
Computing and Processing
Correspondences with Functional Maps

Maks	Ovsjanikov,	Etienne	Corman,	Michael	Bronstein,	Emanuele	Rodolà,	
Mirela Ben-Chen,	Leonidas	Guibas,	Frederic	Chazal,	Alex	Bronstein

SIGGRAPH Asia 2016 course

General Overview

Overall Objective:
Create tools for computing and analyzing mappings
between geometric objects.

General Overview

Rather than comparing points on objects it is often easier
to compare real-valued functions defined on them. Such
maps can be represented as matrices.

Overall Objective:
Create tools for computing and analyzing mappings
between geometric objects.

Course Overview

Course Notes:

Course Website:
http://www.lix.polytechnique.fr/~maks/fmaps_course/

Linked from the website. Or use
Attention: (significantly) more material than in the lectures

Sample Code:
See Sample Code link on the website.

or http://bit.do/fmaps

http://bit.do/fmaps_notes

Course Schedule

2:15pm – 3:10pm Introduction (Maks)
• Introduction to the functional maps framework.

2:15pm – 3:10pm Computing Functional Maps (Michael)
• Optimization methods for functional map estimation.

04:00pm - 04:15pm Break

04:15pm - 05:05pm Maps in Shape Collections (Etienne)
• Networks of Maps, Descriptor learning, Shape comparison.

05:10pm - 06:00pm Conversion, Applications (Emanuele)
• Pointwise map recovery, Applications

06:00pm - Wrapup, Q&A (all)

What is a Shape?

• Discrete: a triangle mesh.

5k – 200k triangles

• Continuous: a surface embedded in 3D.

Shapes from the SCAPE, TOSCA and FAUST datasets

What is a Shape?

A graph embedded in 3D: a triangle mesh.
• Connected.
• Manifold (each edge on at most 2 triangles).
• Without boundary.

Shapes from the SCAPE, TOSCA and FAUST datasets

Rigid Shape Matching

• The unknowns are the rotation/translation
parameters of the source onto the target shape.

• Given a pair of shapes, find the optimal Rigid
Alignment between them.

Iterative Closest Point (ICP)

• Classical approach: iterate between finding
correspondences and finding the transformation:

example in 2DM N

Given a pair of shapes, and , iterate:
1. For each find nearest neighbor .
2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t� yik22

M N
xi 2 M yi 2 N

Iterative Closest Point

• Classical approach: iterate between finding
correspondences and finding the transformation:

M N

Given a pair of shapes, and , iterate:
1. For each find nearest neighbor .
2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t� yik22

M N
xi 2 M yi 2 N

Iterative Closest Point

• Classical approach: iterate between finding
correspondences and finding the transformation:

M N

Given a pair of shapes, and , iterate:
1. For each find nearest neighbor .
2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t� yik22

M N
xi 2 M yi 2 N

Iterative Closest Point

• Classical approach: iterate between finding
correspondences and finding the transformation:

M N

Given a pair of shapes, and , iterate:
1. For each find nearest neighbor .
2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t� yik22

M N
xi 2 M yi 2 N

Iterative Closest Point

• Classical approach: iterate between finding
correspondences and finding the transformation:

M N

Given a pair of shapes, and , iterate:
1. For each find nearest neighbor .
2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t� yik22

M N
xi 2 M yi 2 N

1. Finding nearest neighbors: can be done with space-
partitioning data structures (e.g., KD-tree).

2. Finding the optimal transformation minimizing:

Iterative Closest Point

• Classical approach: iterate between finding
correspondences and finding the transformation:

Can be done efficiently via SVD decomposition.

argmin
R,t

X

i

kRxi + t� yik22

M

N

Arun et	al.,	Least-
Squares	Fitting	of	
Two	3-D	Point	Sets

Non-Rigid Shape Matching

Unlike rigid matching with rotation/translation, there is no
compact representation to optimize for in non-rigid matching.

Non-Rigid Shape Matching

• What does it mean for a correspondence to be “good”?
• How to compute it efficiently in practice?

Main Problems:

Isometric Shape Matching

Good maps must preserve geodesic distances.
Possible Model:

Geodesic: length of shortest path lying entirely on the surface.

d

M(x, y)

d

N (T (x), T (y))

M

N

Isometric Shape Matching

Approach:

Find the point mapping by minimizing the distance distortion:

The unknowns are point correspondences.

T

opt

= argmin
T

X

x,y

kdM(x, y)� d

N (T (x), T (y))k

d

M(x, y)

d

N (T (x), T (y))

M

N

Isometric Shape Matching

Approach:

The space of possible solutions is highly non-linear, non-convex.
Problem:

Find the point mapping by minimizing the distance distortion:

T

opt

= argmin
T

X

x,y

kdM(x, y)� d

N (T (x), T (y))k

d

M(x, y)

d

N (T (x), T (y))

M

N

Functional Map Representation

We would like to define a representation of shape maps
that is more amenable to direct optimization.

