\mathbf{C}} \sum_{(i,j) \in \mathcal{G}} \|\mathbf{C}_{ij}\mathbf{A}_i - \mathbf{A}_j\|_{2,1} + \operatorname{Reg}(\mathbf{C}_{ij}) + \lambda \|\mathbf{C}\|_{\star}$$

▶ Nuclear norm $\|\mathbf{X}\|_{\star} = \sum_{i} \sigma_i(\mathbf{X})$ is the convex regularization of the rank

▶ Convex optimization problem solved with ADMM

Unlike separate computation of the functional map this setting:

- ▶ Removes descriptors outliers
- ▶ Enforces coherence between in the network

Latent Spaces

$$\begin{pmatrix} \mathbf{C}_{11} & \cdots & \mathbf{C}_{N1} \\ \vdots & \ddots & \vdots \\ \mathbf{C}_{1N} & \cdots & \mathbf{C}_{NN} \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_1^+ \\ \vdots \\ \mathbf{Y}_N^+ \end{pmatrix} \begin{pmatrix} \mathbf{Y}_1 & \cdots & \mathbf{Y}_N \end{pmatrix}$$

December 6, 2016

Latent Spaces

$$\begin{pmatrix} \mathbf{C}_{11} & \cdots & \mathbf{C}_{N1} \\ \vdots & \ddots & \vdots \\ \mathbf{C}_{1N} & \cdots & \mathbf{C}_{NN} \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_1^+ \\ \vdots \\ \mathbf{Y}_N^+ \end{pmatrix} \begin{pmatrix} \mathbf{Y}_1 & \cdots & \mathbf{Y}_N \end{pmatrix}$$

December 6, 2016

Latent Spaces

$$\begin{pmatrix} \mathbf{C}_{11} & \cdots & \mathbf{C}_{N1} \\ \vdots & \ddots & \vdots \\ \mathbf{C}_{1N} & \cdots & \mathbf{C}_{NN} \end{pmatrix} = \begin{pmatrix} \mathbf{Y}_1^+ \\ \vdots \\ \mathbf{Y}_N^+ \end{pmatrix} \begin{pmatrix} \mathbf{Y}_1 & \cdots & \mathbf{Y}_N \end{pmatrix}$$

 \blacktriangleright The Y_i can be understood as functional maps to an abstract surface called "latent space"

Orthogonal Basis Synchronization

Cycle consistency as hard constraint:

$$\min_{\mathbf{Y}_1,\dots,\mathbf{Y}_N} \sum_{(i,j)\in\mathcal{G}} \|\mathbf{C}_{ij} - \mathbf{Y}_j^{+}\mathbf{Y}_i\|_F^2 \text{ s.t. } \mathbf{Y}_i^{\top}\mathbf{Y}_i = \mathbf{I}$$

Given a map network \mathbf{C}_{ij} , $(i, j) \in \mathcal{G}$ (with possible inconsistencies and missing edges), performing the factorization can be used to:

- ▶ Regularize and clean up functional maps
- ▶ Extract shared structure
- ▶ Find the most representative reference abstract shape
- ▶ Efficient storage of large network

Application to Cosegmentation [Huang et al., 2014]

Input: Shape collection and local descriptors **Output:** Consistent segmentation

► Joint map optimization

$$\mathbf{C}^{\star} = \min_{\mathbf{C}} \sum_{(i,j)\in\mathcal{G}} \|\mathbf{C}_{ij}\mathbf{A}_i - \mathbf{A}_j\|_{2,1} + \lambda \|\mathbf{C}\|_{\star}$$

Application to Cosegmentation [Huang et al., 2014]

Input: Shape collection and local descriptors **Output:** Consistent segmentation

▶ Joint map optimization

$$\mathbf{C}^{\star} = \min_{\mathbf{C}} \sum_{(i,j) \in \mathcal{G}} \|\mathbf{C}_{ij}\mathbf{A}_i - \mathbf{A}_j\|_{2,1} + \lambda \|\mathbf{C}\|_{\star}$$

 \blacktriangleright Orthogonal basis synchronization

$$\min_{\mathbf{Y}_1,\ldots,\mathbf{Y}_N} \sum_{(i,j)\in\mathcal{G}} \|\mathbf{C}_{ij}^{\star} - \mathbf{Y}_j^{+} \mathbf{Y}_i\|_F^2 \text{ s.t. } \mathbf{Y}_i^{\top} \mathbf{Y}_i = \mathbf{I}$$

