
Linear Logic and Noncommutativity
in the

Calculus of Structures

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium (Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht am 26. Mai 2003 von

Diplom-Informatiker Lutz Straßburger
geboren am 21. April 1975 in Dresden

Betreuer: Dr. Alessio Guglielmi
Betreuender Hochschullehrer: Prof. Dr. rer. nat. habil. Steffen Hölldobler

Gutachter: Prof. Dr. rer. nat. habil. Steffen Hölldobler
Dr. François Lamarche
Prof. Dr. rer. nat. habil. Horst Reichel

Disputation am 24. Juli 2003

Acknowledgements

I am particularly indebted to Alessio Guglielmi. Whithout his advice and guidance this
thesis would not have been written. He awoke my interest for the fascinating field of proof
theory and introduced me to the calculus of structures. I benefited from many fruitful and
inspiring discussions with him, and in desperate situations he encouraged me to keep going.
He also provided me with his TEX macros for typesetting derivations.

I am grateful to Steffen Hölldobler for accepting the supervision of this thesis and
for providing ideal conditions for doing research. He also made many helpful suggestions
for improving the readability. I am obliged to François Lamarche and Horst Reichel for
accepting to be referees.

I would like to thank Kai Brünnler, Paola Bruscoli, Charles Stewart, and Alwen Tiu
for many fruitful discussion during the last three years. In particular, I am thankful to Kai
Brünnler for struggling himself through a preliminary version and making helpful comments.
Jim Lipton and Charles Stewart made valuable suggestions for improving the introduction.

Additionally, I would like to thank Claus Jürgensen for the fun we had in discussing
TEX macros. In particular, the (self-explanatory) macro \clap, which is used on almost
every page, came out of such a discussion.

This thesis would not exist without the support of my wife Jana. During all the time
she has been a continuous source of love and inspiration.

This PhD thesis has been written with the financial support of the DFG-Graduierten-
kolleg 334 “Spezifikation diskreter Prozesse und Prozeßsysteme durch operationelle Modelle
und Logiken”.

iii

iv

Table of Contents

Acknowledgements iii

Table of Contents v

List of Figures vii

1 Introduction 1
1.1 Proof Theory and Declarative Programming 1
1.2 Linear Logic . 5
1.3 Noncommutativity . 8
1.4 The Calculus of Structures . 9
1.5 Summary of Results . 12
1.6 Overview of Contents . 15

2 Linear Logic and the Sequent Calculus 17
2.1 Formulae and Sequents . 17
2.2 Rules and Derivations . 18
2.3 Cut Elimination . 22
2.4 Discussion . 24

3 Linear Logic and the Calculus of Structures 25
3.1 Structures for Linear Logic . 25
3.2 Rules and Derivations . 28
3.3 Equivalence to the Sequent Calculus System 36
3.4 Cut Elimination . 41

3.4.1 Splitting . 44
3.4.2 Context Reduction . 68
3.4.3 Elimination of the Up Fragment . 72

3.5 Discussion . 80

4 The Multiplicative Exponential Fragment of Linear Logic 83
4.1 Sequents, Structures and Rules . 83
4.2 Permutation of Rules . 86
4.3 Decomposition . 96

4.3.1 Chains and Cycles in Derivations . 100
4.3.2 Separation of Absorption and Weakening 120

4.4 Cut Elimination . 129
4.5 Interpolation . 139

v

vi Table of Contents

4.6 Discussion . 141

5 A Local System for Linear Logic 143
5.1 Locality via Atomicity . 143
5.2 Rules and Cut Elimination . 145
5.3 Decomposition . 151

5.3.1 Separation of Atomic Contraction 152
5.3.2 Separation of Atomic Interaction . 160
5.3.3 Lazy Separation of Thinning . 167
5.3.4 Eager Separation of Atomic Thinning 173

