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Abstract

We study the complexity of evaluating positive equality-
free sentences of first-order (FO) logic over a fixed, finite
structure B. This may be seen as a natural generalisation of
the non-uniform quantified constraint satisfaction problem
QCSP(B). We introduce surjective hyper-endomorphisms
and use them in proving a Galois connection that charac-
terises definability in positive equality-free FO. Through an
algebraic method, we derive a complete complexity classifi-
cation for our problems as B ranges over structures of size
at most three. Specifically, each problem is either in L, is
NP-complete, is co-NP-complete or is Pspace-complete.

1 Introduction

The evaluation problem under a logic L – here always a
fragment of first-order logic (FO) – takes as input a structure
(model) B and a sentence ϕ ofL, and asks whether B |= ϕ.1

When L is the existential conjunctive positive fragment of
FO, {∃,∧}-FO, the evaluation problem is equivalent to the
much-studied constraint satisfaction problem (CSP). Sim-
ilarly, when L is the (quantified) conjunctive positive frag-
ment of FO, {∃,∀,∧}-FO, the evaluation problem is equiv-
alent to the well-studied quantified constraint satisfaction
problem (QCSP). In this manner, the QCSP is the gen-
eralisation of the CSP in which universal quantification is
restored to the mix. In both cases it is essentially irrele-
vant whether or not equality is permitted in the sentences,
as it may be propagated out by substitution. Much work has
been done on the parameterisation of these problems by the
structure B – that is, where B is fixed and only the sentence
is input. It is conjectured [?] that the ensuing problems

1We resist the better known terminology of ‘model checking problem’
because in the majority of this paper we consider the structure B to be
fixed.

CSP(B) attain only the complexities P and NP-complete.
This may appear surprising given that 1.) so many natural
NP problems may be expressed as CSPs (see, e.g., myr-
iad examples in [?]) and 2.) NP itself does not have this
‘dichotomy’ property (assuming P 6= NP) [?]. While this
dichotomy conjecture remains open, it has been proved for
certain classes of B (e.g., for structures of size at most three
[?] and for undirected graphs [?]) The like parameterisation
of the QCSP is also well-studied, and while no overarching
polychotomy has been conjectured, only the complexities
P, NP-complete and Pspace-complete are known to be at-
tainable (for trichotomy results on certain classes see [?, ?],
as well as the dichotomy for boolean structures, e.g., in [?]).

In previous work, [?, ?], we have studied the evalua-
tion problem, parameterised by the structure, under various
fragments of FO obtained by restrictions on which of the
symbols of {∃,∀,∧,∨,¬,=, 6=} is permitted. Of course,
many of the the ostensibly 27 such fragments may be dis-
carded as totally trivial or as repetitions through de Mor-
gan duality. There are four fragments each equivalent to
the CSP and QCSP: these are {∃,∧}-FO, {∃,∧,=}-FO,
{∀,∨}-FO, {∀,∨, 6=}-FO and {∃,∀,∧}-FO, {∃,∀,∧,=}-
FO, {∃,∀,∨}-FO, {∃,∀,∨, 6=}-FO, respectively. Here,
equivalent means that a complexity classification for one
yields a complexity classification for the other; but, the
complexity classes need not be the same. For example,
the class of problems given by fixing the structure under
{∃,∧}-FO would display dichotomy between P and NP-
complete iff the like class of problems under {∀,∨}-FO
displays dichotomy between P and co-NP-complete. Var-
ious complexity classifications are obtained in [?, ?] and it
is observed that the only interesting fragment, other than
the eight associated with CSP and QCSP, is {∀,∃,∀,∧}-
FO.2 The evaluation problem over {∃,∀,∧,∨}-FO may be

2For many of the other fragments the complexity classification is nearly
trivial. For example, this is true for {∃,∧,∨}-FO, {∀,∧,∨}-FO and
{∃, ∀,∧,∨,¬}-FO (also for these classes with = or 6=). For others the



seen as the generalisation of the QCSP in which disjunc-
tion is returned to the mix. Note that the absence of equal-
ity is here important, as there is no general method for its
being propagated out by substitution. Indeed, we will see
that evaluating the related fragment {∃,∀,∧,∨,=}-FO is
Pspace-complete on any structure B of size at least two.

In this paper we initiate a study of the evaluation prob-
lem for the fragment {∃,∀,∧,∨}-FO over a fixed relational
B – the problem we denote {∃,∀,∧,∨}-FO(B). We demon-
strate at least that this class displays a complexity-theoretic
richness absent from those other fragments that are not as-
sociated with the CSP or QCSP. It is possibly to be hoped,
however, that a full classification for this class is not as re-
sistant as that for the CSP or QCSP. We undertake our
study through the algebraic method that has been so fruitful
in the study of the CSP and QCSP (see [?, ?, ?, ?]). To
this end, we define surjective hyper-endomorpisms and use
them to define a new Galois connection that characterises
definability under {∃,∀,∧,∨}-FO.3 We are able to prove a
complete complexity classification for {∃,∀,∧,∨}-FO(B)
when B ranges over structures of size at most three. On
the class of boolean structures we see dichotomy between
L and Pspace-complete. On the class of structures of
size three we see tetrachotomy between L, NP-complete,
co-NP-complete and Pspace-complete. Some of the re-
sults that appear in this paper had been obtained through
adhoc methods in [?] – although there the tetrachotomy ex-
tends only to digraphs and not arbitrary relational structures.
Also, little insight was provided as to the underlying prop-
erties of the classification. It is a pleasing consequence of
our algebraic approach that we can give quite simple expla-
nation to the delineation our subclasses.

The paper is organised as follows. In Section 2, we in-
troduce the preliminaries, including the relevant Galois con-
nection together with the central notions of surjective hyper-
endomorphism (she) and down-she-monoid. In Section 3,
we begin by outlining conditions under which the problem
{∃,∀,∧,∨}-FO(B) either drops from or attains maximal
complexity. We then proceed to classify the complexity
of the problems {∃,∀,∧,∨}-FO(B), when B ranges over,
firstly, boolean structures and, secondly, structures of size
three. In the first instance a dichotomy – between L and
Pspace-complete – is obtained; in the second instance a

classification may be read through the Schaefer classification for boolean
CSP and QCSP, because computational hardness is clear over fixed struc-
tures of size at least three. For example, this is the case for {∃,∧, 6=}-FO,
{∀,∨,=}-FO and {∃, ∀,∧, 6=}-FO, {∃, ∀,∨,=}-FO. Note that the con-
sideration of 6= is not explicit in [?, ?]. Similarly, fragments involving
both quantifiers and = or 6= are not explicitly considered. In both cases,
the results may be read off from de Morgan duality together with standard
Schaefer class results (for which we refer to [?]).

3While this Galois connection appears here for the first time, it does
follow a general recipe as outlined, e.g., in [?]. Note that it is not clear
that the many different Galois connections associated with fragments of
FO can be proved in a straightforwardly uniform manner.

tetrachotomy – between L, NP-complete, co-NP-complete
and Pspace-complete – is obtained. We conlcude, in Sec-
tion 4, with some final remarks. Central to our tetrachotomy
result is that the lattice of down-she-monoids in the three-
element case has a certain structure. In the Appendix we
prove that the lattice’s structure is as we have claimed.

2 Preliminaries

Throughout, let B be a finite structure, with domain B,
over the finite relational signature σ. Let {∃,∀,∧,∨}-FO
and {∃,∀,∧,∨,=}-FO be the positive fragments of first-
order (FO) logic, without and with equality, respectively.
An extensional relation is one that appears in the signature
σ. We will usually denote extensional relations of B by R
and other relations by S (or by some formula that defines
them). In {∃,∀,∧,∨}-FO the atomic formulae are exactly
substitution instances of extensional relations. The problem
{∃,∀,∧,∨}-FO(B) has:

• Input: a sentence ϕ ∈ {∃,∀,∧,∨}-FO.

• Question: does B |= ϕ?

The related problem {∃,∀,∧,∨,=}-FO(B) permits sen-
tences ϕ that may involve equalities, in the obvious way.
When B is of size one, the evaluation of any FO sentence
may be accomplished in L (essentially, the quantifiers are
irrelevant and the problem amounts to the boolean sentence
value problem, see [?]). In this case, it follows that both
{∃,∀,∧,∨}-FO(B) and {∃,∀,∧,∨,=}-FO(B) are also in
L.

Consider the set B and its power set P(B). A hyper-
operation on B is a function f : B → P(B) \ {∅} (that the
image may not be the empty set corresponds to the hyper-
operation being total, in the parlance of [?]). If the hyper-
operation f has the additional property that

• for all y ∈ B, there exists x ∈ B such that y ∈ f(x),

then we designate (somewhat abusing terminology) f sur-
jective. A surjective hyper-operation in which each element
is mapped to a singleton set is identified with a permuta-
tion (bijection). A surjective hyper-endomorphism (she) of
B is a surjective hyper-operation f on B that satisfies, for
all extensional relations R of B,

• if R(x1, . . . , xi) ∈ B then, for all y1 ∈
f(x1), . . . , yi ∈ f(xi), R(y1, . . . , yi) ∈ B.

