Computing and Processing Correspondences with Functional Maps

¹Ecole Polytechnique

 2 USI Lugano

 $^{3}\mathrm{Tel}$ Aviv University

 4 Intel

Stanford Innin -

⁷INRIA

SIGGRAPH Asia Tutorial, Macau, 6 December 2016

Functional Maps by Simultaneous Diagonalization of Laplacians

Choice of the basis

Functional correspondence matrix ${\bf C}$ expressed in the Laplacian eigenbases

Choice of the basis

Functional correspondence matrix ${f C}$ expressed in the Laplacian eigenbases

• Isometric manifolds with simple spectrum: sign ambiguity $T_F \phi_i^{\mathcal{M}} = \pm \phi_i^{\mathcal{N}}$

- \bullet Isometric manifolds with simple spectrum: sign ambiguity $T_F \phi_i^{\mathcal{M}} = \pm \phi_i^{\mathcal{N}}$
- General spectrum: ambiguous rotation of eigenspace

• Isometric manifolds with simple spectrum: sign ambiguity

$$T_F \phi_i^{\mathcal{M}} = \pm \phi_i^{\mathcal{N}}$$

- General spectrum: ambiguous rotation of eigenspace
- Non-isometric manifolds: eigenvectors can differ dramatically in order and form

• Isometric manifolds with simple spectrum: sign ambiguity

$$T_F \phi_i^{\mathcal{M}} = \pm \phi_i^{\mathcal{N}}$$

- General spectrum: ambiguous rotation of eigenspace
- Non-isometric manifolds: eigenvectors can differ dramatically in order and form
- Incompatibilities tend to increase with frequency

Kovnatsky, Bronstein², Glashoff, Kimmel 2013

Kovnatsky, Bronstein², Glashoff, Kimmel 2013

Kovnatsky, Bronstein², Glashoff, Kimmel 2013

Kovnatsky, Bronstein², Glashoff, Kimmel 2013

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

• Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- Orthonormality:

$$\delta_{ij} = \langle \hat{\phi}_i^{\mathcal{M}}, \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l,m=1}^{k'} p_{li} p_{mj} \langle \phi_l^{\mathcal{M}}, \phi_m^{\mathcal{M}} \rangle_{L^2(\mathcal{M})}$$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- \bullet Coupling: $\mathbf{P}^\top \mathbf{A} \approx \mathbf{Q}^\top \mathbf{B}$
- Orthonormality:

$$\delta_{ij} = \langle \hat{\phi}_i^{\mathcal{M}}, \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l=1}^{k'} p_{li} p_{lj}$$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- Orthonormality:

$$\delta_{ij} = \langle \hat{\phi}_i^{\mathcal{M}}, \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l=1}^{k'} p_{li} p_{lj} = (\mathbf{P}^\top \mathbf{P})_{ij}$$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- \bullet Orthonormality: $\mathbf{P}^{\top}\mathbf{P}=\mathbf{I}$ and $\mathbf{Q}^{\top}\mathbf{Q}=\mathbf{I}$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- Orthonormality: $\mathbf{P}^{\top}\mathbf{P} = \mathbf{I}$ and $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$
- Approximate eigenbasis: approximately diagonalizes the Laplacian

$$\langle \hat{\phi}_i^{\mathcal{M}}, \Delta \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l,m=1}^{k'} p_{li} p_{mj} \langle \phi_l^{\mathcal{M}}, \Delta \phi_m^{\mathcal{M}} \rangle_{L^2(\mathcal{M})}$$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- Orthonormality: $\mathbf{P}^{\top}\mathbf{P} = \mathbf{I}$ and $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$
- Approximate eigenbasis: approximately diagonalizes the Laplacian

$$\langle \hat{\phi}_i^{\mathcal{M}}, \Delta \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l,m=1}^{k'} p_{li} p_{mj} \lambda_m \langle \phi_l^{\mathcal{M}}, \phi_m^{\mathcal{M}} \rangle_{L^2(\mathcal{M})}$$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- \bullet Orthonormality: $\mathbf{P}^{\top}\mathbf{P}=\mathbf{I}$ and $\mathbf{Q}^{\top}\mathbf{Q}=\mathbf{I}$
- Approximate eigenbasis: approximately diagonalizes the Laplacian

$$\langle \hat{\phi}_i^{\mathcal{M}}, \Delta \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l=1}^{k'} p_{li} p_{lj} \lambda_l$$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- Orthonormality: $\mathbf{P}^{\top}\mathbf{P} = \mathbf{I}$ and $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$
- Approximate eigenbasis: approximately diagonalizes the Laplacian

$$\langle \hat{\phi}_i^{\mathcal{M}}, \Delta \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l=1}^{k'} p_{li} p_{lj} \lambda_l = (\mathbf{P}^\top \mathbf{\Lambda}_{\mathcal{M},k'} \mathbf{P})_{ij}$$

Find a new pair of approximate orthonormal eigenbases

$$\hat{\phi}_i^{\mathcal{M}} = \sum_{j=1}^{k'} p_{ji} \phi_j^{\mathcal{M}} \qquad \hat{\phi}_i^{\mathcal{N}} = \sum_{j=1}^{k'} q_{ji} \phi_j^{\mathcal{N}} \qquad i = 1, \dots, k$$

parametrized by $k' \times k$ matrices $\mathbf{P} = (p_{ij})$ and $\mathbf{Q} = (q_{ij})$