5.4 Discussion . 177

6 Mix and Switch 179
6.1 Adding the Rules Mix and Nullary Mix . 179
6.2 The Switch Rule . 185
6.3 Discussion . 195

7 A Noncommutative Extension of MELL 197
7.1 Structures and Rules . 198
7.2 Decomposition . 202

7.2.1 Permutation of Rules . 204
7.2.2 Cycles in Derivations . 209

7.3 Cut Elimination . 215
7.3.1 Splitting . 215
7.3.2 Context Reduction . 224
7.3.3 Elimination of the Up Fragment . 226

7.4 The Undecidability of System NEL . 231
7.4.1 Two Counter Machines . 232
7.4.2 Encoding Two Counter Machines in NEL Structures 233
7.4.3 Completeness of the Encoding . 235
7.4.4 Some Facts about System BV . 236
7.4.5 Soundness of the Encoding . 241

7.5 Discussion . 248

8 Open Problems 249
8.1 Quantifiers . 249
8.2 A General Recipe for Designing Rules . 250
8.3 The Relation between Decomposition and Cut Elimination 251
8.4 Controlling the Nondeterminism . 252
8.5 The Equivalence between System BV and Pomset Logic 252
8.6 The Decidability of MELL . 253
8.7 The Equivalence of Proofs in the Calculus of Structures 253

Bibliography 255

Index 263

List of Figures

1.1 Overview of logical systems discussed in this thesis 13

2.1 System LL in the sequent calculus . 20

3.1 Basic equations for the syntactic congruence for LS structures 26
3.2 System SLS . 35
3.3 System LS . 36
3.4 System LS′ . 46

4.1 System MELL in the sequent calculus . 84
4.2 Basic equations for the syntactic congruence of ELS structures 85
4.3 System SELS . 86
4.4 System ELS . 86
4.5 Possible interferences of redex and contractum of two consecutive rules . . . 88
4.6 Examples for interferences between two consecutive rules 89
4.7 Permuting b↑ up and b↓ down . 99
4.8 Connection of !-links and ?-links . 102
4.9 A cycle χ with n(χ) = 2 . 106
4.10 A promotion cycle χ with n(χ) = 3 . 107
4.11 A pure cycle χ with n(χ) = 2 . 109
4.12 Example (with n(χ) = 3) for the marking inside ∆ 110
4.13 Cut elimination for system SELS∪ {1↓} . 132
4.14 Proof of the interpolation theorem for system SELS 141

5.1 System SLLS . 146
5.2 System LLS . 152

6.1 Basic equations for the syntactic congruence of ELS◦ structures 181
6.2 System SELS◦ . 182
6.3 System ELS◦ . 182
6.4 System SS◦ . 183
6.5 System S◦ . 183

7.1 Basic equations for the syntactic congruence of NEL structures 198
7.2 System SNEL . 199
7.3 System NEL . 200
7.4 System SBV . 201
7.5 System BV . 201

vii

viii List of Figures

1
Introduction

1.1 Proof Theory and Declarative Programming

Proof theory is the area of mathematics which studies the concepts of mathematical proof
and mathematical provability [Bus98]. It is mainly concerned with the formal syntax of
logical formulae and the syntactic presentations of proofs, and can therefore be regarded
as “logic from the syntactic viewpoint” [Gir87b]. An important topic of research in proof
theory is the relation between finite and infinite objects. In other words, proof theory
investigates how infinite mathematical objects are denoted by finite syntactic constructions,
and how facts concerning infinite structures are proved by finite proofs. Another important
question of proof theoretical research is the investigation of intuitive proofs [Kre68]. More
precisely, not only the study of a given formal system is of interest, but also the analysis of
the intuitive proofs and the choice of the formal systems needs attention.

These general questions of research are not the only ones that are investigated in proof
theory, but they are the most important ones for the application of proof theory in computer
science in general, and in declarative programming in particular. By restricting itself to
finitary methods, proof theory studies the objects that computers (which are, per se, finite)
can deal with.

In declarative programming the intention is to describe what the user wants to achieve,
rather than how the machine is accomplishing it. By concerning itself with the relation
between intuitive proofs and formal systems, proof theory can help to design declarative
programming languages in such a way that the computation of the machine meets the
intuition of the user.

This rather high level argumentation is made explicit and put on formal grounds by the
two proof theoretical concepts of proof normalisation (or proof reduction) and proof search
(or proof construction), which provide the theoretical foundations for the two declarative
programming paradigms of functional programming and logic programming , respectively.

