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Abstract

In this paper I will present a deductive system for linear logic, in which all rules
are local. In particular, the contraction rule is reduced to an atomic version,
and there is no global promotion rule. In order to achieve this, it is necessary
to depart from the sequent calculus to the calculus of structures, which is a
generalization of the one-sided sequent calculus: in a rule, premise and conclusion
are not sequents, but structures, which are expressions that share properties for
formulae and sequents.
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1 Introduction

The calculus of structures [5, 6, 1, 9, 7] is a new proof-theoretical framework, like
the sequent calculus [2, 3], natural deduction [2, 8] and proof nets [4], for specifying
logical systems. In contrast to the sequent calculus, the calculus of structures does
not depend on the notion of main connective and the distinction between sequents
and formulae. Further, it permits the application of inferences anywhere deep inside
formulae. This means that all rules have only one premise. Hence, derivations are
not trees as in the sequent calculus but chains of instances of inference rules. This
gives the calculus of structures a new top-down symmetry that is not present in the
sequent calculus.

There are two main reasons to study logical systems in the calculus of structures.
First, there exist systems, which cannot be presented in the sequent calculus [5, 10]
but which have a very natural presentation in the calculus of structures, and second,
for logical systems that have a well-known presentation in the sequent calculus, there
exist equivalent systems in the calculus of structures that have new and unexpected
properties, that cannot be observed in the sequent calculus [1, 9].

For example, in [1], a system for classical logic is presented, in which all rules are
local. There, a rule is called local if it does not require a global view of formulae of
unbounded size. In other words, the computational resources (time and space) that
are needed for applying a local rule are bounded. This is a very important property
from the viewpoint of proof search, in particular, if it is implemented on a distributed
system.

Consider, for instance, the par rule of linear logic [4]:

� A,B,Φ
� � A � B,Φ

.

Only the main connective � of the formula A�B has to be considered. The contents
of A, B and Φ does not play a rôle. Hence, this rule is local. Consider now the
contraction rule.

�?A, ?A,Φ
?c �?A,Φ

.

Here, the whole formula ?A has to be copied. This means that it is not sufficient to
look only at the main connective ?, but is is necessary to consider all of A. Hence,
this rule is not local. The same is true for the contraction rule for classical logic. In
[1], it has been shown that in the calculus of structures it is possible, to reduce the
general contraction rule of classical logic to an atomic version, which is local because
the computational resources needed to copy an atom are bounded.

The idea of reducing rules to their atomic version is not entirely new. It is well-
known that in many systems in the sequent calculus, the general identity rule can be
reduced to an atomic version. For example in linear logic, we have that

id � A,A⊥ is admissible for id � a, a⊥
,
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by using an inductive argument on the formula A. For example, if A = B �C we can
replace

id by� B � C,B⊥
� C⊥

id � B,B⊥ id � C,C⊥
� � B � C,B⊥, C⊥
� .� B � C,B⊥

� C⊥

But it is also well-known that for the general cut rule

� A,Φ � A⊥,Ψ
cut � Φ,Ψ

,

such an argument is impossible. But contrarily to this observation in the sequent
calculus, in the calculus of structures, it is possible to reduce the cut rule to its
atomic version, by the use of the new top-down symmetry.

Let me now mention the other non-local rules in the sequent calculus system for
linear logic. The most prominent is probably the promotion rule:

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

.

In order to apply it, it is necessary to check for each formula in the context of !A,
whether it has the form ?B. In [9, 6] it has already been shown, how this rule can be
made local in the calculus of structures by using the linear implication

!(A � B) −◦ !A � ?B .

Another non-local rule is the with rule:

� A,Φ � B,Φ
� � A � B,Φ

.

When this rule is applied, the whole context Φ has to be copied. In order to make
this rule local, we have to do two things. First, the copying has to be made explicit,
and second, this explicit copying has to be reduced to an atomic form. The first step
is done by employing the linear implication (A � B) � (C � D)−◦ (A � C) � (B � D)
to produce a purely multiplicative rule for the additives. The additive behaviour
is regained by employing A � A −◦ A in a contraction rule for the additives. This
new contraction rule is in the second step reduced to an atomic version by the same
method that has been employed in [1].

Let me now sketch the outline of this paper. In the next section, I will introduce
the basic notions of the calculus of structures and present the standard system for
linear logic in the calculus of structures. In Section 3, I will show that it is equivalent
to the system for linear logic in the sequent calculus, and in Section 4, I will show
cut elimination for it. In the next two sections I will then present a local system for
linear logic. For doing so, I will start from the multiplicative additive fragment in
Section 5, before dealing with full propositional linear logic in Section 6. Then, in
Section 7, I will show some decomposition theorems.
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2 Linear Logic in the Calculus of Structures

A system in the calculus of structures requires a language of structures, which are in-
termediate expressions between formulae and sequents. I will now define the language
LS for the systems presented in this paper. Intuitively, [R1, . . . , Rh ] corresponds to
a sequent � R1, . . . , Rh in linear logic, whose formulae are essentially connected by
pars, subject to commutativity (and associativity). The structure (R1, . . . , Rh) cor-
responds to the associative and commutative times connection of R1, . . . , Rh. The
structures [•R1, . . . , Rh ]• and (•R1, . . . , Rh)•, which are also associative and commuta-
tive, correspond to the additive disjunction and conjunction, respectively, of R1, . . . ,
Rh.

2.1 Definition There are countably many positive and negative propositional vari-
ables, denoted with a, b, c, . . . . There are four constants, called bottom, one, zero
and top, denoted with ⊥, 1, 0 and �, respectively. An atom is either a propositional
variable or a constant. The structures of the language LS are denoted with P , Q, R,
S, . . . , and are generated by

R ::= a | [ R, . . . , R
︸ ︷︷ ︸

>0

] | (R, . . . , R
︸ ︷︷ ︸

>0

) | [• R, . . . , R
︸ ︷︷ ︸

>0

]• | (• R, . . . , R
︸ ︷︷ ︸

>0

)• | !R | ?R | R̄ ,

where a stands for any atom (positive or negative propositional variable or constant).
A structure [R1, . . . , Rh ] is called a par structure, (R1, . . . , Rh) is called a times struc-
ture, [•R1, . . . , Rh ]• is called a plus structure, (•R1, . . . , Rh)• is called a with structure,
!R is called an of-course structure, and ?R is called a why-not structure; R̄ is the
negation of the structure R. Structures are considered to be equivalent modulo the
relation =, which is the smallest congruence relation induced by the equations shown
in Figure 1, where �R and �T stand for finite, non-empty sequences of structures.

2.2 Definition In the same setting, we can define structure contexts, which are
structures with a hole. Formally, they are generated by

S ::= { } | [R,S ] | (R,S) | [•R,S ]• | (•R,S)• | !S | ?S .

Because of the De Morgan laws there is no need to include the negation into the
definition of the context, which means that the structure that is plugged into the hole
of a context will always be positive. Structure contexts will be denoted with R{ },
S{ }, T{ }, . . . . Then, S{R} denotes the structure that is obtained by replacing the
hole { } in the context S{ } by the structure R. The structure R is a substructure of
S{R} and S{ } is its context. For a better readability, I will omit the context braces
if no ambiguity is possible, e.g. I will write S [R,T ] instead of S{[R,T ]}.
2.3 Example Let S{ } = [(a, ![{ }, ?a], b̄), b] and R = c and T = (b̄, c̄) then

S [R,T ] = [(a, ![c, (b̄, c̄), ?a], b̄), b] .
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Associativity

[ �R, [ �T ] ] = [ �R, �T ]
(�R, (�T )) = (�R, �T )
[• �R, [•�T ]•]• = [• �R, �T ]•

(• �R, (• �T )•)• = (• �R, �T )•

Commutativity

[ �R, �T ] = [ �T , �R]
(�R, �T ) = (�T , �R)
[• �R, �T ]• = [• �T , �R]•

(• �R, �T )• = (• �T , �R)•

Units

[⊥, �R] = [ �R]
(1, �R) = (�R)
[•0, �R]• = [• �R]•

(•�, �R)• = (• �R)•

[•⊥,⊥]• = ⊥ = ?⊥
(•1, 1)• = 1 = !1

Singleton

[R] = R = (R)
[•R]• = R = (•R)•

Exponentials

??R = ?R
!!R = !R

Negation

⊥ = 1

1 = ⊥
0 = �
� = 0

[R1, . . . , Rh ] = (R̄1, . . . , R̄h)

(R1, . . . , Rh) = [R̄1, . . . , R̄h ]

[•R1, . . . , Rh ]• = (•R̄1, . . . , R̄h)•

(•R1, . . . , Rh)• = [•R̄1, . . . , R̄h ]•

?R = !R̄
!R = ?R̄
¯̄R = R

Figure 1: Basic equations for the syntactic congruence =

2.4 Definition In the calculus of structures, an inference rule is a scheme of the
kind

T
ρ

R
,

where ρ is the name of the rule, T is its premise and R is its conclusion. An inference
rule is called an axiom if its premise is empty, i.e. the rule is of the shape

ρ
R

.

