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Abstract. Forbidden patterns problems are a generalisation of (finite)
constraint satisfaction problems which are definable in Feder and Vardi’s
logic mmsnp [1]. In fact, they are examples of infinite constraint sat-
isfaction problems with nice model theoretic properties introduced by
Bodirsky [2]. In previous work [3], we introduced a normal form for
these forbidden patterns problems which allowed us to provide an effec-
tive characterisation of when a problem is a finite or infinite constraint
satisfaction problem. One of the central concepts of this normal form is
that of a recolouring. In the presence of a recolouring from a forbidden
patterns problem Ω1 to another forbidden patterns problem Ω2, contain-
ment of Ω1 in Ω2 follows. The converse does not hold in general and it
remained open whether it did in the case of problems being given in our
normal form. In this paper, we prove that this is indeed the case. We
also show that the recolouring problem is Πp

2 -hard and in Σp
3 .

Keywords: Constraint Satisfaction, Graph Homomorphism, Logic in
Computer Science, Monadic Second Order Logic, Computational
Complexity.

1 Introduction

Feder and Vardi [1] conjectured nearly 20 years ago that the class of non-uniform
constraint satisfaction problems (csp) has a dichotomy, that is that every prob-
lem in this class is either tractable or NP-complete. In contrast, it is believed
that NP does not have the dichotomy property, as by Ladner’s theorem [4], if
P �= NP, then there are problems in NP which are neither in P nor NP-complete.
The dichotomy conjecture remains open though progress has been made using
the central notion of polymorphisms in the mid nineties by Cohen, Jeavons and
others and at the turn of the century great progress followed from Bulatov’s pow-
erful algebraic approach involving tame congruence theory (see [5] for a recent
survey).

Descriptive complexity theory seeks to classify problems, i.e., classes of finite
structures, as to whether they can be defined using formulae of some specific
logic, in relation to their computational complexity. One of the seminal results
in descriptive complexity is Fagin’s theorem [6] which states that a problem
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can be defined in existential second-order logic (eso) if, and only if, it is in
the complexity class NP. In their influential paper [1], Feder and Vardi also
introduced the logic mmsnp, a syntactic fragment of monotone monadic eso

which is intimately linked to csp. It is thought to be the largest such fragment
to exhibit a dichotomy1 and the derandomisation by Kun [7] of a lemma used
by Feder and Vardi implies that mmsnp exhibits a dichotomy if, and only if, the
dichotomy conjecture for csp holds.

The logic mmsnp does not capture csp: every problem in csp can be defined in
mmsnp but there are problems in mmsnp which are not in csp [1,8]. In previous
work with Iain Stewart [9,3], we provided an effective method to decide given a
sentence of mmsnp whether it defines a problem in csp or not. It turns out that
these problems in mmsnp that are not in csp are actually constraint satisfaction
problems with an infinite domain, whose templates have nice model theoretic
properties, introduced by Bodirsky [10]. So our previous result provides in fact
a decision procedure that can tell whether a sentence of mmsnp defines a finite
or an infinite csp problem. In contrast, when the input of a problem definable
in mmsnp is restricted to be of bounded degree, or from a proper minor closed
class or more generally of bounded expansion, the restricted problem becomes a
restricted finite csp [11]. It is important to note that though there are infinite csp

à la Bodirsky which are not definable in mmsnp, this logic defines a large infinite
class of natural infinite csp which are worth studying in their own rights. For
example, the complexity of problems in mmsnp have recently been investigated
in the special case of monochromatic and loopless forbidden patterns [12].

Combinatorially, a problem in csp can be seen as a homomorphism problem
represented by a finite structure T, the so-called template. It is well known that
the containment of csp corresponds exactly to the existence of a homomorphism
from one template to another. More precisely, the csp with template T1 is con-
tained in the csp with template T2 if, and only if, there is a homomorphism
from T1 to T2. Therefore the category of relational structures and homomor-
phisms crops up naturally in the study of csp [13].

