Shape Differences, Functional Map Networks, Applications

Functional Maps as Information Transporters

from cat to lion

 $T_{\phi}: L^2(cat) \to L^2(lion)$ ₃

The Network View: Information Transport Between Visual Data

Networks of Shapes and Images

Societies, or Social Networks of Data Sets

Our understanding of data can greatly benefit from extracting these relations and building relational networks.

We can exploit the relational network to

- transport information around the network
- assess the validity of operations or interpretations of data (by checking consistency against related data)
- assess the quality of the relations themselves (by checking consistency against other relations through cycle closure, etc.)
- extract shared structure among the data

Thus the network becomes a regularizer in any form of joint data analysis.

Semantic Structure Emerges from the Network

[Q. Huang, F. Wang, L. Guibas, '14]

The Operator View

Shape Differences

[R. Rustamov, M. Ovsjanikov, O. Azercot, M. Ben-Chen, F. Chazal, L.G. Siggraph '13]

Understanding Intrinsic Distortions

 Where and how are shapes different, locally and globally, irrespective of their embedding

A Functional View of Distortions

To measure distortions induced by a map, track how inner products of vectors change after transporting.

To measure distortions induced by a map, track how inner products of functions change after transporting.

Riemann

Input: Functional Map F

from cat to lion

Functions on cat are transferred to lion using F

F is a linear operator (matrix) $F: L^2(cat) \rightarrow L^2(lion)$

Output: A Shape Difference

V – area-based shape difference

linear operator (matrix) $V: L^2(cat) \rightarrow L^2(cat)$ $\int_N F(f)F(g) = \int_M fV(g)$

R – conformal shape difference

linear operator (matrix) $R: L^2(cat) \to L^2(cat)$ $\int_N \nabla F(f) \nabla F(g) = \int_M \nabla f \nabla R(g)$

Also operators

The Art of Measurement

 A metric is defined by a functional inner product

$$h^M(f,g) = \int_M f(x)g(x)d\mu(x)$$

So we can compare M and N by comparing

 $h^N(F(f), F(g))$

The functional map *F* transports these functions to *N*, where we repeat this measurement with the inner product $h^{N}(F(f),F(g))$

Riemann

 $h^M(f,g)$

Measurement Discrepancies

 $\int_{lion} F(f)F(g) \, d\mu_l \neq \int_{cat} fg \, d\mu_c$ after before

Both can be considered as inner products on the cat

The Universal Compensator

Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences de Paris

Le bai de ness recherches déal : « Approtonat la metanose sus constantes nées appliquée à l'étaile des systèmes de fonctions sommables, » à qui es appliques à l'étude des systemes ne tonctonne sommannes, « n que orient la mérica d'aroir introduir la notion de coordingenée dans la théorie d'are de la traine d'aroir de la traine inne o stor increant la neceso de coerusenes caos si secore oas sonados ? Vrinces), il serai difícile de le dare. Ce qui des socioses sommatices ? versness, il serast otholie de je tire. Ca qui ou sir, c'ait qu'après les résolutis fondamentant relatifs aux séries de atriar, izoarea ca deraurea aneca par pouseura geometros es maneta Aplant un cest de M. Pejer, l'ideo de représente une fonction par set λ qui gran les transmonnes consentements remais esta vertes un presente de la consente par planeters géomètres et fossión de la consente d part ser cost de M. Feirr, l'idee de representar une romanion par sei Lasse de Fourier devait devanir très familière. De cette façõe, on par sei Foregr areas devenue tres setuniere, tre cette siçõe, on pera l'espace d'une infinité décombroble de dimensio Ar response a uma nomine accompresana de amanana asabilet Jasqu'à aujoard'hai oa ne sait pas le dire. persentator i asque a asperar ten co ne son pes se nero, per une classe plos récelule, pour lo avaleure des fonces ions. Quel est

ième ne comporte plus an lien plos intime entre la denaistre productique. D'autre part, la notion de distance Peut avais étre éségee d'ane manaire simple pour un sous-essendole de points de aotre

