Computing and Processing Correspondences with Functional Maps

SIGGRAPH 2017 course

Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal, Alex Bronstein

Università della Svizzera italiana

General Overview

Overall Objective:

Create tools for computing and analyzing *mappings* between geometric objects.

General Overview

Overall Objective:

Create tools for computing and analyzing *mappings* between geometric objects.

Rather than comparing *points* on objects it is often easier to compare *real-valued functions* defined on them. Such maps can be represented as matrices.

Course Overview

Course Website:

http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/

or http://bit.do/fmaps2017

Course Notes:

Linked from the website. Or use <u>http://bit.do/fmaps2017 notes</u> Attention: (significantly) more material than in the lectures

Sample Code:

See **Sample Code** link on the website. **New: demo code** for basic operations.

Course Schedule

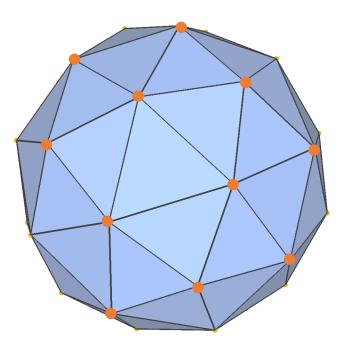
2:00pm – 2:45pm Introduction (Maks)

- Introduction to the functional maps framework.
- 2:50pm 3:35pm *Computing Functional Maps* (Etienne)
 Optimization methods for functional map estimation
 - Optimization methods for functional map estimation.
- 3:40pm 4:25pm *Functional Vector Fields* (Miri)
 - From functional maps to tangent vector fields and back.
- 4:30pm 5:15pm *Maps in Shape Collections* (Leo)
 Networks of maps, shape variability, learning.

5:15pm - Wrapup, Q&A (all)

What is a Shape?

- O Continuous: a surface embedded in 3D.
- O Discrete: a graph embedded in 3D (triangle mesh).

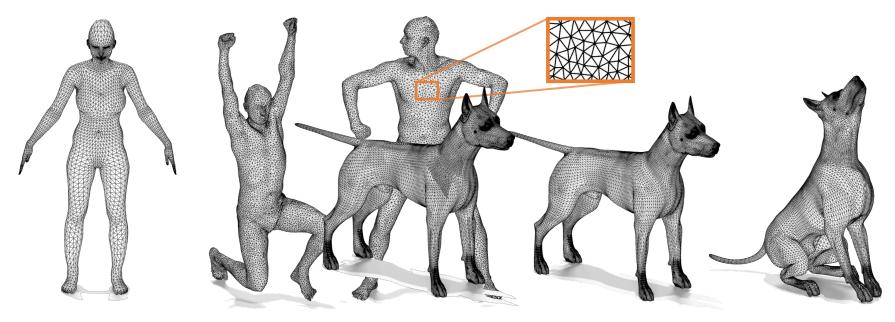


Common assumptions:

- Connected.
- Manifold.
- Without Boundary.

What is a Shape?

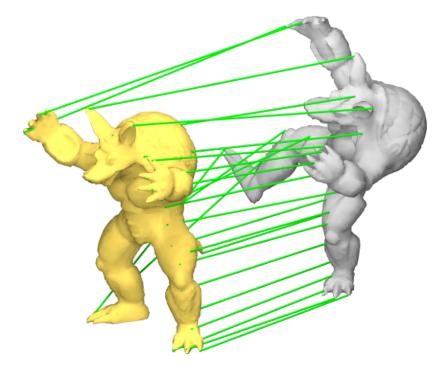
- O Continuous: a surface embedded in 3D.
- O Discrete: a graph embedded in 3D (triangle mesh).



5k – 200k triangles

Overall Goal

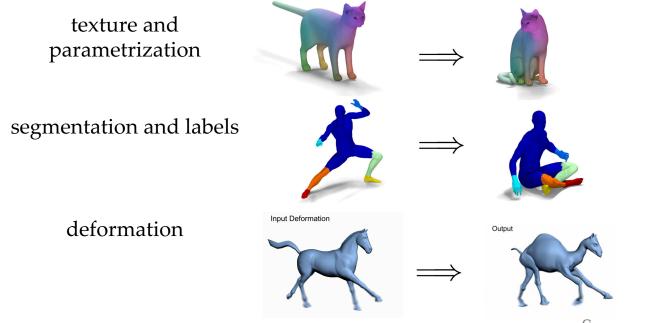
G Given two shapes, find **correspondences** between them.



Sinding the **best** map between a pair of shapes.

Why Shape Matching?