More generally, for r1, . . . , rk ∈ B, we say f is a she
from (B, r1, . . . , rk) to (B, r′1, . . . , r′k) if f is a she of B and
r′1 ∈ f(r1), . . . , r′k ∈ f(rk). A she may be identified with a
surjective endomorphism when each element is mapped to a
singleton set. On finite structures surjective endomorphisms
are necessarily automorphisms.
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For b1, . . . , b|B| an enumeration of the elements of B,
let the quantifier-free formula ΦB(v1, . . . , v|B|) be a con-
junction of the positive facts of B, where the variables
v1, . . . , v|B| correspond to the elements b1, . . . , b|B|. That
is, for R an extensional relation of B, R(vλ1 , . . . , vλi

) ap-
pears as an atom in ΦB iff R(bλ1 , . . . , bλi) ∈ B. For exam-
ple, let K3 be the antireflexive 3-clique, that is the structure
with domain {0, 1, 2} and single binary relation

E := {(0, 1), (1, 0), (1, 2), (2, 1), (2, 0), (0, 2)}.

Then

ΦK3(v0, v1, v2) := E(v0, v1) ∧ E(v1, v0) ∧ E(v1, v2)∧
E(v2, v1) ∧ E(v2, v0) ∧ E(v0, v2).

The existential sentence ∃v1, . . . , v|B| ΦB(v1, . . . , v|B|)
is known as the canonical query of B. More gener-
ally, for a (not necessarily distinct) l-tuple of elements
r := (r1, . . . , rl) ∈ Bl, define the quantifier-free
ΦB(r)(v1, . . . , vl) to be the conjunction of the positive facts
of r, where the variables v1, . . . , vl correspond to the el-
ements r1, . . . , rl. That is, R(vλ1 , . . . , vλi) appears as an
atom in ΦB(r) iff R(rλ1 , . . . , rλi

) ∈ B. For example,

ΦK3(0,0,2)(v0, v1, v2) := E(v0, v2) ∧ E(v2, v0)∧
E(v1, v2) ∧ E(v2, v1).

We refer to elements in B as r, s, t (also x, y), or
b1, . . . , b|B| when this is an enumeration. We reserve u, v, w
to refer to variables in FO formulae.

2.1 Galois Connections

For a set F of surjective hyper-operations on the finite
domain B, let Inv(F ) be the set of relations on B of which
each f ∈ F is a she (when these relations are viewed as a
structure over B). We say that S ∈ Inv(F ) is invariant or
preserved by (the hyper-operations in) F . Let shE(B) be the
set of shes of B. Let Aut(B) be the set of automorphisms of
B.

Let 〈B〉{∃,∀,∧,∨}-FO and 〈B〉{∃,∀,∧,∨,=}-FO be the sets of
relations that may be defined on B in {∃,∀,∧,∨}-FO and
{∃,∀,∧,∨,=}-FO, respectively.

Lemma 1. Let r := (r1, . . . , rk) be a k-tuple of elements
of B. There exists:

(i). a formula θr(u1, . . . , uk) ∈ {∃,∀,∧,∨,=}-FO s.t.
(B, r′1, . . . , r′k) |= θr(u1, . . . , uk) iff there is an au-
tomorphism from (B, r1, . . . , rk) to (B, r′1, . . . , r′k).

(ii). a formula θr(u1, . . . , uk) ∈ {∃,∀,∧,∨}-FO s.t.
(B, r′1, . . . , r′k) |= θr(u1, . . . , uk) iff there is a she
from (B, r1, . . . , rk) to (B, r′1, . . . , r′k).

Proof. For Part (i), let b1, . . . , b|B| an enumeration of the
elements of B and ΦB(v1, . . . , v|B|) be the associated con-
junction of positive facts. Set θr(u1, . . . , uk) :=

∃v1, . . . , v|B| ΦB(v1, . . . , v|B|)∧
∀v (v = v1 ∨ . . . ∨ v = v|B|)∧
u1 = vλ1 ∧ . . . ∧ uk = vλk

,

where r1 = bλ1 , . . . , rk = bλk
.

[Part (ii).] This will require greater dexterity. Let
r ∈ Bk, s := (b1, . . . , b|B|) be an enumeration of B and
t ∈ B|B|. Recall that ΦB(r,s)(u1, . . . , uk, v1, . . . , v|B|)
is a conjunction of the positive facts of (r, s), where the
variables (u,v) correspond to the elements (r, s). Sim-
ilarly, ΦB(r,s,t)(u1, . . . , uk, v1, . . . , v|B|, w1, . . . , w|B|) is
the conjunction of the positive facts of (r, s, t), where the
variables (u,v,w) correspond to the elements (r, s, t). Set
θr(u1, . . . , uk) :=

∃v1, . . . , v|B| ΦB(r,s)(u1, . . . , uk, v1, . . . , v|B|)∧∀w1 . . . w|B|∨
t∈B|B|

ΦB(r,s,t)(u1, . . . , uk, v1, . . . , v|B|, w1, . . . , w|B|).

[Part (ii), backwards.] Suppose f is a she from
(B, r1, . . . , rk) to (B′, r′1, . . . , r′k), where B′ := B (we
will wish to differentiate the two occurrences of B). We
aim to prove that B′ |= θr(r′1, . . . , r

′
k). Choose arbi-

trary s′1 ∈ f(b1), . . . , s′|B| ∈ f(b|B|) as witnesses for
v1, . . . , v|B|. Let t′ := (t′1, . . . , t

′
|B|) ∈ B′|B| be any val-

uation of w1, . . . , w|B| and take arbitrary t1, . . . , t|B| s.t.
t′1 ∈ f(t1), . . . , t′|B| ∈ f(t|B|) (here we use surjectivity).
Let t := (t1, . . . , t|B|). It follows from the definition of she
that

B′ |= ΦB(r,s)(r′1, . . . , r
′
k, s
′
1, . . . , s

′
|B|)∧

ΦB(r,s,t)(r′1, . . . , r
′
k, s
′
1, . . . , s

′
|B|, t

′
1, . . . , t

′
|B|).

[Part (ii), forwards.] Assume that B′ |= θr(r′1, . . . , r
′
k),

where B′ := B. Let b′1, . . . , b
′
|B| be an enumeration of

B′ := B.4 Choose some witness elements s′1, . . . , s
′
|B| for

v1, . . . , v|B| and a witness tuple t := (t1, . . . , t|B|) ∈ B|B|
s.t.

(†) B′ |= ΦB(r,s)(r′1, . . . , r
′
k, s
′
1, . . . , s

′
|B|)∧

ΦB(r,s,t)(r′1, . . . , r
′
k, s
′
1, . . . , s

′
|B|, b

′
1, . . . , b

′
|B|).

Consider the following partial hyper-operations from B →
P(B′) \ {∅}.

1. fr given by (the union of) r1 7→ {r′1}, . . . , rk 7→ {r′k}.
4One may imagine b1, . . . , b|B| and b′1, . . . , b

′
|B| to be the same enu-

meration, but this is not essential. In any case, we will wish to keep the
dashes on the latter set to remind us they are in B′ and not B.
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2. fs given by fs(bi) = {s′i}.

3. ft given by b′i ∈ ft(bj) iff ti = bj .

Let f := fr ∪ fs ∪ ft; f is a hyper-operation whose surjec-
tivity is guaranteed by ft (note that totality is guaranteed by
fs). That f is a she follows from the right-hand conjunct of
(†).

Theorem 1. For a finite structure B we have

(i). 〈B〉{∃,∀,∧,∨,=}-FO = Inv(Aut(B)) and

(ii). 〈B〉{∃,∀,∧,∨}-FO = Inv(shE(B)).

Proof. Part (i) is well-known and may be proved in a simi-
lar, albeit simpler, manner to Part (ii), which we now prove.

[ϕ(v) ∈ 〈B〉{∃,∀,∧,∨}-FO ⇒ ϕ(v) ∈ Inv(shE(B)).]
This is proved by induction on the complexity of ϕ(v).5

(Base Case.) ϕ(v) := R(v).6 Follows from the defini-
tion of she.