- Coupling: $\mathbf{P}^{\top}\mathbf{A} \approx \mathbf{Q}^{\top}\mathbf{B}$
- Orthonormality: $\mathbf{P}^{\top}\mathbf{P} = \mathbf{I}$ and $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$
- Approximate eigenbasis: approximately diagonalizes the Laplacian

$$\langle \hat{\phi}_i^{\mathcal{M}}, \Delta \hat{\phi}_j^{\mathcal{M}} \rangle_{L^2(\mathcal{M})} = \sum_{l=1}^{k'} p_{li} p_{lj} = (\mathbf{P}^\top \mathbf{\Lambda}_{\mathcal{M},k'} \mathbf{P})_{ij} \approx 0, \quad i \neq j$$

$$\min_{\mathbf{P},\mathbf{Q}} \quad \text{off}(\mathbf{P}^{\top} \mathbf{\Lambda}_{\mathcal{M},k'} \mathbf{P}) + \text{off}(\mathbf{Q}^{\top} \mathbf{\Lambda}_{\mathcal{N},k'} \mathbf{Q}) + \mu \| \mathbf{P}^{\top} \mathbf{A} - \mathbf{Q}^{\top} \mathbf{B} \|$$

s.t. $\mathbf{P}^{\top} \mathbf{P} = \mathbf{I} \quad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}$

$$\begin{split} \min_{\mathbf{P},\mathbf{Q}} & \quad \text{off}(\mathbf{P}^{\top} \mathbf{\Lambda}_{\mathcal{M},k'} \mathbf{P}) + \text{off}(\mathbf{Q}^{\top} \mathbf{\Lambda}_{\mathcal{N},k'} \mathbf{Q}) + \mu \| \mathbf{P}^{\top} \mathbf{A} - \mathbf{Q}^{\top} \mathbf{B} \| \\ & \quad \text{s.t.} \quad \mathbf{P}^{\top} \mathbf{P} = \mathbf{I} \qquad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I} \end{split}$$

• Off-diagonal elements penalty $off(\mathbf{X}) = \sum_{i \neq j} x_{ij}^2$

$$\begin{split} \min_{\mathbf{P},\mathbf{Q}} & \text{off}(\mathbf{P}^{\top}\mathbf{\Lambda}_{\mathcal{M},k'}\mathbf{P}) + \text{off}(\mathbf{Q}^{\top}\mathbf{\Lambda}_{\mathcal{N},k'}\mathbf{Q}) + \mu \|\mathbf{P}^{\top}\mathbf{A} - \mathbf{Q}^{\top}\mathbf{B}\| \\ & \text{s.t.} \quad \mathbf{P}^{\top}\mathbf{P} = \mathbf{I} \qquad \mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I} \end{split}$$

- Off-diagonal elements penalty off $(\mathbf{X}) = \sum_{i \neq j} x_{ij}^2$
- Dirichlet energy $off(\mathbf{X}) = trace(\mathbf{X})$ for k' > k

$$\begin{split} \min_{\mathbf{P},\mathbf{Q}} & \text{off}(\mathbf{P}^{\top}\mathbf{\Lambda}_{\mathcal{M},k'}\mathbf{P}) + \text{off}(\mathbf{Q}^{\top}\mathbf{\Lambda}_{\mathcal{N},k'}\mathbf{Q}) + \mu \|\mathbf{Q}\mathbf{P}^{\top}\mathbf{A} - \mathbf{B}\|_{\mathrm{F}}^{2} \\ & \text{s.t.} \quad \mathbf{P}^{\top}\mathbf{P} = \mathbf{I} \qquad \mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I} \end{split}$$

- Off-diagonal elements penalty off $(\mathbf{X}) = \sum_{i \neq j} x_{ij}^2$
- Dirichlet energy $\operatorname{off}(\mathbf{X}) = \operatorname{trace}(\mathbf{X})$ for k' > k
- If Frobenius norm is used and k' = k, due to rotation invariance $C = QP^{\top}$ is the functional correspondence matrix

$$\min_{\mathbf{P},\mathbf{Q}} \quad \text{off}(\mathbf{P}^{\top} \mathbf{\Lambda}_{\mathcal{M},k'} \mathbf{P}) + \text{off}(\mathbf{Q}^{\top} \mathbf{\Lambda}_{\mathcal{N},k'} \mathbf{Q}) + \mu \| \mathbf{P}^{\top} \mathbf{A} - \mathbf{Q}^{\top} \mathbf{B} \|_{2,1}$$

s.t. $\mathbf{P}^{\top} \mathbf{P} = \mathbf{I} \quad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}$

- Off-diagonal elements penalty off $(\mathbf{X}) = \sum_{i \neq j} x_{ij}^2$
- Dirichlet energy $\operatorname{off}(\mathbf{X}) = \operatorname{trace}(\mathbf{X})$ for k' > k
- If Frobenius norm is used and k' = k, due to rotation invariance $C = QP^{\top}$ is the functional correspondence matrix
- Robust norm $\|\mathbf{X}\|_{2,1} = \sum_j \|\mathbf{x}_j\|_2$ allows coping with outliers