Combinatorially, a problem in mmsnp can be represented by a finite set of
coloured obstructions, the so-called forbidden patterns, and an instance is ac-
cepted if, and only if, it can be coloured while avoiding the presence of these
patterns. The key ingredient of our previous result was to refine Feder and Vardi’s
normal form of mmsnp to take into account the fact that some colours might
actually be redundant in the representation of the problem. To formalise this, we
introduced the notion of a recolouring from a forbidden patterns problem Ω1 to
another forbidden patterns problem Ω2 and showed that in the presence of such
a recolouring, containment of the problem Ω1 in the problem Ω2 followed. The
converse does not hold in general and it remained open whether it did in the case
of problems being given in our normal form. In this paper, we prove that this is
indeed the case. It follows that representations of forbidden patterns problems
given in a normal form and recolourings provide us with the right category in

1 Feder and Vardi showed that monotone monadic snp with �= does not have a
dichotomy.
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the context of mmsnp. It would be interesting to settle the complexity of the
containment of forbidden patterns problems. We investigate as a first step the
complexity of the recolouring problem and show that it is in Σp

3 and that it is
Πp

2 -hard.
This paper is organised as follows. In the next section, as the reader may

not be familiar with mmsnp, we shall introduce key concepts informally, mostly
by discussing examples, prove simple cases of our main result to illustrate our
method, and finally state our main result. In Section 3, we detail and adapt the
computational equivalence between csp and mmsnp given by Feder and Vardi.
In Section 4, we prove our main result. We conclude with a discussion of the
complexity of some related problems.

2 Preliminaries

Existential Second Order Logic. Fagin’s theorem equates definability in eso with
membership in the complexity class NP. For example, the class of 3-colourable
graphs can be defined using a sentence of the following form.

Φ1 := ∃R, G, B, three sets partitioning the vertices

∀x, y, ¬
(
E(x, y) ∧ R(x) ∧ R(y)

)
∧ ¬

(
E(x, y) ∧ G(x) ∧ G(y)

)

∧ ¬
(
E(x, y) ∧ B(x) ∧ B(y)

)

A graph is represented as a relational structure whose domain consists of ver-
tices equipped with a single binary predicate E representing the edge relation.
The above sentence has two kinds of quantifiers: second-order variables (always
upper-case) are interpreted as relations, like R which is interpreted as a set
of vertices, and first-order variables (always lower case), like x, which is inter-
preted as a vertex. The three second order predicates R, G and B stand for three
colours, say red, green and blue and the sentence asserts that the vertices may
be coloured with these three colours in such a way that for every edge in the
graph, the extremities have different colours.

In this paper, we shall only need second-order predicates that are sets, the
so-called monadic predicates, and we shall only allow them to be existentially
quantified as in the above example. Note that finitely many sets of vertices
correspond essentially to a partition of the vertices in distinct colours. In com-
binatorial terms this means that in order to check a property we have to guess
some colours for each vertex before verifying some first-order property over the
coloured graph. Let us clarify this with another example.

Φ2 := ∃M, N ∀x, y, ¬(¬M(x) ∧ ¬N(x)
)

∧ ¬
(
E(x, y) ∧ M(x) ∧ N(x) ∧ M(y) ∧ N(y)

)

∧ ¬
(
E(x, y) ∧ ¬M(x) ∧ N(x) ∧ ¬M(y) ∧ N(y)

)

∧ ¬
(
E(x, y) ∧ M(x) ∧ ¬N(x) ∧ M(y) ∧ ¬N(y)

)
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There are two monadic predicates M and N in Φ2 and for a given vertex x there
are four cases to consider: x is in both M and N (M(x) ∧ N(x) holds), x is in
M but not in N (M(x) ∧¬N(x) holds) etc. So the above sentence disallows one
of the colour (with the conjunct ¬(¬M(x) ∧ ¬N(x)

)
) and states for the three

other colours that an edge can not have both extremities of the same colour. In
other words, this sentence defines also the fact that a graph is 3-colourable.

Monotone Monadic Strict NP without inequalities. The two sentences Φ1 and Φ2
have a particular syntactic form: ∃ monadic predicates, ∀ variables ranging over
vertices, followed by a quantifier-free first-order formula. Such sentences form
the fragment snp of eso. It turns out that many combinatorial problems are
definable in snp, in particular every problem in csp can be defined by a snp

sentence. For example, in the case of 3-colourability, we may use the sentence
Φ2. Let us explain in a bit more detail how we may build this sentence in a
systematic fashion. Recall first that for a csp with template T, a structure A is
a yes-instance if, and only if, there exists a homomorphism from A to T. That
is, a mapping h from the domain of A to that of T such that every arc in A is
mapped to an arc in T (assuming we deal with digraphs for now for the sake
of simplicity). The 3-colourability problem, recast as a digraph problem, has as
template T the digraph with 3 vertices and all possible arcs that are not self-
loops. Viewing the 3 elements of T as colours, we have readily explained how
to use 2 monadic predicates M and N and one forbidden combination of them
¬(¬M(x)∧¬N(x)

)
to encode three colours. In order to enforce a homomorphism,

we now encode the non-arcs of T by adding negated conjuncts, one for each non-
arc. For example, if M(x) ∧ N(x) stands for the colour corresponding to the
first vertex of T and since there is no self-loop around this vertex, we add the
following negated conjunct to the sentence:

¬
(
E(x, y) ∧ M(x) ∧ N(x) ∧ M(y) ∧ N(y)

)
.