A typical rule has shape
S{T}

ρ
S{R} and specifies a step of rewriting, by the implication

T ⇒ R, inside a generic context S{ }. Rules with empty contexts correspond to the
case of the sequent calculus.

2.5 Definition A (formal) system S is a set of inference rules.
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2.6 Definition A derivation ∆ in a certain formal system is a finite chain of instances
of inference rules in the system:

R
ρ

R′
ρ′ ...
ρ′′ .

R′′

A derivation can consist of just one structure. The topmost structure in a derivation,
if present, is called the premise of the derivation, and the bottommost structure is
called its conclusion. A derivation ∆ whose premise is T , whose conclusion is R, and

whose inference rules are in S will be indicated with
T

R
S∆ . A proof Π in the calculus

of structures is a finite derivation whose topmost inference rule is an axiom. It will

be denoted by
R

��
SΠ .

In the calculus of structures, rules come in pairs, a down-version
S{T}

ρ↓
S{R} and

an up-version
S{R̄}

ρ↑
S{T̄}. This duality derives from the duality between T ⇒ R and

R̄ ⇒ T̄ , where ⇒ is the implication modelled in the system. In our case it is linear
implication.

2.7 Definition The structural rules

S([R,U ], T )
s
S [(R,T ), U ]

,
S(• [R,U ], [T, V ])•

d↓
S [(•R,T )•, [•U, V ]•]

,
S([•R,U ]•, (•T, V )•)

d↑
S [•(R,T ), (U, V )]•

,

S{0}
w↓

S{R} ,
S{R}

w↑
S{�} ,

S [•R,R]•
c↓

S{R} ,
S{R}

c↑
S(•R,R)•

,

S{![R,T ]}
p↓

S [!R, ?T ]
,

S(?R, !T )
p↑

S{?(R,T )} ,

S{⊥}
v↓

S{?R} ,
S{!R}

v↑
S{1} ,

S [?R,R]
b↓

S{?R} and
S{!R}

b↑
S(!R,R)

are called switch (s), additive (d↓), coadditive (d↑), weakening (w↓), coweakening (w↑),
contraction (c↓), cocontraction (c↑), promotion (p↓), copromotion (p↑), vanishing (v↓),
covanishing (v↑), absorption (b↓) and coabsorption (b↑), respectively.

Observe that the switch rule is self-dual, i.e. if premise and conclusion are negated
and exchanged, we obtain again an instance of switch, whereas all other rules have a
dual corule.

2.8 Definition The rules

S{1}
i↓

S [R, R̄]
and

S(R, R̄)
i↑

S{⊥}
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are called interaction and cut (or cointeraction), respectively.

Observe that these rules correspond to the identity and cut rule in the sequent
calculus (the exact correspondence is shown in the proof of Theorem 3.7), with the
difference that the duality between identity and cut is more vivid.

2.9 Definition The rules

S{1}
ai↓

S [a, ā]
and

S(a, ā)
ai↑

S{⊥}
are called atomic interaction and atomic cut (or atomic cointeraction), respectively.

The rules ai↓ and ai↑ are obviously instances of the rules i↓ and i↑ above. It is
well known that in many systems in the sequent calculus, the identity rule can be
reduced to its atomic version. In the calculus of structures we can do the same. But
furthermore, by duality, we can do the same to the cut rule, which is not possible in
the sequent calculus.

2.10 Definition A rule ρ is strongly admissible for a system S if ρ /∈ S and for

every application of
T

ρ
R

there is a derivation
T

R
S∆ .

2.11 Proposition The rule i↓ is strongly admissible for the system {ai↓, s, d↓, p↓}.
Dually, the rule i↑ is strongly admissible for {ai↑, s, d↑, p↑}.

Proof: For a given application of
S{1}

i↓
S [R, R̄]

, by structural induction on R, we will

construct an equivalent derivation that contains only ai↓, s, d↓ and p↓.

• R is an atom: Then the given instance of i↓ is an instance of ai↓.
• R = [P,Q], where P 	= ⊥ 	= Q: Apply the induction hypothesis on

S{1}
i↓

S [Q, Q̄]
i↓

S([P, P̄ ], [Q, Q̄])
s
S [Q, ([P, P̄ ], Q̄)]
s .

S [P,Q, (P̄ , Q̄)]

• R = (P,Q), where P 	= 1 	= Q: Similar to the previous case.

• R = [•P,Q]•, where P 	= 0 	= Q: Apply the induction hypothesis on

S(•1, 1)•
i↓

S(•1, [Q, Q̄])•
i↓

S(• [P, P̄ ], [Q, Q̄])•
d↓ .

S [ [•P,Q]•, (•P̄ , Q̄)•]

(Note that S(•1, 1)•= S{1}.)
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• R = (•P,Q)•, where P 	= � 	= Q: Similar to the previous case.

• R =?P , where P 	= ⊥: Apply the induction hypothesis on

S{!1}
i↓

S{![P, P̄ ]}
p↓ .

S [?P, !P̄ ]

(Note that S{!1} = S{1}.)
• R =!P , where P 	= 1: Similar to the previous case.

The second statement is dual to the first. 
�
2.12 Definition The system

{ai↓, ai↑, s, d↓, d↑,w↓,w↑, c↓, c↑, p↓, p↑, v↓, v↑, b↓, b↑} ,

shown in Figure 2 is called symmetric (or self-dual) linear logic in the calculus of struc-
tures, or system SLS. The set {ai↓, d↓,w↓, c↓, p↓, v↓, b↓} is called the down-fragment
and {ai↑, d↑,w↑, c↑, p↑, v↑, b↑} is called the up-fragment. Further, the subsystem

{ai↓, ai↑, s, d↓, d↑,w↓,w↑, c↓, c↑}
is called the multiplicative additive fragment, or system SALS. Similarly, the system

{ai↓, ai↑, s, p↓, p↑, v↓, v↑, b↓, b↑}
is called the multiplicative exponential fragment, or system SELS.

System SELS has already been studied in [9].

There is another strong admissibility result involved here, that has already been
observed in [5]. If the rules i↓, i↑ and s are in a system, then any other rule ρ
makes its corule ρ′, i.e. the rule obtained from ρ by exchanging and negating premise

and conclusion, be strongly admissible. Let
S{P}

ρ
S{Q} be given. Then any instance of

S{Q̄}
ρ′

S{P̄} can be replaced by the following derivation:

S{Q̄}
i↓

S(Q̄, [P, P̄ ])
s
S [(Q̄, P ), P̄ ]

ρ
S [(Q̄,Q), P̄ ]

i↑ .
S{P̄}

2.13 Proposition Every rule ρ↑ is strongly admissible for {i↓, i↑, s, ρ↓}.
Propositions 2.11 and 2.13 together say, that the general cut rule i↑ is as powerful

as the whole up-fragment of the system and vice versa.
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S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

S([R,U ], T )
s
S [(R,T ), U ]

S(• [R,U ], [T, V ])•
d↓

S [(•R,T )•, [•U, V ]•]

S([•R,U ]•, (•T, V )•)
d↑

S [•(R,T ), (U, V )]•

S{0}
w↓

S{R}
S{R}

w↑
S{�}

S [•R,R]•
c↓

S{R}
S{R}

c↑
S(•R,R)•

S{![R,T ]}
p↓

S [!R, ?T ]

S(?R, !T )
p↑

S{?(R,T )}

S{⊥}
v↓

S{?R}
S{!R}

v↑
S{1}

S [?R,R]
b↓

S{?R}
S{!R}

b↑
S(!R,R)

Figure 2: System SLS

So far we are only able to describe derivations. In order to describe proofs, we need
an axiom.