Isometric

Elements of $\mathbf{P}^{\top} \boldsymbol{\Lambda}_{\mathcal{M},k'} \mathbf{P}$ and $\mathbf{Q}^{\top} \boldsymbol{\Lambda}_{\mathcal{N},k'} \mathbf{Q}$

Elements of $\mathbf{P}^{ op} \mathbf{\Lambda}_{\mathcal{M},k'} \mathbf{P}$ and $\mathbf{Q}^{ op} \mathbf{\Lambda}_{\mathcal{N},k'} \mathbf{Q}$

Mesh with 850 vertices

Point cloud with 850 vertices

Choice of the basis

 $\label{eq:correspondence} \begin{array}{l} \mbox{Functional correspondence matrix } {\bf C} \mbox{ expressed in} \\ \mbox{ standard Laplacian eigenbases} \end{array}$

Choice of the basis

 $\label{eq:constraint} \begin{array}{l} \mbox{Functional correspondence matrix } {\bf C} \mbox{ expressed in} \\ \mbox{ coupled approximate eigenbases} \end{array}$

Multiple shapes

Kovnatsky, Bronstein², Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016

Kovnatsky, Bronstein², Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016

Kovnatsky, Bronstein², Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016

Multiple shapes

$$\min_{\mathbf{P}_1,\dots,\mathbf{P}_p} \sum_{i=1}^p \operatorname{trace}(\mathbf{P}_i^{\top} \mathbf{\Lambda}_{\mathcal{M}_i} \mathbf{P}_i) + \mu \sum_{i \neq j} \|\mathbf{P}_i^{\top} \mathbf{A}_i - \mathbf{P}_j^{\top} \mathbf{A}_j\|$$

s.t. $\mathbf{P}_i^{\top} \mathbf{P}_i = \mathbf{I}$

- 'Synchronization problem'
- Matrices $\mathbf{P}_1, \dots, \mathbf{P}_p$ orthogonally align the p eigenbases

Kovnatsky, Bronstein², Glashoff, Kimmel 2013; Kovnatsky, Glashoff, Bronstein 2016

Computing Functional Maps with Manifold Optimization

$\min_{\mathbf{P}} \operatorname{trace}(\mathbf{P}^{\top} \mathbf{\Lambda} \mathbf{P}) + \mu \| \mathbf{P} \mathbf{A} - \mathbf{B} \| \quad \text{s.t.} \quad \mathbf{P}^{\top} \mathbf{P} = \mathbf{I}$

$\min_{\mathbf{P}} \operatorname{trace}(\mathbf{P}^{\top} \mathbf{\Lambda} \mathbf{P}) + \mu \| \mathbf{P} \mathbf{A} - \mathbf{B} \| \quad \text{s.t.} \quad \mathbf{P}^{\top} \mathbf{P} = \mathbf{I}$

Optimization on the Stiefel manifold of orthogonal matrices

Manifold optimization toy example: eigenvalue problem

$$\min_{\mathbf{x} \in \mathbb{R}^3} \mathbf{x}^\top \mathbf{A} \mathbf{x} \quad \text{s.t.} \quad \mathbf{x}^\top \mathbf{x} = 1$$

Minimization of a quadratic function on the sphere

Manifold optimization toy example: eigenvalue problem

 $\min_{\mathbf{x}\in\mathbb{S}(3,1)} \mathbf{x}^\top \mathbf{A} \mathbf{x}$

Minimization of a quadratic function on the sphere

Absil et al. 2009

Absil et al. 2009

Absil et al. 2009

 \bullet Projection ${\cal P}$ and retraction ${\cal R}$ operators are manifold-dependent

Absil et al. 2009; Boumal et al. 2014

- \bullet Projection ${\cal P}$ and retraction ${\cal R}$ operators are manifold-dependent
- Typically expressed in closed form

Absil et al. 2009; Boumal et al. 2014

- \bullet Projection ${\cal P}$ and retraction ${\cal R}$ operators are manifold-dependent
- Typically expressed in closed form
- "Black box": need to provide only $f(\mathbf{X})$ and gradient $abla f(\mathbf{X})$

Absil et al. 2009; Boumal et al. 2014

$\min_{\mathbf{P}} \operatorname{trace}(\mathbf{P}^{\top} \mathbf{\Lambda} \mathbf{P}) + \mu \| \mathbf{P} \mathbf{A} - \mathbf{B} \|_{2}^{2} \quad \text{s.t.} \quad \mathbf{P}^{\top} \mathbf{P} = \mathbf{I}$

Optimization on the Stiefel manifold

$$\min_{\mathbf{P}} \underbrace{\operatorname{trace}(\mathbf{P}^{\top} \mathbf{\Lambda} \mathbf{P})}_{\text{smooth}} + \underbrace{\mu \| \mathbf{P} \mathbf{A} - \mathbf{B} \|_{2,1}}_{\text{non-smooth}} \text{ s.t. } \mathbf{P}^{\top} \mathbf{P} = \mathbf{I}$$