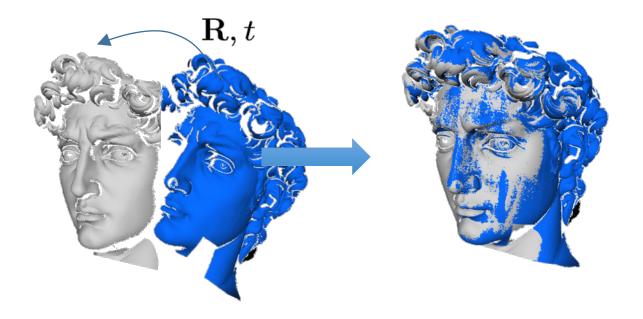
Given a correspondence, we can transfer:



Sumner et al. '04.

Other applications: shape interpolation, reconstruction ...

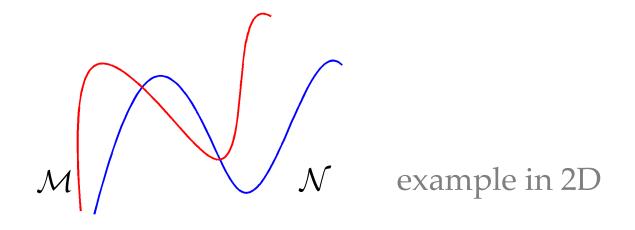
Rigid Shape Matching



- Given a pair of shapes, find the optimal *Rigid Alignment* between them.
- The unknowns are the rotation/translation parameters of the source onto the target shape. 10

Iterative Closest Point (ICP)

O Classical approach: iterate between finding correspondences and finding the transformation:

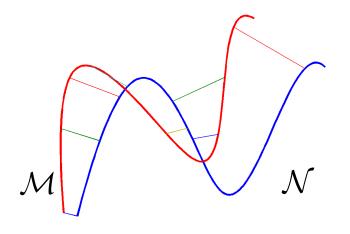


Given a pair of shapes, \mathcal{M} and \mathcal{N} , iterate:

1. For each $x_i \in \mathcal{M}$ find **nearest** neighbor $y_i \in \mathcal{N}$.

$$\underset{R,t}{\operatorname{arg\,min}} \ \sum_{i} \|Rx_{i} + t - y_{i}\|_{2}^{2}$$
 11

O Classical approach: iterate between finding correspondences and finding the transformation:

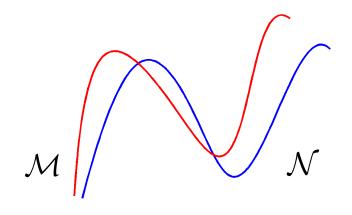


Given a pair of shapes, \mathcal{M} and \mathcal{N} , iterate:

1. For each $x_i \in \mathcal{M}$ find **nearest** neighbor $y_i \in \mathcal{N}$.

$$\underset{R,t}{\operatorname{arg\,min}} \ \sum_{i} \|Rx_{i} + t - y_{i}\|_{2}^{2}$$
 12

O Classical approach: iterate between finding correspondences and finding the transformation:

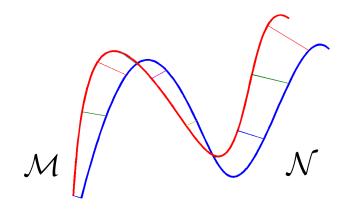


Given a pair of shapes, \mathcal{M} and \mathcal{N} , iterate:

1. For each $x_i \in \mathcal{M}$ find **nearest** neighbor $y_i \in \mathcal{N}$.

$$\underset{R,t}{\operatorname{arg\,min}} \ \sum_{i} \|Rx_{i} + t - y_{i}\|_{2}^{2}$$
 13

O Classical approach: iterate between finding correspondences and finding the transformation:



Given a pair of shapes, \mathcal{M} and \mathcal{N} , iterate:

1. For each $x_i \in \mathcal{M}$ find **nearest** neighbor $y_i \in \mathcal{N}$.

$$\underset{R,t}{\operatorname{arg\,min}} \ \sum_{i} \|Rx_{i} + t - y_{i}\|_{2}^{2}$$
 14

O Classical approach: iterate between finding correspondences and finding the transformation:

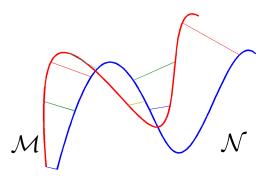
$$\mathcal{M}$$
 \mathcal{N}

Given a pair of shapes, \mathcal{M} and \mathcal{N} , iterate:

1. For each $x_i \in \mathcal{M}$ find **nearest** neighbor $y_i \in \mathcal{N}$.

$$\underset{R,t}{\operatorname{arg\,min}} \ \sum_{i} \|Rx_{i} + t - y_{i}\|_{2}^{2}$$
 15

O Classical approach: iterate between finding correspondences and finding the transformation:



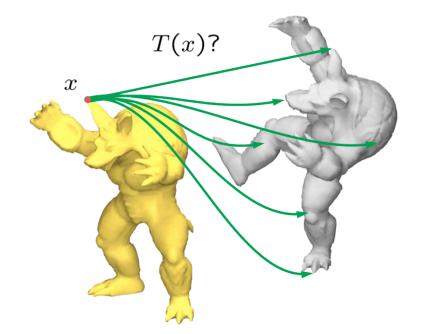
- 1. Finding nearest neighbors: can be done with spacepartitioning data structures (e.g., KD-tree).
- 2. Finding the optimal transformation R, t minimizing:

$$\underset{R \in SO(3), \ t \in \mathbb{R}^3}{\arg \min} \sum_{i} \|Rx_i + t - y_i\|_2^2$$

Can be done efficiently via SVD decomposition.

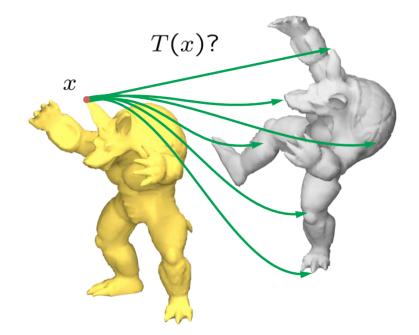
Arun et al., Least-Squares Fitting of Two 3-D Point Sets

Non-Rigid Shape Matching



Unlike rigid matching with rotation/translation, there is no compact representation to optimize for in non-rigid matching.

Non-Rigid Shape Matching



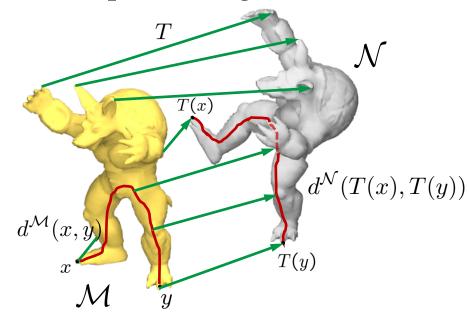
Main Questions:

- What does it mean for a correspondence to be "good"?
- How to compute it efficiently in practice?

Isometric Shape Matching

Deformation Model:

Good maps must preserve geodesic distances.



Geodesic: length of shortest path lying entirely on the surface.

Isometric Shape Matching

Approach: T T(x) T(x) T(x) T(y) $d^{\mathcal{M}}(x,y)$ T(y)

Find the point mapping by minimizing the distance distortion:

$$T_{\text{opt}} = \underset{T}{\operatorname{arg\,min}} \sum_{x,y} \| d^{\mathcal{M}}(x,y) - d^{\mathcal{N}}(T(x),T(y)) \|$$

The unknowns are point correspondences.

Isometric Shape Matching

Approach: T T(x) T(x) T(x) $d^{\mathcal{N}}(x,y)$ T(y) T(y)

Find the point mapping by minimizing the distance distortion:

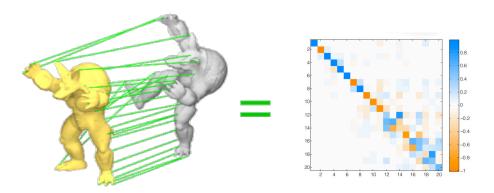
$$T_{\text{opt}} = \underset{T}{\arg\min} \sum_{x,y} \| d^{\mathcal{M}}(x,y) - d^{\mathcal{N}}(T(x),T(y)) \|$$

Problem:

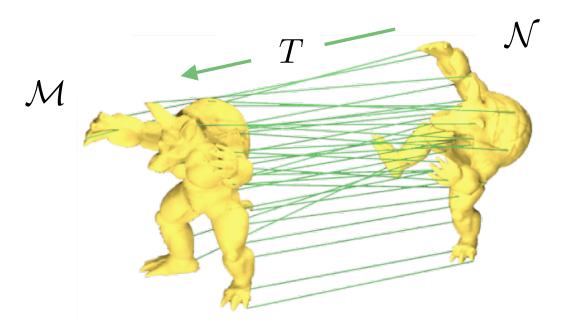
The space of possible solutions is highly non-linear, non-convex.