2.14 Definition The following rule is called one:

1↓
1

.

In the language of linear logic it simply says that � 1 is provable. I will put this
rule to the down-fragment of system SLS and by this break the top-down symmetry
of derivations and observe proofs.

2.15 Definition The system {1↓, ai↓, s, d↓,w↓, c↓, p↓, v↓, b↓}, shown in Figure 3, that
is obtained from the down-fragment of system SLS together with the switch rule and
the axiom, is called linear logic in the calculus of structures, or system LS. The restric-
tion to the multiplicative additive fragment {1↓, ai↓, s, d↓,w↓, c↓} is called system ALS
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1↓
1

S{1}
ai↓

S [a, ā]
S([R,U ], T )
s
S [(R,T ), U ]

S(• [R,U ], [T, V ])•
d↓

S [(•R,T )•, [•U, V ]•]

S{0}
w↓

S{R}
S [•R,R]•

c↓
S{R}

S{![R,T ]}
p↓

S [!R, ?T ]

S{⊥}
v↓

S{?R}
S [?R,R]

b↓
S{?R}

Figure 3: System LS

and the restriction to the multiplicative exponential fragment {1↓, ai↓, s, p↓, v↓, b↓} is
called system ELS.

Observe that in every proof in system LS, the rule 1↓ occurs exactly once, namely
as the topmost rule of the proof.

2.16 Definition Two systems S and S ′ are strongly equivalent if for every deriva-

tion
T

R
S∆ there is a derivation

T

R
S ′∆′ , and vice versa.

2.17 Theorem The systems SLS∪ {1↓} and LS ∪ {i↑} are strongly equivalent.

Proof: Immediate consequence of Propositions 2.11 and 2.13. 
�

3 Equivalence to Linear Logic in the Sequent Calculus

In this section I will first recall the well-known sequent calculus system for linear logic
[4], and then show that it is equivalent to the systems defined in the previous section.
More precisely, system SLS corresponds to linear logic in the sequent calculus with
cut, and system LS corresponds to linear logic in the sequent calculus without cut.

Let me start with the definitions of formulae, sequents, derivations and proofs in
the sequent calculus.

3.1 Definition An atom is a propositional variable or its dual, denoted with
a, b, c, . . . or a⊥, b⊥, c⊥, . . ., respectively. Formulae (denoted with A,B,C, . . .) are
built from atoms and the constants ⊥, 1, 0,� (called bottom, one, zero, top, respec-
tively) by means of the (binary) connectives �, �, �, � (called par, times, plus, with,
respectively) and the modalities !, ? (called of-course and why-not, respectively). Lin-
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id � A,A⊥
� A,Φ � A⊥,Ψ

cut � Φ,Ψ

� A,Φ � B,Ψ
� � A � B,Φ,Ψ

� A,B,Φ
� � A � B,Φ

� Φ⊥ � ⊥,Φ
1 � 1

� A,Φ � B,Φ
� � A � B,Φ

� A,Φ
�1 � A � B,Φ

� B,Φ
�2 � A � B,Φ

� � �,Φ

� A,Φ
?d �?A,Φ

�?A, ?A,Φ
?c �?A,Φ

� Φ
?w �?A,Φ

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

(n � 0)

Figure 4: System LL in the sequent calculus

ear negation (·)⊥ is defined on formulae by De Morgan equations:

1⊥ := ⊥ ⊥⊥ := 1
�⊥ := 0 0⊥ := �

(a)⊥ := a⊥ (a⊥)⊥ := a
(A � B)⊥ := A⊥

� B⊥ (A � B)⊥ := A⊥
� B⊥

(A � B)⊥ := A⊥
� B⊥ (A � B)⊥ := A⊥

� B⊥

(!A)⊥ := ?A⊥ (?A)⊥ := !A⊥

Linear implication −◦ is defined by A −◦ B = A⊥
� B.

It follows immediately from the definition that A = A⊥⊥ for each formula A.

3.2 Definition A sequent is an expression of the kind

� A1, . . . , Ah ,

where h � 0 and the comma between the formulae A1, . . . , Ah stands for multiset
union. Multisets of formulae are denoted with Φ and Ψ.

3.3 Definition Derivations, are trees where the nodes are sequents to which a
finite number (possibly zero) of instances of the inference rules shown in Figure 4 are
applied. The sequents in the leaves are called premises, and the sequent in the root is
the conclusion. A derivation with no premises is a proof, denoted with Π. A sequent
Σ is provable if there is a proof Π with conclusion Σ.

3.4 Definition The function ·
S

defines the obvious translation from LL formulae
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into LS structures:

a
S

= a ,

⊥
S

= ⊥ ,

1
S

= 1 ,

0
S

= 0 ,

�
S

= � ,

A � B
S

= [A
S
, B

S
] ,

A � B
S

= (A
S
, B

S
) ,

A � B
S

= [•A
S
, B

S
]• ,

A � B
S

= (•A
S
, B

S
)• ,

?A
S

= ?A
S

,

!A
S

= !A
S

,

A⊥
S

= A
S

.

The domain of ·
S
is extended to sequents by

�
S

= ⊥ and
� A1, . . . , Ah

S
= [A1

S
, . . . , Ah

S
] , for h � 0 .

3.5 Definition The translation from LS structures into LL formulae is realized by
the function ·

L
:

a
L

= a ,

⊥
L

= ⊥ ,

1
L

= 1 ,

0
L

= 0 ,

�
L

= � ,

[R1, . . . , Rh ]
L

= R1
L
� · · · � Rh

L
,

(R1, . . . , Rh)
L

= R1
L
� · · · � Rh

L
,

[•R1, . . . , Rh ]•
L

= R1
L
� · · · � Rh

L
,

(•R1, . . . , Rh)•
L

= R1
L
� · · · � Rh

L
,

?R
L

= ?R
L

,

!R
L

= !R
L

,

R̄
L

= (R
L
)⊥ .

3.6 Theorem If a given structure R is provable in system SLS ∪ {1↓}, then its
translation � R

L
is provable in LL (with cut).

Proof: Suppose, we have a proof Π of R in system SLS∪{1↓}. By induction on the
length of Π, let us build a proof Π

L
of � R

L
in LL.
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Base case: Π is 1↓
1

: Let Π
L

be the proof 1 � 1.