Non-smooth optimization on the Stiefel manifold

 $\min_{\mathbf{X}\in\mathbb{S}(n,k)}$ $f(\mathbf{X}) + g(\mathbf{X})$ smooth non-smooth

Apply the method of multipliers only to the constraint $\mathbf{Z}=\mathbf{X}$

$$\min_{\substack{\mathbf{X}\in\mathbb{S}(n,k)\\\mathbf{Z}\in\mathbb{R}^{n\times k}}} f(\mathbf{X}) + g(\mathbf{Z}) + \frac{\rho}{2} \|\mathbf{X} - \mathbf{Z} + \mathbf{U}\|_{\mathrm{F}}^2$$

Solve alternating w.r.t. ${\bf X}$ and ${\bf Z}$ and updating ${\bf U} \leftarrow {\bf U} + {\bf X} - {\bf Z}$

Apply the method of multipliers only to the constraint $\mathbf{Z}=\mathbf{X}$

$$\min_{\substack{\mathbf{X}\in\mathbb{S}(n,k)\\\mathbf{Z}\in\mathbb{R}^{n\times k}}} f(\mathbf{X}) + g(\mathbf{Z}) + \frac{\rho}{2} \|\mathbf{X} - \mathbf{Z} + \mathbf{U}\|_{\mathrm{F}}^2$$

Solve alternating w.r.t. ${\bf X}$ and ${\bf Z}$ and updating ${\bf U} \leftarrow {\bf U} + {\bf X} - {\bf Z}$

Problem breaks into

- Smooth manifold optimization sub-problem w.r.t. X, and
- Non-smooth unconstrained sub-problem w.r.t. Z

Initialize
$$k \leftarrow 1$$
, $\mathbf{Z}^{(1)} = \mathbf{X}^{(1)}$, $\mathbf{U}^{(1)} = 0$.
repeat
X-step: $\mathbf{X}^{(k+1)} = \underset{\mathbf{X} \in \mathbb{S}}{\operatorname{argmin}} f(\mathbf{X}) + \frac{\rho}{2} \|\mathbf{X} - \mathbf{Z}^{(k)} + \mathbf{U}^{(k)}\|_{\mathrm{F}}^{2}$
Z-step: $\mathbf{Z}^{(k+1)} = \underset{\mathbf{Z}}{\operatorname{argmin}} g(\mathbf{Z}) + \frac{\rho}{2} \|\mathbf{X}^{(k+1)} - \mathbf{Z} + \mathbf{U}^{(k)}\|_{\mathrm{F}}^{2}$
Update $\mathbf{U}^{(k+1)} = \mathbf{U}^{(k)} + \mathbf{X}^{(k+1)} - \mathbf{Z}^{(k+1)}$
 $k \leftarrow k + 1$
until convergence;

 \bullet Solver/number of optimization iterations in $\mathbf{X}\text{-}$ and $\mathbf{Z}\text{-}\text{steps}$

Initialize
$$k \leftarrow 1$$
, $\mathbf{Z}^{(1)} = \mathbf{X}^{(1)}$, $\mathbf{U}^{(1)} = 0$.
repeat
X-step: $\mathbf{X}^{(k+1)} = \underset{\mathbf{X} \in \mathbb{S}}{\operatorname{argmin}} f(\mathbf{X}) + \frac{\rho}{2} \|\mathbf{X} - \mathbf{Z}^{(k)} + \mathbf{U}^{(k)}\|_{\mathrm{F}}^{2}$
Z-step: $\mathbf{Z}^{(k+1)} = \underset{\mathbf{Z}}{\operatorname{argmin}} g(\mathbf{Z}) + \frac{\rho}{2} \|\mathbf{X}^{(k+1)} - \mathbf{Z} + \mathbf{U}^{(k)}\|_{\mathrm{F}}^{2}$
Update $\mathbf{U}^{(k+1)} = \mathbf{U}^{(k)} + \mathbf{X}^{(k+1)} - \mathbf{Z}^{(k+1)}$
 $k \leftarrow k + 1$
until convergence;

- \bullet Solver/number of optimization iterations in $\mathbf{X}\text{-}$ and $\mathbf{Z}\text{-}\text{steps}$
- $\bullet~\mathbf{X}\text{-step}$ and $\mathbf{X}\text{-step}$ in some problems have a closed form

Initialize
$$k \leftarrow 1$$
, $\mathbf{Z}^{(1)} = \mathbf{X}^{(1)}$, $\mathbf{U}^{(1)} = 0$.
repeat
X-step: $\mathbf{X}^{(k+1)} = \underset{\mathbf{X} \in \mathbb{S}}{\operatorname{argmin}} f(\mathbf{X}) + \frac{\rho}{2} \|\mathbf{X} - \mathbf{Z}^{(k)} + \mathbf{U}^{(k)}\|_{\mathrm{F}}^{2}$
Z-step: $\mathbf{Z}^{(k+1)} = \underset{\mathbf{Z}}{\operatorname{argmin}} g(\mathbf{Z}) + \frac{\rho}{2} \|\mathbf{X}^{(k+1)} - \mathbf{Z} + \mathbf{U}^{(k)}\|_{\mathrm{F}}^{2}$
Update $\mathbf{U}^{(k+1)} = \mathbf{U}^{(k)} + \mathbf{X}^{(k+1)} - \mathbf{Z}^{(k+1)}$
 $k \leftarrow k + 1$
until convergence;