gebrico-logarithmique (ou polaire). prosessessentenesses (ou possite). (di quer, pour nat-fenciosa analytique écrite sous la forme has user here the mechanism and yindre extrine tools in hormonic as mark to see the extreme to the difference of the splitcable, i.e. point x_{p} point x_{p} point

etu a Travite. — Sur les opérations fonctionnelles lindeires. E Preset es: Rome, entrende son M. Romin, Distant ENATUUE. - Sur or operations foreconnelles and I. Patratue Russe, présentée par M. Emile Picard. qu'on coteral par opération lie a contra par operation interare; il nota o sonal. Note considerons la totalité Q des for s care dez nombres fixes, par exemple the des fi(x) est dite lineaire. On auontre 1. A(Ji) tend vers A(J). 1909" Lette and

Riesz Representation Theorem

There exists a linear operator

$$V: L^2(cat) \to L^2(cat)$$

such that

 $\langle f, g \rangle_{\text{after}} = \langle f, V(g) \rangle_{\text{before}}$

Frigyes Riesz

Area-Based Shape Difference: $V \approx F^T F$

$$\int_{lion} F(f)F(g) \neq \int_{cat} fg$$

$$\int_{lion} F(f)F(g) = \int_{cat} fV(g)$$

17

A Small Example of V

Conformal Shape Difference: R

Consider a different inner-product of functions ... get information about conformal distortion

$$\int_N \nabla F(f) \nabla F(g) = \int_M \nabla f \nabla R(g)$$

area preservation + angle preservation = isometry

Shape Differences in Collections

Intrinsic Shape Space

Intrinsic Shape Space

Comparing Differences I

23

Localized Comparisons

 $\rho: M \to \mathbb{R}$

supported in Rol

 $D_1 \rho$ to $D_2 \rho$

Exaggeration of Difference in Rol

Comparing Differences II

Analogies: D relates to C as B relates to A

Analogies: D relates to C as B relates to A

Shape Analogies

Extrinsic Shape Differences Shape Synthesis

[E. Corman, J. Solomon, M. Ben-Chen, L. J. Guibas, and M. Ovsjanikov, 2017]

 ℓ increases ℓ decreases Intrinsic differences of an offset surface capture extrinsic distortions of the original surface [Image: K. Crane] 1.86

30

Comparing Differences III

$D_{M,N} \sim C^{-1} D_{P,Q} C$ $Spec(D_{M,N}) \sim Spec(D_{P,Q})$

Aligning Disconnected Collections

First Collection

Second Collection

Aligning Disconnected Collections

Complete graph

Complete graph

Aligning, Without "Crossing the River"