Doing this with every non-arc, we obtain the sentence Φ2 given above. It is
important to note that the sentence we build this way uses only monadic pred-
icates. Furthermore, the first-order part is a conjunction of negated conjuncts;
and, in every negated conjunct atoms from the input (the edge symbol E in our
examples) appears always positively. This means that the sentence is monotone.
Finally, we never use the symbol �=. We have therefore built a sentence of snp

that is monadic, monotone and without inequality. The sentences of snp sat-
isfying these three restrictions form the logic mmsnp introduced by Feder and
Vardi. As we may build such a sentence for every template, we now know that

csp ⊆ mmsnp.

Some sentences of mmsnp give rise to problems that are not in csp and are
in fact constraint satisfaction problems with an infinite template. For example,

Ψ1 := ∀x, ∀y, ∀z, ¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x)

)
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expresses that there are no oriented 3-cycles in a digraph (and also no self-loop
as the variables may be equal). It is not difficult to see that this problem is
not in csp. Assume for contradiction that there exists a template T with n
elements for this problem. We may build a yes-instance A for ψ1 as follows:
take n + 1 vertices and add between any pair of distinct vertices a directed path
of length 3. By assumption, there exists a homomorphism from A to T. This
homomorphism must identify two distinct elements joined by a directed 3-path.
Hence, T contains a loop or an oriented 3-cycle and is a no-instance which is
absurd as the template is always a yes-instance.

The problem defined by Ψ1 is in fact a csp with an infinite template. It is
not difficult to construct an infinite template for this problem: simply take as
a template the disjoint union of its yes-instances2. This infinite template is
not particularly interesting, however, we may also construct for this problem an
infinite template that has a nice model theoretic property called ω-categoricacity.
From now on, by infinite csp, we mean a problem with such a nice template.
This property means in particular that the Galois-connection used in the finite
case can be successfully adapted and that some logico-algorithmic results such
as those involving Datalog still hold. We will refrain from going into more details
and refer to Bodirsky’s survey [2] on his pioneering work on infinite csp.

Obstructions and containment. Note that the negated conjunct

¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x)

)

in Ψ1 essentially forbids the occurrence of an oriented 3-cycle. However, since the
variables x, y and z may take the same value, this means in fact that we forbid the
existence of a homomorphism from the oriented 3-cycle to the instance. Hence,
the problem defined by Ψ1 can be seen as a dual problem to a csp. Whereas in
the case of csp we ask whether there is a homomorphism from the instance A

to the template T, we will ask here whether there is no homomorphism from an
obstruction F to the instance A. In the case of more than one obstruction, we
have essentially the fragment of mmsnp that has no monadic predicate (sentences
of mmsnp that are also first-order). In general, such a problem is known to be
an infinite csp [14]. Let us consider two such problems Ω1 and Ω2 given by two
sets of obstructions F1 and F2. We will insist for simplicity for the obstructions
to be connected3. We say that the problem Ω1 is contained in Ω2 if, and only
if, for any instance A, if A is a yes-instance of Ω1 then A is a yes-instance of
Ω2. When is Ω1 contained in Ω2? A simple criteria defined in terms of existence
of homomorphisms between the obstructions characterises containment in this
simple case.

Proposition 1 ([9], see also [15]). Ω1 is contained in Ω2 if, and only if, for
every obstruction F2 in F2 there exists an obstruction F1 in F1 such that there
is a homomorphism from F1 to F2.
2 This is true in general for any monotone problem that is closed under disjoint union.
3 This is not a strong hypothesis as a problem with a disconnected obstruction is in

fact the disjoint union of problems with connected obstructions.
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The main result of this paper is a generalisation of the above result to the case
where the obstructions are coloured, that is when the corresponding mmsnp

sentences are no longer first-order sentences.

Forbidden patterns problems. Another example of a problem that is in mmsnp

but not in csp is:

Ψ2 := ∃M, ∀x, y, z, ¬
(
E(x, y) ∧ E(y, z) ∧ E(z, x) ∧ M(x) ∧ M(y) ∧ M(z)

)

∧ ¬
(
E(x, y)∧ E(y, z)∧E(z, x) ∧¬M(x) ∧ ¬M(y)∧¬M(z)

)
.