- \bullet Solver/number of optimization iterations in $\mathbf{X}\text{-}$ and $\mathbf{Z}\text{-}\text{steps}$
- $\bullet~\mathbf{X}\text{-step}$ and $\mathbf{X}\text{-step}$ in some problems have a closed form
- Parameter $\rho > 0$ can be chosen fixed or adapted

L_2 vs $L_{2,1}$ data term

Partial Functional Maps

Partial Laplacian eigenvectors

Partial Laplacian eigenvectors

Functional correspondence matrix ${\bf C}$

Perturbation analysis: intuition

- Ignoring boundary interaction: disjoint parts (block-diagonal matrix)
- Eigenvectors = Mixture of eigenvectors of the parts

Perturbation analysis: eigenvalues

Consistent with Weyl's law

Perturbation analysis: details

Perturbation analysis: boundary interaction strength

- Eigenvector perturbation depends on length and position of the boundary
- Perturbation strength $\leq c \int_{\partial \mathcal{M}} f(m) dm$, where

$$f(m) = \sum_{\substack{i,j=1\\j\neq i}}^{n} \left(\frac{\phi_i(m)\phi_j(m)}{\lambda_i - \lambda_j}\right)^2$$

Partial functional maps

- $\bullet \ \ \textbf{Model} \ \ \textbf{shape} \ \ \mathcal{M}$
- $\bullet~\mathsf{Query}$ shape $\mathcal N$
- Part $M \subseteq \mathcal{M} \approx$ isometric to \mathcal{N}
- Data $f_1,\ldots,f_q\in L^2(\mathcal{N})$ $g_1,\ldots,g_q\in L^2(\mathcal{M})$
- Partial functional map

$$(T_F f_i)(m) \approx g_i(m), \quad m \in M$$

Partial functional maps

- $\bullet \ \ \textbf{Model} \ \ \textbf{shape} \ \ \mathcal{M}$
- $\bullet~\mathsf{Query}$ shape $\mathcal N$
- Part $M \subseteq \mathcal{M} \approx$ isometric to \mathcal{N}
- Data $f_1,\ldots,f_q\in L^2(\mathcal{N})$ $g_1,\ldots,g_q\in L^2(\mathcal{M})$
- Partial functional map

$$T_F f_i \approx g_i \cdot v, \quad v : \mathcal{M} \to [0, 1]$$

- $\bullet \ \ \textbf{Model} \ \ \textbf{shape} \ \ \mathcal{M}$
- $\bullet~\mathsf{Query}$ shape $\mathcal N$
- Part $M \subseteq \mathcal{M} \approx$ isometric to \mathcal{N}
- Data $f_1,\ldots,f_q\in L^2(\mathcal{N})$ $g_1,\ldots,g_q\in L^2(\mathcal{M})$
- Partial functional map

$$\begin{array}{rcl} \mathbf{CA} &\approx & \mathbf{B}(v), & v: \mathcal{M} \to [0,1] \\ \mathbf{A} &= & \left(\langle \phi_i^{\mathcal{N}}, f_j \rangle_{L^2(\mathcal{N})} \right) \\ \mathbf{B}(v) &= & \left(\langle \phi_i^{\mathcal{M}}, g_j \cdot v \rangle_{L^2(\mathcal{M})} \right) \end{array}$$

- $\bullet \ \ \textbf{Model} \ \ \textbf{shape} \ \ \mathcal{M}$
- $\bullet~\mathsf{Query}$ shape $\mathcal N$
- Part $M \subseteq \mathcal{M} \approx$ isometric to \mathcal{N}

• Data
$$f_1, \ldots, f_q \in L^2(\mathcal{N})$$

 $g_1, \ldots, g_q \in L^2(\mathcal{M})$

• Partial functional map

$$\begin{aligned} \mathbf{CA} &\approx \mathbf{B}(v), \quad v: \mathcal{M} \to [0,1] \\ \mathbf{A} &= \left(\langle \phi_i^{\mathcal{N}}, f_j \rangle_{L^2(\mathcal{N})} \right) \\ \mathbf{B}(v) &= \left(\langle \phi_i^{\mathcal{M}}, g_j \cdot v \rangle_{L^2(\mathcal{M})} \right) \end{aligned}$$

Optimization problem w.r.t. correspondence ${\bf C}$ and part v

$$\min_{\mathbf{C},v} \|\mathbf{C}\mathbf{A} - \mathbf{B}(v)\|_{2,1} + \rho_{\text{corr}}(\mathbf{C}) + \rho_{\text{part}}(v)$$

$$\min_{\mathbf{C},v} \|\mathbf{C}\mathbf{A} - \mathbf{B}(v)\|_{2,1} + \rho_{\text{corr}}(\mathbf{C}) + \rho_{\text{part}}(v)$$

$$\min_{\mathbf{C},v} \|\mathbf{C}\mathbf{A} - \mathbf{B}(v)\|_{2,1} + \rho_{\text{corr}}(\mathbf{C}) + \rho_{\text{part}}(v)$$