Proof normalisation and functional programming. The relation between the func-
tional programming paradigm and proof theory is established by the Curry-Howard-iso-
morphism [CF58, How80, Tai68], which identifies formal logical systems, as they are stud-
ied in proof theory, with computational systems, as they are studied in type theory. More

1

2 1. Introduction

precisely, a formula corresponds to a type and a proof of that formula to a term of the corre-
sponding type. For example, natural deduction proofs of intuitionistic logic [Gen34, Pra65]
correspond to terms of the simply typed λ-calculus [Chu40]. This bijective mapping be-
tween proofs and terms is an isomorphism because a normalisation step of the proof in the
logical system corresponds exactly to a normalisation step of the λ-term, which in turn is
a computation step in functional programming. Hence, the normalisation (or reduction) of
the proof is the computation of the corresponding functional program. The isomorphism
can be summarised as follows:

formula = type ,
(correct) proof = (well-typed) program ,

proof normalisation = computation .

The correspondence does not only hold for propositional logic, but also for first order logic,
which corresponds to dependent types (without inductive types), and second order logic,
which corresponds to polymorphic types. A good introduction and historical overview for
this can be found in [Wad00]. A detailed survey is [SU99]. For the relation between classical
logic and type theory, the reader is referred to [Ste01].

The importance of the Curry-Howard-isomorphism for computer science is also corrob-
orated by the fact that proofs of termination and correctness in computer science often
reduce to known techniques in proof theory. The probably best known example for this is
the proof of strong normalisation of the polymorphic λ-calculus (also known as system F)
[Gir72], which is the basis for the type systems of functional programming languages like
ML or Haskell.

Another application of the Curry-Howard-isomorphism is the possibility of extracting
programs from proofs. For example, the Coq proof assistant (see e.g. [BC03]) can extract a
certified program from the constructive proof of its formal specification. Another example
is the NuPrl development system [CAB+86]. The basic idea is that from a constructive
proof of

Φ � ∀x.∃y.P (x, y) ,

where Φ is a set of hypotheses and P a binary predicate, it is possible to obtain a program
that computes from a given input x an output y such that P (x, y) holds. The types
corresponding to the formulae in Φ are the types of parameters for the program.

Proof search and logic programming. The relation between logic programming and
proof theory is more obvious because the paradigm of logic programming is already defined
in terms of logic and proofs. A logic program is a conjunction of formulae, each of which
can be seen as an instruction. The input to the program is another formula, called the goal.
The computation is the search for a proof (also called proof construction) showing that
the goal is a logical consequence of the program. We have the following correspondence
[And01]:

formula = instruction ,
(incomplete) proof = state ,

proof search = computation .

1.1. Proof Theory and Declarative Programming 3

One example of a logic programming language is (pure) Prolog, which is based on the Horn
fragment of classical logic. However, Horn clauses are not able to support concepts like
modular programming or abstract data types, which are common in modern programming
languages. For that reason, pure Prolog has been extended in several ways. There are
essentially three possible approaches to do so [MNPS91]. The first is to mix concepts
of other programming languages into Horn clauses, and the second is to extend a given
interpreter by certain nonlogical primitives that provide aspects of the missing features.
The third approach is to extend the underlying logic to provide a logical basis for the
missing mechanisms. This raises the question in what way the logic should be extended.
The solution must be found somewhere between the two extremes of Horn logic, which is
weak but proof search can be implemented efficiently, and full first-order or higher-order
logic, for which an all-purpose theorem prover has to serve as interpreter. Here, the proof
theoretical concept of uniform provability [MNPS91] provides a criterion for judging whether
a given logical system is an adequate basis for a logic programming language. A uniform
proof is a proof that can be found by a goal-directed search, i.e. the logical connectives in
the goal formula are interpreted as search instructions.

Although the first two approaches lead, in general, to an immediate and efficient ex-
tension of the language, they have the disadvantage of cluttering up the semantics and of
obscuring the declarative reading of the programs [MNPS91]. The third approach might
not immediately lead to an efficient solution, as the other two do, but it has the advantage
that the extended language still has a clear semantics.

