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General Overview

Overall Objective: 
Create tools for computing and analyzing mappings
between geometric objects.



General Overview

Rather than comparing points on objects it is often easier 
to compare real-valued functions defined on them. Such 
maps can be represented as matrices.

Overall Objective: 
Create tools for computing and analyzing mappings
between geometric objects.



Course Overview

Course Notes:

Course Website:
http://www.lix.polytechnique.fr/~maks/fmaps_course/

Linked from the website. Or use
Attention: (significantly) more material than in the lectures

Sample Code:
See Sample Code link on the website.

or http://bit.do/fmaps

http://bit.do/fmaps_notes



Course Schedule

2:15pm – 3:10pm Introduction (Maks)
• Introduction to the functional maps framework.

2:15pm – 3:10pm Computing Functional Maps (Michael)
• Optimization methods for functional map estimation.

04:00pm - 04:15pm Break

04:15pm - 05:05pm Maps in Shape Collections (Etienne)
• Networks of Maps, Descriptor learning, Shape comparison.

05:10pm - 06:00pm Conversion, Applications (Emanuele)
• Pointwise map recovery, Applications

06:00pm - Wrapup, Q&A (all)



What is a Shape?

• Discrete: a triangle mesh.

5k – 200k triangles

• Continuous: a surface embedded in 3D.

Shapes from the SCAPE, TOSCA and FAUST datasets



What is a Shape?

A graph embedded in 3D: a triangle mesh.
• Connected.
• Manifold (each edge on at most 2 triangles).
• Without boundary.

Shapes from the SCAPE, TOSCA and FAUST datasets



Rigid Shape Matching

• The unknowns are the rotation/translation 
parameters of the source onto the target shape.

• Given a pair of shapes, find the optimal Rigid 
Alignment between them.



Iterative Closest Point (ICP)

• Classical approach: iterate between finding 
correspondences and finding the transformation:

example in 2DM N

Given a pair of shapes, and     , iterate:
1. For each find nearest neighbor .
2. Find optimal transformation minimizing:

argmin
R,t
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Iterative Closest Point

• Classical approach: iterate between finding 
correspondences and finding the transformation:

M N

Given a pair of shapes, and     , iterate:
1. For each find nearest neighbor .
2. Find optimal transformation minimizing:

argmin
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X
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1. Finding nearest neighbors: can be done with space-
partitioning data structures (e.g., KD-tree). 

2. Finding the optimal transformation minimizing:

Iterative Closest Point

• Classical approach: iterate between finding 
correspondences and finding the transformation:

Can be done efficiently via SVD decomposition.

argmin
R,t

X

i

kRxi + t� yik22

M

N

Arun et	al.,	Least-
Squares	Fitting	of	
Two	3-D	Point	Sets



Non-Rigid Shape Matching

Unlike rigid matching with rotation/translation, there is no 
compact representation to optimize for in non-rigid matching. 



Non-Rigid Shape Matching

• What does it mean for a correspondence to be “good”?
• How to compute it efficiently in practice?

Main Problems:



Isometric Shape Matching

Good maps must preserve geodesic distances.
Possible Model:

Geodesic: length of shortest path lying entirely on the surface.

d

M(x, y)

d

N (T (x), T (y))

M

N



Isometric Shape Matching

Approach:

Find the point mapping by minimizing the distance distortion:

The unknowns are point correspondences.  

T

opt

= argmin
T

X

x,y

kdM(x, y)� d

N (T (x), T (y))k

d

M(x, y)

d

N (T (x), T (y))

M

N



Isometric Shape Matching

Approach:

The space of possible solutions is highly non-linear, non-convex.
Problem:

Find the point mapping by minimizing the distance distortion:

T

opt

= argmin
T

X

x,y

kdM(x, y)� d

N (T (x), T (y))k

d

M(x, y)

d

N (T (x), T (y))

M

N



Functional Map Representation

We would like to define a representation of shape maps 
that is more amenable to direct optimization. 

1. A compact representation for “natural” maps. 
2. Inherently global and multi-scale. 
3. Handles uncertainty and ambiguity gracefully. 