We have a single monadic predicate which encodes two colours, say white and
black. The two negated conjuncts forbid two vertex-coloured structures, namely
a white oriented 3-cycle F′

1 and a black oriented 3-cycle F′
2. Thus, the problem

defined by Ψ2 accepts an instance A whenever its vertices can be coloured in
white and black into a structure A′ such that there is neither a homomorphism
from F′

1 to A′ nor a homomorphism from F′
2 to A′.

In general a forbidden patterns problem Ω is given by a finite set of coloured
structures. We insist that each structure is connected and contains at least one
tuple. It makes sense to formalise the (vertex-)colouring of a structure by a
homomorphism into some structure describing the colours. So Ω is given by a
structure T representing the colours and a set F ′ of T-coloured structures, the
so-called forbidden patterns.

A T-coloured structure is a pair (F, f) where f is a homomorphism from F

to T which describes the colouring. The notion of structure homomorphism gen-
eralises naturally to coloured structures: given two T-coloured structures (F, f)
and (G, g), a homomorphism h from (F, f) to (G, g) is simply a homomorphism
from F to G that preserves the colours, that is such that f = g ◦ h.

An instance A of the problem Ω is a yes-instance if, and only if, there exists
a homomorphism h from A to T such that there is no homomorphism from any
forbidden pattern (F, f) in F ′ to (A, h).

When h is not a homomorphism or when there is a homomorphism from some
forbidden pattern (F, f) in F ′ to (A, h), we say that (A, h) is not valid w.r.t. Ω.
We denote by fpp the class of forbidden patterns problems. Forbidden patterns
problems are known to be infinite csp [10] and every sentence in mmsnp captures
a finite union of problems in fpp [3].

Recolouring. A recolouring is a homomorphism which states how the colours of
a problem Ω1 can be transformed into colours of a problem Ω2. Let us recall the
formal definition before looking at an example.

Definition 2 (recolouring [9,3]). Let Ω1 (respectively, Ω2) be a forbidden
patterns problem given by T1 and a set F ′

1 of T1-coloured forbidden patterns
(respectively, T2 and F ′

2).
A recolouring from Ω1 to Ω2 is a homomorphism r from T1 to T2 such that

for every (F2, f2) forbidden by Ω2, any of its inverse image (F2, f1) under r is
not valid w.r.t. Ω1. In other words, for every T2-coloured pattern (F2, f2) in F ′

2,
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c1
c2

w

w

w
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b b

c3
c3c2

c3

c3c2

c2c2

c1 c1

c1 c1

c1

T1 F′
1

T2 F′
2

b w

Fig. 1. Two forbidden patterns problems

and for any T1-coloured structure (F2, f1) such that f2 = r ◦ f1, there exists a
forbidden pattern (G1, g1) in F ′

1 and a homomorphism h from (G1, g1) to (F2, f1).

Note how this definition generalises the condition between the obstructions given
in Proposition 1. We already know that the existence of a recolouring implies
containment.

Proposition 3 ([9,3]). If there is a recolouring r from a forbidden patterns
problem Ω1 to a forbidden patterns problem Ω2 then Ω1 is contained in Ω2.

Example 4. We consider the two forbidden patterns given on Figure 1 (note how
the colours of the vertices of a forbidden pattern are simply given by labelling
a vertex with its colour). The problem represented by T2 and F ′

2 is a variant of
the problem defined by Ψ2 in which triangles have arcs in both directions. Let
r be the mapping from the colours of the first problem, namely {c1, c2, c3} to
those of the second problem, namely {b, w}, that maps c1, c2 and c3 to b. Note
that r is indeed a homomorphism from T1 to T2. The only forbidden pattern of
the second problem whose colours are in the image of r is the black triangle (the
first forbidden pattern of F ′

2 listed on the figure). We need to show that every
triangle whose vertices is coloured via r−1 are invalidated by the first problem.
This can happen in two ways: the colouring may not be a homomorphism to
T1, or some forbidden pattern in F ′

1 invalidates it. If the colours of the three
vertices of the triangle are replaced by c1, then the 5-cycle (the first forbidden
pattern of F ′

1 listed on the figure) invalidates this choice of colours. Similarly, if
the vertices are all coloured by c2 only or c3 only then the two next forbidden
patterns on the figure invalidate these choices. If the colours of the three vertices
of the triangle are replaced by c1 and other colours then the colouring is not a
homomorphism to T1. If the colours are replaced by c2 and c3 but not c1 then
the last forbidden pattern listed on the figure invalidates this choice. This shows
that r is a recolouring from the first problem to the second problem.
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Normal Form for Forbidden Patterns Problems. In this paper, we prove that the
converse of Proposition 3 holds, when the two problems are given in the normal
form. Note that this can always be done.