Part regularization

- Area preservation $\int_{\mathcal{M}} v(m) dx \approx |\mathcal{N}|$
- Spatial regularity = small boundary length (Mumford-Shah)

Rodolà, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein² 2008

$$\min_{\mathbf{C},v} \|\mathbf{C}\mathbf{A} - \mathbf{B}(v)\|_{2,1} + \rho_{\text{corr}}(\mathbf{C}) + \rho_{\text{part}}(v)$$

Part regularization

- Area preservation $\int_{\mathcal{M}} v(m) dx \approx |\mathcal{N}|$
- Spatial regularity = small boundary length (Mumford-Shah)

Correspondence regularization

- Slanted diagonal structure
- Approximate ortho-projection $(\mathbf{C}^{\top}\mathbf{C})_{i\neq j} \approx 0$
- $\operatorname{rank}(\mathbf{C}) \approx r$

Rodolà, Cosmo, Bronstein, Torsello, Cremers 2016; Bronstein² 2008

Structure of partial functional correspondence

Alternating minimization

• C-step: fix $v^*,$ solve for correspondence C $\min_{\mathbf{C}}\|\mathbf{C}\mathbf{A}-\mathbf{B}(v^*)\|_{2,1}+\rho_{\mathrm{corr}}(\mathbf{C})$

• v-step: fix \mathbf{C}^* , solve for part v

$$\min_{v} \|\mathbf{C}^*\mathbf{A} - \mathbf{B}(v)\|_{2,1} + \rho_{\text{part}}(v)$$

Alternating minimization

• C-step: fix $v^*,$ solve for correspondence C $\min_{\bf C} \|{\bf C}{\bf A}-{\bf B}(v^*)\|_{2,1}+\rho_{\rm corr}({\bf C})$

• v-step: fix \mathbf{C}^* , solve for part v

$$\min_{v} \|\mathbf{C}^*\mathbf{A} - \mathbf{B}(v)\|_{2,1} + \rho_{\text{part}}(v)$$

Example of convergence

Rodolà, Cosmo, Bronstein, Torsello, Cremers 2016

Partial functional maps vs Functional maps

Rodolà, Cosmo, Bronstein, Torsello, Cremers 2016

Partial correspondence performance

SHREC'16 Partial Matching benchmark Rodolà et al. 2016; Methods: Rodolà, Cosmo, Bronstein, Torsello, Cremers 2016 (**PFM**); Sahillioğlu, Yemez 2012 (IM); Rodolà, Bronstein, Albarelli, Bergamasco, Torsello 2012 (GT); Rodolà et al. 2013 (EN); Rodolà et al. 2014 (RF)

Partial correspondence performance

SHREC'16 Partial Matching benchmark Rodolà et al. 2016; Methods: Rodolà, Cosmo, Bronstein, Torsello, Cremers 2016 (**PFM**); Sahillioğlu, Yemez 2012 (IM); Rodolà, Bronstein, Albarelli, Bergamasco, Torsello 2012 (GT); Rodolà et al. 2013 (EN); Rodolà et al. 2014 (RF)

Correspondence error

Boscaini, Masci, Rodolà, Bronstein 2016

Boscaini, Masci, Rodolà, Bronstein 2016

Pointwise geodesic error (in % of geodesic diameter)

Monti, Boscaini, Masci, Rodolà, Svoboda, Bronstein 2016

Correspondence visualization (similar colors encode corresponding points) Training: FAUST / Testing: FAUST

Monti, Boscaini, Masci, Rodolà, Svoboda, Bronstein 2016

 $\label{eq:correspondence} \begin{array}{l} \mbox{Correspondence visualization (similar colors encode corresponding points)} \\ \mbox{Training: FAUST / Testing: SCAPE+TOSCA} \end{array}$

Monti, Boscaini, Masci, Rodolà, Svoboda, Bronstein 2016

Partial correspondence (part-to-full)

Partial correspondence (part-to-part)

Key observation

Key observation

Key observation

Partial correspondence (part-to-part)

Non-rigid puzzle (multi-part)

Litany, Bronstein² 2012

Non-rigid puzzles problem formulation

Input

- $\bullet \ \mathsf{Model} \ \mathcal{M}$
- Parts $\mathcal{N}_1, \dots, \mathcal{N}_p$

Output

- Segmentation $M_i \subseteq \mathcal{M}$
- Located parts $N_i \subseteq \mathcal{N}_i$
- Clutter N_i^c
- Missing parts M_0
- Correspondences T_{F_i}

Non-rigid puzzles problem formulation

Input

- $\bullet \ \mathsf{Model} \ \mathcal{M}$
- Parts $\mathcal{N}_1, \dots, \mathcal{N}_p$

Output

- Segmentation $u_i: \mathcal{M} \rightarrow [0, 1]$
- Located parts $v_i : \mathcal{N}_i \rightarrow [0, 1]$
- Clutter $1 v_i$
- Missing parts u_0
- Correspondences \mathbf{C}_i