(Inductive Step.) There are four subcases. We progress
through them in a workmanlike fashion. Take f ∈ shE(B).
ϕ(v) := ψ(v) ∧ ψ′(v). Let v := (v1, . . . , vl). Suppose

B |= ϕ(x1, . . . , xl), then both B |= ψ(x1, . . . , xl) and B |=
ψ(x1, . . . , xl). By Inductive Hypothesis (IH), for any y1 ∈
f(x1), . . . , yl ∈ f(xl), both B |= ψ(y1, . . . , yl) and B |=
ψ(y1, . . . , yl), whence B |= ϕ(y1, . . . , yl).
ϕ(v) := ψ(v) ∨ ψ′(v). Let v := (v1, . . . , vl). Suppose

B |= ϕ(x1, . . . , xl), then one of B |= ψ(x1, . . . , xl) or B |=
ψ(x1, . . . , xl); w.l.o.g. the former. By IH, for any y1 ∈
f(x1), . . . , yl ∈ f(xl), B |= ψ(y1, . . . , yl), whence B |=
ϕ(y1, . . . , yl).
ϕ(v) := ∀w ψ(v, w). Let v := (v1, . . . , vl). Sup-

pose B |= ∀w ψ(x1, . . . , xl, w), then for each x′, B |=
ψ(x1, . . . , xl, x

′). By IH, for any y1 ∈ f(x1), . . . , yl ∈
f(xl), we have for all y′ (remember f is surjective), B |=
ψ(y1, . . . , yl, y′), whereupon B |= ∀w ψ(y1, . . . , yl, w).
ϕ(v) := ∃w ψ(v, w). Let v := (v1, . . . , vl). Sup-

pose B |= ∃w ψ(x1, . . . , xl, w), then for some x′, B |=
ψ(x1, . . . , xl, x

′). By IH, for any y1 ∈ f(x1), . . . , yl ∈
f(xl), y′ ∈ f(x′) (remember f(x′) can not be empty), B |=
ψ(y1, . . . , yl, y′), whereupon B |= ∃w ψ(y1, . . . , yl, w).

[S ∈ Inv(shE(B)) ⇒ S ∈ 〈B〉{∃,∀,∧,∨}-FO.] Consider
the k-ary relation S ∈ Inv(shE(B)). Let r1, . . . , rm be the
tuples of S. Set

θS(u1, . . . , uk) := θr1(u1, . . . , uk)∨. . .∨θrm
(u1, . . . , uk).

Manifestly, θS(u1, . . . , uk) ∈ {∃,∀,∧,∨}-FO. That
θS(u1, . . . , uk) = S now follows from Part (ii) of the pre-
vious lemma since S ∈ Inv(shE(B)).

5Throughout the paper, the presence of, e.g., v in ψ(v) should not be
taken as indication that all v appear free in ψ.

6The variables v may appear multiply inR and in any order. ThusR is
an instance of an extensional relation under substitution and permutation
of positions.

In the following,≤L indicates the existence of a logspace
many-to-one reduction.

Theorem 2. Let B and B′ be finite structures over the same
domain B.

(i). If Aut(B) ⊆ Aut(B′) then {∃,∀,∧,∨,=}-FO(B′) ≤L

{∃,∀,∧,∨,=}-FO(B).

(ii). If shE(B) ⊆ shE(B′) then {∃,∀,∧,∨}-FO(B′) ≤L

{∃,∀,∧,∨}-FO(B).

Proof. Again, Part (i) is well-known and the proof is simi-
lar to that of Part (ii), which we give. If shE(B) ⊆ shE(B′),
then Inv(shE(B′)) ⊆ Inv(shE(B)). From the previous the-
orem, it follows that 〈B′〉{∃,∀,∧,∨}-FO ⊆ 〈B〉{∃,∀,∧,∨}-FO.
Recalling that B′ contains only a finite number of exten-
sional relations, we may therefore effect a Logspace re-
duction from {∃,∀,∧,∨}-FO(B′) to {∃,∀,∧,∨}-FO(B) by
straightforward substitution of predicates.

2.2 Down-she-monoids

Consider a finite domain B. The identity hyper-
operation idB is defined by x 7→ {x}. Given hyper-
operations f and g, define the composition g◦f by x 7→ {z :
∃y z ∈ g(y) ∧ y ∈ f(x)}. Finally, a hyper-operation f is a
sub-hyper-operation of g – denoted f ⊆ g – if f(x) ⊆ g(x),
for all x. A set of surjective hyper-operations on a finite set
B is a down-she-monoid, if it contains idB , and is closed
under composition and sub-hyper-operations (of course, not
all sub-hyper-operations of a surjective hyper-operation are
surjective – we are only concerned with those that are). idB
is a she of all structures, and, if f and g are shes ofB, then so
is g ◦f . Further, if g is a she of B, then so is f for all f ⊆ g.
It follows that shE(B) is always a down-she-monoid. The
down-she-monoids of B form a lattice under (set-theoretic)
inclusion and, as per the Galois connection of the previous
section, classify the complexities of {∃,∀,∧,∨}-FO(B). If
F is a set of surjective hyper-operations on B, then let 〈F 〉
denote the minimal down-she-monoid containing the oper-
ations of F . If F is the singleton {f}, then, by abuse of
notation, we write 〈f〉 instead of 〈{f}〉

For a surjective hyper-operation f , define its inverse f−1

by x 7→ {y : f(y) = x}. Note that f−1 is also a surjective
hyper-operation and (f−1)−1 = f , though f ◦ f−1 = idB
only if f is a permutation. For a set of surjective hyper-
operations F , let F−1 := {f−1 : f ∈ F}. If F is a
down-she-monoid then so is F−1. We will see this alge-
braic duality resonates with the de Morgan duality of ∃ and
∀, and the complexity-theoretic duality of NP and co-NP.
However, we resist discussing it further as it plays no direct
role in the derivation of our results.

A permutation subgroup on a finite set B is a set of per-
mutations of B closed under composition. It may easily be
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verified that such a set contains the identity and is closed un-
der inverse. A permutation subgroup may be identified with
a particular type of down-she-monoid in which all hyper-
operations have only singleton sets in their range. The per-
mutation subgroups form a lattice under inclusion whose
minimal element contains just the identity and whose maxi-
mal element is the symmetric group S|B|. As per the Galois
connection of the previous section, this lattice classifies the
complexities of {∃,∀,∧,∨,=}-FO(B) – although we shall
see these are relatively uninteresting.

In the lattice of down-she-monoids, the minimal element
still contains just idB , but the maximial element contains all
surjective hyper-operations. However, the lattice of permu-
tation subgroups always appears as a sub-lattice within the
lattice of down-she-monoids.

3 Classification results

We are now in a position to study the interplay between
the shes of a structure B and the complexity of the problem
{∃,∀,∧,∨}-FO(B.

3.1 Shes inducing lower complexity

We begin by studying three classes of shes, the pres-
ence of which reduces the complexity of the problem
{∃,∀,∧,∨}-FO(B). Let B be a finite structure, with dis-
tinct elements b, b′. We define the following shes.

• ∀b : B → P(B) \ {∅}, where ∀b(x) := B, if x = b,
and ∀b(x) := {x}, otherwise.

• ∃b : B → P(B) \ {∅}, where ∃b(x) := {x, b}.

• ∀b∃b′ : B → P(B) \ {∅}, where ∀b∃b′(x) := B, if
x = b, and ∀b∃b′(x) := {b′}, otherwise.

We call their classes ∀-, ∃- and ∀∃-hyper-operations, respec-
tively. In Figure 3.1, four digraphs G1–G4 are drawn. For

Figure 1. Sample digraphs admitting ∀-, ∃-
and ∀∃-hyper-operations as shes.

typographic reasons we will mark-up, e.g., the surjective
hyper-operation 0 7→ {0, 1}, 1 7→ {1} and 2 7→ {1, 2} as

0 01
1 1
2 12

. It may easily be verified that the down-she monoids

shE(G1)–shE(G4) are as follows.

shE(G1) shE(G2) shE(G3) shE(G4)
〈 0 01

1 1
2 12
〉 〈 0 0

1 012
2 2

〉 〈 0 1
1 1
2 012

〉 〈 0 012
1 1
2 012

〉

We see that G1, G2 and G3 admit the shes ∃1, ∀1 and ∀2∃1,
respectively. G4 admits each of the shes ∀0, ∀2, ∃1, ∀0∃1
and ∀2∃1.

Remarks 1. We have not considered shes ∀b∃b, defined as
before but with b′ := b. The down-she-monoid 〈∀b∃b〉 is
easily seen to contain all surjective hyper-operations. It fol-
lows that any structure B that has ∀b∃b as a she already has
all shes of the form ∀b′∃b′′ with b′ 6= b′′.

Note that the down-she-monoids 〈∀b∃b′〉 and
〈{∀b,∃b′}〉 = 〈∀b ◦ ∃b′〉 do not in general coincide,
though the first is always a subset of the following two.
Also, we note the identities ∃−1

b = ∀b, ∀−1
b = ∃b and

(∀b∃b′)−1 = ∀b′∃b.
We now give a series of three lemmas, one associated

with each of the shes ∀b, ∃b and ∀b∃b′ . They will ultimately
be used in a form of quantifier elimination that will diminish
the complexity of {∃,∀,∧,∨}-FO(B), if B has one of these
shes.