Part III

Shape Difference Operators

A functional representation of intrinsic distortions

- Introduced for analysis purposes
- Potential application to geometry synthesis
Shape Differences Overview [Rustamov et al., 2013]

- Fully characterize the distortion using two linear functional operators
 Can compute areas of maximal distortion through eigendecomposition
- ▶ Can compare distortions of different pairs of shapes

Area-based Shape Difference

Area-based shape difference: $D_A: L^2(\mathcal{M}) \to L^2(\mathcal{M})$

$$\int_{\mathcal{M}} f \, \mathbf{D}_{A}(g) \, \mathrm{d}\mu = \int_{\mathcal{N}} T_{F}(f) \, T_{F}(g) \, \mathrm{d}\mu$$

Area-based Shape Difference

Area-based shape difference: $D_A: L^2(\mathcal{M}) \to L^2(\mathcal{M})$

$$\int_{\mathcal{M}} f \, \mathbf{D}_{A}(g) \, \mathrm{d}\mu = \int_{\mathcal{N}} T_{F}(f) \, T_{F}(g) \, \mathrm{d}\mu$$

$$D_A(f)(p) = \frac{\operatorname{Area}\left(T^{-1}(p)\right)}{\operatorname{Area}(p)}f(p)$$

▶ $D_A(f) = f$ if and only if T area preserving map

Most Distorted Areas

Conformal Shape Difference

Conformal shape difference: $D_C: H^1_0(\mathcal{M}) \to H^1_0(\mathcal{M})$

$$\int_{\mathcal{M}} \langle \nabla f, \nabla \mathbf{D}_{\mathbf{C}}(g) \rangle \, \mathrm{d}\mu = \int_{\mathcal{N}} \langle \nabla T_F(f), \nabla T_F(g) \rangle \, \mathrm{d}\mu$$

Conformal Shape Difference

Conformal shape difference: $D_C: H_0^1(\mathcal{M}) \to H_0^1(\mathcal{M})$

$$\int_{\mathcal{M}} \langle \nabla f, \nabla \mathbf{D}_{\mathbf{C}}(g) \rangle \, \mathrm{d}\mu = \int_{\mathcal{N}} \langle \nabla T_F(f), \nabla T_F(g) \rangle \, \mathrm{d}\mu$$

▶ $D_C(f) = f$ if and only if T conformal map

Low-Dimension Embeddings

 \triangleright D_A, D_C fully encode the metric

Shape Search

Find a shape D_i , such that the difference between shapes B and D_i is as-close-as possible to the difference between A and C_i .

Shape Differences for Synthesis?

- ▶ Shape difference operators for analysis:
 - Meaningful low-dimensional embedding
 - Visualization of most distorted areas
 - Comparison of deformations

Shape Differences for Synthesis?

- ▶ Shape difference operators for analysis:
 - Meaningful low-dimensional embedding
 - Visualization of most distorted areas
 - Comparison of deformations
- ▶ Shape difference operators are easily created:
 - Deformation manipulation
 - Deformation transfer
 - Shape interpolation
 - Intrinsic symmetrization

How much information is contained in the shape difference operators?

Intrinsic Deformation Transfer

▶ Deformation on M described by a shape difference $D: L^2(\mathcal{M}) \to L^2(\mathcal{M})$ can be transported to another shape using a functional map:

 $T_F D T_F^{-1} : L^2(\mathcal{N}) \to L^2(\mathcal{N})$

Intrinsic Deformation Transfer

▶ Deformation on M described by a shape difference $D: L^2(\mathcal{M}) \to L^2(\mathcal{M})$ can be transported to another shape using a functional map:

 $T_F D T_F^{-1} : L^2(\mathcal{N}) \to L^2(\mathcal{N})$

Intrinsic Deformation Transfer

▶ Deformation on M described by a shape difference $D: L^2(\mathcal{M}) \to L^2(\mathcal{M})$ can be transported to another shape using a functional map:

 $T_F DT_F^{-1} : L^2(\mathcal{N}) \to L^2(\mathcal{N})$

Shape Interpolation

 \blacktriangleright Use the low-dimension embedding to produce non-linear shape interpolation

Shape Interpolation

 \blacktriangleright Use the low-dimension embedding to produce non-linear shape interpolation

Main Challenge for Synthesis

▶ Recovering geometry from operators:

Main Challenge for Synthesis

▶ Recovering geometry from operators:

"Shape differences fully encode the metric" What does it mean for the discrete geometry?