Non-rigid puzzles problem formulation

$$\min_{\mathbf{C}_{i,u_{i},v_{i}}} \sum_{i=1}^{p} \|\mathbf{C}_{i}\mathbf{A}_{i}(v_{i}) - \mathbf{B}(u_{i})\|_{2,1} + \sum_{i=0}^{p} \rho_{\text{part}}(u_{i},v_{i}) + \sum_{i=1}^{p} \rho_{\text{corr}}(\mathbf{C}_{i})$$

s.t.
$$\sum_{i=0}^{p} u_{i} = 1$$

Outer iteration 1

Outer iteration $\,2\,$

Outer iteration 3

Example: "Perfect puzzle"

Model/Part	Synthetic (TOSCA)
Clutter	No
Missing part	No
Data term	Dense (SHOT)

Example: "Perfect puzzle"

Model/Part	Synthetic (TOSCA)
Iransformation	Isometric
Clutter	No
Missing part	No
Data term	Dense (SHOT)

Example: "Perfect puzzle"

Model /Part	Synthetic $(TOSCA)$
Model/Fart	Synthetic (TOSCA)
Transformation	Isometric
Clutter	No
Missing part	No
Data term	Dense (SHOT)

Correspondence

Example: Overlapping parts

Synthetic (FAUST) Near-isometric Yes (overlap) No
Dense (SHOT)

Example: Overlapping parts

Synthetic (FAUST) Near-isometric Yes (overlap) No
Dense (SHOT)

Example: Missing parts

Model/Part	Synthetic (TOSCA)
Clutter	Yes (extra part)
Missing part	Yes
Data term	Dense (SHOT)

Example: Missing parts

Model/Part Transformation	Synthetic (TOSCA) Isometric
Clutter	Yes (extra part)
Missing part	Yes
Data term	Dense (SHOT)

Example: Missing parts

Model/Part Transformation	Synthetic (TOSCA) Isometric
Clutter	Yes (extra part)
Missing part	Yes
Data term	Dense (SHOT)

Non-rigid clutter

Problem structure

- Slanted diagonal structure (angle θ has to be estimated)
- $\mathbf{C}^{\top}\mathbf{C}$ has sparse diagonal
- Good descriptor + initialization is crucial! (learned descriptor)

Examples of matching in cluttered scenes

Examples of matching in cluttered scenes

Examples of matching in cluttered scenes

Slanted diagonal: $\langle T_F \phi_i^{\mathcal{M}}, v \cdot \phi_j^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \pm \delta_{i,\pi_j} \qquad \pi_j \approx j \frac{|\mathcal{N}|}{|\mathcal{M}|}$

 \bullet Complicated alternating optimization w.r.t. v and ${\bf C}$

Slanted diagonal: $\langle T_F \phi_i^{\mathcal{M}}, v \cdot \phi_j^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \pm \delta_{i,\pi_j} \qquad \pi_j \approx j \frac{|\mathcal{N}|}{|\mathcal{M}|}$

- \bullet Complicated alternating optimization w.r.t. v and ${\bf C}$
- Explicit spatial model v of the part

Slanted diagonal: $\langle T_F \phi_i^{\mathcal{M}}, v \cdot \phi_j^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \pm \delta_{i,\pi_j} \qquad \pi_j \approx j \frac{|\mathcal{N}|}{|\mathcal{M}|}$

- Complicated alternating optimization w.r.t. v and ${f C}$
- Explicit spatial model v of the part $\Rightarrow O(n)$ complexity!

Find a new basis $\{\hat{\phi}_i^{\mathcal{N}}\}_{i=1}^k$ such that $\langle T_F \phi_i^{\mathcal{M}}, \hat{\phi}_j^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \delta_{ij}$

Find a new basis $\{\hat{\phi}_i^{\mathcal{N}}\}_{i=1}^k$ such that $\langle T_F \phi_i^{\mathcal{M}}, \sum_{l=1}^k q_{lj} \phi_l^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \delta_{ij}$

Find a new basis $\{\hat{\phi}_i^{\mathcal{N}}\}_{i=1}^k$ such that $\langle T_F \phi_i^{\mathcal{M}}, \sum_{l=1}^k q_{lj} \phi_l^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \delta_{ij}$

• New basis functions $\{ \hat{\phi}_i^{\mathcal{N}} \}_{i=1}^k$ are localized on N

Find a new basis $\{\hat{\phi}_i^{\mathcal{N}}\}_{i=1}^k$ such that $\langle T_F \phi_i^{\mathcal{M}}, \sum_{l=1}^k q_{lj} \phi_l^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \delta_{ij}$

- New basis functions $\{\hat{\phi}_i^{\mathcal{N}}\}_{i=1}^k$ are localized on N
- Optimization over coefficients $\mathbf{Q} = (q_{ij})$

Find a new basis $\{\hat{\phi}_i^{\mathcal{N}}\}_{i=1}^k$ such that $\langle T_F \phi_i^{\mathcal{M}}, \sum_{l=1}^k q_{lj} \phi_l^{\mathcal{N}} \rangle_{L^2(\mathcal{N})} \approx \delta_{ij}$

- New basis functions $\{\hat{\phi}_i^{\mathcal{N}}\}_{i=1}^k$ are localized on N
- Optimization over coefficients $\mathbf{Q} = (q_{ij}) \Rightarrow \mathcal{O}(k^2)$ complexity!