Lemma 2. Let ϕ(u,v) be a formula of {∃,∀,∧,∨}-FO.
Let B be a finite structure with ∀b as a she. Then

B |= ∀u ϕ(u,v) ⇐⇒ B |= ϕ(b,v).

Proof. We proceed by induction on the complexity of the
formula ϕ. In each case, the forward direction (⇒) is trivial;
we prove the backward.

(Base case.) ϕ(u,v) := R(u,v). That R(b,v) implies
∀u R(u,v) follows immediately from the she ∀b.

(Inductive Step.) There are four subcases.
ϕ(u,v) := ψ(u,v) ∧ ψ′(u,v). Assume ψ(b,v) ∧

ψ′(b,v) to derive both ψ(b,v) and ψ′(b,v). By IH, derive
both ∀u ψ(u,v) and ∀u ψ′(u,v), which yields ∀u ψ(u,v)∧
ψ′(u,v).
ϕ(u,v) := ψ(u,v) ∨ ψ′(u,v). Assume ψ(b,v) ∨

ψ′(b,v) to derive, w.l.o.g. ψ(b,v). By IH, derive
∀u ψ(u,v), which yields the weaker ∀u ψ(u,v)∨ψ′(u,v).
ϕ(u,v) := ∀w ψ(u,v, w). Assume ∀w ψ(b,v, w) to

derive, by IH, ∀w∀u ψ(u,v, w), which is ∀u∀w ψ(u,v, w).
ϕ(u,v) := ∃w ψ(u,v, w). Assume ∃w ψ(b,v, w) to

derive, by IH, ∃w∀u ψ(u,v, w), which yields the weaker
∀u∃w ψ(u,v, w).

The previous lemma has the following, dual version.

Lemma 3. Let ϕ(u,v) be a formula of {∃,∀,∧,∨}-FO.
Let B be a finite structure with ∃b as a she. Then

B |= ∃u ϕ(u,v) ⇐⇒ B |= ϕ(b,v).

Proof. We proceed by induction on the complexity of the
formula ϕ. In each case, the backward direction (⇐) is triv-
ial; we prove the forward.

(Base case.) ϕ(u,v) := R(u,v). That ∃u R(u,v) im-
plies R(b,v) follows immediately from the she ∃b.
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(Inductive Step.) There are four subcases.
ϕ(u,v) := ψ(u,v) ∧ ψ′(u,v). Assume ∃u ψ(u,v) ∧

ψ′(u,v) to derive the weaker ∃u ψ(u,v) and ∃u ψ′(u,v).
By IH, derive both ψ(b,v) and ψ′(b,v), which yields
ψ(b,v) ∧ ψ′(b,v).
ϕ(u,v) := ψ(u,v) ∨ ψ′(u,v). Assume ∃u ψ(u,v) ∨

ψ′(u,v) to derive, w.l.o.g. ∃u ψ(u,v). By IH, derive
ψ(b,v), which yields the weaker ψ(b,v) ∨ ψ′(b,v).
ϕ(u,v) := ∀w ψ(u,v, w). Assume ∃u∀w ψ(u,v, w)

to derive the weaker ∀w∃u ψ(u,v, w), and then, by IH,
∀w ψ(b,v, w).
ϕ(u,v) := ∃w ψ(u,v, w). Assume ∃u∃w ψ(u,v, w),

which is ∃w∃u ψ(u,v, w), to derive, by IH, ∃w ψ(b,v, w).

Lemma 4 (Interpolation). Let ϕ(u,v) be a formula of
{∃,∀,∧,∨}-FO where u and v are of arities j and l, re-
spectively. Let B be a finite structure with ∀b∃b′ as a
she. For all c1, . . . , cj ∈ B \ {b, b′}, and for all v :=
(v1, . . . , vl) ∈ {b, b′}l,

B |= ϕ(b, . . . , b,v)
(I)

=⇒ B |= ϕ(c1, . . . , cj ,v)
(II)
=⇒ B |= ϕ(b′, . . . , b′,v),

where b, . . . , b and b′, . . . , b′ signify j-tuples of bs and b′s,
respectively.

Proof. We prove (I) and (II) simultaneously by induction
on the complexity of the formula ϕ.

(Base case.) ϕ(u,v) := R(u,v). That R(b, . . . , b,v)
implies R(c1, . . . , cj ,v) implies R(b′, . . . , b′,v) follows
immediately from the she ∀∃b,b′ .

(Inductive Step.) There are four subcases.
ϕ(u,v) := ψ(u,v) ∧ ψ′(u,v). For (I), as-

sume ψ(b, . . . , b,v) ∧ ψ′(b, . . . , b,v) to derive both
ψ(b, . . . , b,v) and ψ′(b, . . . , b,v), whence both
ψ(c1, . . . , cj ,v) and ψ′(c1, . . . , cj ,v), and, therefore,
ψ(c1, . . . , cj ,v) ∧ ψ′(c1, . . . , cj ,v). Case (II) follows in
similar fashion.
ϕ(u,v) := ψ(u,v) ∨ ψ′(u,v). For (I), as-

sume ψ(b, . . . , b,v) ∨ ψ′(b, . . . , b,v) to derive w.l.o.g.
ψ(b, . . . , b,v), whence ψ(c1, . . . , cj ,v) and then the
weaker ψ(c1, . . . , cj ,v) ∨ ψ′(c1, . . . , cj ,v). Case (II) fol-
lows in the like fashion.
ϕ(u,v) := ∀w ψ(u,v, w). For (I), assume

∀w ψ(b, . . . , b,v, w), which implies both ψ(b, . . . , b,v, b)
and ψ(b, . . . , b,v, b′). By IH, we can derive
ψ(c1, . . . , cj ,v, b) from the former and ψ(c1, . . . , cj ,v, b′)
from the latter. But we can also derive ψ(c1, . . . , cj ,v, c),
for any c ∈ B\{b, b′}, from ψ(b, . . . , b,v, b) by considering
the ‘u’ of the IH to be a j + 1-tuple incorporating the final

b. This proves ∀w ψ(c1, . . . , cj ,v, w). Diagrammatically:

ψ(c1, . . . , cj ,v, c)
↗

ψ(b, . . . , b,v, b) → ψ(c1, . . . , cj ,v, b)

ψ(b, . . . , b,v, b′) → ψ(c1, . . . , cj ,v, b′)

For (II), assume ∀w ψ(c1, . . . , cj ,v, w), which implies
both ψ(c1, . . . , cj ,v, b) and ψ(c1, . . . , cj ,v, b′). By IH,
we can derive ψ(b′, . . . , b′,v, b) from the former and
ψ(b′, . . . , b′,v, b′) from the latter. But we can now
also derive ψ(b′, . . . , b′,v, c) from ψ(b′, . . . , b′,v, b), for
any c ∈ B \ {b, b′}, by the IH on (I). This proves
∀w ψ(b′, . . . , b′,v, w).

ψ(b′, . . . , b′,v, c)
↑

ψ(c1, . . . , cj ,v, b) → ψ(b′, . . . , b′,v, b)

ψ(c1, . . . , cj ,v, b′) → ψ(b′, . . . , b′,v, b′)

ϕ(u,v) := ∃w ψ(u,v, w). For (I), assume
∃w ψ(b, . . . , b,v, w). This gives either ψ(b, . . . , b,v, b),
ψ(b, . . . , b,v, b′) or ψ(b, . . . , b,v, c), for some c ∈ B \
{b, b′}. The first two cases yield ψ(c1, . . . , cj ,v, b)
and ψ(c1, . . . , cj ,v, b′), respectively, by IH. However,
ψ(b, . . . , b,v, c) implies ψ(b, . . . , b,v, b′), by IH on (II) and
this a fortiori gives ψ(c1, . . . , cj ,v, b′), by the IH. Having
derived ∃w ψ(c1, . . . , cj ,v, w), we are done.

ψ(b, . . . , b,v, b) → ψ(c1, . . . , cj ,v, b)

ψ(b, . . . , b,v, b′) → ψ(c1, . . . , cj ,v, b′)
↑

ψ(b, . . . , b,v, c)

For (II), assume ∃w ψ(c1, . . . , cj ,v, w). This
gives either ψ(c1, . . . , cj ,v, b), ψ(c1, . . . , cj ,v, b′)
or ψ(c1, . . . , cj ,v, c), for some c ∈ B \ {b, b′}.
The first two cases yield ψ(b′, . . . , b′,v, b) and
ψ(b′, . . . , b′,v, b′), respectively, by IH. The last case
also gives ψ(b′, . . . , b′,v, b′), by IH, considering ‘u’ to be
a j + 1-tuple incorporating the final c.

ψ(c1, . . . , cj ,v, b) → ψ(b′, . . . , b′,v, b)

ψ(c1, . . . , cj ,v, b′) → ψ(b′, . . . , b′,v, b′)
↗

ψ(c1, . . . , cj ,v, c)

Corollary 1. Let ϕ(u,v) be a formula of {∃,∀,∧,∨}-FO
where v is of arity l. Let B be a finite structure with ∀b∃b′ as
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a she. For all c ∈ B\{b, b′}, and for all v := (v1, . . . , vl) ∈
{b, b′}l,

B |= ϕ(b,v) =⇒ B |= ϕ(c,v) =⇒ B |= ϕ(b′,v).