1. A compact representation for “natural” maps.
2. Inherently global and multi-scale.
3. Handles uncertainty and ambiguity gracefully.

4. Allows efficient manipulations (averaging, composition).
5. Leads to simple (linear) optimization problems.

Background: Laplace-Beltrami Operator

Given a compact Riemannian manifold without
boundary, the Laplace-Beltrami operator :

� : C1(M) ! C1(M), �f = div rf

�
M

Laplace-Beltrami Operator

Given a compact surface without boundary,
the Laplace-Beltrami operator :

1. Is invariant under isometric deformations.

2. Has a countable eigendecomposition:

that forms an orthonormal basis for .

3. Characterizes the geodesic distances fully.

�

��i = �i�i

L2(M)

M

The Laplace-Beltrami operator has an
eigendecomposition:

Laplace-Beltrami Eigenfunctions

�
��i = �i�i

Ordered from low frequency (smoothest) to higher frequency
(oscillating).

�0 = 0 �1 = 2.6 �2 = 3.4 �3 = 5.1

�0 �1 �2 �3 . . .

Any (square-integrable) can be represented
as a linear combination of the LB eigenfunctions.

Laplace-Beltrami Eigenfunctions

= a0 a1+ . . .+

f =
1X

i=0

ai�i

f : M ! R

ai =

Z

M
f(x)�i(x)dµ(x)

�0 �1

…. that forms an orthonormal basis for : L2(M)

In the Discrete World

• Functions are defined at vertices of the mesh.

• Integration is defined with respect to a discrete
volume measure:

- diagonal matrix of area weights.

• Laplacian is discretized as a matrix

kfk22 = fTAf

A

L = A�1W
i

j

↵ij �ij
t1 t2

Lij =
1

2A(j)
(cot(↵ij) + cot(�ij))

Can be derived from 1st order FEM.

In the Discrete World

• Computing the eigenfunctions of the Laplacian reduces
to solving the generalized eigenvalue problem:

• eigs function in Matlab
• Both A and W are sparse positive semidefinite.

L� = �� , W� = �A�

Number of
triangles

Computation
time (in s)

5000 0.65
25000 2.32
50868 3.6
105032 10

Time to compute 100 basis functions.

The induced functional correspondence:

Functional Approach to Mappings

Attention: the functional map is in the opposite direction.

TF (f) = g, g = f � T

Given a pair of shapes and a point-to-point map

M
N

T : N ! M

T : N ! M

f : M ! R
g : N ! R

TF

Approach

Note that is:
1) Linear

2) Complete (recover T from indicator functions)

TF (f) = g, g = f � T�1

TF (↵1f1 + ↵1f1) = ↵1TF (f1) + ↵2TF (f2)

TF (f) = g, g = f � T

Given a pair of shapes and a point-to-point map

M
N

T : N ! M

f : M ! R
g : N ! R

TF

T : N ! M

Approach

Note that is:
1) Linear

2) Complete (recover T from indicator functions)

TF (↵1f1 + ↵1f1) = ↵1TF (f1) + ↵2TF (f2)

TF (f) = g, g = f � T�1

Given a pair of shapes and a point-to-point map

TF (f) = g, g = f � T
M

N
T : N ! M

f : M ! R
g : N ! R

TF

T : N ! M

Approach

Note that is:
1) Linear

2) Complete (recover T from indicator functions)

TF (↵1f1 + ↵1f1) = ↵1TF (f1) + ↵2TF (f2)

TF (f) = g, g = f � T�1

Given a pair of shapes and a point-to-point map

TF (f) = g, g = f � T
M

N
T : N ! M

f : M ! R
g : N ! R

TF

T : N ! M

Observation

Express both and in terms of basis functions:f TF (f)

Since is linear, there is a linear transformation from to . TF {ai} {bj}

M

f : M ! R
g : N ! R

TF

N

f =
X

i

ai�
M
i g = TF (f) =

X

i

bi�
N
i

Functional Map Definition

Functional map:
matrix C that translates coefficients from to . �M �N

Functional Maps

Definition:

Cij : coefficient of in the basis of . TF (�
M
j) �N

i

Cij =

Z

N
TF (�

M
j)�N

i dµIn an orthonormal basis:

For a fixed choice of basis functions , and a
linear transformation between functions, a functional map
is a matrix C, s.t. for any if ,
then:

{�M}, {�N }
TF
f =

P
i ai�

M
i T (f) =

P
i bi�

N
i

b = Ca

Example 1

Given two shapes with points and a map:

If functions are represented as vectors (in the hat basis), the
functional map is given by matrix-vector product:

matrix encoding the map T,
one 1 per column with zeros everywhere else.

g = TT f C = TT

M
N

T : N ! M

nM, nN

T : nN ⇥ nM

T : N ! M

Example 2

If functions are represented in the reduced basis:
matrix of the first eigenfunctions of as columns.

matrix of the first eigenfunctions of as columns.