Comparing the differences is sometimes easier than comparing the originals

Large Networks: Consistency of Network Transport

Map Networks for Related Data

Networks of "samenesses"
A Functorial View of Data

Herni Cartan

Saunders MacLane

Samuel Eilenberg

The Information is in the Maps

§ 1} PRELIMINARIES 5 We shall say that the exact sequence (\bullet) splits if Im $(A' \rightarrow A)$ is a direct summand of A. In this case, there exist homomorphisms $A' \to A \to A'$ which together with the homomorphisms $A' \rightarrow A \rightarrow A'$ yield a direct Let F be a module and X a subset of F. We shall say that F is free with X as base if every $x \in F$ can be written uniquely as a finite sum $\sum \lambda_i x_i, \lambda_i \in \Lambda, x_i \in X$. If X is any set we may define F_X as the set of all formal finite sums $\sum \lambda_i x_i$. If we identify $x \in X$ with $1x \in F_X$, then F_X is In particular, if A is a module we may consider F_A . The identity mapping of the base of F_A onto A extends then to a homomorphism mapping of the base of f_A bind f_A bin $0 \to R_A \to F_A \to A \to 0.$ A diagram of modules and homomorphisms, is said to be commutative if the comor modules and nomenon pulsitis, is said to be commutative in the contraction of positions $A \to B \to D$ and $A \to C \to D$ coincide. Similarly the diagram is commutative, if $A \rightarrow B \rightarrow C$ coincides with $A \rightarrow C$. commutative, if $A \to B \to C$ coincides with $A \to C$. We shall have occasion to consider larger diagrams involving several answer and triangles. We chall easy that such a diagram is promoved to the triangles. We shall have occasion to consider larger diagrams involving several squares and triangles. We shall say that such a diagram is commutative, if mark another sources and seize a ach component square and triangle is commutative. Proposition 1.1. (The "5 lemma"). Consider a commutative diagram with exact rows. If ⁽¹⁾ Coker $h_1 = 0$, Ker $h_1 = 0$, Ker $h_{-1} = 0$, then $\operatorname{Ker} h_0 = 0$. If (2) Coker $h_1 = 0$, Coker $h_{-1} = 0$, Ker $h_{-2} = 0$, then Coker $h_0 \equiv 0$ Homological Algebra 1956

37

Yes, But With a Statistical Flavor

- Yes, straight out of the playbook of homological algebra / algebraic topology
- But, the maps
 - are not given by canonical constructions
 - they have to be estimated and can be noisy
 - the network acts as a regularizer ...
 - commutativity still very important
 - imperfections of commutativity in function transport convey valuable information: consistency vs. variability – "curvature" in shape space

Fixing Maps

[Q. Huang, G. Zhang, L. Gao, S. Hu, A. Bustcher, and L. Guibas, 2012]

Cycle-Consistency Low-Rank

 In a map network, commutativity, path-invariance, or cycle-consistency are equivalent to a low rank or semidefiniteness condition on a big mapping matrix

$$X = \begin{pmatrix} I_m & X_{1,2} & \cdots & X_{1,n} \\ X_{1,2} & I_m & \cdots & \cdots \\ \vdots & \vdots & I_m & X_{(n-1),n} \\ X_{n,1} & \vdots & X_{n,(n-1)} & I_m \end{pmatrix}.$$

- Conversely, such a low-rank condition can be used to
 - regularize and clean up functional maps
 - extract shared structure

Map processing!

Map Synchronization by Factorization

$$X = \begin{bmatrix} I_m & X_{12} & \cdots & X_{1n} \\ X_{21} & I_m & \cdots & \vdots \\ \vdots & \vdots & \ddots & X_{n-1,n} \\ X_{n1} & \cdots & X_{n,n-1} & I_m \end{bmatrix}$$

$$X_{ij} = X_{j1} X_{i1}^T$$

$$= \begin{bmatrix} I_m \\ \vdots \\ X_{n1} \end{bmatrix} \begin{bmatrix} I_m & \cdots & X_{n1}^T \end{bmatrix}$$

Map Synchronization

SDP formulation

[Y, Chen, L. Guibas, Q. Huang, 2014]

Recovery guarantees

[Q. Huang, L. Guibas, 2013]

Shared Structure Discovery

Entity Extraction in Images

[F. Wang, Q. Huang, L. G., ICCV '13]

Task: jointly segment a set of related images
 same object, different viewpoints/scales:

similar objects of the same class:

Benefits and challenges:

- Images can provide weak supervision for each other
- But exactly how should they help each other? How to deal with clutter and irrelevant content?

Co-Segmentation via an Image Network

- Image similarity graph based on GIST
 - Each edge has global image similarity w_{ij} and functional maps in both directions;
 - Sparse if large.

