
Computing and Processing
Correspondences with Functional Maps

Maks	Ovsjanikov,	Etienne	Corman,	Michael	Bronstein,	Emanuele	Rodolà,	

Mirela Ben-Chen,	Leonidas	Guibas,	Frederic	Chazal,	Alex	Bronstein

SIGGRAPH 2017 course

General Overview

Overall Objective:
Create tools for computing and analyzing mappings
between geometric objects.

2

General Overview

Rather than comparing points on objects it is often easier
to compare real-valued functions defined on them. Such
maps can be represented as matrices.

Overall Objective:
Create tools for computing and analyzing mappings
between geometric objects.

3

Course Overview

Course Notes:

Course Website:
http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/

Linked from the website. Or use
Attention: (significantly) more material than in the lectures

Sample Code:

See Sample Code link on the website.

or http://bit.do/fmaps2017

http://bit.do/fmaps2017_notes

New: demo code for basic operations.

4

Course Schedule

2:00pm – 2:45pm Introduction (Maks)

• Introduction to the functional maps framework.

2:50pm – 3:35pm Computing Functional Maps (Etienne)

• Optimization methods for functional map estimation.

3:40pm - 4:25pm Functional Vector Fields (Miri)
• From functional maps to tangent vector fields and back.

4:30pm - 5:15pm Maps in Shape Collections (Leo)
• Networks of maps, shape variability, learning.

5:15pm - Wrapup, Q&A (all)
5

What is a Shape?

Discrete: a graph embedded in 3D (triangle mesh).

Continuous: a surface embedded in 3D.

• Connected.
• Manifold.
• Without Boundary.

Common assumptions:

6

What is a Shape?

5k – 200k triangles

Shapes from the FAUST, SCAPE, and TOSCA datasets

Discrete: a graph embedded in 3D (triangle mesh).

Continuous: a surface embedded in 3D.

7

Overall Goal

Given two shapes, find correspondences between them.

Finding the best map between a pair of shapes.

8

Why Shape Matching?

Given a correspondence, we can transfer:

texture and
parametrization

segmentation and labels

deformation

Other applications: shape interpolation, reconstruction ...

Sumner et al. ‘04.

9

Rigid Shape Matching

The unknowns are the rotation/translation
parameters of the source onto the target shape.

Given a pair of shapes, find the optimal Rigid
Alignment between them.

10

Iterative Closest Point (ICP)

Classical approach: iterate between finding
correspondences and finding the transformation:

example in 2DM N

Given a pair of shapes, and , iterate:

1. For each find nearest neighbor .

2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t− yik
2

2

M N

xi ∈ M yi ∈ N

R, t

11

Iterative Closest Point

M N

Given a pair of shapes, and , iterate:

1. For each find nearest neighbor .

2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t− yik
2

2

M N

xi ∈ M yi ∈ N

R, t

12

Classical approach: iterate between finding
correspondences and finding the transformation:

Iterative Closest Point

M N

Given a pair of shapes, and , iterate:

1. For each find nearest neighbor .

2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t− yik
2

2

M N

xi ∈ M yi ∈ N

R, t

13

Classical approach: iterate between finding
correspondences and finding the transformation:

Iterative Closest Point

M N

Given a pair of shapes, and , iterate:

1. For each find nearest neighbor .

2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t− yik
2

2

M N

xi ∈ M yi ∈ N

R, t

14

Classical approach: iterate between finding
correspondences and finding the transformation:

Iterative Closest Point

M N

Given a pair of shapes, and , iterate:

1. For each find nearest neighbor .

2. Find optimal transformation minimizing:

argmin
R,t

X

i

kRxi + t− yik
2

2

M N

xi ∈ M yi ∈ N

R, t

15

Classical approach: iterate between finding
correspondences and finding the transformation:

1. Finding nearest neighbors: can be done with space-
partitioning data structures (e.g., KD-tree).

2. Finding the optimal transformation minimizing:

Iterative Closest Point

Can be done efficiently via SVD decomposition.
Arun et	al.,	Least-

Squares	Fitting	of	

Two	3-D	Point	Sets

R, t

M N

Classical approach: iterate between finding
correspondences and finding the transformation:

argmin
R∈SO(3), t∈R3

X

i

kRxi + t− yik
2
2

Non-Rigid Shape Matching

Unlike rigid matching with rotation/translation, there is no
compact representation to optimize for in non-rigid matching.

17

Non-Rigid Shape Matching

What does it mean for a correspondence to be “good”?

How to compute it efficiently in practice?