Shape Difference on Triangle Meshes

Assumptions:

- ▶ Triangle meshes with same connectivity
- ▶ Finite Element discretization

Shape Difference on Triangle Meshes

Assumptions:

- ▶ Triangle meshes with same connectivity
- ▶ Finite Element discretization

Theorem

Suppose M has a boundary or at least one interior vertex with odd valence. Then, $\mu \mapsto D_A(\mu)$ uniquely determines μ , recoverable via a linear solve.

Shape Difference on Triangle Meshes

Assumptions:

- ▶ Triangle meshes with same connectivity
- ▶ Finite Element discretization

Theorem

Suppose M has a boundary or at least one interior vertex with odd valence. Then, $\mu \mapsto D_A(\mu)$ uniquely determines μ , recoverable via a linear solve.

Theorem

Assume that the mesh M is manifold without boundary. Then, for almost all choices of areas μ , the map $\ell^2 \mapsto D_C(\mu, \ell^2)$ uniquely determines ℓ , which is recoverable via a linear solve.

Recovering Intrinsic Geometry

[Boscaini et al., 2015]

▶ Solve a non-linear optimization problem:

$$\ell^{\star} = \arg\min_{\ell} \|D_A(\ell) - \bar{D}_A\|_F^2 + \|D_C(\ell) - \bar{D}_C\|_F^2$$

Recovering Intrinsic Geometry

[Boscaini et al., 2015]

▶ Solve a non-linear optimization problem:

$$\ell^{\star} = \arg\min_{\ell} \|D_A(\ell) - \bar{D}_A\|_F^2 + \|D_C(\ell) - \bar{D}_C\|_F^2$$

[Corman et al., 2016]

▶ Two convex optimization problems:

• Find the triangle areas μ :

$$\mu^{\star} = \arg\min_{\mu} \|D_A(\mu) - \bar{D}_A\|_F^2$$

s.t. $\mu > 0$

2 Given the areas, find the squared edge lengths ℓ^2 :

$$\begin{split} \min_{\ell^2} \| D_C(\mu^*, \ell^2) - \bar{D}_C \|_F^2 \\ \text{s.t. } \ell_i < \ell_j + \ell_k \, ; \, \operatorname{Area}(\ell_i^2, \ell_j^2, \ell_k^2) \ge \mu_{ijk} \end{split}$$

Shape Analogy

[Boscaini et al., 2015]

Intrinsic Shape Difference Operators

▶ Intrinsic information only, in general not enough to recover geometry

Intrinsic Shape Difference Operators

▶ Intrinsic information only, in general not enough to recover geometry

Encoding Curvature using Normal Flow

Evolution of the area linked to Mean Curvature
The second fundamental form can be recovered given the metric tensors at time 0 and at time t > 0

Geometry From Operators

▶ Mesh embedding uniquely defined by four operators

Shape Interpolation

▶ Linear interpolation in shape differences space:

 $D_{\alpha} = (1 - \alpha)I + \alpha D$

[Corman et al., 2016]

Shape Interpolation

▶ Linear interpolation in shape differences space:

 $D_{\alpha} = (1 - \alpha)I + \alpha D$

[Corman et al., 2016]

Geometry From Shape Differences

- ▶ Shape collection visualization with shape differences
- ▶ Shape differences fully encode edge lengths
- ▶ Four operators are enough to describe and recover a mesh embedding

Geometry From Shape Differences

- ▶ Shape collection visualization with shape differences
- ▶ Shape differences fully encode edge lengths
- ▶ Four operators are enough to describe and recover a mesh embedding

Limitations:

- ▶ Need to solve an isometric embedding problem
- ▶ Impractical for large meshes
- ▶ Solver that is oblivious of the initial mesh embedding

Conclusion

- ▶ Descriptor learning for shape matching [Corman et al., 2014]
- ▶ Computation of map collection with cycle consistency constraint [Huang et al., 2014]
- ▶ Shape collection visualization with shape differences [Rustamov et al., 2013]
- ▶ Shape editing [Boscaini et al., 2015, Corman et al., 2016]
References I

References II

Sun, J., Ovsjanikov, M., and Guibas, L. (2009).

A concise and provably informative multi-scale signature based on heat diffusion. In *Computer Graphics Forum*, volume 28, pages 1383–1392. Wiley Online Library.