Through the notion of uniform proof, proof theory can help to design logic program-
ming languages that are capable of supporting features like abstract data types without
compromising the pure declarative paradigm. An example of such a language is λProlog
[MN88, Mil95], which is based on higher-order hereditary Harrop formulae [MNPS91]. Their
main extension with respect to Horn logic is that implication and quantification is allowed
in the body of definite clauses, and that quantification over predicates is possible. λProlog
supports modular programming, abstract data types and higher-order programming.

Having a pure declarative paradigm is not only important for having a clear semantics,
it also plays a role when security issues are under consideration. An example is the concept
of proof-carrying code, where the program carries a proof of its own correctness.

The proof theoretical foundations for both paradigms are provided by the cut elimination
property, which is one of the most fundamental concepts of proof theory. The notion of cut
elimination is tightly connected to the sequent calculus [Gen34], which is a proof theoretical
formalism for presenting logical systems by specifying their proof rules. For example the
rule

Φ � A Φ � B∧
Φ � A ∧B

says that if one has a proof of A from hypotheses Φ and a proof of B from hypotheses Φ,
then one can obtain a proof of A ∧ B from the same hypotheses. This rule exhibits an
important property that rules in the sequent calculus usually have: the premises of a rule
contain only subformulae of the conclusion. This is called the subformula property . The
only (propositional) rule that does not have this property is the cut rule. The precise shape
of the cut rule varies from logical system to logical system, but it always expresses the
transitivity of the logical consequence relation, i.e. it allows to use lemmata inside a proof.

4 1. Introduction

For example in intuitionistic logic, the cut rule is of the following form:

Φ � A Φ,A � B
cut

Φ � B
.

It says that if one can prove A from the hypotheses in Φ and one can prove B from the
hypotheses in Φ enriched with A, then one can prove B from Φ directly. In other words, A
is used as auxiliary lemma to prove B.

A logical system has the cut elimination property when for every proof in the system
that uses the cut rule, there is a proof (with the same conclusion) that does not use the
cut. In other words, cut elimination says that the transitivity of the logical consequence
relation is in some way already contained in the other rules of the system. This rather
surprising result has first been shown by G. Gentzen in [Gen34] for LK and LJ, which are
systems for classical and intuitionistic logic, respectively. An important consequence of cut
elimination is the subformula property for proofs: If a formula A is provable, then there is
a proof of A that contains only subformulae of A. Another consequence of cut elimination
is the consistency of the system [Gen35].

It is important to note that cut elimination is a very fragile property. This means that
it easily breaks down if a given system is modified. Consequently, a considerable amount of
proof theoretical research is devoted to designing logical systems in such a way that they
have the cut elimination property.

It should be mentioned that the construction of a cut-free proof from a proof with cut
can have a drastic impact on the size of the proof, because it can lead to a hyperexponential
blow-up of the proof.

There is a close relationship between the cut elimination procedure and proof normal-
isation [Zuc74]. Termination and confluence of cut elimination ensure termination and
confluence, respectively, of normalisation. In the case of proof search, the cut elimination
property ensures that proof search can make progress and that whenever the proof search
fails then there is indeed no proof.

The properties of the functional and logic programming languages depend on the prop-
erties of the underlying logical systems. In order to increase the variety and applicability of
those languages, it is therefore necessary to design new logical systems and to study their
proof theoretical properties.

From the beginning, the main sources of applications of proof theory to computer science
were classical and intuitionistic logic. Whereas classical logic is based upon truth values,
intuitionistic logic is based upon proofs. In classical logic the meaning of a connective is
given by explaining how the truth value of a compound formula can be obtained from the
truth values of the constituents. This is usually done by means of truth tables. For example
the conjunction A ∧B is true if A is true and B is true. Similarly, the implication A⇒ B
is true if A is false or B is true. Intuitionistic logic is not based on the a priori existence
of truth values (although it is possible to give a truth values semantics for it, for example,
via Heyting algebras or Kripke frames). In intuitionistic logic the meaning of a connective
is given by describing how a proof of the compound formula can be obtained from proofs of
the constituents. For example a proof of the conjunction A∧B consists of a pair of proofs,
one for A and one for B. Similarly, a proof of the implication A⇒ B consists of a function
mapping a proof of A to a proof of B. This is known as Brouwer-Heyting-Kolmogorov
interpretation [Bro24, Hey34, Kol32].