Graph for iCoseg-Ferrari

Superpixel Representation

Over-segment images into super-pixels

- Build a graph on superpixels
 - Nodes: super-pixels
 - Edges weighted by length of shared boundary

Encoding Functions over Graphs

Basis of functional space

First M Laplacian
 eigenfunctions of the graph

$$f = \sum_{j=1}^{M} f_j b_i^j = B_i \mathbf{f}$$

Reconstruct any function with small error (M=30)

Binary indicator function

Reconstructed function

Thresholded reconstructed function

Joint Estimation of Functional Maps,

Functional map:

A linear map between functions in two functional spaces

$$\mathbf{f}' = X_{ij}\mathbf{f} \quad X_{ij} \in \mathcal{R}^{M \times M}$$

Can be recovered by a set of probe functions

Joint Estimation of Functional Maps,

• Recover functional maps by aligning image features: $f_{ij}^{\text{feature}} = \|X_{ij}D_i - D_j\|_1$

Features (probe functions) for each super-pixel:

- average RGB color, 3-dimensional;
- 64 dimensional RGB color histogram;
- 300-dimensional bag-of-visual-words.

Joint Estimation of Functional Maps, II

Regularization term:

 Λ_{i} , Λ_{j} diagonal matrices of Laplacian eigenvalues

$$f_{ij}^{\text{reg}} = \|X_{ij}\Lambda_i - \Lambda_j X_{ij}\|^2$$

Correspond bases of similar spectra
 Enforce sparsity of map

Map with regularization

Map without regularization

Joint Estimation of Functional Maps, III

Incorporating map cycle consistency:

 A transported function along any loop should be identical to the original function:

$$X_{i_k i_0} \cdots X_{i_1 i_2} X_{i_0 i_1} \mathbf{f} = \mathbf{f} \quad \bigstar \quad X_{i_j} Y_i = Y_j, \quad \forall (i,j) \in \mathcal{G}$$

Consistency term:

$$f^{\text{cons}} = \sum_{(i,j)\in\mathcal{G}} w_{ij} f_{ij}^{\text{cons}} = \sum_{(i,j)\in\mathcal{G}} w_{ij} \|X_{ij}Y_i - Y_j\|_{\mathcal{F}}^2$$

Image global similarity weight via GIST

Joint Estimation of Functional Maps, III

Plato's allegory of the cave: a latent space

 $X_{ij} \approx Y_j^{-1} Y_i$

X 30x30, Y 30x20

 Y_i

 X_{ij}

 X_{34}

n-1

Joint Estimation of Functional Maps, IV

Overall optimization

$$\min \sum_{(i,j)\in\mathcal{G}} w_{ij} \left(f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)$$
$$s.t. \quad Y^T Y = I_m$$

• Alternating optimization: • Fix Y, solve X \implies Independent QP problems $X_{ij}^{\star} = \arg \min_X \left(f_{ij}^{\text{feature}} + \mu f_{ij}^{\text{reg}} + \lambda f_{ij}^{\text{cons}} \right)$ • Fix X, solve Y \implies Eigenvalue problem $\min_x \operatorname{trace}(Y^TWY)$ $s.t. Y^TY = I_m$ $W_{ij} = \begin{cases} \sum_{\substack{(i,j') \in \mathcal{G} \\ 0 & \text{otherwise}}} W_{ij} + X_{ij}^T & (i,j) \in \mathcal{G} \\ 0 & \text{otherwise}} \end{cases}$

Consistency Matters

Source image

Generating Consistent Segmentations

Two objectives for segmentation functions

consistent under functional map transportation

 $f^{\mathrm{map}} = \sum_{(i,j)\in\mathcal{G}} w_{ij} \|X_{ij}\mathbf{f}_i - \mathbf{f}_j\|_{\mathcal{F}}^2$

• agreement with normalized cut scores:

We look for network fixed points! $f^{\text{seg}} = \sum_{i=1}^{N} \mathbf{f}_{i}^{T} B_{i}^{T} L_{i} B_{i} \mathbf{f}_{i} \leftarrow \qquad \text{Easy to incorporate} \\ \text{labeled images with} \\ \text{ground truth segmentation} \\ \bullet \text{ Joint optimization:} \\ \end{cases}$

min
$$f^{\text{seg}} + \gamma f^{\text{map}}$$
 s.t. $\sum_{i=1}^{N} \|\mathbf{f}_i\|^2 = 1$ Eigen-decomposition problem 55

Experiments

iCoseg dataset

- Very similar or the same object in each class;
- 5~10 images per class.