Theorem 5 ([3]). Every forbidden patterns problem can be given by a repre-
sentation in the normal form.

We shall recall shortly what conditions this normal form entails. Let us first
introduce some vocabulary. We say that a coloured structure is weakly valid
w.r.t. a forbidden patterns problem if there is no injective homomorphism from
a forbidden pattern into it. A forbidden patterns that consists of a coloured
structure with a single tuple that mentions each element exactly once4 is said
to be conform. When a forbidden pattern is conform, we may drop it from the
list of forbidden patterns and enforce its constraint by amending the structure T

accordingly (by removing the corresponding tuple from T). A forbidden patterns
problem Ω is given by a structure T and a set of forbidden T-coloured structures
F ′. The pair (T, F ′) is called a representation of Ω. If every recolouring from
(T, F ′) to itself is an automorphism of T then we say that the representation
(T, F ′) is a core.

Definition 6 (Normal Form [3]). A representation (T, F ′) of a forbidden
patterns problem Ω is said to be in the normal form if, and only if it satisfies
the following six conditions.

(p1). An instance is valid if, and only if, it is weakly valid.
(p2). Every pattern of F ′ is a core (as a coloured structure).
(p3). It is not the case that (F1, f1) is a substructure of (F2, f2), for any distinct

patterns (F1, f1) and (F2, f2) in F ′.
(p4). No pattern of F ′ is conform.
(p5). Every forbidden pattern is biconnected.
(p6). The representation (T, F ′) is a core.

Example 7. Let Ω4 be the problem given on the top of Figure 2. We shall discuss
briefly how its normal form is computed without explaining why the obtained
problem is equivalent, for further details please refer to [3].

First we enforce p1 to p3 simply by taking the homomorphic image of the
forbidden pattern, keeping only the minimal ones with respect to injective ho-
momorphisms. Note that p4 holds also in the representation of the problem we
obtain this way which is given in the second row on the figure.

Next, we enforce p5 by splitting the path of length two along its articulation
point and copying its colour c into two new colours b and w, one for the sub-
structure to the left of this articulation point, one for the substructure to the
right of this articulation point. Replacing elsewhere the colour c by w and b in all
possible ways and simplifying again by keeping the minimal patterns to enforce
p3, we obtain the representation which is given in the fourth row of the figure.
Note that it no longer satisfies p4.

4 Self-loops and their generalisation like R(x, x, y) are not conform.
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c
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c c c

c c c
c
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w

w

w c cc
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normal form
Ω3 b w

T3

T4 F′
4

F′
3 = ∅

bcb w

p1 to p3

enforcing p5

bb w b ww b w b

b w ww b w

enforcing p4

Ω4

Fig. 2. Computing the normal form

We enforce progressively p4 by removing the conform forbidden patterns and
removing the corresponding tuple in the structure describing the colours. We
also remove any forbidden pattern that is no longer a coloured structure. We
finally obtain this way the problem Ω3 given in the last row on the figure.

The mapping r which sends w and b to the single colour c of Ω4 is a recolouring
from Ω3.

Conversely, there is no recolouring from Ω4 to Ω3 as there is no homomorphism
from T4 to T3, since the former is a self-loop and the latter has no self-loop.

Note that the two problems Ω3 and Ω4 coincide and that Ω3 is given in the
normal form but that Ω4 is not (its only forbidden pattern fails to be bicon-
nected).

We are now ready to state the main result of this paper.

Theorem 8 (main result). Let Ω1 and Ω2 be two forbidden patterns problems
given in the normal form over the relational signature σ. Ω1 is contained in Ω2
if, and only if, there is a recolouring from Ω1 to Ω2.

Another case where it is not too hard to see that the converse of Proposition 1
holds is when Ω2 is in csp. Though this case is subsumed by our main result, its
proof will serve as a good warm-up. In particular, it will allow us to introduce
a key ingredient which is a generalisation by Feder and Vardi of a result due to
Erdös.

Proposition 9. Let Ω1 and Ω2 be two forbidden patterns problems. If both prob-
lems are given in the normal form and Ω2 is in csp then Ω1 is included in Ω2
if, and only if, there is a recolouring r from Ω1 to Ω2.
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Recall that the girth of a structure is the length of its shortest cycle (and so if
there are no cycles then the structure has infinite girth).

Lemma 10 (Erdös lemma [1]). Fix two positive integers r and s. For every
structure B, there exists a structure D such that: the girth of D is greater than r;
there is a homomorphism from D to B; and for every structure C of size at most
s, there is a homomorphism from B to C if, and only if, there is a homomorphism
from D to C.