Main Questions:

18

Isometric Shape Matching

Good maps must preserve geodesic distances.
Deformation Model:

Geodesic: length of shortest path lying entirely on the surface.

dM(x, y)

dN (T (x), T (y))

M

N

19

Isometric Shape Matching

Find the point mapping by minimizing the distance distortion:

The unknowns are point correspondences.

Topt = argmin
T

X

x,y

kdM(x, y)− dN (T (x), T (y))k

Approach:

dM(x, y)

dN (T (x), T (y))

M

N

20

Isometric Shape Matching

Approach:

The space of possible solutions is highly non-linear, non-convex.

Problem:

Find the point mapping by minimizing the distance distortion:

Topt = argmin
T

X

x,y

kdM(x, y)− dN (T (x), T (y))k

dM(x, y)

dN (T (x), T (y))

M

N

Functional Map Representation

We would like to define a representation of shape maps
that is more amenable to direct optimization.

1. A compact representation for “natural” maps.

2. Inherently global and multi-scale.

3. Handles uncertainty and ambiguity gracefully.

4. Allows efficient manipulations (averaging, composition).

5. Leads to simple (linear) optimization problems.

22

Functional Approach to Mappings

Given two shapes and a pointwise map

The map induces a functional correspondence:

TF (f) = g, where g = f ◦ T

T : N → M

M

N
T

T

23Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012

Functional Approach to Mappings

f : M → R
TF

TF (f) = g : N → R

The map induces a functional correspondence:T

24

TF (f) = g, where g = f ◦ T

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012

Given two shapes and a pointwise map T : N → M

Functional Approach to Mappings

f : M → R
TF

TF (f) = g : N → R

The map induces a functional correspondence:T

25

TF (f) = g, where g = f ◦ T

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012

Given two shapes and a pointwise map T : N → M

Functional Approach to Mappings

The induced functional correspondence is linear:

f : M → R
TF

TF (f) = g : N → R

TF (α1f1 + α2f2) = α1TF (f1) + α2TF (f2)
26

Given two shapes and a pointwise map T : N → M

Functional Map Representation

The induced functional correspondence is complete.

f : M → R
TF

TF (f) = g : N → R

27

Given two shapes and a pointwise map T : N → M

Observation

Express both and in terms of basis functions:f TF (f)

Since is linear, there is a linear transformation from to . TF {ai} {bj}

M

f : M → R

g : N → R
TF

N

f =

X

i

aiφ
M

i

Assume that both: f ∈ L2(M), g ∈ L2(N)

g = TF (f) =
X

j

bjφ
N
j

Functional Map Representation

Eigenfunctions of the Laplace-Beltrami operator:

Generalization of Fourier bases to surfaces.

Ordered by eigenvalues and provide a natural
notion of scale.

λ0 = 0 λ1 = 2.6 λ2 = 3.4 λ3 = 5.1 λ4 = 7.6

∆φi = λiφi

Choice of Basis:

29

∆(f) = −divr(f)

Functional Map Representation

Eigenfunctions of the Laplace-Beltrami operator:

Generalization of Fourier bases to surfaces.

Ordered by eigenvalues and provide a natural
notion of scale.

∆φi = λiφi

Choice of Basis:

Can be computed efficiently, with a sparse matrix
eigensolver.

30

Functional Map Representation

Since the functional mapping TF is linear:

TF can be represented as a matrix C, given a choice of basis for
function spaces.

TF (α1f1 + α2f2) = α1TF (f1) + α2TF (f2)

31Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon,
Butscher, Guibas, SIGGRAPH 2012

TF

=

Functional Map Definition

Functional map:
matrix C that translates coefficients from to . ΦM ΦN

32

Example 1

Given two shapes with points and a map:

If functions are represented as vectors (in the hat basis), the
functional map is given by matrix-vector product:

matrix encoding the map T,
one 1 per column with zeros everywhere else.

g = T
T f C = T

T

M

N

T :

nM, nN

T : nN × nM

T : N → M

33

Example 2

If functions are represented in the reduced basis:

matrix of the first eigenfunctions of as columns.

matrix of the first eigenfunctions of as columns.

The functional map matrix:

if

if

ΦM : nM × kM

ΦN : nN × kN

kM

kN ∆N

Φ
T

NΦN = Id

C = Φ
+

N
T

T
ΦM

C = Φ
T

NANT
T
ΦM Φ

T

NANΦN = Id

∆M

C = Φ
T

NT
T
ΦM

Given two shapes with points and a map:

matrix encoding the map T,
one 1 per column with zeros everywhere else.

nM, nN

T : nN × nM

T : N → M

: left pseudo-inverse.+

34

Example Maps in a Reduced Basis

Triangle meshes with pre-computed pointwise maps

“Good” maps are close to being diagonal

35

(a) source (b) ground-truth map (c) left-to-right map (d) head-to-tail map

Reconstructing from LB basis

Map reconstruction error using a fixed size matrix.