4. Allows efficient manipulations (averaging, composition). 
5. Leads to simple (linear) optimization problems. 



Background: Laplace-Beltrami Operator

Given a compact Riemannian manifold         without
boundary, the Laplace-Beltrami operator      :

� : C1(M) ! C1(M), �f = div rf

�
M



Laplace-Beltrami Operator

Given a compact surface         without boundary, 
the Laplace-Beltrami operator      : 

1. Is invariant under isometric deformations.

2. Has a countable eigendecomposition:

that forms an orthonormal basis for                 . 

3. Characterizes the geodesic distances fully.

�

��i = �i�i

L2(M)

M



The Laplace-Beltrami operator     has an 
eigendecomposition:

Laplace-Beltrami Eigenfunctions

�
��i = �i�i

Ordered from low frequency (smoothest) to higher frequency 
(oscillating).

�0 = 0 �1 = 2.6 �2 = 3.4 �3 = 5.1

�0 �1 �2 �3 . . .



Any (square-integrable)  can be represented 
as a linear combination of the LB eigenfunctions.

Laplace-Beltrami Eigenfunctions

= a0 a1+ . . .+

f =
1X

i=0

ai�i

f : M ! R

ai =

Z

M
f(x)�i(x)dµ(x)

�0 �1

…. that forms an orthonormal basis for : L2(M)



In the Discrete World

• Functions are defined at vertices of the mesh.

• Integration is defined with respect to a discrete 
volume measure:

- diagonal matrix of area weights.

• Laplacian is discretized as a matrix

kfk22 = fTAf

A

L = A�1W
i

j

↵ij �ij
t1 t2

Lij =
1

2A(j)
(cot(↵ij) + cot(�ij))

Can be derived from 1st order FEM.



In the Discrete World

• Computing the eigenfunctions of the Laplacian reduces 
to solving the generalized eigenvalue problem:

• eigs function in Matlab
• Both A and W are sparse positive semidefinite.

L� = �� , W� = �A�

Number of 
triangles

Computation
time (in s)

5000 0.65
25000 2.32
50868 3.6
105032 10

Time to compute 100 basis functions.



The induced functional correspondence:

Functional Approach to Mappings

Attention: the functional map is in the opposite direction. 

TF (f) = g, g = f � T

Given a pair of shapes and a point-to-point map

M
N

T : N ! M

T : N ! M

f : M ! R
g : N ! R

TF



Approach

Note that            is:
1) Linear

2) Complete (recover T from indicator functions)

TF (f) = g, g = f � T�1

TF (↵1f1 + ↵1f1) = ↵1TF (f1) + ↵2TF (f2)

TF (f) = g, g = f � T

Given a pair of shapes and a point-to-point map

M
N

T : N ! M

f : M ! R
g : N ! R

TF

T : N ! M
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Observation

Express both     and in terms of basis functions:f TF (f)

Since is linear, there is a linear transformation from          to        . TF {ai} {bj}

M

f : M ! R
g : N ! R

TF

N

f =
X

i

ai�
M
i g = TF (f) =

X

i

bi�
N
i



Functional Map Definition

Functional map: 
matrix C that translates coefficients from to          . �M �N



Functional Maps

Definition:

Cij : coefficient of in the basis of       .  TF (�
M
j ) �N

i

Cij =

Z

N
TF (�

M
j )�N

i dµIn an orthonormal basis:

For a fixed choice of basis functions , and a 
linear transformation         between functions, a functional map 
is a matrix C, s.t. for any if , 
then:   

{�M}, {�N }
TF
f =

P
i ai�

M
i T (f) =

P
i bi�

N
i

b = Ca



Example 1

Given two shapes with points and a map:

If functions are represented as vectors (in the hat basis), the 
functional map is given by matrix-vector product:

matrix encoding the map T, 
one 1 per column with zeros everywhere else.  

g = TT f C = TT

M
N

T : N ! M

nM, nN

T : nN ⇥ nM

T : N ! M



Example 2

If functions are represented in the reduced basis:
matrix of the first         eigenfunctions of          as columns.

matrix of the first        eigenfunctions of          as columns.