Proof (of Proposition 9). As Ω2 is in the normal form and in csp, this means
that that F ′

2 = ∅ [3]. Thus, in this case a recolouring is nothing other than a
homomorphism from T1 to T2. In particular if T1 is a yes-instance of Ω1 then we
are done. However, this is in fact not true in general.

By assumption Ω1 is given in the normal form. This means that T1 is a no-
instance of Ω1 unless F ′

1 = ∅ [3]. We use Erdös Lemma: we choose r greater than
the largest forbidden patterns in F ′

1; s to be |T2|, the size of T2; and B := T1.
We claim that the structure D obtained from the lemma in this way is in fact

a yes-instance of Ω1. This is because the homomorphism, say d1, given by the
lemma from D to B = T1 gives us a valid colouring w.r.t. Ω1. To see this, we
use the fact that Ω1 is given in the normal form: it suffices to show that (D, d1)
is weakly valid; and, for every forbidden pattern (F1, f1), the structure F1 is
biconnected and must contain a cycle, so it can not occur as a substructure of
D which has a girth greater than the size of any forbidden patterns.

By containment of Ω1 in Ω2 it follows that D is a yes-instance of Ω2 and that
there is a homomorphism from D to T2. Hence, by construction of D this means
that there is a homomorphism from B = T1 to T2 and that we are done. 	


3 From Forbidden Patterns Problem to CSP and Back

The following result is an adaptation of the ideas of Feder and Vardi’s reduction
of mmsnp to csp [1] to forbidden patterns problems. We shall only sketch the
proof. A detailed proof using the same notation is available in [9]. There is a
small difference here, as the signature of the csp is now parameterised by a set
of patterns that must include the patterns from the forbidden patterns problem
considered but may include more. This result is one of the ingredient of the
proof of our main result. We denote by csp(−, T) the (non-uniform) constraint
satisfaction problem with template T and by csp(girth > γ, T) its restriction to
input of girth greater than γ.

Theorem 11. Let Ω be a forbidden patterns problem given in the normal form
over the relational signature σ. Let F be a set of biconnected σ-structures that
includes all structures involved in patterns forbidden by Ω. Let γ be a fixed integer
greater than the largest structure in F .

There exists a relational signature τ , a τ-structure TΩ, and two first-order
interpretations Π and Π−1 such that:

– τ extends σ with new symbols, one symbol RF of arity |F| for each F in F ;
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Fig. 3. No-Monochromatic-Triangle

– Π is a quantifier-free first-order interpretation using conjunction only;
– Π−1 is a first-order interpretation;
– Π−1 ◦ Π is the identity over σ-structures;
– Ω reduces to csp(−, TΩ) via Π; and,
– csp(girth > γ, TΩ) reduces to Ω via Π−1.

We sketch the proof of this result in the remaining of this section, providing an
example to help the reader understand the main ideas5.

Example 12. We consider the forbidden patterns problem defined by the sen-
tence Ψ2 in the introduction. It is a variant of the well-known NP-complete
problem No-Monochromatic-Triangle. It is given in its normal form on Fig-
ure 3. The signature of this problem is σ = 〈E〉 where E is binary which we
extend to a new signature τ = 〈E, R, S〉 where R is ternary and S unary (R
encodes the 3-cycles and S the self-loops). The interpretation Π from σ to τ is
given by: ϕR(y1, y2, y3) := E(y1, y2) ∧ E(y2, y3) ∧ E(y3, y1), ϕS(y1) := E(y1, y1)
and ϕE(y1, y2) := E(y1, y2). The interpretation Π−1 from τ to σ is given by the
formula ψE which is as follows:
(
E(y1, y2)

)
∨

(
y1 = y2 ∧ S(y1)

)
∨

(
∃x R(y1, y2, x) ∨ R(x, y1, y2) ∨ R(y2, x, y1)

)
.

The structure TΩ has two elements b and w and, relations E := {b, w}2, S := ∅
and T := {b, w}3 \ {(b, b, b) (w, w, w)}. 	


Signature of the csp. The problem Ω is represented by a σ-structure T and a
list of forbidden T-coloured structures {(F1, f1), (F2, f2), . . . , (Fn, fn)}. Let F
be the set of the σ-structures that consists of the structures Fi considered up
to isomorphism. For every F in F , we introduce a new symbol RF of arity |F|.
Let τ be the signature that consists of the symbol of σ together with the new
symbols RF.