MSRC dataset

- Similar objects in each class;
- ~30 images per class.
- PASCAL data set
 - Retrieved from PASCAL VOC 2012 challenge;
 - All images with the same object label;
 - Larger scale;
 - Larger variability.

iCoseg data set

New unsupervised method

- Mostly outperforms other unsupervised methods
- Sometimes even outperforms supervised methods
- Supervised input is easily added and further improves the results

Kuettel'12 (Su	Unsupervised	
Image+transfer	Full model	ГПарз
87.6	91.4	90.5

			45 	
Class	Joulin '10	Rubio '12	Vicente '11	Fmaps -uns
Alaska Bear	74.8	86.4	90.0	90.4
Red Sox Players	73.0	90.5	90.9	94.2
Stonehenge1	56.6	87.3	63.3	92.5
Stonehenge2	86.0	88.4	88.8	87.2
Liverpool FC	76.4	82.6	87.5	89.4
Ferrari	85.0	84.3	89.9	95.6
Taj Mahal	73.7	88.7	91.1	92.6
Elephants	70.1	75.0	43.1	86.7
Pandas	84.0	60.0	92.7	88.6
Kite	87.0	89.8	90.3	93.9
Kite panda	73.2	78.3	90.2	93.1
Gymnastics	90.9	87.1	91.7	90.4
Skating	82.1	76.8	77.5	78.7
Hot Balloons	85.2	89.0	90.1	90.4
Liberty Statue	90.6	91.6	93.8	96.8
Brown Bear	74.0	80.4	95.3	88.1
Average	78.9	83.5	85.4	90.5 7

Supervised

method

PASCAL

Unsupervised performance comparison

Class	Ν	Joulin '10	Rubio '12	Fmaps -uns
Cow	30	81.6	80.1	89.7
Plane	30	73.8	77.0	87.3
Face	30	84.3	76.3	89.3
Cat	24	74.4	77.1	88.3
Car(front)	6	87.6	65.9	87.3
Car(back)	6	85.1	52.4	92.7
Bike	30	63.3	62.4	74.8

Supervised performance comparison

Class	Vicente '11	Kuettel '12	Fmaps -s
Cow	94.2	92.5	94.3
Plane	83.0	86.5	91.0
Car	79.6	88.8	83.1
Sheep	94.0	91.8	95.6
Bird	95.3	93.4	95.8
Cat	92.3	92.6	94.5
Dog	93.0	87.8	91.3

Class	N	L	Kuettel '12	Fmaps -s	Fmaps -uns
Plane	178	88	90.7	92.1	89.4
Bus	152	78	81.6	87.1	80.7
Car	255	128	76.1	90.9	82.3
Cat	250	131	77.7	85.5	82.5
Cow	135	64	82.5	87.7	85.5
Dog	249	121	81.9	88.5	84.2
Horse	147	68	83.1	88.9	87.0
Sheep	120	63	83.9	89.6	86.5

 New method mostly outperforms the state-ofthe-art techniques in both supervised and unsupervised settings

iCoseg: 5 images per class are shown

iCoseg: 5 images per class are shown

MSRC: 5 images per class are shown

3

MSRC: 5 images per class are shown

1400000

•4

Multi-Class Co-Segmentation

[F. Wang, Q. Huang, M. Ovsjanikov, L. G., CVPR'14]

Input:

- A collection of N images sharing M objects
- Each image contains a subset of the objects

Output

- Discovery of what objects appear in each image
- Their pixel-level segmentation

Framework

Optimizing Segmentation Functions

Alternating between:

- Continuous optimization:
 - Optimal segmentation functions in each class
- Combinatorial optimization:
 - Class assignment by propagating segmentation functions