The functional map matrix:

if

if

�M : nM ⇥ kM

�N : nN ⇥ kN

kM

kN �N

�T
N�N = Id

C = �+
NTT�M

C = �T
NANTT�M �T

NAN�N = Id

�M

C = �T
NTT�M

Given two shapes with points and a map:

matrix encoding the map T,
one 1 per column with zeros everywhere else.

nM, nN

T : nN ⇥ nM

T : N ! M

: left pseudo-inverse.+

Example Maps in a Reduced Basis

Triangle meshes with pre-computed ponitwise maps

“Good” maps are close to being diagonal

Functional Map algebra

1. Map composition becomes matrix multiplication.

2. Map inversion is matrix inversion (in fact, transpose).

3. Algebraic operations on functional maps are possible.

E.g. interpolating between two maps with
C = αC1 +(1−α)C2.

In practice we do not know C. Given two objects our goal
is to find the correspondence.

How can the functional representation help to compute the
map in practice?

Shape Matching

?

Matching via Function Preservation

where

Given enough pairs, we can recover C through a
linear least squares system.

f =
P

i ai�
M
i , g =

P
i bi�

N
i .

{a,b}

Suppose we don’t know C. However, we expect a pair of
functions and to correspond. Then,
C must be s.t.

Ca ⇡ b

f : M ! R g : N ! R

Function preservation constraint is general and includes:

• Attribute (e.g., color) preservation.

• Descriptor preservation (e.g. Gauss curvature).

• Landmark correspondences (e.g. distance to the point).

• Part correspondences (e.g. indicator function).

Map Constraints

Suppose we don’t know C. However, we expect a pair of
functions and to correspond. Then,
C must be s.t.

Ca ⇡ b

f : M ! R g : N ! R

Commutativity Constraints

Regularizations:
Commutativity with other operators:

C

Note that the energy: is quadratic in C.

SM SN

CSM = SNC

kCSM � SNCk2F

Regularization

Lemma 1:

The mapping is isometric, if and only if the functional
map matrix commutes with the Laplacian:

Implies that isometries result in diagonal functional maps.

C�M = �NC

Regularization

Lemma 2:

The mapping is locally volume preserving, if and only
if the functional map matrix is orthonormal.

Basic Pipeline

Given a pair of shapes :

1. Compute the first k (~80-100) eigenfunctions of the Laplace-
Beltrami operator. Store them in matrices:

2. Compute descriptor functions (e.g., Wave Kernel Signature)
on . Express them in , as columns of :

3. Solve

4. Convert the functional map
to a point to point map T.

C
opt

= argmin
C

kCF �Gk2F + kC�M ��Nk2F

diagonal matrices of eigenvalues
of LB operator

M,N

�M,�N

�M,�N

�M,�N :

C
opt

= argmin
C

kCA�Bk2 + kC�M ��NCk2
A,B

M,N

Conversion to point-to-point

Given a functional map C, we would like to convert to to a
point-to-point map.

Option 1: declare

Problems: high computational complexity ,
low accuracy.

f : M ! R

g : N ! R
TF

T (x) = argmax

y

�NC�

x

O(nMnN)

Conversion to point-to-point

Given a functional map C, we would like to convert to to a
point-to-point map.

Option 2: declare

Advantages: computational complexity ,
higher accuracy (e.g., works with the identity map).

T (x) = argmin
y

k�
y

� C�

x

k2

f : M ! R

g : N ! R
TF

O(nM log nN)

Incorporating Orthonormality

In many practical situations we would expect a volume-
preserving map, which implies:

CTC = Id

Option: use post-processing to enforce this constraint.
Iterate:

1. Compute the point-to-point map T.

2. Solve for the functional map:

Exactly the same objective as ICP, but in higher dimension. Can
use the same method!

argmin
C, s.t. C

T
C=Id

X

x2M
kC�

x

� �
T (x)k22

Results

FAUST [Bogo
et al. ’14]

TOSCA [Bronstein
et al. ‘08]

SCAPE [Anguelov
et al. ‘05]

Results

A very simple method that puts together many constraints
and uses 100 basis functions gives reasonable results:

radius 0.025
radius 0.05

O.,	Ben-Chen,	Solomon,	Butscher,	Guibas,	Functional	maps:	a	flexible	representation	of	maps	between	shapes,	2012

Segmentation Transfer without P2P

To transfer functions we do not need to convert functional to
pointwise maps.

E.g. we can also transfer segmentations: for each segment,
transfer its indicator function, and for each point pick the
segment that gave the highest value.