 Π is $k \times r$ partial permutation with elements $(\pi_i, i) = \pm 1$ and $r \approx k \frac{|\mathcal{M}|}{|\mathcal{N}|}$

 $\mathbf{\Pi}$ is $k \times r$ partial permutation with elements $(\pi_i, i) = \pm 1$ and $r \approx k \frac{|\mathcal{M}|}{|\mathcal{N}|}$ Relax $\mathbf{\Pi} \approx \mathbf{Q}^{\top}$ s.t. $\mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}$ ($k \times r$ ortho-projection)

$$\min_{\mathbf{Q}} \operatorname{trace}(\mathbf{Q}^{\top} \mathbf{\Lambda}_{\mathcal{N},k} \mathbf{Q}) + \mu \| \mathbf{A}_r - \mathbf{Q}^{\top} \mathbf{B}_k \|_{2,1} \quad \text{s.t.} \quad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}$$

Litany, Rodolà, Bronstein
22016;Kovnatsky, Glashoff, Bronstein
2, Kimmel 2013 (Joint diag)

 Π is $k \times r$ partial permutation with elements $(\pi_i, i) = \pm 1$ and $r \approx k \frac{|\mathcal{M}|}{|\mathcal{N}|}$ Relax $\Pi \approx \mathbf{Q}^{\top}$ s.t. $\mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I} (k \times r \text{ ortho-projection})$

$$\min_{\mathbf{Q}} \operatorname{trace}(\mathbf{Q}^{\top} \mathbf{\Lambda}_{\mathcal{N}, k} \mathbf{Q}) + \mu \| \mathbf{A}_r - \mathbf{Q}^{\top} \mathbf{B}_k \|_{2, 1} \quad \text{s.t.} \quad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}$$

• Optimization on the Stiefel manifold with k^2 variables

Litany, Rodolà, Bronstein
22016;Kovnatsky, Glashoff, Bronstein
2, Kimmel 2013 (Joint diag)

 Π is $k \times r$ partial permutation with elements $(\pi_i, i) = \pm 1$ and $r \approx k \frac{|\mathcal{M}|}{|\mathcal{N}|}$ Relax $\Pi \approx \mathbf{Q}^{\top}$ s.t. $\mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I} (k \times r \text{ ortho-projection})$

$$\min_{\mathbf{Q}} \operatorname{trace}(\mathbf{Q}^{\top} \mathbf{\Lambda}_{\mathcal{N}, k} \mathbf{Q}) + \mu \| \mathbf{A}_{r} - \mathbf{Q}^{\top} \mathbf{B}_{k} \|_{2, 1} \quad \text{s.t.} \quad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}$$

• Non-smooth optimization on the Stiefel manifold with k^2 variables

Litany, Rodolà, Bronstein² 2016; Kovnatsky, Glashoff, Bronstein², Kimmel 2013 (Joint diag); Kovnatsky, Glashoff, Bronstein 2016 (MADMM)

 Π is $k \times r$ partial permutation with elements $(\pi_i, i) = \pm 1$ and $r \approx k \frac{|\mathcal{M}|}{|\mathcal{N}|}$ Relax $\Pi \approx \mathbf{Q}^{\top}$ s.t. $\mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I} (k \times r \text{ ortho-projection})$

$$\min_{\mathbf{Q}} \operatorname{trace}(\mathbf{Q}^{\top} \mathbf{\Lambda}_{\mathcal{N}, k} \mathbf{Q}) + \mu \| \mathbf{A}_{r} - \mathbf{Q}^{\top} \mathbf{B}_{k} \|_{2, 1} \quad \text{s.t.} \quad \mathbf{Q}^{\top} \mathbf{Q} = \mathbf{I}$$

- Non-smooth optimization on the Stiefel manifold with k^2 variables
- Non-rigid alignment of eigenfunctions

Litany, Rodolà, Bronstein² 2016; Kovnatsky, Glashoff, Bronstein², Kimmel 2013 (Joint diag); Kovnatsky, Glashoff, Bronstein 2016 (MADMM)

Geometric interpretation

Convergence example

Increasing partiality

SHREC'16 Partiality

SHREC'16 Partial Matching benchmark: Rodolà et al. 2016; Methods: Unpublished work (**SPFM**); Rodolà, Cosmo, Bronstein, Torsello, Cremers 2016 (PFM); Sahillioğlu, Yemez 2012 (IM); Rodolà, Bronstein, Albarelli, Bergamasco, Torsello 2012 (GT); Rodolà et al. 2013 (EN); Rodolà et al. 2014 (RF)

Runtime

Litany, Rodolà, Bronstein² 2016

Litany, Rodolà, Bronstein² 2016; data: Bogo et al. 2014 (FAUST)

Litany, Rodolà, Bronstein² 2016; data: Bogo et al. 2014 (FAUST)

Litany, Rodolà, Bronstein² 2016; data: Rodola et al. 2016 (SHREC)

Litany, Rodolà, Bronstein² 2016; data: Rodola et al. 2016 (SHREC)