Inductive case: Suppose Π is S{R}
ρ

S{T}

��
SLS∪{1↓}Π′

, i.e.
S{R}

ρ
S{T} is the last rule to be

applied in Π. The following LL-proofs show that � (R
L
)⊥, T

L
is provable in LL for

every rule
S{R}

ρ
S{T} in SLS, i.e. R

L
−◦ T

L
is a theorem in LL:

id � R⊥, R
id � U⊥, U

� � R⊥, U⊥, R � U
id � T⊥, T

� � R⊥
� T⊥, U⊥, R � U, T

� � R⊥
� T⊥, U⊥, (R � U) � T

� ,� (R⊥
� T⊥) � U⊥, (R � U) � T

id � R⊥, R
id � T⊥, T

� � R⊥
� T⊥, R, T

?d �?(R⊥
� T⊥), R, T

?d �?(R⊥
� T⊥), ?R,T

! �?(R⊥
� T⊥), ?R, !T

� ,�?(R⊥
� T⊥), ?R � !T

id � a, a⊥
� � a � a⊥⊥ ,� ⊥, a � a⊥

� ,� �, R

1 � 1
?w ,� 1, ?R

id � R⊥, R
id � T⊥, T

� � R⊥
� T⊥, R, T

� � R⊥
� T⊥, R, T � V

� � (R⊥
� T⊥) � (U⊥

� V ⊥), R, T � V

id � U⊥, U
id � V ⊥, V

� � U⊥
� V ⊥, U, V

� � U⊥
� V ⊥, U, T � V

� � (R⊥
� T⊥) � (U⊥

� V ⊥), U, T � V
� � (R⊥

� T⊥) � (U⊥
� V ⊥), R � U, T � V

� ,� (R⊥
� T⊥) � (U⊥

� V ⊥), (R � U) � (T � V )

id � R⊥, R
id � R⊥, R

� ,� R⊥
� R⊥, R

id �!R⊥, ?R

id � R⊥, R
?d � R⊥, ?R

� � (!R⊥
� R⊥), ?R, ?R

?c .� (!R⊥
� R⊥), ?R

This means that for any context S{ }, we also have that S{R}
L
−◦S{T}

L
is a theorem

in LL, i.e. � (S{R}
L
)⊥, S{T}

L
is provable in LL. By induction hypothesis we have a

proof Π′
L

of � S{R}
L

in LL. Now we can get a proof Π
L

of � S{T}
L

by applying the
cut rule:

� S{R}
L

� (S{R}
L
)⊥, S{T}

Lcut .� S{T}
L

13




�
3.7 Theorem (a) If a given sequent � Φ is provable in LL (with cut), then the
structure � Φ

S
is provable in system SLS∪{1↓}. (b) If a given sequent � Φ is cut-free

provable in LL, then the structure � Φ
S
is provable in system LS.

Proof: Let Π be the proof of � Φ in LL. By structural induction on Π, we will
construct a proof Π

S
of � Φ

S
in system SLS ∪ {1↓} (or system LS if Π is cut-free).

• If Π is id � A,A⊥ for some formula A, then let Π
S

be the proof obtained via

Proposition 2.11 from

1↓
1

i↓ .
[A

S
, A

S
]

• If
� A,Φ � A⊥,Ψ

cut � Φ,Ψ
is the last rule applied in Π, then there are by induction

hypothesis two derivations
1

[A
S
,Φ

S
]

SLS∆1 and
1

[A
S
,Ψ

S
]

SLS∆2 . Let Π
S
be the proof obtained

via Proposition 2.11 from

1↓
1

[A
S
,Φ

S
]

SLS∆′
1

([A
S
,Φ

S
], [A

S
,Ψ

S
])

s
[([A

S
,Φ

S
], A

S
),Ψ

S
]

s
[Φ

S
,Ψ

S
, (A

S
, A

S
)]

i↑ .
[Φ

S
,Ψ

S
]

SLS∆′
2

• If
� A,B,Φ

� � A � B,Φ
is the last rule applied in Π, then let Π

S
be the proof of

[A
S
, B

S
,Φ

S
] that exists by induction hypothesis.

• If
� A,Φ � B,Ψ

� � A � B,Φ,Ψ
is the last rule applied in Π, then there are by induction

14



hypothesis two derivations
1

[A
S
,Φ

S
]

SLS∆1 and
1

[B
S
,Ψ

S
]

SLS∆2 . Let Π
S
be the proof

1↓
1

[A
S
,Φ

S
]

SLS∆′
1

([A
S
,Φ

S
], [B

S
,Ψ

S
])

s
[([A

S
,Φ

S
], B

S
),Ψ

S
]

s .
[(A

S
, B

S
),Φ

S
,Ψ

S
]

SLS∆′
2

• If
� Φ⊥ � ⊥,Φ

is the last rule applied in Π, then let Π
S

be the proof of � Φ
S

that

exists by induction hypothesis.

• If Π is 1 � 1, then let Π
S
be 1↓

1
.

• If
� A,Φ � B,Φ

� � A � B,Φ
is the last rule applied in Π, then there are by induction

hypothesis two derivations
1

[A
S
,Φ

S
]

SLS∆1 and
1

[B
S
,Φ

S
]

SLS∆2 . Let Π
S
be the proof

1↓
1

(• [A
S
,Φ

S
], 1)•
SLS∆′

1

(• [A
S
,Φ

S
], [B

S
,Φ

S
])•

d↓
[(•A

S
, B

S
)•, [•Φ

S
,Φ

S
]•]

c↓ .
[(•A

S
, B

S
)•,Φ

S
]

SLS∆′
2

(Note that 1 = (•1, 1)•.)
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• If
� A,Φ

�1 � A � B,Φ
is the last rule applied in Π, then let Π

S
be the proof

[A
S
,Φ

S
]

w↓ ,
[ [•A

S
, B

S
]•,Φ

S
]

��
SLS∪{1↓}Π′

where Π′ exists by induction hypothesis.

• The case for the rule
� B,Φ

�2 � A � B,Φ
is similar.

• If Π is � � �,Φ
, then let Π

S
be the proof

1↓
1

ai↓
[�, 0]

w↓ .
[�,Φ

S
]

• If
� A,Φ

?d �?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

[A
S
,Φ

S
]

v↓
[?A

S
, A

S
,Φ

S
]

b↓ ,
[?A

S
,Φ

S
]

��
SLS∪{1↓}Π′

where Π′ exists by induction hypothesis.

• If
�?A, ?A,Φ

?c �?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

[??A
S
, ?A

S
,Φ

S
]

b↓ ,
[??A

S
,Φ

S
]

��
SLS∪{1↓}Π′

where Π′ exists by induction hypothesis. (Note that ??A
S
=?A

S
.)

• If
� Φ

?w �?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

Φ
Sv↓ ,

[?A
S
,Φ

S
]

��
SLS∪{1↓}Π′
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where Π′ exists by induction hypothesis.

• If
� A, ?B1, . . . , ?Bn

! � !A, ?B1, . . . , ?Bn

is the last rule applied in Π, then there is by induction

hypothesis a derivation
1

[A
S
, ?B1

S
, . . . , ?Bn

S
]

SLS∆ . Now let Π
S
be the proof

1↓
!1

![A
S
, ?B1

S
, . . . , ?Bn

S
]

p↓ ...
p↓

[![A
S
, ?B1

S
], ??B2

S
, . . . , ??Bn

S
]

p↓ .
[!A

S
, ??B1

S
, ??B2

S
, . . . , ??Bn

S
]

SLS∆′


�

4 Cut Elimination

By inspecting the rules of system SLS, one can observe that the only infinitary rules
are atomic cut, coweakening and covanishing. This means, that in order to get cut
elimination, one could get rid only of the rules ai↑, w↑ and v↑. But we can get more:
the whole up-fragment is admissible.

4.1 Definition A rule ρ is (weakly) admissible for a system S if ρ /∈ S and for

every proof
R

��
S∪{ρ}Π there is a proof

R

��
SΠ′

.

4.2 Definition Two systems S and S ′ are (weakly) equivalent if for every proof

R

��
SΠ there is a proof

R

��
S ′Π′

, and vice versa.

4.3 Theorem (Cut elimination) System LS is equivalent to every subsystem of
SLS ∪ {1↓} containing LS.

Proof: Given a proof in SLS∪{1↓}, transform it into a proof in LL (by Theorem 3.6),
to which we can apply the cut-elimination procedure in the sequent calculus. The
cut-free proof in LL can then be transformed into a proof in system LS by Theorem
3.7. 
�
4.4 Corollary The rule i↑ is admissible for system LS.

Proof: Immediate consequence of Theorems 2.17 and 4.3. 
�
The proof of Theorem 4.3 relies on the results of the previous section together with

the well-known cut elimination proof for linear logic in the sequent calculus. But it
should be mentioned here that it is also possible to prove Theorem 4.3 directly inside
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S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

S([R,U ], T )
s
S [(R,T ), U ]

S(• [R,U ], [T, V ])•
d↓

S [(•R,T )•, [•U, V ]•]

S([•R,U ]•, (•T, V )•)
d↑

S [•(R,T ), (U, V )]•

S{0}
w↓

S{R}
S{R}

w↑
S{�}

S [•R,R]•
c↓

S{R}
S{R}

c↑
S(•R,R)•

Figure 5: System SALS

the calculus of structures, without using the sequent calculus. This proof uses the
technique of splitting, which has first been used in [7]. However, I will not present
this proof here because it is rather technical and boring.