We would like to define a representation of shape maps that is more amenable to direct optimization.

- 1. A compact representation for "natural" maps.
- 2. Inherently global and multi-scale.
- 3. Handles uncertainty and ambiguity gracefully.
- 4. Allows efficient manipulations (averaging, composition).
- 5. Leads to simple (linear) optimization problems.

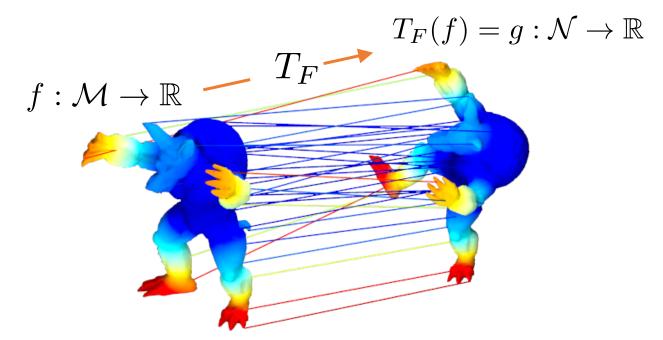


Given two shapes and a pointwise map $T : \mathcal{N} \to \mathcal{M}$



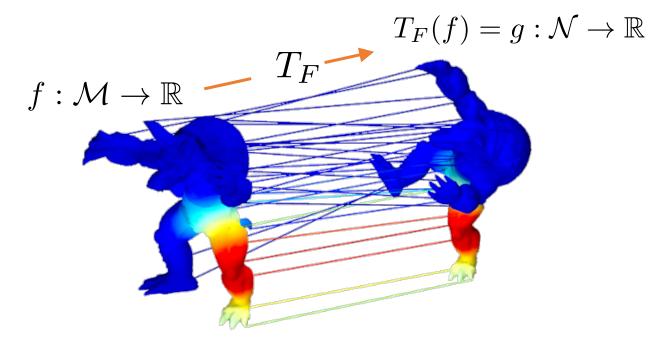
The map *T* induces a functional correspondence: $T_F(f) = g$, where $g = f \circ T$

Given two shapes and a pointwise map $T : \mathcal{N} \to \mathcal{M}$



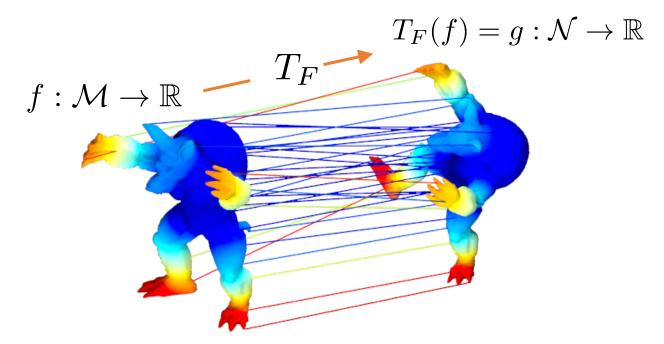
The map *T* induces a functional correspondence: $T_F(f) = g$, where $g = f \circ T$

Given two shapes and a pointwise map $T : \mathcal{N} \to \mathcal{M}$



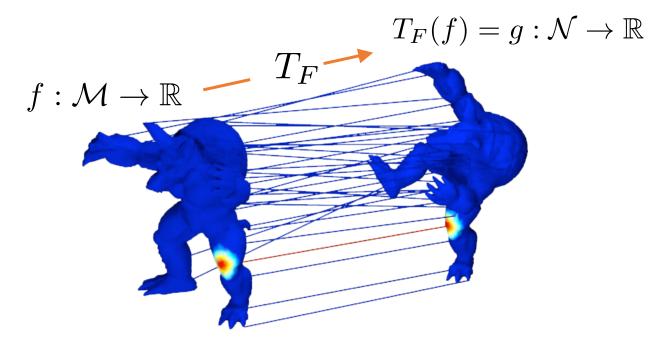
The map *T* induces a functional correspondence: $T_F(f) = g$, where $g = f \circ T$

Given two shapes and a pointwise map $T : \mathcal{N} \to \mathcal{M}$



The induced functional correspondence is linear: $T_F(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 T_F(f_1) + \alpha_2 T_F(f_2)$

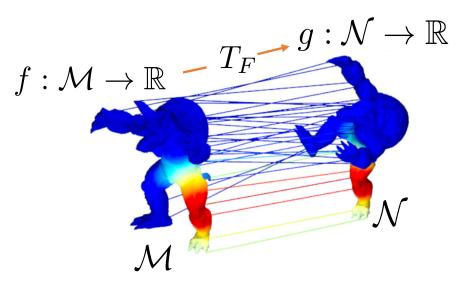
Given two shapes and a pointwise map $T : \mathcal{N} \to \mathcal{M}$



The induced functional correspondence is **complete**.