Remark 1. We will only use the restricted version of
Lemma 4 that appears as Corollary 1, in which u is a single
variable u. We note that it was necessary for the Lemma’s
proof that u might be of greater arity.

We are now ready to state how the presence of ∀-, ∃-
or ∀∃-hyper-operations as shes of B can diminish the com-
plexity of {∃,∀,∧,∨}-FO(B). In each case we proceed by
quantifier elimination.

Theorem 3. If B has a ∀-operation as a she then
{∃,∀,∧,∨}-FO(B) is in NP. If B has an ∃-operation as
a she then {∃,∀,∧,∨}-FO(B) is in co-NP. If B has a ∀∃-
operation as a she then {∃,∀,∧,∨}-FO(B) is in L.

Proof. Let ϕ be a sentence of {∃,∀,∧,∨}-FO, and let
ϕ[∀/b] (respectively, ϕ[∃/b] and ϕ[∀/b,∃/b′]) be ϕ with all
universal variables substituted by b (respectively, existential
variables substituted by b and universal variables substituted
by b and existential variables substituted by b′).

If B has a she ∀b, then consider a sentence ϕ ∈
{∃,∀,∧,∨}-FO, w.l.o.g. in prenex form. It follows by re-
peated application of Lemma 2 on ϕ – either from the out-
ermost quantifier in, or from the innermost quantifier out
– that B |= ϕ iff B |= ϕ[∀/b]. Similarly, if B has a she
∃b′ , then it follows by repeated application of Lemma 3 that
B |= ϕ iff B |= ϕ[∃/b′].

If B has a she ∀b∃b′ , then, again, assume the sentence
ϕ ∈ {∃,∀,∧,∨}-FO to be in prenex form. It follows by
repeated application of Corollary 1 – from the outermost
quantifier in – that B |= ϕ iff B |= ϕ[∀/b,∃/b′]. Note that,
in this case, one can not move from the innermost quantifier
out because this may involve the possibility of free variables
taking values from outside the set {b, b′}. The result now
follows since evaluating ϕ[∀/b,∃/b′] on B is equivalent to a
boolean sentence value problem, known to be in L [?].

Returning to the examples of Figure 3.1, we see that
{∃,∀,∧,∨}-FO(G1) is in co-NP, {∃,∀,∧,∨}-FO(G2) is in
NP and both {∃,∀,∧,∨}-FO(G3) and {∃,∀,∧,∨}-FO(G4)
are in L.

3.2 Down-she-monoids of high complexity

Lemma 5. Let B, with |B| ≥ 2, be a structure s.t. shE(B)
is a permutation subgroup. Then {∃,∀,∧,∨}-FO(B) is
Pspace-complete.

Proof. Let BNAE be the structure on B with a single
ternary relation RNAE := B3 \ {(b, b, b) : b ∈ B}.
{∃,∀,∧,∨}-FO(BNAE) is a generalisation of the problem

Figure 2. Further sample digraphs.

QCSP(BNAE), well-known to be Pspace-complete (in the
case |B| = 2, this is quantified not-all-equal 3-satisfiability,
see, e.g., [?]). shE(BNAE) is the symmetric group S|B|.
The statement of the theorem now follows from Theorem 2,
since shE(B) ⊆ shE(BNAE).

Corollary 2. For all B s.t. |B| ≥ 2, {∃,∀,∧,∨,=}-FO(B)
is Pspace-complete.

Proof. {∃,∀,∧,∨,=}-FO(B) may be rephrased as the
problem {∃,∀,∧,∨}-FO(B′), where B′ is the structure B
expanded with the graph of equality. Owing to the presence
of the graph of equality, shE(B′) must be a permutation sub-
group, and the result follows from the previous lemma.

The following is a generalisation of the previous lemma.

Lemma 6. Let B be a structure whose universe admits the
partition B1, . . . , Bl (l ≥ 2). If all shes of B are sub-
hyper-operations of some f of the form f(x) := Bi iff
x ∈ Bπ(i), for π a permutation on the set {1, . . . , l}, then
{∃,∀,∧,∨}-FO(B) is Pspace-complete.

Proof. Let K|B1|,...,|Bl| be the complete l-partitite graph
with partitions of size |B1|, . . . , |Bl|. It may easily be
verified that the shes of K|B1|,...,|Bl| are of the form
of the lemma. Furthermore, K|B1|,...,|Bl| agrees with
the antireflexive l-clique Kl on all sentences of equality-
free FO logic (for more detail on why this is, see,
e.g., the Homomorphism Theorem of [?]), and certainly
{∃,∀,∧,∨}-FO. Pspace-hardness of {∃,∀,∧,∨}-FO(Kl)
follows from the previous lemma, and so Pspace-hardness
of {∃,∀,∧,∨}-FO(K|B1|,...,|Bl|) follows a fortiori. Finally,
Pspace-hardness of {∃,∀,∧,∨}-FO(B) now follows from
Theorem 2, since shE(B) ⊆ shE(K|B1|,...,|Bl|).

In Figure 3.2, four more digraphs G5–G8 are drawn. It
may easily be verified that shE(G5)–shE(G8) areas follows.

shE(G5) shE(G6) shE(G7) shE(G8)
〈 0 0

1 1
2 2
〉 〈 0 0

1 1
2 2
〉 〈 0 0

1 2
2 1
〉 〈 0 02

1 1
2 02
〉

It follows from Lemmas 5 and 6 that each of
{∃,∀,∧,∨}-FO(G5), . . . , {∃,∀,∧,∨}-FO(G8) is Pspace-
complete.

3.3 The boolean case

We consider the case |B| = 2, with the normalised do-
main B := {0, 1}. It may easily be verified that there are
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five down-she-monoids in this case, depicted as a lattice in
Figure 3.3. The two elements of this lattice that represent
the two subgroups of S2 are drawn in the middle and bot-
tom.

〈
0 01
1 01

〉
L

〈
0 0
1 01

〉
L

<<zzzzzzzz *
0 1
1 0

+
Pspace− c

OO

〈
0 01
1 1

〉
L

bbDDDDDDDD

*
0 0
1 1

+
Pspace− c

bbEEEEEEEE

OO <<yyyyyyyy

Figure 3. The boolean lattice of down-she-
monoids with their associated complexity.

Theorem 4 (Dichotomy). Let B be a boolean structure.

I. If either ∀0∃1 or ∀1∃0 (i.e., 0 01
1 1

or 0 0
1 01

) is a

she of B, then {∃,∀,∧,∨}-FO(B) is in L.

II. Otherwise, {∃,∀,∧,∨}-FO(B) is Pspace-complete.

Proof. shE(B) must be one of the five down-she-monoids
depicted in Figure 3.3. If shE(B) contains one of ∀0∃1 or
∀1∃0, then L membership follows from Theorem 3. Other-
wise shE(B) is either 〈 0 0

1 1
〉 or 〈 0 1

1 0
〉; in both cases

the hardness result follows from Lemma 5.

Remark 2. In the boolean case, 〈∀1∃0〉 = 〈{∀1,∃0}〉 and
〈∀0∃1〉 = 〈{∀0,∃1}〉.

3.4 The three-element case

We consider the case |B| = 3, with the normalised do-
main B := {0, 1, 2}. In fact, we have the necessary ma-
chinery to obtain a full classification theorem. We refer to
the six shes

∀0∃1 ∀1∃0 ∀0∃2 ∀2∃0 ∀1∃2 ∀2∃1
0 012
1 1
2 1

0 0
1 012
2 0

0 012
1 2
2 2

0 0
1 0
2 012

0 2
1 012
2 2

0 1
1 1
2 012

as L-shes. In Figure 3.4, the lattice of down-she-monoids is
partially drawn (all the remaining down-she-monoids con-
tain an L-she). The classification theorem depends on the

fact that the lattice is fully drawn on down-she-monoids that
do not contain an L-she: this is proved in the Appendix. We
remind the reader of the following six shes which also play
a role in our classification.

∀0 ∀1 ∀2 ∃0 ∃1 ∃2
0 012
1 1
2 2

0 0
1 012
2 2

0 0
1 1
2 012

0 0
1 01
2 02

0 01
1 1
2 12

0 02
1 12
2 2

Theorem 5 (Tetrachotomy). Let B be a three-element
structure.