5 A Local System for the Multiplicative Additive Frag-

ment

In this section, I will start from system SALS (the multiplicative additive fragment of
system SLS, shown in Figure 5) and produce a strongly equivalent system, in which
all rules are local. The new system will also admit a cut elimination result.

In system SALS, the only rules which are not local are w↓, w↑, c↓ and c↑. For
all other rules, it is not necessary to perform an erasing, introducing, copying or
comparing of a structure of unknown size when they are applied. In order to obtain
a system in which all rules are local, we have to restrict the rules w↓, w↑, c↓ and c↑
to atoms.

5.1 Definition The structural rules

S{0}
aw↓

S{a} ,
S{a}

aw↑
S{�} ,

S [•a, a]•
ac↓

S{a} and
S{a}

ac↑
S(•a, a)•

are called atomic weakening (aw↓), atomic coweakening (aw↑), atomic contraction
(ac↓) and atomic cocontraction (ac↑), respectively.

Obviously, the rules aw↓, aw↑, ac↓, ac↑ are instances of the rules w↓,w↑, c↓, c↑. But
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if we replace the rules w↓,w↑, c↓, c↑ by their atomic counterparts, we lose equivalence
to the original system. In order to regain this eqivalence, we have to add further rules
to the system. In particular, the rules

S [•[R,U ], [T, V ] ]•
l↓

S [ [•R,T ]•, [•U, V ]•]
,

S((•R,U)•, (•T, V )•)
l↑

S(•(R,T ), (U, V ))•
,

S [•(R,U), (T, V )]•
k↓

S([•R,T ]•, [•U, V ]•)
,

S [(•R,U)•, (•T, V )•]
k↑

S(• [R,T ], [U, V ])•
,

S [•(•R,U)•, (•T, V )•]•
m

S(• [•R,T ]•, [•U, V ]•)•
,

which are in the same spirit as the medial rule of [1], are necessary to reduce c↓ and
c↑ to their atomic versions ac↓ and ac↑, respectively, in the same way as it has been
done for cut and interaction in Section 2.

5.2 Proposition The rule c↓ is stongly admissible for {ac↓, l↓, k↓,m}. Dually, the
rule c↑ is stongly admissible for {ac↑, l↑, k↑,m}.

Proof: For a given instance
S [•R,R]•

c↓
S{R} , I will construct a derivation

S [•R,R]•

S{R}
{ac↓,l↓,k↓,m}∆

by structural induction on R.

• If R is an atom (or constant) then the given instance of c↓ is an instance of ac↓.
• If R = [•P,Q]• (where P 	= 0 	= Q), then apply the induction hypothesis to

S [•P,Q,P,Q]•
c↓

S [•P,P,Q]•
c↓ .

S [•P,Q]•

• If R = [P,Q] (where P 	= ⊥ 	= Q), then apply the induction hypothesis to

S [•[P,Q], [P,Q] ]•
l↓

S [ [•P,P ]•, [•Q,Q]•]
c↓

S [ [•P,P ]•, Q]
c↓ .

S [P,Q]

• If R = (P,Q) (where P 	= 1 	= Q), then apply the induction hypothesis to

S [•(P,Q), (P,Q)]•
k↓

S([•P,P ]•, [•Q,Q]•)
c↓

S([•P,P ]•, Q)
c↓ .

S(P,Q)

• If R = (•P,Q)• (where P 	= � 	= Q), then apply the induction hypothesis to

S [•(•P,Q)•, (•P,Q)•]•
m

S(• [•P,P ]•, [•Q,Q]•)•
c↓

S(• [•P,P ]•, Q)•
c↓ .

S(•P,Q)•
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The proof for c↑ is dual. 
�
For reducing the rules w↓ and w↑ to their atomic versions, the following rules are

needed:
S{0}

l0↓
S [0, 0]

,
S{0}

k0↓
S(0, 0)

,
S{0}

m0↓
S(•0, 0)•

,

S(�,�)
l0↑

S{�} ,
S [�,�]

k0↑
S{�} ,

S [•�,�]•
m0↑

S{�} .

They can be considered to be the nullary versions of the rules l↓, l↑, k↓, k↑,m above.

5.3 Proposition The rule w↓ is stongly admissible for {aw↓, l0↓, k0↓,m0↓}. Dually,
the rule w↑ is stongly admissible for {aw↑, l0↑, k0↑,m0↑}.

Proof: For a given instance
S{0}

w↓
S{R}, I will construct a derivation

S{0}

S{R}
{aw↓,l0↓,k0↓,m0↓}∆

by structural induction on R.

• If R is an atom then the given instance of w↓ is an instance of aw↓.
• If R = [P,Q] (where P 	= ⊥ 	= Q), then apply the induction hypothesis to

S{0}
l0↓

S [0, 0]
w↓

S [P, 0]
w↓ .

S [P,Q]

• If R = (P,Q) (where P 	= 1 	= Q), then apply the induction hypothesis to

S{0}
k0↓

S(0, 0)
w↓

S(P, 0)
w↓ .

S(P,Q)

• If R = (•P,Q)• (where P 	= � 	= Q), then apply the induction hypothesis to

S{0}
m0↓

S(•0, 0)•
w↓

S(•P, 0)•
w↓ .

S(•P,Q)•

• If R = [•P,Q]• (where P 	= 0 	= Q), then apply the induction hypothesis to

S{0}
w↓

S [•P, 0]•
w↓ .

S [•P,Q]•

(Note that 0 = [•0, 0]•.)
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The proof for w↑ is dual. 
�
Of course, all new rules are strongly admissible for system SALS, i.e. represent sound

implications in linear logic. More precisely, we have the following:

5.4 Proposition The rules l↓, k↓ and m are strongly admissible for {w↓, c↓}. Dually,
the rules l↑, k↑ and m are strongly admissible for {w↑, c↑}.
Proof: For the rule l↓, use the derivation

S [•[R,U ], [T, V ] ]•
w↓

S [•[R,U ], [T, [•U, V ]•] ]•
w↓

S [•[R,U ], [ [•R,T ]•, [•U, V ]•] ]•
w↓

S [•[R, [•U, V ]•], [ [•R,T ]•, [•U, V ]•] ]•
w↓

S [•[ [•R,T ]•, [•U, V ]•], [ [•R,T ]•, [•U, V ]•] ]•
c↓ .

S [ [•R,T ]•, [•U, V ]•]

The other cases are similar. 
�
5.5 Proposition The rules l0↓, k0↓ and m0↓ are strongly admissible for {w↓}. Dually,
the rules l0↑, k0↑ and m0↑ are strongly admissible for {w↑}.
Proof: Trivial. 
�
5.6 Definition The system

{ai↓, ai↑, s, d↓, d↑, aw↓, aw↑, ac↓, ac↑, l↓, l↑, k↓, k↑,m, l0↓, l0↑, k0↓, k0↑,m0↓,m0↑} ,

shown in Figure 6 is called system SALLS.

5.7 Theorem Systems SALLS and SALS are strongly equivalent.

Proof: Immediate consequence of Propositions 5.2, 5.3, 5.4 and 5.5. 
�
5.8 Definition System ALLS, shown in Figure 7, is obained from the down-fragment
of System SALLS together with the rules s, m and the axiom 1↓.
5.9 Theorem Systems ALLS and ALS are strongly equivalent.