36

0.5

1

1.5

2

2.5

3

3.5

4

4.5

r
e

c
o

n
s
tr

u
c

ti
o

n
 e

r
r
o

r

Number	of	basis	(eigen)-functions

27.9k vertices

Functional Map algebra

1. Map composition becomes matrix multiplication.

2. Map inversion is matrix inversion (in fact, transpose).

3. Algebraic operations on functional maps are possible.

E.g. interpolating between two maps with

C = αC1 +(1−α)C2.

37

In practice we do not know C. Given two objects our goal
is to find the correspondence.

How can the functional representation help to compute the
map in practice?

Shape Matching

?

38

Matching via Function Preservation

where

Given enough pairs, we can recover C through a
linear least squares system.

f =

P
i
aiφ

M
i
, g =

P
i
biφ

N
i
.

{a,b}

Suppose we don’t know C. However, we expect a pair of
functions and to correspond. Then,
C must be s.t.

Ca ≈ b

f : M → R g : N → R

39

Function preservation constraint is general and includes:

• Attribute (e.g., color) preservation.

• Descriptor preservation (e.g. Gauss curvature).

• Landmark correspondences (e.g. distance to the point).

• Part correspondences (e.g. indicator function).

Map Constraints

Suppose we don’t know C. However, we expect a pair of
functions and to correspond. Then,
C must be s.t.

Ca ≈ b

f : M → R g : N → R

40

Commutativity Constraints

Regularizations:

Commutativity with other operators:

C

Note that the energy: is quadratic in C.

SM SN

CSM = SNC

kCSM − SNCk2
F

41

Regularization

Lemma 1:

The mapping is isometric, if and only if the functional
map matrix commutes with the Laplacian:

Implies that exact isometries result in diagonal functional maps.

C∆M = ∆NC

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen,
Solomon, Butscher, Guibas, SIGGRAPH 2012

42

Lemma 2:

The mapping is locally volume preserving, if and only
if the functional map matrix is orthonormal:

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov et al., SIGGRAPH 2013

C
T
C = Id

Regularization

43

Lemma 3:

If the mapping is conformal if and only if:

C
T
∆1C = ∆2

Regularization

Map-Based Exploration of Intrinsic Shape Differences and Variability, Rustamov et al., SIGGRAPH 2013
44

Basic Pipeline

Given a pair of shapes :

1. Compute the first k (~80-100) eigenfunctions of the Laplace-
Beltrami operator. Store them in matrices:

2. Compute descriptor functions (e.g., Wave Kernel Signature)
on . Express them in , as columns of :

3. Solve

4. Convert the functional map
to a point to point map T.

Copt =

diagonal matrices of eigenvalues
of LB operator

M,N

ΦM,ΦN

ΦM,ΦN

∆M,∆N :

Copt = argmin
C

kCA−Bk2 + kC∆M −∆NCk2

A,B

M,N

45

Conversion to point-to-point

Given a functional map C, we would like to convert to to a
point-to-point map.

Option 1: declare

Problems: high computational complexity ,
low accuracy.

T (x) = argmax
y

ΦNCδx

O(nMnN)

46

f : M → R
TF

TF (f) = g : N → R

Conversion to point-to-point

Given a functional map C, we would like to convert to to a
point-to-point map.

Option 2: declare

Advantages: computational complexity ,
higher accuracy (e.g., works with the identity map).

T (x) = argmin
y

kδy − Cδxk2

O(nM log nN)

47

f : M → R
TF

TF (f) = g : N → R

Incorporating Orthonormality

In many practical situations we would expect a volume-
preserving map, which implies:

C
T
C = Id

Option: use post-processing to enforce this constraint.

Iterate:

1. Compute the point-to-point map T.

2. Solve for the functional map:

Exactly the same objective as ICP, but in higher dimension. Can
use the same method!

argmin
C, s.t. CTC=Id

X

x∈M

kCδx − δT (x)k
2
2

48

Results

A very simple method that puts together many constraints
and uses 100 basis functions gives reasonable results:

49
Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon,
Butscher, Guibas, SIGGRAPH 2012

Results

radius 0.025

radius 0.05

Functional maps: a flexible representation of maps between shapes, O., Ben-Chen, Solomon,
Butscher, Guibas, SIGGRAPH 2012

A very simple method that puts together many constraints
and uses 100 basis functions gives reasonable results:

50

Segmentation Transfer without P2P

To transfer functions we do not need to convert functional to
pointwise maps.

E.g. we can also transfer segmentations: for each segment,
transfer its indicator function, and for each point pick the
segment that gave the highest value.

51