Interpretation from the forbidden patterns problem to the csp. Let ϕF be the
quantifier-free part of the canonical conjunctive query of F, that is:

ϕF :=
∧

R∈σ

∧

RF(x̄) holds

R(x̄)

5 We advise the reader to go through the proof and progress in parallel on the example.
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Let ϕR := R(x̄). Let Π be the interpretation from σ to τ given by the formulae
ϕF and the formulae ϕR. Note that Π is a quantifier-free interpretation of width
one using only conjunction.

Interpretation from the csp to the forbidden patterns problem. Let Π−1 be the
interpretation from τ to σ given by reversing in a natural way the interpretation
Π:

ψR := R(ȳ) ∨
∨

F∈F

∨

RF(ȳ) holds

∃x̃RF(x̃, ȳ) ∧ ε(x̃, ȳ)

In the above sentence x̃ represent the elements of F not present among ȳ and in
RF(x̃, ȳ), the reader should understand that the variables x̃, ȳ are reordered in a
suitable fashion. The sentence ε is a conjunction of equalities between variables
among x̃, ȳ.

By construction, Π−1 ◦ Π is the identity over σ-structures.

Construction of the template of the csp. We build the τ -structure TΩ as an
extension of the σ-structure T describing the colours of the forbidden patterns
problem Ω. So on σ both structures agree and for every n-ary new symbol RF

and for every n-tuples of colours c1, c2, . . . , cn we set RF(c1, c2, . . . , cn) to hold
unless,

• it is explicitly forbidden by a pattern (F, f) where f(xi) = ci; or,
� the coloured structure (F, f) is implicitly forbidden by (G, g) in F ′ where G

is a substructure of F and g agrees with f(xi) = ci where defined6.

Computational equivalence. By construction, the forbidden patterns problem Ω
reduces to csp(−, TΩ) via the interpretation Π. The converse interpretation Π−1

is not a reduction in general. It is a reduction for the τ -structures that will “not
change too much” under Π ◦ Π−1. More formally, let B be the image of a τ -
structure A under Π ◦ Π−1. The monotonic nature of the interpretations means
that A is necessarily a substructure of B and that we only need to show that if
A is a yes-instance then so is B. The colouring certificate for A will validate B

provided that if a new tuple involving RG appeared in B it is a consequence of
a larger tuple RF where F and G are patterns in F and G is a substructure of
F. This holds because of the condition � in the construction of TΩ.

In particular, we can guarantee that Π ◦ Π−1 will not change too much a
τ -structure A if it is of sufficiently high girth, say a girth higher than γ, the
number of elements of the largest pattern in F (this is because all patterns in
F are biconnected). This proves that Π−1 is a reduction for instances of girth
greater or equal to γ.

Note that we may extend F with any biconnected σ-structure without affect-
ing the constructions or the result. This concludes the proof. 	

6 This second case � allows to channel constraints from one symbol in τ to another as

all information regarding the relationship between the forbidden patterns is lost in
the new signature τ .
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4 Recolouring Captures Containment

This section is a proof of our main result (Theorem 8).
Let F be the set of biconnected structures involved as patterns in both Ω1

and Ω2. Let γ be the size of the largest structure in F . We use Theorem 11 for
each problem, using F as a parameter, and obtain a τ -structure TΩ1 for Ω1 and
a τ -structure TΩ2 for Ω2.

Lemma 13. If Ω1 is contained in Ω2 then csp(girth > γ, TΩ1) is contained in
csp(girth > γ, TΩ2).

Proof. Let A be a τ -structure of girth greater than γ such that there is a homo-
morphism from A to TΩ1 . Since Π−1 is a reduction to Ω1, it follows that Π−1(A)
is a yes-instance of Ω1. By inclusion of Ω1 in Ω2 it follows that Π−1(A) is also a
yes-instance of Ω2. Since Π is a reduction from Ω2 to csp(−, TΩ2), the structure
B := Π ◦ Π−1(A) is a yes-instance of csp(−, TΩ2). Hence, there is a homomor-
phism from B to TΩ2 . Since A is a substructure of B by monotonicity of the
interpretations, it follows that there is a homomorphism from A to TΩ2 . 	

Using Erdös Lemma we will derive the following.

Lemma 14. The following are equivalent.

(i) csp(girth > γ, TΩ1) is contained in csp(girth > γ, TΩ2).
(ii) csp(−, TΩ1) is contained in csp(−, TΩ2).
(iii) There is a homomorphism from TΩ1 to TΩ2 .

Proof. The equivalence between (ii) and (iii) is easy and well known. The im-
plication from (ii) to (i) holds trivially.