Experimental Results

Accuracy

- Intersection-over-union
- Find the best one-to-one matching between each cluster and each ground-truth object.
- Benchmark datasets
 - MSRC: 30 images, 1 class (degenerated case);
 - FlickrMFC data set: 20 images, 3~6 classes
 - PASCAL VOC: 100~200 images, 2 classes
Experimental Results

	Ν		Kim'12	Kim'11	Joulin '10	Mukherjee '11	Ours
Apple	20	6	40.9	32.6	24.8	25.6	46.6
Baseball	18	5	31.0	31.3	19.2	16.1	50.3
butterfly	18	8	29.8	32.4	29.5	10.7	54.7
Cheetah	20	5	32.1	40.1	50.9	41.9	62.1
Cow	20	5	35.6	43.8	25.0	27.2	38.5
Dog	20	4	34.5	35.0	32.0	30.6	53.8
Dolphin	18	3	34.0	47.4	37.2	30.1	61.2
Fishing	18	5	20.3	27.2	19.8	18.3	46.8
Gorilla	18	4	41.0	38.8	41.1	28.1	47.8
Liberty	18	4	31.5	41.2	44.6	32.1	58.2
Parrot	18	5	29.9	36.5	35.0	26.6	54.1
Stonehenge	20	5	35.3	49.3	47.0	32.6	54.6
Swan	20	3	17.1	18.4	14.3	16.3	46.5
Thinker	17	4	25.6	34.4	27.6	15.7	68.6
Average	-	-	31.3	36.3	32.0	25.1	53.1

Performance comparison on the MFCFlickr dataset

class	Ν	Joulin'10	Kim'11	Mukherjee'11	Ours
Bike	30	43.3	29.9	42.8	51.2
Bird	30	47.7	29.9	-	55.7
Car	30	59.7	37.1	52.5	72.9
Cat	24	31.9	24.4	5.6	65.9
Chair	30	39.6	28.7	39.4	46.5
Cow	30	52.7	33.5	26.1	68.4
Dog	30	41.8	33.0	-	55.8
Face	30	70.0	33.2	40.8	60.9
Flower	30	51.9	40.2	-	67.2
House	30	51.0	32.2	66.4	56.6
Plane	30	21.6	25.1	33.4	52.2
Sheep	30	66.3	60.8	45.7	72.2
Sign	30	58.9	43.2	-	59.1
Tree	30	67.0	61.2	55.9	62.0

Performance comparison on the MSRC dataset

	Ν	NCut	MNcut	Ours
Bike + person	248	27.3	30.5	40.1
Boat + person	260	29.3	32.6	44.6
Bottle + dining table	90	37.8	39.5	47.6
Bus + car	195	36.3	39.4	49.2
bus + person	243	38.9	41.3	55.5
Chair + dining table	134	32.3	30.8	40.3
Chair + potted plant	115	19.7	19.7	22.3
Cow + person	263	30.5	33.5	45.0
Dog + sofa	217	44.6	42.2	49.6
Horse + person	276	27.3	30.8	42.1
Potted plant + sofa	119	37.4	37.5	40.7

Performance comparison on the PASCAL-multi dataset

Apple + picking

Baseball + kids

Butterfly + blossom

Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pum

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe

Cheetah + Safari

Cow + pasture

Dog + park

Dolphin + aquarium

Cheetah + Safari (red: cheetah; yellow: lion; magenta: monkey.)

Cow + pasture (red: black cow; green: brown cow; blue: man in blue.)

Dog + park (red: black dog; green: brown dog; blue: white dog.)

Dolphin + aquarium (red: killer whale; green: dolphin.)

Fishing + Alaska

Parrot + zoo

Fishing + Alaska (blue: man in white; green: man in gray; magenta: woman in gray; yellow: salmon.

Liberty + statue (blue: empire state building; green: red boat; yellow: liberty state

Parrot + zoo (red: hand; green: parrot in green; blue: parrot in red.)

Stonehenge

Swan + zoo

Thinker + Rodin

Stonehenge (blue: cow in white; yellow: person; magenta: stonehenge.)