Observation

Assume that both: $f \in \mathcal{L}_2(\mathcal{M}), g \in \mathcal{L}_2(\mathcal{N})$



Express both f and $T_F(f)$ in terms of *basis functions*:

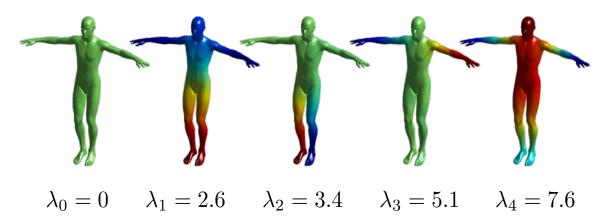
$$f = \sum_{i} a_i \phi_i^{\mathcal{M}} \qquad g = T_F(f) = \sum_{j} b_j \phi_j^{\mathcal{N}}$$

Since T_F is linear, there is a linear transformation from $\{a_i\}$ to $\{b_j\}$.

Choice of Basis:

Eigenfunctions of the Laplace-Beltrami operator: $\Delta \phi_i = \lambda_i \phi_i \qquad \Delta(f) = -\text{div}\nabla(f)$

- Generalization of *Fourier bases* to surfaces.
- Ordered by eigenvalues and provide a natural notion of *scale*.



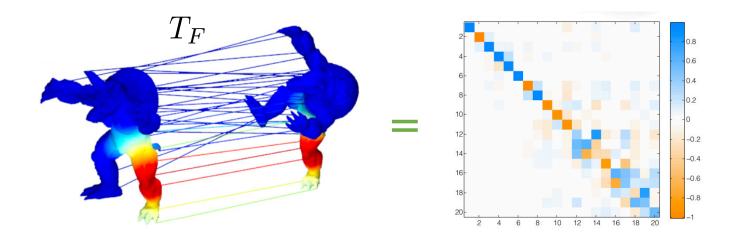
Choice of Basis:

Eigenfunctions of the Laplace-Beltrami operator: $\Delta \phi_i = \lambda_i \phi_i$

- Generalization of *Fourier bases* to surfaces.
- Ordered by eigenvalues and provide a natural notion of *scale*.
- Can be computed efficiently, with a sparse matrix eigensolver.

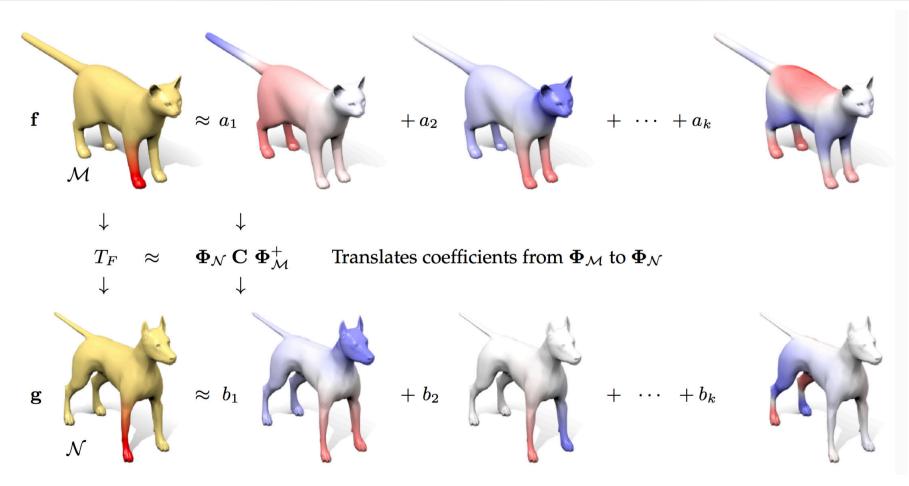
Since the functional mapping T_F is linear:

 $T_F(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 T_F(f_1) + \alpha_2 T_F(f_2)$



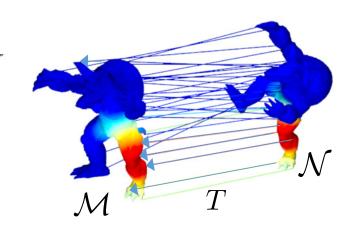
T_F can be represented as a matrix *C*, given a choice of basis for function spaces.