We prove that (i) implies (iii). Let D be the structure obtained from Erdös
Lemma from B := TΩ1 with s := |TΩ2 | and g := γ. We know that there is
a homomorphism from D of girth greater than γ to TΩ1 . It follows from our
assumption (i) that there is also a homomorphism from D to TΩ2 . Appealing to
Erdös Lemma again for C := TΩ1 , we finally have that there is a homomorphism
from B = TΩ1 to C = TΩ2 . 	

Lemma 15. If r is a homomorphism from TΩ1 to TΩ2 then r is a recolouring
from Ω1 to Ω2.

Proof. Recall that T1 (respectively T2) the structure used to colour the for-
bidden patterns of Ω1 (respectively Ω2) is by construction the σ-reduct of TΩ1

(respectively, TΩ2). Hence, r is readily a homomorphism from TΩ1 to TΩ2 .
It remains to show that for any T2-coloured pattern (F2, f2) forbidden by Ω2,

any of its inverse image under r– that is a T1-coloured structure (F2, f1) such
that f2 = r ◦ f1– is not valid w.r.t. Ω1. Let (F2, f2) and (F2, f1) be as above.
By construction of TΩ2 , the tuple RF2(f2(x̄)) does not hold in TΩ2 . Since r is
a homomorphism such that f2 = r ◦ f1, the tuple RF2(f1(x̄)) does not hold in
TΩ1 . By construction of TΩ1 , this is because either a coloured pattern (G1, g1)
forbidden by Ω1 with pattern F2 or a substructure of F2 disallowed this tuple.
In any case, we have that (G1, g1), which is forbidden by Ω1 occurs in (F2, f1).
This shows that (F2, f1) is not valid w.r.t. Ω1. 	
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Our main result follows directly from the three previous lemmas.

Proof (of the main result). The definition of a recolouring implies containment
as proved in Proposition 3. We now prove the converse. Suppose that Ω1 is
contained in Ω2. By Lemma 13, it follows that csp(girth > γ, TΩ1) is contained
in csp(girth > γ, TΩ2). By Lemma 15, it follows that there is a homomorphism
r from TΩ1 to TΩ2 . Finally, by Lemma 15 it follows that r is a recolouring from
Ω1 to Ω2. 	


We can strengthen our main result by relaxing some hypothesis as follows7.

Corollary 16. Let Ω1 and Ω2 be two forbidden patterns problems over the re-
lational signature σ. If Ω1 is given in a form that satisfies properties p1 to p5
then Ω1 is contained in Ω2 if, and only if, there is a recolouring from Ω1 to Ω2.

5 Closing remarks

Feder and Vardi argued that mmsnp containment is decidable [1]. However a
precise complexity was not given. Every sentence of mmsnp captures a finite
union of forbidden patterns problems [3] so this motivates us to reformulate the
question in terms of forbidden patterns problems.
fpp-Containment:

– Input: forbidden patterns problems Ω1 and Ω2 given by (T1, F ′
1) and (T2, F ′

2).
– Question: is Ω1 contained in Ω2?

It is not difficult to see that the problem is at least NP-hard. Indeed, in the
restricted case when the problems have no forbidden patterns, we have in fact
the csp-containment problem (also known as the uniform constraint satisfaction
problem) which is NP-complete. In the restricted case when Ω1 is given by
a representation (T1, F ′

1) which satisfies properties p1 to p5, the question is
equivalent to the following decision problem (see Corollary 16).
Recolouring:

– Input: forbidden patterns problems Ω1 and Ω2 given by (T1, F ′
1) and (T2, F ′

2).
– Question: is there a recolouring from Ω1 to Ω2?

The complexity of this problem is at most in Σp
3 . This third level of the poly-

nomial hierarchy is obtained directly from the definition of a recolouring. Guess
a homomorphism r, for every inverse image of every forbidden pattern, guess
that it is non valid. There are not many known complete problems in the third
level of the polynomial hierarchy to choose from. There are however a myriad
of problems in the second level. Using Generalised Graph Colouring [16] we
can easily show that.

Proposition 17. The restriction of Recolouring where Ω2 has a single colour
is Πp

2 -complete. Consequently, Recolouring is Πp
2 -hard.

7 Note that this is the best we can do as we may not do without property p5 as
example 7 shows.
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In future work, we will try to pinpoint more accurately the complexity of
Recolouring, which should be complete for Σp

3 . Our hope is that a suitable
generalisation of recolouring will enable us to derive that the complexity of
fpp-Containment and Recolouring are the same. The long term aim is to
classify the complexity of mmsnp containment. Though the translation to fpp

is exponential, we hope that the insight gained in the combinatorial world of
forbidden patterns problems can be used to solve the problem in the logical
world of mmsnp.
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