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Part I

Descriptor and Subspace Learning

Feature selection for shape matching

Extraction the most stable correspondences from a collection of
mappings
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Functional Map Approximation

Functional map approximation [Ovsjanikov et al., 2012]:

C?
i = arg min

C
‖CA0 −Ai‖2

F + α‖C∆0 −∆iC‖2
F

M N

Ai functions on Ni
∆i Laplacian on Ni
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C?
i = arg min

C
‖CA0 −Ai‖2

F + α‖C∆0 −∆iC‖2
F

Probe functions
Any functions stable by nearly-isometric deformation
In practice: HKS [Sun et al., 2009], WKS [Aubry et al., 2011],
Curvatures...

I Non-unique solution

Regularization: Assume nearly isometric deformations
Commutativity of C with the Laplace-Beltrami operator:

C∆0 = ∆iC
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I Non-unique solution

Regularization: Assume nearly isometric deformations
Commutativity of C with the Laplace-Beltrami operator:

C∆0 = ∆iC

I It can be difficult to a obtain good approximation
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Main Challenges

C?
i = arg min

C
‖CA0 −Ai‖2

F + α‖C∆0 −∆iC‖2
F

I The probe functions can be inconsistent

(a) Smoothed Gaussian curvature. (b) Logarithm of the absolute
value of Gaussian Curvature.

Weight the probe functions [Corman et al., 2014]:

C?
i (D) = arg min

C
‖CA0D−AiD‖2

F + α‖C∆0 −∆iC‖2
F
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Main Challenges

C?
i = arg min

C
‖CA0 −Ai‖2

F + α‖C∆0 −∆iC‖2
F

I The approximation is not reliable on the entire functional space

f C?f

Learn the functional subspace Sp ⊂ L2(M) of dimension p such that:

CT f ≈ C?f , ∀f ∈ Sp
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Feature Selection

D? ∈ arg min
D

N∑
i=1

‖C?
i (D)−Ci‖ ; Yp ∈ arg min

Y>Y=Ip

N∑
i=1

‖(C?
i (D?)−Ci)Y‖2

F

Training Set

C
1C

2

C3

C4

C
5

D?: optimal weights
Yp: basis of Sp

Unseen shape

C?
p(D?) = C(D?)Yp
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Stable function subspace
Reduced basis extraction:

y1 y2 y3 y4

Correspondences:
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Non-Isometric matching

Training Set

Unseen Poses

100 basis functions

310 probe functions

Training set: 10 shapes of women + 1 reference shape of man

50 functions in the reduced basis
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Results: Non Isometric matching
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Conclusion

Naive Map Learned Map

I The functional maps quality can be improved by weighting the probe
functions

I Learning makes the functional maps more stable with respect to large
deformations
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Part II

Network of Maps

A non-supervised regularization for shape matching

Cycle consistency constraint

Latent spaces
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Graph of Maps

0 1

2

3

4

5

C1

C2

C3
C4

C5

I Compact description the entire network by composition (e.g.
C45 = C05C40)

I Suppose a star graph structure

I The results depends on the reference shape
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Graph of Maps

1

2

3

4

5

How to use general graph structure?
How to impose coherence and consistency?

How a shzpe collection help solving shape matching problem?
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Cycle Consistency Constraint

Consistent Path

Inconsistent Path

I Strong regularization

I Allows detection and correction of errors

I Characterized by: Cij = CkjCik
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Cycle Consistency and Low Rank Matrix

I Can be difficult to enforce in an optimization problem:

Cij = CkjCik

I Equivalent to a low rank or semi-definiteness condition on a big mapping
matrix [Huang et al., 2014]

C :=

 C11 · · · CN1
...

. . .
...

C1N · · · CNN

 =

 Y+
1
...

Y+
N

( Y1 · · · YN

)
� 0

C is semi-definite

Rank of C is very low compared to the number of shapes
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Computation of a Functional Map Network

Given descriptors on each shape, we can compute the functional map
network:

C? = min
C

∑
(i,j)∈G

‖CijAi −Aj‖2,1 + Reg(Cij) + λ‖C‖?

I Nuclear norm ‖X‖? =
∑

i
σi(X) is the convex regularization of the

rank

I Convex optimization problem solved with ADMM

Unlike separate computation of the functional map this setting:

I Removes descriptors outliers

I Enforces coherence between in the network
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Latent Spaces

? 1

2

3

4

5

Y1

Y2

Y3

Y4

Y5

Y+
4 Y5

 C11 · · · CN1
...

. . .
...

C1N · · · CNN

 =

 Y+
1
...

Y+
N

( Y1 · · · YN

)

I The Yi can be understood as functional maps to an abstract surface
called “latent space”
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Orthogonal Basis Synchronization

Cycle consistency as hard constraint:

min
Y1,...,YN

∑
(i,j)∈G

‖Cij −Y+
j Yi‖2

F s.t. Y>i Yi = I

Given a map network Cij , (i, j) ∈ G (with possible inconsistencies and
missing edges), performing the factorization can be used to:

I Regularize and clean up functional maps

I Extract shared structure

I Find the most representative reference abstract shape

I Efficient storage of large network
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Application to Cosegmentation [Huang et al., 2014]

Input: Shape collection and local descriptors
Output: Consistent segmentation

I Joint map optimization

C? = min
C

∑
(i,j)∈G

‖CijAi −Aj‖2,1 + λ‖C‖?