Swan + zoo (blue: gray swan; green: black swan.)

Thinker + Rodin (red: sculpture Thinker; green: sculpture Venus; blue: Van Gogh.)

Apple + picking (red: apple bucket; magenta: girl in red; yellow: girl in blue; green: baby; cyan: pum

Baseball + kids (green: boy in black; blue: boy in grey; yellow: coach.)

Butterfly + blossom (green: butterfly in orange; yellow: butterfly in yellow; cyan: red flowe

Consistent Shape Segmentation

[Q. Huang, F. Wang, L. Guibas, '14]

First Build a Network

distance histogram

Use the D2 shape descriptor and connect each shape to its nearest neighbors

 $\mathcal{G} = (\mathcal{F}, \mathcal{E})$

The Pipeline

Original shapes with noisy maps

Cleaned up maps

Consistent basis functions extracted

Joint Map Optimization

Step 1: Convex low-rank recovery using robust PCA – we minimize over all X

convex!

trace norm $\|X\|_{\star} = \sum_i \sigma_i(X)$

$$X^{\star} = \lambda \|X\|_{\star} + \min_{X} \sum_{(i,j) \in \mathcal{G}} \|X_{ij}C_{ij} - D_{ij}\|_{2,1}$$

 $||A||_{2,1} = \sum_i ||\vec{a}_i||$

Dual ADMM

Step 2: Perturb the above X to force the factorization

$$\sum_{1 \le i,j \le N} \|X_{ij}^{\star} - Y_j^+ Y_i\|_F^2 + \mu \sum_{i=1}^N \sum_{1 \le k < l \le L} (\mathbf{y}_{ik}^T \mathbf{y}_{il})^2$$

Non-linear least squares
Gauss-Newton descent

The Y_i give us the desired latent spaces

Consistent Shape Segmentation

Via 2nd order MRF on each shape independently

Hierarchical Scaling

The Network is the Abstraction

Mosaicking or SLAM at the Level of Functions

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15463-f08/www/proj4/www/gme/

robotics.ait.kyushu-u.ac.jp

The Network is the Abstraction

The Network is the Abstraction

Functional Maps and Deep Nets

Learning for 3D Data

Build 3D knowledge base

Design deep learning methods

An Issue of Representation

Extant Approaches

Volumetric

Multi-View

3DShapeNets by Z. Wu et al. CVPR 15

VoxNet by D. Maturana et al. IEEE/RSJ 15

MVCNN by H. Su et al. ICCV 15

DeepPano by B. Shi et al. IEEE/SPL 15

Most Popular Representations

Point cloud

Mesh

Functional Maps in Graph-Based Deep Nets

Synchronized Spectral CNN

Input: shape graph equipped with vertex functions

Output: semantic functions

[L, Yi, H. Su, LG, 2017]

The Difficulty of CNN Parameter Sharing on General Graphs

Shuman et al. 2013

Grid

General Graph

Generalized Convolution via Graph Fourier Transform

Multiplication in the spectral domain

Cross Domain Discrepancy

Spectral Domain 1

Spectral domains are independently defined for each shape graph

Spectral Domain 2

The same spectral function can induce very different spatial functions on different graphs

Cross domain parameter sharing is not valid

Different Domains Need to Be Synchronized

Spectral Transformer Network

Synchronization Visualization

before synchronization

after synchronization

Key Ideas Summary

- Using spectral multiplication to replace spatial convolution, to allow parameter sharing at different locations on a shape.
- Using spectral transformer network to generate functional maps and synchronize different spectral domains, so as to allow parameter sharing across different shapes.
Basic Network Operations