Functional Map Definition



Functional map: matrix C that translates coefficients from $\Phi_{\mathcal{M}}$ to $\Phi_{\mathcal{N}}$. ³²

Example 1



Given two shapes with $n_{\mathcal{M}}, n_{\mathcal{N}}$ points and a map: $T : \mathcal{N} \to \mathcal{M}$

 $\mathbf{T}: n_{\mathcal{N}} \times n_{\mathcal{M}} \quad \text{matrix encoding the map } T, \\ \text{one 1 per column with zeros everywhere else.}$

If functions are represented as vectors (in the hat basis), the functional map is given by matrix-vector product:

$$g = \mathbf{T}^T f \qquad C = \mathbf{T}^T$$

Example 2

Given two shapes with $n_{\mathcal{M}}, n_{\mathcal{N}}$ points and a map: $T : \mathcal{N} \to \mathcal{M}$

 $\mathbf{T}: n_{\mathcal{N}} \times n_{\mathcal{M}} \quad \text{matrix encoding the map } T, \\ \text{one 1 per column with zeros everywhere else.}$

If functions are represented in the reduced basis:

 $\Phi_{\mathcal{M}}: n_{\mathcal{M}} \times k_{\mathcal{M}}$ matrix of the first $k_{\mathcal{M}}$ eigenfunctions of $\Delta_{\mathcal{M}}$ as columns. $\Phi_{\mathcal{N}}: n_{\mathcal{N}} \times k_{\mathcal{N}}$ matrix of the first $k_{\mathcal{N}}$ eigenfunctions of $\Delta_{\mathcal{N}}$ as columns.

The functional map matrix:

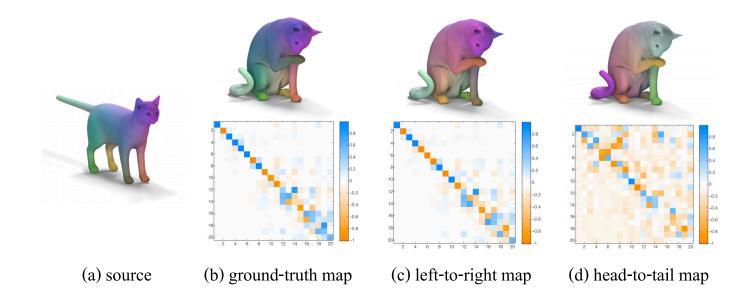
$$C = \Phi_{\mathcal{N}}^{+} \mathbf{T}^{T} \Phi_{\mathcal{M}} \qquad ^{+}: \text{left pseudo-inverse.}$$

$$C = \Phi_{\mathcal{N}}^{T} \mathbf{T}^{T} \Phi_{\mathcal{M}} \qquad \text{if} \qquad \Phi_{\mathcal{N}}^{T} \Phi_{\mathcal{N}} = Id$$

$$C = \Phi_{\mathcal{N}}^{T} A_{\mathcal{N}} \mathbf{T}^{T} \Phi_{\mathcal{M}} \qquad \text{if} \qquad \Phi_{\mathcal{N}}^{T} A_{\mathcal{N}} \Phi_{\mathcal{N}} = Id \qquad 34$$

Example Maps in a Reduced Basis

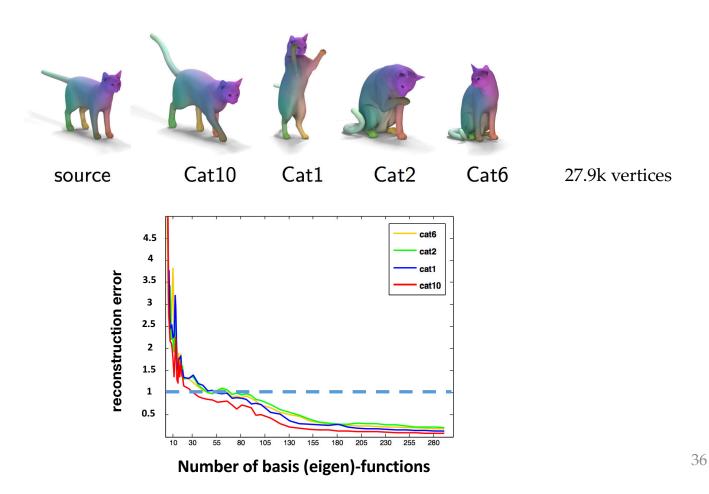
Triangle meshes with pre-computed pointwise maps



"Good" maps are close to being diagonal

Reconstructing from LB basis

Map reconstruction error using a fixed size matrix.