I. If shE(B) contains any of the L-shes, then
{∃,∀,∧,∨}-FO(B) is in L.

II. If shE(B) contains none of the L-shes, but contains
one of ∀0, ∀1 or ∀2, then {∃,∀,∧,∨}-FO(B) is NP-
complete.

III. If shE(B) contains none of the L-shes, but contains one
of ∃0, ∃1 or ∃2, then {∃,∀,∧,∨}-FO(B) is co-NP-
complete.

IV. Otherwise, {∃,∀,∧,∨}-FO(B) is Pspace-complete.

Proof. The L case, Case I, follows from Theorem 3, as does
membership of NP and co-NP, for Cases II and III, respec-
tively.

For NP-hardness in Case II, consider the disjoint
union K2 ] K1, whose shes constitute one of the
down-she-monoids 〈 0 012

1 2
2 1

〉, 〈 0 2
1 012
2 0

〉 or 〈 0 1
1 0
2 012

〉, depend-

ing on the vertex labelling. {∃,∧,∨}-FO(K2) is NP-
complete (by reduction from 3-not-all-equal satisfiablity,
set RNAE(u, v, w) := E(u, v) ∨ E(v, w)), and K2 ] K1

agrees with K2 on all sentences of {∃,∧,∨}-FO (see [?]).
It follows that {∃,∧,∨}-FO(K2 ]K1) is NP-complete and
that {∃,∀,∧,∨}-FO(K2 ] K1) is NP-hard. The result for
NP-hardness now follows from Lemma 5.

For a graph G, define its complement G over the
same vertex set to have the complementary edge set (i.e.
E(x, y) ∈ G iff E(x, y) /∈ G). It is a simple applica-
tion of de Morgan duality that {∃,∀,∧,∨}-FO(G) is in NP
(resp., is NP-complete) iff {∃,∀,∧,∨}-FO(G) is in co-NP
(resp., is co-NP-complete) – see [?]. A similar argument to
that in the previous paragraph, with the complement graph
K2 ] K1 yields the co-NP-hardness result for Class III.

Finally, since all other down-she-monoids are of the
form of either Lemmas 5 or 6, the Pspace-hardness results
follow for Class IV.

Casting our mind back to the digraphs G1 and G2 of
Figure 3.1, we can read from the previous theorem that
{∃,∀,∧,∨}-FO(G1) and {∃,∀,∧,∨}-FO(G2) are co-NP-
complete and NP-complete, respectively.

8



〈
0 0
1 0
2 012

〉 〈
0 1
1 1
2 012

〉 〈
0 2
1 012
2 2

〉

〈
0 0
1 012
2 0

〉 〈
0 012
1 1
2 1

〉 〈
0 012
1 2
2 2

〉

〈
0 0
1 02
2 01

〉 〈
0 0
1 01
2 02

〉
oo

〈
0 012
1 1
2 2

〉
//
〈

0 012
1 2
2 1

〉

〈
0 12
1 1
2 10

〉 〈
0 01
1 1
2 12

〉
oo

〈
0 0
1 1
2 2

〉
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0 0
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〉
//
〈

0 2
1 012
2 0

〉

〈
0 12
1 02
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〉 〈
0 02
1 12
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〉
oo

〈
0 0
1 1
2 012

〉
//
〈

0 1
1 0
2 012

〉

〈
0 0
1 1
2 12

〉

[[

44

		

〈
0 0
1 1
2 02

〉

\\

66
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〈
0 0
1 01
2 2

〉
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EE

		

〈
0 0
1 12
2 2

〉

YY

AA

		

〈
0 02
1 1
2 2

〉

ZZ

EE

��

〈
0 01
1 1
2 2

〉
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KK

		

〈
0 0
1 2
2 1

〉

RR II
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〈
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〉

UU JJ
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〈
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〉
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〉
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Figure 4. Part of the lattice of down-she-monoids in the three-element case. All the remaining down-
she-monoids contain one of the six L-shes. 9



4 Final remarks

We have introduced the class of problems
{∃,∀,∧,∨}-FO(B) as well as an algebraic framework
in which to study their complexity. We hope that we
have adequately demonstrated that this class of problems
displays complexity-theoretic richness, while not being too
resistant to full classification in simple cases. The algebraic
method used in our classification for the three-element case
gives simple explanation where there previously was none
– if one were to look at the examples of Figures 3.1 and
3.2, there is little obvious in their immediate structure that
betrays their position in the classification.

We note that our positive algorithms, for membership
of NP, co-NP and – especially – L, are uniform, and
are based on simple quantifier elimination. Perhaps it
is to be hoped that a full classification for the problems
{∃,∀,∧,∨}-FO(B) would make use only of versions of
quantifier elimination. In any case, we conjecture that the
tetrachotomy of Theorem 5 extends to all structures B;
though we know we would need more sophistocated classes
of shes than those of Section 3.1 to prove this. We note
also that, unlike the situation with clones and the CSP, the
down-she-monoids associated with a finite domain are al-
ways finite. This means that their lattice should be actually
computable for low domain sizes like four or five.

5 Appendix

Throughout this section we consider shes only on the set
{0, 1, 2}. As before, we refer to the following six shes as
L-shes:

0 0
1 0
2 012

,
0 0
1 012
2 0

,
0 012
1 1
2 1

,
0 012
1 2
2 2

,
0 1
1 1
2 012

,
0 2
1 012
2 2

. Recall

that the three shes
0 012
1 0
2 0

,
0 1
1 012
2 1

and
0 2
1 2
2 012

each generate

〈 0 012
1 012
2 012

〉, which contains all the L-shes.

We will firstly undertake a systematic study of down-
she-monoids generated by a single she. We say that a she f
omits the L-shes if 〈f〉 does not contain any of the L-shes. It
may be verified that there are 265 shes on {0, 1, 2}. We will
discover that only 48 of them omit the L-shes. Furthermore,
of the 48, there are actually only 29 shes f s.t. 〈f〉 are in-
equivalent. Later, we shall see that these down-she monoids
are (almost) the only ones that do not contain an L-she.

We will progress through the shes by type. A type is a
three-element multiset over the base set {1, 2, 3}; for exam-
ple a she f is of type {1; 2; 2}7 if either |f(0)| = 2, |f(1)| =
1, |f(2)| = 1 or |f(0)| = 1, |f(1)| = 2, |f(2)| = 1 or
|f(0)| = 1, |f(1)| = 1, |f(2)| = 2.

Shes of type {1; 1; 1}. There a 6 shes of this type, in-
cluding the identity. These correspond to elements of the

7We separate elements by ‘;’ to indicate a multiset.

symmetric group S3. Each of these omits the L-shes.
Shes of type {2; 1; 1}. There are 45 shes of this type.

We will establish that 27 of them omit the L-shes. We will
draw only the case where |f(0)| = 2; the cases |f(1)| = 2
and |f(2)| = 2 follow by symmetry. In the following, the
first row depicts the she f under consideration; the second
row depicts f2. In two cases it is necessary to derive f3

in the third row to demonstrate containment of an L-she in
〈f〉. The complexity of the respective down-she-monoids
is written in the fourth row as a guide; L is written exactly
where the down-she-monoid contains one of the L-shes.

0 01 01 01 01 01
f 1 0 1 2 2 2

2 2 2 0 1 2

0 01 01 012 012 012
f2 1 01 1 0 1 2

2 2 2 01 2 2

Psp Psp L NP L

0 02 02 02 02 02
f 1 0 1 1 1 2

2 1 0 1 2 1

0 012 02 012 02 012
f2 1 02 1 1 1 1

2 0 02 1 2 2

L Psp L Psp NP

0 12 12 12 12 12
f 1 0 0 0 1 2

2 0 1 2 0 0

0 0 01 02 01 02
f2 1 12 12 12 1 0

2 12 0 2 12 12

0 012 012
f3 1 01 12

2 12 02

Psp L coNP coNP L

It is readily seen (and was in any case obvious) that the cases
f(0) = {0, 1} and f(0) := {0, 2} are actually symmetric.

Shes of type {1; 2; 2}. There are 63 shes of this type. We
will establish that only 9 of them omit the L-shes. We will
draw only the case where |f(0)| = 1; the cases |f(1)| = 1

10



and |f(2)| = 1 follow by symmetry.

0 1 1 1 1 1 1 1
f 1 01 01 02 02 02 12 12

2 02 12 01 02 12 01 02

0 01 01 02 02 02 12 12
f2 1 01 01 01 012 12 012 012

2 012 012 012 012 012 12 012

L L L L L L L

0 2 2 2 2 2 2 2
f 1 01 01 01 02 02 12 12

2 01 02 12 01 12 01 02

0 01 02 12 01 12 01 02
f2 1 012 012 012 012 12 012 012

2 012 02 012 02 012 12 02

L L L L L L L

0 0 0 0 0 0 0 0
f 1 01 01 02 02 12 12 12

2 02 12 01 12 01 02 12

0 0 0 0 0 0 0 0
f2 1 01 01 01 012 012 012 12

2 02 012 02 012 012 02 12

coNP L coNP L L L Psp

Again, the cases f(0) = {1} and f(0) = {2} are actually
symmetric.