Forward Transform

Spectral Multiplication

Backward Transform

Synchronization

Network Architecture

Application

Part Segmentation

category	mean	plane	bag	cap	car	chair	ear-	guitar	knife	lamp	laptop	motor	-mug	pistol	rocket	skate-	table
							phone					bike				board	
Wu14 [26]	-	63.20	-	-	-	73.47	-	-	-	74.42	-	-	-	-	-	-	74.76
Yi16 [28]	81.43	80.96	78.37	77.68	75.67	87.64	61.89	91.79	85.36	80.59	95.58	70.59	91.85	85.94	53.13	69.81	75.33
ACNN [2]	79.63	76.35	72.89	70.80	72.72	86.12	71.14	87.84	81.98	77.43	95.49	45.68	89.49	77.41	49.23	82.05	76.71
Voxel CNN	79.37	75.14	72.80	73.28	70.00	87.17	63.50	88.35	79.58	74.43	93.92	58.67	91.79	76.41	51.16	65.25	77.08
Ours1	83.48	80.61	81.62	76.92	73.86	88.65	74.48	89.03	85.34	83.47	95.53	62.74	92.01	80.88	62.10	82.23	81.36
Ours2	84.74	81.55	81.74	81.94	75.16	90.24	74.88	92.97	86.10	84.65	95.61	66.66	92.73	81.61	60.61	82.86	82.13

IoU for part segmentation on 16 categories. Ours1 represents a variation of our framework without SpecTN and Ours2 corresponds to our full pipeline with SpecTN.

NATE ALS

Application: Keypoint Prediction

Keypoint Prediction

Comparison with previous states via PCK curve

Prediction Visualization

Application: Normal Prediction

Deep Nets in the Computation of Functional Maps

[O. Litany, T. Remez, E. Rodolà , A. M. Bronstein, M. M. Bronstein, 2017]

Improving Functional Maps with Deep Nets

- Goal: improve the descriptors used during the functional map computation to make the resulting map closer to pointto-point
- In ML, common to view a correspondence problem as a labeling problem
- Fmaps can be thought of as soft correspondences

Siamese Metric Learning

$$\begin{split} \text{Poitwise feature cost} \quad \ell_{\mathrm{S}}(\Theta) &= \gamma \sum_{x,x^{+}} \|\mathbf{f}_{\Theta}(x) - \mathbf{f}_{\Theta}(x^{+})\|_{2}^{2} \\ &+ (1-\gamma) \sum_{x,x^{-}} \left[\mu - \|\mathbf{f}_{\Theta}(x) - \mathbf{f}_{\Theta}(x^{-})\|_{2}^{2}\right]_{+} \end{split}$$

FMNet: Structured Correspondences with FMaps

Correspondence Quality

Correspondence evaluated using asymmetric Princeton benchmark (training and testing: disjoint subsets of FAUST)

Methods: Kim et al. 2011 (BIM); Rodolà et al. 2014 (RF); Boscaini et al. 2015 (ADD); Masci et al. 2015 (GCNN); Boscaini et al. 2016 (ACNN); Monti et al. 2016 (MoNet); Litany et al. 2017 (FMNet); data: Bogo et al. 2014 (FAUST); benchmark: Kim et al. 2011

Horizontal and Vertical Networks

Open Problems on Functional Maps

Open Problems on Functional Maps, I

- Basis selection
 - Wavelets?
 - Replace regularizers by exact commutation?
- Probe function selection and learning
 - Transport quality
 - Different maps for different functional subspaces?
- Subclasses of functional maps
 - Point-to-point: how close? new projection algorithms?
 - Positive functional maps (soft maps)
- Statistics on functional maps
 - Encoding map distributions
 - Maplets?

Open Problems on Functional Maps, II

- Network formation
- Map processing and reconstruction
- Latent spaces
 - Stability
 - Hierarchical and non-hierarchical structures
 - Map-based clustering
- Use of supervision / learning
- Functional maps and deep nets
 - Moving both vertically and horizontally
 - Nets that learn algebraic structure: "homomorphic descriptors"
 - Parametrizing the space of learning objectives

Functoriality

Classical "vertical" view of data analysis:

Signals to symbols

•from features, to parts, to semantics ...

 A new "horizontal" view based on peer-topeer signal relationships
so that semantics emerges from the network

Thank You