Functional Map algebra

- 1. Map composition becomes matrix multiplication.
- 2. Map inversion is matrix inversion (in fact, transpose).
- 3. Algebraic operations on functional maps are possible.
- E.g. interpolating between two maps with

C =
$$\alpha$$
C₁ + (1- α)C₂.
(a) $\alpha = 0$ (b) $\alpha = 0.25$ (c) $\alpha = 0.5$ (d) $\alpha = 0.75$ (e) $\alpha = 1$

Shape Matching

In practice we do not know *C*. Given two objects our goal is to find the correspondence.

How can the functional representation help to compute the map in practice?

Matching via Function Preservation

Suppose we don't know *C*. However, we expect a pair of functions $f : \mathcal{M} \to \mathbb{R}$ and $g : \mathcal{N} \to \mathbb{R}$ to correspond. Then, *C* must be s.t. $C\mathbf{a} \approx \mathbf{b}$

where $f = \sum_{i} a_i \phi_i^{\mathcal{M}}, \quad g = \sum_{i} b_i \phi_i^{\mathcal{N}}.$

Given enough $\{a, b\}$ pairs, we can recover *C* through *a linear least squares system*.

Map Constraints

Suppose we don't know *C*. However, we expect a pair of functions $f : \mathcal{M} \to \mathbb{R}$ and $g : \mathcal{N} \to \mathbb{R}$ to correspond. Then, *C* must be s.t. $C\mathbf{a} \approx \mathbf{b}$

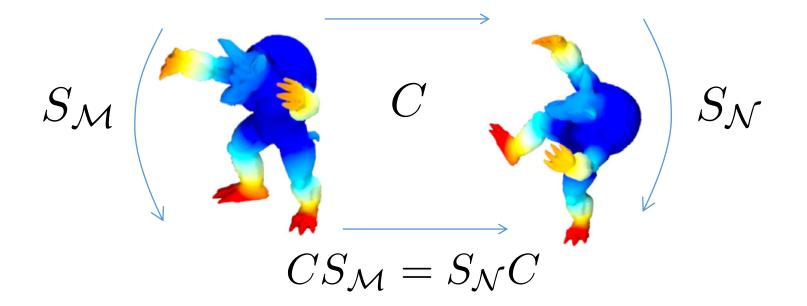
Function preservation constraint is general and includes:

- Attribute (e.g., color) preservation.
- Descriptor preservation (e.g. Gauss curvature).
- Landmark correspondences (e.g. distance to the point).
- Part correspondences (e.g. indicator function).

Commutativity Constraints

Regularizations:

Commutativity with other operators:



Note that the energy: $||CS_{\mathcal{M}} - S_{\mathcal{N}}C||_{F}^{2}$ is *quadratic* in *C*.

Regularization

Lemma 1:

The mapping is *isometric,* if and only if the functional map matrix commutes with the Laplacian:

$$C\Delta_{\mathcal{M}} = \Delta_{\mathcal{N}}C$$

Implies that exact isometries result in *diagonal functional maps*.

Functional maps: a flexible representation of maps between shapes, *O., Ben-Chen, Solomon, Butscher, Guibas,* SIGGRAPH 2012

Regularization

Lemma 2:

The mapping is *locally volume preserving*, if and only if the functional map matrix is *orthonormal*: $C^T C = Id$

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov et al., SIGGRAPH 2013

Regularization

Lemma 3:

If the mapping is *conformal* if and only if:

$$C^T \Delta_1 C = \Delta_2$$

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov et al., SIGGRAPH 2013

Basic Pipeline

Given a pair of shapes \mathcal{M}, \mathcal{N} :

- 1. Compute the first *k* (~80-100) eigenfunctions of the Laplace-Beltrami operator. Store them in matrices: Φ_M, Φ_N
- 2. Compute descriptor functions (e.g., Wave Kernel Signature) on \mathcal{M}, \mathcal{N} . Express them in $\Phi_{\mathcal{M}}, \Phi_{\mathcal{N}}$, as columns of : \mathbf{A}, \mathbf{B}

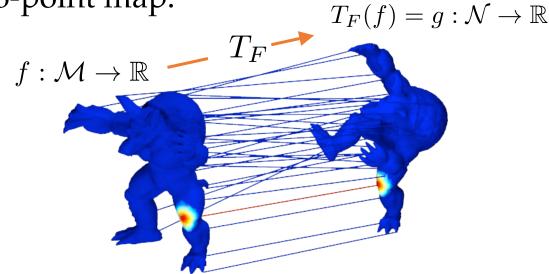
3. Solve
$$C_{\text{opt}} = \underset{C}{\arg\min} \|C\mathbf{A} - \mathbf{B}\|^2 + \|C\Delta_{\mathcal{M}} - \Delta_{\mathcal{N}}C\|^2$$