The functional map matrix:

if

if

�M : nM ⇥ kM

�N : nN ⇥ kN

kM

kN �N

�T
N�N = Id

C = �+
NTT�M

C = �T
NANTT�M �T

NAN�N = Id

�M

C = �T
NTT�M

Given two shapes with points and a map:

matrix encoding the map T, 
one 1 per column with zeros everywhere else.  

nM, nN

T : nN ⇥ nM

T : N ! M

: left pseudo-inverse.+



Example Maps in a Reduced Basis

Triangle meshes with pre-computed ponitwise maps

“Good” maps are close to being diagonal



Functional Map algebra

1. Map composition becomes matrix multiplication. 

2. Map inversion is matrix inversion (in fact, transpose). 

3. Algebraic operations on functional maps are possible. 

E.g. interpolating between two maps with 
C = αC1 +(1−α)C2. 



In practice we do not know C. Given two objects our goal 
is to find the correspondence. 

How can the functional representation help to compute the 
map in practice?

Shape Matching

?



Matching via Function Preservation

where

Given enough    pairs, we can recover C through a 
linear least squares system.   

f =
P

i ai�
M
i , g =

P
i bi�

N
i .

{a,b}

Suppose we don’t know C. However, we expect a pair of 
functions and to correspond. Then, 
C must be s.t.

Ca ⇡ b

f : M ! R g : N ! R



Function preservation constraint is general and includes: 

• Attribute (e.g., color) preservation. 

• Descriptor preservation (e.g. Gauss curvature). 

• Landmark correspondences (e.g. distance to the point). 

• Part correspondences (e.g. indicator function).

Map Constraints

Suppose we don’t know C. However, we expect a pair of 
functions and to correspond. Then, 
C must be s.t.

Ca ⇡ b

f : M ! R g : N ! R



Commutativity Constraints

Regularizations:
Commutativity with other operators:

C

Note that the energy: is quadratic in C.

SM SN

CSM = SNC

kCSM � SNCk2F



Regularization

Lemma 1:

The mapping is isometric, if and only if the functional 
map matrix commutes with the Laplacian:

Implies that isometries result in diagonal functional maps. 

C�M = �NC



Regularization

Lemma 2:

The mapping is locally volume preserving, if and only 
if the functional map matrix is orthonormal.



Basic Pipeline

Given a pair of shapes :

1. Compute the first k (~80-100) eigenfunctions of the Laplace-
Beltrami operator. Store them in matrices:

2. Compute descriptor functions (e.g., Wave Kernel Signature) 
on           . Express them in                  , as columns of : 

3. Solve

4. Convert the functional map
to a point to point map T. 

C
opt

= argmin
C

kCF �Gk2F + kC�M ��Nk2F

diagonal matrices of eigenvalues 
of LB operator

M,N

�M,�N

�M,�N

�M,�N :

C
opt

= argmin
C

kCA�Bk2 + kC�M ��NCk2
A,B

M,N



Conversion to point-to-point

Given a functional map C, we would like to convert to to a 
point-to-point map.

Option 1: declare

Problems: high computational complexity ,
low accuracy.

f : M ! R

g : N ! R
TF

T (x) = argmax

y

�NC�

x

O(nMnN )



Conversion to point-to-point

Given a functional map C, we would like to convert to to a 
point-to-point map.

Option 2: declare

Advantages: computational complexity ,
higher accuracy (e.g., works with the identity map).

T (x) = argmin
y

k�
y

� C�

x

k2

f : M ! R

g : N ! R
TF

O(nM log nN )



Incorporating Orthonormality

In many practical situations we would expect a volume-
preserving map, which implies:

CTC = Id

Option: use post-processing to enforce this constraint.
Iterate:

1. Compute the point-to-point map T.

2. Solve for the functional map:

Exactly the same objective as ICP, but in higher dimension. Can 
use the same method!

argmin
C, s.t. C

T
C=Id

X

x2M
kC�

x

� �
T (x)k22



Results

FAUST [Bogo 
et al. ’14]

TOSCA [Bronstein 
et al. ‘08]

SCAPE [Anguelov
et al. ‘05]



Results

A very simple method that puts together many constraints 
and uses 100 basis functions gives reasonable results: 

radius 0.025  
radius 0.05  

O.,	Ben-Chen,	Solomon,	Butscher,	Guibas,	Functional	maps:	a	flexible	representation	of	maps	between	shapes,	2012



Segmentation Transfer without P2P

To transfer functions we do not need to convert functional to 
pointwise maps. 

E.g. we can also transfer segmentations: for each segment, 
transfer its indicator function, and for each point pick the 
segment that gave the highest value. 