I Orthogonal basis synchronization

min
Y1,...,YN

∑
(i,j)∈G

‖C?
ij −Y+

j Yi‖2
F s.t. Y>i Yi = I
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Part III

Shape Difference Operators

A functional representation of intrinsic distortions

Introduced for analysis purposes

Potential application to geometry synthesis
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Shape Differences Overview [Rustamov et al., 2013]

I Fully characterize the distortion using two linear functional operators
I Can compute areas of maximal distortion through eigendecomposition
I Can compare distortions of different pairs of shapes

[Rustamov et al., 2013]

December 6, 2016 21 / 42



Area-based Shape Difference

T

TF

Area-based shape difference: DA : L2(M)→ L2(M)∫
M
f DA(g) dµ =

∫
N
TF (f)TF (g) dµ

DA(f)(p) =
Area

(
T−1(p)

)
Area(p) f(p)

I DA(f) = f if and only if T area preserving map
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Most Distorted Areas

[Rustamov et al., 2013]
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Conformal Shape Difference

T

TF

Conformal shape difference: DC : H1
0 (M)→ H1

0 (M)∫
M
〈∇f,∇DC(g)〉dµ =

∫
N
〈∇TF (f),∇TF (g)〉 dµ

[Rustamov et al., 2013]
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Conformal Shape Difference

T

TF

Conformal shape difference: DC : H1
0 (M)→ H1

0 (M)∫
M
〈∇f,∇DC(g)〉dµ =

∫
N
〈∇TF (f),∇TF (g)〉 dµ

I DC(f) = f if and only if T conformal map
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Low-Dimension Embeddings

I DA, DC fully encode the metric

[Rustamov et al., 2013]
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Shape Search
Find a shape Di, such that the difference between shapes B and Di is
as-close-as possible to the difference between A and Ci.

[Rustamov et al., 2013]
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Shape Differences for Synthesis?

I Shape difference operators for analysis:

Meaningful low-dimensional embedding

Visualization of most distorted areas

Comparison of deformations

I Shape difference operators are easily created:

Deformation manipulation

Deformation transfer

Shape interpolation

Intrinsic symmetrization

How much information is contained in the shape difference operators?
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Shape Differences Algebra

S T

T−1

T ◦ S

DS DT

DT−1
= CT

(
DT
)−1

C−1
T

DT◦S = DTC−1
T DSCT
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Intrinsic Deformation Transfer

I Deformation on M described by a shape difference D : L2(M)→ L2(M)
can be transported to another shape using a functional map:

TFDT
−1
F : L2(N )→ L2(N )

D

TF

?
TFDT

−1
F
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Shape Interpolation

I Use the low-dimension embedding to produce non-linear shape
interpolation

×

[Rustamov et al., 2013]
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Main Challenge for Synthesis

I Recovering geometry from operators:

?DA, DC

“Shape differences fully encode the metric”
What does it mean for the discrete geometry?
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Shape Difference on Triangle Meshes

Assumptions:
I Triangle meshes with same connectivity
I Finite Element discretization

Theorem

Suppose M has a boundary or at least one interior vertex with odd valence.
Then, µ 7→ DA(µ) uniquely determines µ, recoverable via a linear solve.

Theorem

Assume that the mesh M is manifold without boundary. Then, for almost
all choices of areas µ, the map `2 7→ DC(µ, `2) uniquely determines `, which
is recoverable via a linear solve.
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Recovering Intrinsic Geometry

[Boscaini et al., 2015]
I Solve a non-linear optimization problem:

`? = arg min
`
‖DA(`)− D̄A‖2

F + ‖DC(`)− D̄C‖2
F

[Corman et al., 2016]
I Two convex optimization problems:

1 Find the triangle areas µ:

µ? = arg min
µ
‖DA(µ)− D̄A‖2

F

s.t. µ > 0

2 Given the areas, find the squared edge lengths `2:

min
`2
‖DC(µ?, `2)− D̄C‖2

F

s.t. `i < `j + `k ; Area(`2
i , `

2
j , `

2
k) ≥ µijk
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Shape Analogy

1.86

0

[Boscaini et al., 2015]
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Intrinsic Shape Difference Operators

I Intrinsic information only, in general not enough to recover geometry

Source Target Intrinsic
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DA, DC

D
A , D

C
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Encoding Curvature using Normal Flow

Inflation Contraction

Convex Concave

M Mt

I Evolution of the area linked to Mean Curvature
I The second fundamental form can be recovered given the metric tensors
at time 0 and at time t > 0
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Geometry From Operators

I Mesh embedding uniquely defined by four operators

Source Target Intrinsic Intrinsic
Extrinsic

[Corman et al., 2016]
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Shape Interpolation

I Linear interpolation in shape differences space:

Dα = (1− α)I + αD

α
=

1

α = 0

α
=

0.5
α =

1.5

[Corman et al., 2016]
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Shape Interpolation
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Geometry From Shape Differences

I Shape collection visualization with shape differences

I Shape differences fully encode edge lengths

I Four operators are enough to describe and recover a mesh embedding

Limitations:

I Need to solve an isometric embedding problem

I Impractical for large meshes

I Solver that is oblivious of the initial mesh embedding
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Conclusion

I Descriptor learning for shape matching [Corman et al., 2014]

I Computation of map collection with cycle consistency constraint
[Huang et al., 2014]

I Shape collection visualization with shape differences
[Rustamov et al., 2013]

I Shape editing [Boscaini et al., 2015, Corman et al., 2016]
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