 $\Delta_{\mathcal{M}}, \Delta_{\mathcal{N}}$: diagonal matrices of eigenvalues
of LB operator

4. Convert the functional map C_{opt} to a point to point map *T*.

Conversion to point-to-point

Given a functional map *C*, we would like to convert to to a point-to-point map. $T_{-}(f) = T_{-}(f) = 0$



Option 1: declare $T(x) = \arg \max \Phi_{\mathcal{N}} C \delta_x$ Problems: high computational complexity $O(n_{\mathcal{M}} n_{\mathcal{N}})$, low accuracy.

Conversion to point-to-point

Given a functional map *C*, we would like to convert to to a point-to-point map. $T_{-}(f) = T_{-}(f) = 0$

 $f: \mathcal{M} \to \mathbb{R}$

Option 2: declare $T(x) = \underset{y}{\arg\min} \|\delta_y - C\delta_x\|_2$

Advantages: computational complexity $O(n_M \log n_N)$, higher accuracy (e.g., works with the identity map).

Incorporating Orthonormality

In many practical situations we would expect a volumepreserving map, which implies:

$$C^T C = Id$$

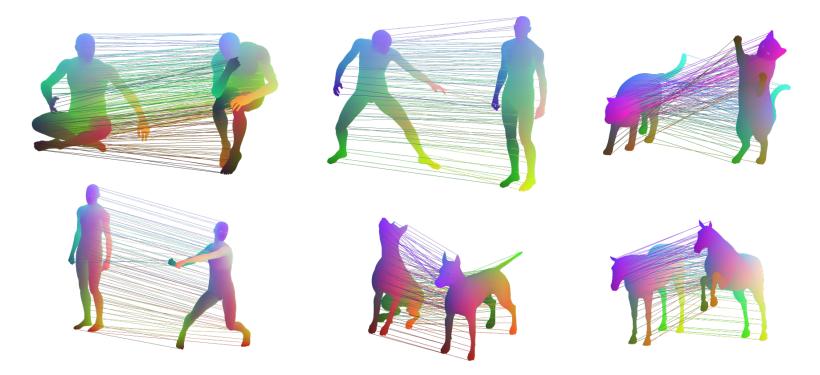
Option: use post-processing to enforce this constraint. Iterate:

- 1. Compute the point-to-point map *T*.
- 2. Solve for the functional map: $\underset{C, \text{ s.t. } C^T C = Id}{\arg \min} \sum_{x \in \mathcal{M}} \|C\delta_x \delta_{T(x)}\|_2^2$

Exactly the same objective as ICP, but in higher dimension. Can use the same method!

Results

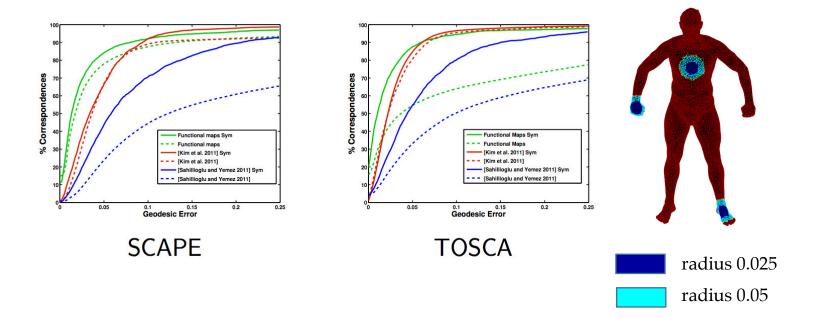
A very simple method that puts together many constraints and uses 100 basis functions gives reasonable results:



Functional maps: a flexible representation of maps between shapes, *O., Ben-Chen, Solomon, Butscher, Guibas*, SIGGRAPH 2012

Results

A very simple method that puts together many constraints and uses 100 basis functions gives reasonable results:



Functional maps: a flexible representation of maps between shapes, *O., Ben-Chen, Solomon, Butscher, Guibas*, SIGGRAPH 2012

Segmentation Transfer without P2P

To transfer functions we do not need to convert functional to pointwise maps.

E.g. we can also transfer segmentations: for each segment, transfer its indicator function, and for each point pick the segment that gave the highest value.