5.10 Corollary (Cut elimination) System ALLS is equivalent to every subsystem
of SALLS∪ {1↓} containing ALLS.

5.11 Corollary The rule i↑ is admissible for system ALLS.

6 A Local System for Full Linear Logic

In this section, I will extend the systems SALLS and ALLS to full propositional linear
logic. This means that the rules v↓, v↑, b↓, b↑ have to be made local. However,
I was not able to reduce the rules v↓, v↑, b↓, b↑ directly to their atomic versions.
This is not really a surprise since the basic idea of the the exponentials is to guard
whole subformulas such that no arbitrary weakening and contraction is possible. The
idea that is applied in this section is to reduce the rules v↓, v↑, b↓, b↑ to the rules
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S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

S([R,U ], T )
s
S [(R,T ), U ]

S(• [R,U ], [T, V ])•
d↓

S [(•R,T )•, [•U, V ]•]

S([•R,U ]•, (•T, V )•)
d↑

S [•(R,T ), (U, V )]•

S{0}
aw↓

S{a}
S [•a, a]•

ac↓
S{a}

S{a}
ac↑

S(•a, a)•
S{a}

aw↑
S{�}

S{0}
l0↓

S [0, 0]

S [•[R,U ], [T, V ] ]•
l↓

S [ [•R,T ]•, [•U, V ]•]

S((•R,U)•, (•T, V )•)
l↑

S(•(R,T ), (U, V ))•
S(�,�)

l0↑
S{�}

S{0}
k0↓

S(0, 0)

S [•(R,U), (T, V )]•
k↓

S([•R,T ]•, [•U, V ]•)

S [(•R,U)•, (•T, V )•]
k↑

S(• [R,T ], [U, V ])•
S [�,�]

k0↑
S{�}

S{0}
m0↓

S(•0, 0)•
S [•(•R,U)•, (•T, V )•]•

m
S(• [•R,T ]•, [•U, V ]•)•

S [•�,�]•
m0↑

S{�}

Figure 6: System SALLS

w↓,w↑, c↓, c↑, by using the well-known eqivalence

!(A � B) ≡ !A � !B .

This is done by using the following rules:

S{⊥}
z0↓

S{?0} ,
S{!�}

z0↑
S{1} ,

S [?R,T ]
z↓

S{?[•R,T ]•} ,
S{!(•R,T )•}

z↑
S(!R,T )

.

6.1 Proposition The rule v↓ is strongly admissible for {z0↓,w↓}. Dually, the rule
v↑ is strongly admissible for {z0↑,w↑}.
Proof: Replace every instance of

S{⊥}
v↓ by

S{?R}

S{⊥}
z0↓

S{?0}
w↓ .

S{?R}

The case of v↑ is dual. 
�

22



1↓
1

S{0}
aw↓

S{a}
S [•a, a]•

ac↓
S{a}

S{1}
ai↓

S [a, ā]

S{0}
l0↓

S [0, 0]

S [•[R,U ], [T, V ] ]•
l↓

S [ [•R,T ]•, [•U, V ]•]

S([R,U ], T )
s
S [(R,T ), U ]

S{0}
k0↓

S(0, 0)

S [•(R,U), (T, V )]•
k↓

S([•R,T ]•, [•U, V ]•)

S(• [R,U ], [T, V ])•
d↓

S [(•R,T )•, [•U, V ]•]

S{0}
m0↓

S(•0, 0)•
S [•(•R,U)•, (•T, V )•]•

m
S(• [•R,T ]•, [•U, V ]•)•

Figure 7: System ALLS

6.2 Proposition The rule b↓ is strongly admissible for {z↓, c↓}. Dually, the rule b↑
is strongly admissible for {z↑, c↑}.
Proof: Replace every instance of

S [?R,R]
b↓ by

S{?R}

S [?R,R]
z↓

S{?[•R,R]•}
c↓ .

S{?R}

The case of b↑ is dual. 
�
Further, we have to ensure the admissibility of the rules w↓,w↑, c↓, c↑ also in the

presence of the exponentials. This is done by adding the rules

S [•?R, ?T ]•
x↓

S{?[•R,T ]•} ,
S{!(•R,T )•}

x↑
S(•!R, !T )•

,
S [•!R, !T ]•

y↓
S{![•R,T ]•} ,

S{?(•R,T )•}
y↑

S(•?R, ?T )•
,

as well as their nullary versions:

S{0}
x0↓

S{?0} ,
S{!�}

x0↑
S{�} ,

S{0}
y0↓

S{!0} ,
S{?�}

y0↑
S{�} .

6.3 Proposition The rule w↓ is stongly admissible for {aw↓, l0↓, k0↓,m0↓, x0↓, y0↓}.
Dually, the rule w↑ is stongly admissible for {aw↑, l0↑, k0↑,m0↑, x0↑, y0↑}.
Proof: Similar as for Proposition 5.3. 
�
6.4 Proposition The rule c↓ is stongly admissible for {ac↓, l↓, k↓,m, x↓, y↓}. Dually,
the rule c↑ is stongly admissible for {ac↑, l↑, k↑,m, x↑, y↑}.
Proof: The proof is the same as for Proposition 5.2. The remaining cases are:
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• If R =?P (where P 	= ⊥), then apply the induction hypothesis to

S [•?P, ?P ]•
x↓

S{?[•P,P ]•}
c↓ .

S{?P}

• If R =!P (where P 	= 1), then apply the induction hypothesis to

S [•!P, !P ]•
y↓

S{![•P,P ]•}
c↓ .

S{!P}

The proof for c↑ is dual. 
�
All new rules in this section are sound, i.e. correspond to linear implications. Hence,

they are strongly admissible for system SLS. More precisely, we have:

6.5 Proposition The rules l↓, k↓,m, x↓, y↓ are strongly admissible for {w↓, c↓}, the
rule z↓ is strongly admissible for {w↓, b↓}, the rules l0↓, k0↓,m0↓, x0↓, y0↓ are strongly
admissible for {w↓}, and the rule z0↓ is strongly admissible for {v↓}. Dually, the rules
l↑, k↑,m, x↑, y↑ are strongly admissible for {w↑, c↑}, the rule z↑ is strongly admissible
for {w↑, b↑}, the rules l0↑, k0↑,m0↑, x0↑, y0↑ are strongly admissible for {w↑}, and the
rule z0↑ is strongly admissible for {v↑}.
Proof: Trivial. 
�
6.6 Definition The system shown in Figure 8 is called system SLLS.

System SLLS can be regarded as the local version of system SLS. Both systems are
strongly equivalent. Further, the local system does admit a cut elimination result.

6.7 Theorem Systems SLLS and SLS are strongly equivalent.

Proof: Immediate consequence of Propositions 6.1–6.5. 
�
6.8 Definition System LLS (local linear logic in the calculus of structures), shown in
Figure 9, is obained from the down-fragment of System SLLS together with the rules
s, m and the axiom 1↓.
6.9 Theorem Systems LLS and LS are strongly equivalent.

6.10 Corollary (Cut elimination) System LLS is equivalent to every subsystem
of SLLS∪ {1↓} containing LLS.

6.11 Corollary The rule i↑ is admissible for system LLS.

7 Decomposition of Derivations

In this section, I will state and prove several so-called decomposition theorems. All
of them say that any derivation in system SLLS can be rearranged in a certain way.
The first is Theorem 7.2, which states that any derivation can be decomposed into
three parts, which can be called creation, merging and destruction. The merging
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S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

S([R,U ], T )
s
S [(R,T ), U ]

S(• [R,U ], [T, V ])•
d↓

S [(•R,T )•, [•U, V ]•]

S([•R,U ]•, (•T, V )•)
d↑

S [•(R,T ), (U, V )]•

S{![R,T ]}
p↓

S [!R, ?T ]

S(?R, !T )
p↑

S{?(R,T )}

S{0}
aw↓

S{a}
S [•a, a]•

ac↓
S{a}

S{a}
ac↑

S(•a, a)•
S{a}

aw↑
S{�}

S{0}
l0↓

S [0, 0]

S [•[R,U ], [T, V ] ]•
l↓

S [ [•R,T ]•, [•U, V ]•]

S((•R,U)•, (•T, V )•)
l↑

S(•(R,T ), (U, V ))•
S(�,�)

l0↑
S{�}

S{0}
k0↓

S(0, 0)

S [•(R,U), (T, V )]•
k↓

S([•R,T ]•, [•U, V ]•)