Shes of type {3; 1; 1}. There are 27 shes of this type, but
only 6 omit the L-shes. We will draw only the case where
|f(0)| = 3; the cases |f(1)| = 3 and |f(2)| = 3 follow by
symmetry.

0 012 012 012 012 012 012 012 012 012
f 1 0 0 0 1 1 1 2 2 2

2 0 1 2 0 1 2 0 1 2

0 012 012 012 012 012 012
f2 1 012 012 1 1 0 1

2 0 2 012 2 012 2

L L L L L NP L NP L

Shes of type {2; 2; 2}. None of these omits the L-shes.
We can demonstrate this by considering extensions of the
few of type {1; 2; 2} that themselves omit the L-shes. In
the following, we consider extensions of the three {1; 2; 2}
types in which |f(0)| = 1 that omit the L-shes. The re-
maining cases follow by symmetry. The first row depicts

the three {1; 2; 2} types, with |f(0)| = 1, that omit the L-
shes; the second row their extensions to type {2; 2; 2} (each
has two). The third row gives the extension squared, in or-
der to show containment of an L-she.

0 0 0 0
1 01 02 12
2 02 01 12

0 01 02 01 02 01 02
f 1 01 01 02 02 12 12

2 02 02 01 01 12 12

0 01 02 012 012 012 012
f2 1 01 012 01 012 12 12

2 012 02 012 02 12 12

Shes of type {3; 2; 1}. None of these omits the L-shes.
We can demonstrate this by considering extensions of the
few of type {3; 1; 1} that themselves omit the L-shes. In the
following, we consider extensions of the two {3; 1; 1} types
in which |f(0)| = 3 that omit the L-shes. The remaining
cases follow by symmetry. The first row depicts the two
{3; 1; 1} types that omit the L-shes; the second row their
extensions to type {3; 2; 1} (each has four). The third row
gives the extension squared, where this is necessary to show
containment of an L-she.

0 012 012
1 1 2
2 2 1

0 012 012 012 012 012 012 012 012
f 1 01 12 1 1 02 12 2 2

2 2 2 02 12 1 1 01 12

0 012 012 012 012
f2 1 012 1 012 01

2 2 012 02 012

Shes of any other type. None of these omits the L-shes
as these must contain one of {2; 2; 2} or {3; 2; 1} as a sub-
type.

5.1 Duplications.

It is a trivial observation that 〈 0 1
1 2
2 0
〉 = 〈 0 2

1 0
2 1
〉. It may

therefore be verified that there are 5 inequivalent down-she-
monoids generated by singletons of type {1; 1; 1}. Fur-
thermore, various of the type {2; 1; 1} shes are such that
they generate the same down-she-monoids as some of type
{1; 2; 2} or {3; 1; 1}. We will state all of the relationships

11



that concern us; their proofs are left as a simple exercise.

〈 0 0
1 12
2 12
〉 = 〈 0 0

1 12
2 1
〉 = 〈 0 0

1 2
2 12
〉

〈 0 01
1 01
2 2
〉 = 〈 0 01

1 0
2 2
〉 = 〈 0 1

1 01
2 2
〉

〈 0 02
1 1
2 02
〉 = 〈 0 02

1 1
2 0
〉 = 〈 0 2

1 1
2 02
〉

〈 0 0
1 02
2 01
〉 = 〈 0 0

1 02
2 1
〉 = 〈 0 0

1 2
2 01
〉

〈 0 12
1 02
2 2
〉 = 〈 0 1

1 02
2 2
〉 = 〈 0 12

1 0
2 2
〉

〈 0 12
1 1
2 01
〉 = 〈 0 12

1 1
2 0
〉 = 〈 0 2

1 1
2 01
〉

〈 0 012
1 2
2 1

〉 = 〈 0 01
1 2
2 1
〉 = 〈 0 02

1 2
2 1
〉

〈 0 1
1 0
2 012

〉 = 〈 0 1
1 0
2 02
〉 = 〈 0 1

1 0
2 12
〉

〈 0 2
1 012
2 0

〉 = 〈 0 2
1 01
2 0
〉 = 〈 0 2

1 12
2 0
〉

It follows that we may discard 18 of the 27 of type {2; 1; 1}.
We are left with only 29 shes whose interactions we need
to consider in the analysis of down-she-monoids that do not
contain a L-shes: 5 of type {1; 1; 1} (including the identity),
9 of type {2; 1; 1}, 9 of type {1; 2; 2} and 6 of type {3; 1; 1}.
We depict the 29 cases (28 plus the identity) in the following
manner for future reference. We classify the 28 into five
classes A-E, each of six, except D of five.

5.2 Combinations of the 28.

We now systematically consider the ways in which the
28 shes combine with one another.

5.2.1 Combinations involving Class D.

Combinations involving a cyclic permutation. We con-
sider shes of the form 〈 0 1

1 2
2 0

, f〉. If f is in 〈 0 1
1 2
2 0
〉, then

we generate 〈 0 1
1 2
2 0
〉. If f is any of the transpositions

0 0
1 2
2 1

,
0 1
1 0
2 2

or
0 2
1 1
2 0

, then we generate the down-she-monoid cor-

responding to S3: 〈 0 1
1 2
2 0

,
0 0
1 2
2 1
〉. We will discover that this

is the only down-she-monoid, other than the 29 generated
by singletons, that does not contain an L-she. As a first step
to this result, we now prove that, if f is any other she (than
type {1; 1; 1}), then 〈 0 1

1 2
2 0

, f〉 contains an L-she. It is suffi-

cient to prove this for f of type {2; 1; 1} where 〈f〉 does not
already contain an L-she. We consider only the case where
|f(0)| = 2; the others being symmetric. Since the cases
f(0) = {0, 1} and f(0) := {0, 2} are symmetric, we con-
sider only the former. In the following table, from the third
row, each entry is the composition of the she two above it

on the she immediately above it, with the derivation ceasing
when containment of an L-she is obvious.8

0 1 1 1 1 1 1
e 1 2 2 2 2 2 2

2 0 0 0 0 0 0

0 01 01 01 12 12 12
f 1 0 1 2 0 0 1

2 2 2 1 0 2 0

0 12 12 12 02 02 02
g := e ◦ f 1 1 2 0 1 1 2

2 0 0 2 1 0 1

0 02 12 12 012 12 012
h := f ◦ g 1 0 2 01 0 0 0

2 01 01 1 0 12 1

0 012 02 02 01 012
i := g ◦ h 1 12 0 012 02 02

2 12 12 0 01 2

0 012 012
j := h ◦ i 1 12 12

2 012 012

Combinations involving a transposition. We consider
shes of the form 〈 0 0

1 2
2 1

, f〉, where f is one of our 28 (of

course, the similar cases for
0 1
1 0
2 2

and
0 2
1 1
2 0

are symmetric).

When
0 0
1 2
2 1

is combined with anything in 〈 0 0
1 2
2 1
〉, clearly

〈 0 0
1 2
2 1
〉 results. When

0 0
1 2
2 1

is combined with any of
0 1
1 0
2 2

,
0 2
1 1
2 0

or
0 0
1 2
2 1

then the down-she-monoid equivalent to S3

results: 〈 0 0
1 2
2 1

,
0 0
1 2
2 1
〉.

We consider the remaining 24 cases in groups of six.
For the Class C, we specify the resultant down-she monoid
(when in combination with

0 0
1 2
2 1

).

0 0 0 0 0 02 01
1 1 1 01 12 1 1
2 12 02 2 2 2 2

〈 0 0
1 12
2 12
〉 〈 0 0

1 02
2 01
〉 〈 0 0

1 02
2 01
〉 〈 0 0

1 12
2 12
〉 〈 0 012

1 2
2 1

〉 〈 0 012
1 2
2 1

〉

For Classes A,B and E, we specify either the resultant
down-she-monoid or we give a derivation of an L-she: from

8Note that this form of derivation will recur hereonin. Remember that
f on g involves evaluating first g then f .
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〈
0 0
1 02
2 01

〉 〈
0 0
1 01
2 02

〉
⇐ Class A

〈
0 012
1 1
2 2

〉 〈
0 012
1 2
2 1

〉
〈

0 12
1 1
2 10

〉 〈
0 01
1 1
2 12

〉
↙

〈
0 0
1 1
2 2

〉
↗

〈
0 0
1 012
2 2

〉 〈
0 2
1 012
2 0

〉
〈

0 12
1 02
2 2

〉 〈
0 02
1 12
2 2

〉
Class B ⇒

〈
0 0
1 1
2 012

〉 〈
0 1
1 0
2 012

〉
Class C ⇒

〈
0 0
1 1
2 12

〉 〈
0 0
1 1
2 02

〉 〈
0 0
1 01
2 2

〉
⇒

〈
0 0
1 12
2 2

〉 〈
0 02
1 1
2 2

〉 〈
0 01
1 1
2 2

〉
〈

0 0
1 2
2 1

〉 〈
0 2
1 1
2 0

〉 〈
0 1
1 0
2 2

〉
⇐ Class D〈

0 1
1 2
2 0

〉
⇐

Class E ⇒
〈

0 0
1 12
2 12

〉 〈
0 02
1 1
2 02

〉 〈
0 01
1 01
2 2

〉
⇒

〈
0 12
1 0
2 0

〉 〈
0 1
1 02
2 1

〉 〈
0 2
1 2
2 10

〉

the third row each entry is the composition of the she two
above it on the she immediately above it.