S [(•R,U)•, (•T, V )•]
k↑

S(• [R,T ], [U, V ])•
S [�,�]

k0↑
S{�}

S{0}
m0↓

S(•0, 0)•
S [•(•R,U)•, (•T, V )•]•

m
S(• [•R,T ]•, [•U, V ]•)•

S [•�,�]•
m0↑

S{�}

S{0}
x0↓

S{?0}
S [•?R, ?T ]•

x↓
S{?[•R,T ]•}

S{!(•R,T )•}
x↑

S(• !R, !T )•
S{!�}

x0↑
S{�}

S{0}
y0↓

S{!0}
S [•!R, !T ]•

y↓
S{![•R,T ]•}

S{?(•R,T )•}
y↑

S(•?R, ?T )•
S{?�}

y0↑
S{�}

S{⊥}
z0↓

S{?0}
S [?R,T ]

z↓
S{?[•R,T ]•}

S{!(•R,T )•}
z↑

S(!R,T )

S{!�}
z0↑

S{1}

Figure 8: System SLLS

part is in the middle of the derivation, and (depending on your preferred read-
ing of a derivation) the creation and destruction are at the top and at the bot-
tom, as depicted in Figure 10. In system SLLS the merging part contains the rules
s, d↓, d↑, p↓, p↑, l↓, l↑, k↓, k↑,mx↓, x↑, y↓, y↑, z↓, z↑, which do not change the size of the
structure.
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1↓
1

S{1}
ai↓

S [a, ā]

S{0}
l0↓

S [0, 0]

S [•[R,U ], [T, V ] ]•
l↓

S [ [•R,T ]•, [•U, V ]•]

S([R,U ], T )
s
S [(R,T ), U ]

S{0}
k0↓

S(0, 0)

S [•(R,U), (T, V )]•
k↓

S([•R,T ]•, [•U, V ]•)

S(• [R,U ], [T, V ])•
d↓

S [(•R,T )•, [•U, V ]•]

S{0}
m0↓

S(•0, 0)•
S [•(•R,U)•, (•T, V )•]•

m
S(• [•R,T ]•, [•U, V ]•)•

S{![R,T ]}
p↓

S [!R, ?T ]

S{0}
x0↓

S{?0}
S [•?R, ?T ]•

x↓
S{?[•R,T ]•}

S{0}
aw↓

S{a}
S{0}

y0↓
S{!0}

S [•!R, !T ]•
y↓

S{![•R,T ]•}

S [•a, a]•
ac↓

S{a}
S{⊥}

z0↓
S{?0}

S [?R,T ]
z↓

S{?[•R,T ]•}

Figure 9: System LLS

top-down reading bottom-up reading

T

T ′
creation

��

R′
merging

��

R

destruction
��

T

T ′

��

destruction

R′

��
merging

R

��

creation

Figure 10: Reading of the decomposition theorem

7.1 Definition Let system SLLSm={s, d↓, d↑, p↓, p↑, l↓, l↑, k↓, k↑,mx↓, x↑, y↓, y↑, z↓, z↑}.
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7.2 Theorem For every derivation
T

R
SLLS∆ there exist T ′ and R′, such that

T

T ′
{ai↓,at↓,l0↓,k0↓,m0↓,x0↓,y0↓,z0↓,ac↑}

R′
SLLSm

R
{ai↑,at↑,l0↑,k0↑,m0↑,x0↑,y0↑,z0↑,ac↓}

.

Proof: Every derivation

Q
ρ

P
π

R

, where ρ ∈ SLLSm and π ∈ {ai↓, at↓, l0↓, k0↓,m0↓, x0↓, y0↓, z0↓, ac↑}

can be replaced by a derivation

Q
π

P ′

R

SLLSm

.

From this and the dual statement, the theorem follows by an inductive argument. 
�
This decomposition is not restricted to system SLLS. A similar theorem has already

been proved for other systems in the calculus of structures, namely for system SBV
(a non-commutative logic) in [5], for system SELS in [9] and for system SKS (classical
logic) in [1]. It also holds for system SLLS, a local system for full linear logic, that
will be discussed in the next section.

In the following, I will show some further possible decompositions. The first deals
with contraction. The intuition behind contraction is to copy parts of a structure
to make them usable more than once in a proof or derivation. This intuition tells
us that it should be possible to copy first everything as much as it is needed and
then go on with the proof without copying anything anymore. The following theorem
makes this explicit. Furthermore, because of the top-down symmetry of the calculus
of structures, the theorem can be stated for derivations.

7.3 Theorem For every derivation
T

R
SLLS∆ there is a derivation

T

T ′
{ac↑}

R′
SLLS\{ac↑,ac↓}

R
{ac↓}

for some structures T ′ and R′.
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Proof: The proof is an adaption of the proof of a similar theorem for classical

logic, presented in [1]. Let
T

R
SLLS∆ be given. From this we can obtain a derivation

[T, T̄ ]

[R, T̄ ]
SLLS∆′ (by replacing each structure S that occurs as premise or conclusion inside ∆

by [S, T̄ ]), which can be transformed into a proof by adding
1↓
1

i↓
[T, T̄ ]

. By applying

Proposition 2.11 and Theorem 6.9, this proof can be transformed into a proof in
system LLS. The rule ac↓ can be easily permuted under all other rules in system LLS.
By this, we obtain a proof

U

��
LLS\{ac↓}

[R, T̄ ]
{ac↓}∆̃

(1)

for some structure U . Furthermore, we have that U = [R′, T̄ ′ ] for some structures

R′ and T̄ ′ such that there are derivations
R′

R
{ac↓}∆̃R and

T̄ ′

T̄

{ac↓}∆̃T̄ . Now, perform the

following transformations to the proof in (1):

[R′, T̄ ′ ]

��
LLS\{ac↓}

[R, T̄ ]

{ac↓}∆̃

1
�

(1, T )

([R′, T̄ ′ ], T )

LLS\{ac↓}

([R, T̄ ], T )

{ac↓}∆̃

2
�

T

([R′, T̄ ′ ], T )

LLS\{ac↓}

([R′, T̄ ], T )

{ac↓}∆̃T̄

([R, T̄ ], T )
s

[R, (T̄ , T )]
i↑

R

{ac↓}∆̃R

3
�

T

([R′, T̄ ′ ], T )
s

[R′, (T̄ ′, T )]

LLS\{ac↓}

[R′, (T̄ , T )]
i↑

R′

{ac↓}∆̃T̄

R

{ac↓}∆̃R

In the first step remove the axiom and replace every structure S occuring as premise
or conclusion of a rule by (S, T ). In the second step separate the instances of ac↓ in ∆̃
into the two derivations ∆̃T̄ and ∆̃R. Further, add an instance of s and and instance
of i↑ at the bottom of the derivation to obtain a derivation from T to R. In the last
step, all instances of ac↓ in ∆̃R are permuted down to the bottom of the derivation
and all instances of ac↓ in ∆̃T̄ are permuted under the switch rule.

Consider now the bottommost instance of
S [•a, a]•

ac↓
S{a} in ∆̃T̄ . It has its redex inside

the structure T̄ . Hence T̄ = U{a} for some context U{ }. With a little abuse of
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notation, we can write T = Ū{ā}. Now, we can replace

[R′, (U [•a, a]•, Ū{ā})]
ac↓

[R′, (U{a}, Ū{ā})]
i↑ by

R′

[R′, (U [•a, a]•, Ū{ā})]
ac↑

[R′, (U [•a, a]•, Ū (• ā, ā)•)]
i↑ .

R′

The new instance of ac↑ can be permuted up to the top of the derivation because there
is no other rule above it that changes T . Repeat this for all instances of ac↓ in ∆̃T̄ .
The resulting derivation has the desired shape, except for the remaining instance of
i↑, which can be replaced by a derivation containing only ai↑, s and d↑ (by Proposition
2.11). 
�

The next theorem deals with interaction and cut. In the sequent calculus, the
instances of the identity rule are always at the top of a derivation or proof. In the
calculus of structures, it is also possible to move the identity to the top of a derivation.
Moreover, by duality, it is also possible, to push all cuts town to the bottom, which
is certainly not possible in the sequent calculus.