0 0 0 0 0 0 0
e 1 2 2 2 2 2 2

2 1 1 1 1 1 1

0 0 01 02 0 12 12
f 1 01 1 12 02 1 02

2 02 12 2 01 01 2

0 02 01 12 12
g := e ◦ f 1 2 12 2 01

2 12 1 02 1

0 012 012 01 02
h := f ◦ g 1 12 12 01 012

2 12 12 012 02
〈 0 0

1 02
2 01
〉 〈 0 0

1 02
2 01
〉

0 0 0 0 0 0 0
e 1 2 2 2 2 2 2

2 1 1 1 1 1 1

0 012 0 0 012 2 1
f 1 1 012 1 2 012 0

2 2 2 012 1 0 012

0 0 0 1 2
g := e ◦ f 1 012 2 012 0

2 1 012 0 012

0 0 0 012 012
h := f ◦ g 1 012 012 012 1

2 012 012 2 012
〈 0 012

1 2
2 1

〉 〈 0 012
1 2
2 1

〉
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0 0 0 0 0 0 0
e 1 2 2 2 2 2 2

2 1 1 1 1 1 1

0 0 02 01 12 1 2
f 1 12 1 01 0 02 2

2 12 02 2 0 1 10

0 01 02 2 1
g := e ◦ f 1 2 02 01 1

2 01 1 2 02

0 012 012 1 2
h := f ◦ g 1 02 012 012 2

2 012 01 1 012
〈 0 0

1 12
2 12
〉 〈 0 12

1 0
2 0
〉

5.2.2 Combinations involving Class E.

Without loss of generality, we consider only
0 0
1 12
2 12

and
0 12
1 0
2 0

in combination with shes of Classes A,B,C and E (the other
cases being symmetric or covered in the previous section).
Since 〈 0 0

1 2
2 1
〉 ⊆ 〈 0 0

1 12
2 12
〉 ⊆ 〈 0 12

1 0
2 0
〉, we only consider, for

0 0
1 12
2 12

(respectively,
0 12
1 0
2 0

) shes f s.t. 〈 0 0
1 2
2 1

, f〉 (respec-

tively, 〈 0 0
1 12
2 12

, f〉) does not contain an L-she. We begin with

combinations of
0 0
1 12
2 12

on Class C. In each case, we specify

either the resultant down-she-monoid or we give a deriva-
tion of an L-she: from the third row each entry is the compo-
sition of the she two above it on the she immediately above
it.

0 0 0 0 0 0 0
e 1 12 12 12 12 12 12

2 12 12 12 12 12 12

0 0 0 0 0 02 01
f 1 1 1 01 12 1 1

2 12 02 2 2 2 2

0 0 0 012 012
g := e ◦ f 1 12 012 12 12

2 012 12 12 12

0 0 0
h := f ◦ g 1 012 012

2 012 012

〈 0 0
1 12
2 12
〉 〈 0 0

1 12
2 12
〉

We are left with only two of the above to consider in com-
bination with

0 12
1 0
2 0

. We state the equivalence

〈 0 12
1 0
2 0

,
0 0
1 1
2 12
〉 = 〈 0 12

1 0
2 0

,
0 0
1 12
2 2
〉 = 〈 0 12

1 0
2 0
〉.

Now we consider the combination of
0 0
1 12
2 12

with the six shes

f of Classes A, B and E that are s.t. 〈 0 0
1 2
2 1

, f〉 does not con-

tain an L-she. In each case, we specify either the resultant
down-she-monoid or we give a derivation of an L-she: from
the third row each entry is the composition of the she two
above it on the she immediately above it.

0 0 0 0 0 0 0
e 1 12 12 12 12 12 12

2 12 12 12 12 12 12

0 0 0 012 012 0 12
f 1 01 02 1 2 12 0

2 02 01 2 1 12 0

0 0 0 012 012
g := e ◦ f 1 012 012 12 12

2 012 012 12 12

〈 0 0
1 12
2 12
〉 〈 0 12

1 0
2 0
〉

We are then left with two of the above to consider in com-
bination with

0 12
1 0
2 0

. We state the trivialities

〈 0 12
1 0
2 0

,
0 0
1 12
2 12
〉 = 〈 0 12

1 0
2 0

,
0 12
1 0
2 0
〉 = 〈 0 12

1 0
2 0
〉.

5.2.3 Combinations involving Class C.

Without loss of generality, we consider only
0 0
1 1
2 12

in com-

bination with shes of Classes A-C (the other cases being
symmetric or covered in the previous sections). We will
consider the eighteen shes in groups of six. In each case,
we specify either the resultant down-she-monoid or we give
a derivation of an L-she: from the third row each entry is the
composition of the she two above it on the she immediately
above it.
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0 0 0 0 0 0 0
e 1 1 1 1 1 1 1

2 12 12 12 12 12 12

0 0 01 02 0 12 12
f 1 01 1 12 02 1 02

2 02 12 2 01 10 2

0 0 012 0 12
g := e ◦ f 1 01 12 012 012

2 012 12 01 12

〈 0 01
1 1
2 12
〉 〈 0 12

1 1
2 01
〉

0 0 0 0 0 0 0
e 1 1 1 1 1 1 1

2 12 12 12 12 12 12

0 012 0 0 012 2 1
f 1 1 012 1 2 012 0

2 2 2 012 1 0 012

0 012 0 012 12
g := e ◦ f 1 1 012 12 012

2 12 12 1 0

0 0 012
h := f ◦ g 1 012 012

2 012 2

〈 0 0
1 1
2 012

〉 〈 0 1
1 0
2 012

〉

0 0 0 0 0 0 0
e 1 1 1 1 1 1 1

2 12 12 12 12 12 12

0 0 0 0 0 02 01
f 1 1 1 01 12 1 1

2 12 02 2 2 2 12

0 0 012
g := 1 01 1
e ◦ f 2 12 12

0 0
h := 1 01
f ◦ g 2 012

〈 0 0
1 1
2 12
〉 〈 0 0

1 1
2 012

〉 〈 0 0
1 12
2 12
〉 〈 0 01

1 1
2 12
〉

5.2.4 Intercombinations of Classes A and B.

Let f and g be Class A and Class B shes, respectively, s.t.
b′ is the element in each of the image sets f(0), f(1), f(2)
and b is the element s.t. g(b) = {0, 1, 2} – i.e. f = ∃b′ and
g = ∀b. It is an elementary matter to verify that 〈f, g〉 nec-
essarily contains an L-she (it contains the she h that maps
b to {0, 1, 2} and everything else to b′). We are left only to
consider the combinations of Class A (respectively, Class
B) on itself.

For Class A, and w.l.o.g., we consider only
0 0
1 01
2 02

and
0 0
1 02
2 01

with the others. Since 〈 0 0
1 01
2 02
〉 ⊆ 〈 0 0

1 02
2 01
〉, we will

consider the latter case only with those that do not generate
an L-she with the former case. In each case, we specify ei-
ther the resultant down-she-monoid or we give a derivation
of an L-she: from the third row each entry is the composi-
tion of the she two above it on the she immediately above
it.

0 0 0 0 0 0 0
e 1 01 01 01 01 01 01

2 02 02 02 02 02 02

0 0 01 02 0 12 12
f 1 01 1 12 02 1 02

2 02 12 2 01 01 2

0 01 02 012 012
g := e ◦ f 1 01 012 01 02

2 012 02 01 02

〈 0 0
1 01
2 02
〉 〈 0 0

1 02
2 01
〉

We can now give the trivialities

〈 0 0
1 02
2 01

,
0 0
1 01
2 02
〉 = 〈 0 0

1 02
2 01

,
0 0
1 02
2 01
〉 = 〈 0 0

1 02
2 01
〉.

For Class B, we procede in a similar manner.

0 012 012 012 012 012 012
e 1 1 1 1 1 1 1

2 2 2 2 2 2 2

0 012 0 0 012 2 1
f 1 1 012 1 2 012 0

2 2 2 012 1 0 012

0 012 012 2 1
g := e ◦ f 1 012 1 012 012

2 2 012 012 012

〈 0 012
1 1
2 2

〉 〈 0 012
1 2
2 1

〉
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Finally, the trivialities

〈 0 012
1 2
2 1

,
0 012
1 1
2 2

〉 = 〈 0 012
1 2
2 1

,
0 012
1 2
2 1

〉 = 〈 0 012
1 2
2 1

〉.
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