7.4 Theorem For every derivation
T

R
SLLS∆ there is a derivation

T

T ′
{ai↓}

R′
SLLS\{ai↓,ai↑}

R
{ai↑}

for some structures T ′ and R′.

Proof: I will show that every subderivation

Q
ρ

S{1}
ai↓

S [a, ā]

of ∆, where ρ ∈ SLLS\{ai↓},

can be replaced by a derivation

Q′
ai↓

Q

S [a, ā]
SLLS\{ai↓,ai↑}

.

From this and the dual statement, the theorem follows by an easy inductive argument.

Consider now

Q
ρ

S{1}
ai↓

S [a, ā]

, where ρ is not trivial (otherwise the statement follows

trivially). It follows an exhaustive list of all possible cases:

(1) ρ ∈ {ai↑, at↑}: Then there is only one possibility:
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(i) The redex ⊥ of ρ is inside the context S{ }. Then Q = S′{1} for some
context S′{ } and we can replace

S′{1}
ρ

S{1}
ai↓ by

S [a, ā]

S′{1}
ai↓

S′ [a, ā]
ρ .

S [a, ā]

(2) ρ = s: There are two subcases:

(i) The redex [(R,T ), U ] of s is inside the context S{ }. Similar to the pre-
vious case.

(ii) The contractum 1 of ai↓ is inside R, T or U . If it is inside R, we have that
R = R′{1} for some context R′{ } and Q = S′([R′{1}, U ], T ) for some
context S′{ }. Then we can replace

S′([R′{1}, U ], T )
s
S′ [(R′{1}, T ), U ]

ai↓ by
S′ [(R′ [a, ā], T ), U ]

S′([R′{1}, U ], T )
ai↓

S′([R′ [a, ā], U ], T )
s .
S′ [(R′ [a, ā], T ), U ]

If the 1 is inside T or U , the situation is similar.

(3) ρ = d↓: There are four subcases.

(i) The redex [(•R,T )•, [•U, V ]•] of d↓ is inside the context S{ }. Similar to (1.i).

(ii) The contractum 1 of ai↓ is inside R, T , U or V . Similar to (2.ii).

(iii) S{1} = S′ [((•R,T )•, 1), [•U, V ]•]. Then replace

S′(• [R,U ], [T, V ])•
d↓

S′ [(•R,T )•, [•U, V ]•]
ai↓ by

S′ [((•R,T )•, [a, ā]), [•U, V ]•]

S′(• [R,U ], [T, V ])•
ai↓

S′((• [R,U ], [T, V ])•, [a, ā])
d↓

S′([(•R,T )•, [•U, V ]•], [a, ā])
s .
S′ [((•R,T )•, [a, ā]), [•U, V ]•]

(iv) S{1} = S′ [(•R,T )•, ([•U, V ]•, 1)]. Similar to (iii).

(4) ρ = l↓: Similar to (3).

(5) ρ = k↓: Similar to (2). Observe that a situation as in (3.iii) or (3.iv) cannot
occur because S′(([•R,T ]•, 1), [•U, V ]•) = S′(([•R,T ]•, [•U, V ]•), 1) and therefore is
handled by subcase (i).

(6) ρ = d↑: Similar to (2). Observe that a situation as in (3.iii) or (3.iv) can-
not occur because S′ [•((R,T ), 1), (U, V )]•= S′ [•((R, 1), T ), (U, V )]• and therefore
is handled by subcase (ii).

(7) ρ = l↑: Similar to (6).

(8) ρ = k↑: Again, there are four subcases.
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(i) The redex (• [R,T ], [U, V ])• of k↑ is inside the context S{ }. Similar to (1.i).

(ii) The contractum 1 of ai↓ is inside R, T , U or V . Similar to (2.ii).

(iii) S{1} = S′(•([R,T ], 1), [U, V ])•. Then replace

S′ [(•R,U)•, (•T, V )•]
k↑

S′(• [R,T ], [U, V ])•
ai↓ by

S′(•([R,T ], [a, ā]), [U, V ])•

S′ [(•R,U)•, (•T, V )•]
ai↓

S′ [(•R,U)•, (•(T, [a, ā]), V )•]
k↑

S′(• [R, (T, [a, ā])], [U, V ])•
s .
S′(•([R,T ], [a, ā]), [U, V ])•

(iv) S{1} = S′(• [R,T ], ([U, V ], 1))•. Similar to (iii).

(9) ρ = m: Again, there are four subcases.

(i) The redex (• [•R,T ]•, [•U, V ]•)• of m is inside the context S{ }. Similar to (1.i).

(ii) The contractum 1 of ai↓ is inside R, T , U or V . Similar to (2.ii).

(iii) S{1} = S′(•([•R,T ]•, 1), [•U, V ]•)•. Then replace

S′ [•(•R,U)•, (•T, V )•]•
m

S′(• [•R,T ]•, [•U, V ]•)•
ai↓ by

S′(•([•R,T ]•, [a, ā]), [•U, V ]•)•

S′ [•(•R,U)•, (•T, V )•]•
ai↓

S′([•(•R,U)•, (•T, V )•]•, (• [a, ā], 1)•)
m

S′((• [•R,T ]•, [•U, V ]•)•, (• [a, ā], 1)•)
l↑ .

S′(•([•R,T ]•, [a, ā]), [•U, V ]•)•

(iv) S{1} = S′(• [•R,T ]•, ([•U, V ]•, 1))•. Similar to (iii).

(10) ρ = at↓: Similar to (3).

(11) ρ = ac↓: Similar to (1). (Note that S{1} = S(1, 1).)

(12) ρ = ac↑: Similar to (9). (Note that (•1, 1)• = 1.) 
�

8 Conclusions and Future Work

The results presented in this paper are twofold. First, they extend the work of [6, 9] by
showing that also full linear logic can benefit from its presentation in the calculus of
structures. In particular, the rules for the additives are splitted into two parts, namely,
a purely multiplicative part (the rules d↓ and d↑) and an explicit contraction (the rules
c↓ and c↑), whereas in the sequent calculus, contraction is contained implicitly in the
rules for the additives.

The second achievement of this paper is to show that in the calculus of structures it
is possible to reduce this contraction for the additives to its atomic version. This is of
course not possible in the sequent calculus. By using the logical equivalence !(A�B) ≡
!A � !B, it is possible to reduce also the contraction rule for the exponentials to an
atomic version, by reducing it to the contraction for the additives. The only drawback
is that for systen SLLS the separation property is lost, i.e. it is no longer possible to
consider the multiplicative exponential fragment independent from the additives.
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The calculus of structures is also able to deal with the quantifiers. The rules for
the first order predicative case have already been shown in [1]. For the second order
propositional case the situation is similar. If we add the quantifiers to the language
in the obvious way, together with the equations for the De Morgan laws and

∀a.R = R = ∃a.R , if a is not free in R,

we can extend system SLS by the following rules:

S{∀a.[R,T ]}
u↓

S [∀a.R,∃a.T ]
,

S(∃a.R,∀a.T )
u↑

S{∃a.(R,T )} ,

S{R{T/a}}
n↓

S{∃a.R} ,
S{∀a.R}

n↑
S{R{T/a}} .

Observe that there is no proviso saying that the variable a is not allowed to be free
in the context, as it is the case in the sequent calculus.

As already observed in [1], it is even under the presence of the quantifiers possible
to reduce contraction to it atomic version, by adding the rules

S [•∀a.R,∀a.T ]•
ca↓

S{∀a.[•R,T ]•} ,
S{∃a.(•R,T )•}

ca↑
S(•∃a.R,∃a.T )•

,

S [•∃a.R,∃a.T ]•
ce↓

S{∃a.[•R,T ]•} ,
S{∀a.(•R,T )•}

ce↑
S(•∀a.R,∀a.T )•

.

However, even if contraction is atomic, the new system can no longer be called local
because in the rule n↓ a structure of arbitrary size is introduced.
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