1.2. Linear Logic 5

Despite the success that classical and intuitionistic logic have in many areas of computer
science, they have certain limitations that prevent them from dealing naturally with certain
aspects of computer science, as they occur, for instance, in concurrency theory and in
artificial intelligence. Examples of these limitations are their lack of resource consciousness
and the inability of dealing with noncommutativity. For that reason, linear logic and several
other, so called substructural logics are being investigated.

1.2 Linear Logic

Linear logic has been conceived by J.-Y. Girard as a refinement of intuitionistic logic
[Gir87a]. The two main novelties of linear logic are its resource consciousness and its
notion of duality, which is represented by linear negation, denoted by (·)⊥.

Resource consciousness means that it matters how often a hypothesis is used inside a
proof. In particular, there are two possible conjunctions in linear logic. Proving A “and” B
from some hypotheses Φ can mean, either that the hypotheses have to be shared between
the proofs of A and B, or that both proofs have access to all of Φ. The former, written
as A � B, is called multiplicative conjunction, and the latter, written as A � B, is called
additive conjunction. The corresponding proof rules are (in the one-sided sequent calculus):

� A,Φ � B,Ψ
� � A � B,Φ, Ψ

and
� A,Φ � B,Φ

� � A � B,Φ
.

The notion of resource consciousness has also been studied in artificial intelligence, in the
area of planning [Bib86, HS90], where actions consume and create resources. The relation
between planning and a small fragment of linear logic has been investigated in [GHS96]. A
more recent work on the use of linear logic for planning problems is [KV01].

An example from the area of planning can be used for better illustrating the difference
between the two disjunctions. If we let A stand for having � 1 and B for having one loaf of
bread and C for having one croissant, then A � B can be used to say that with � 1 one can
buy a loaf of bread at the bakery, and similarly, A � C can be interpreted as spending � 1 for
buying a croissant. Then A � B � C is not provable because the money can be spent only
for one item. One would need � 2 to buy both, bread and croissant, i.e. A � A � B � C.
However, we have that A � B � C, with the meaning that with � 1 one can buy one of the
two items and the customer can choose which he wants.

Although such examples can help to get some intuition for the different connectives—a
similar example has been used by J.-Y. Girard in [Gir96]—the reader should be warned that
these examples are misleading in the sense that they give a wrong idea of what linear logic
is about. In his recent work [Gir01, p. 399], J.-Y. Girard gives a more refined elaboration
on the relation between his work and the area of artificial intelligence.

Similar to intuitionistic logic, linear logic is not based on the a priori existence of
truth values, but it has a truth value semantics, which is given by phase spaces [Gir87a,
Laf97]. From a proof theoretical viewpoint, (denotational) semantics for proofs are more
interesting. This means that the semantics does not ask the question “When is A true?”
but “What is a proof of A?” [GLT89].

An example of such a semantics is games semantics [Bla92, Bla96, AJ94, HO93, Lam95,
Lam96, LS91], where formulae are interpreted as two-person games, or debates. While the

6 1. Introduction

first player, called proponent, tries to show that the formula is provable, the second player,
called opponent, tries to show that there is no proof. A proof of a formula is then given
by a winning strategy for proponent. This idea goes back to [Lor61] and [Lor68], where
games semantics has been investigated for intuitionistic logic. In [Bla92], A. Blass observed
that linear logic is the right context for games semantics because linear negation can be
interpreted naturally as exchanging roles between the two players. This means that the
duality of linear logic corresponds to the duality between proponent and opponent.

Linear negation can be used to dualise the two conjunctions to obtain two disjunctions:

A � B = (A⊥
� B⊥)⊥ and A � B = (A⊥

� B⊥)⊥ ,

where � is called additive disjunction and � is called multiplicative disjunction. In the
example above, A � B � C would have the intuitive meaning that the customer gets either
the bread or the croissant, but the choice is made by the shop assistant.

The difference between the additive conjunction � and the additive disjunction � can
also be explained from the viewpoint of games semantics. If a formula A � B is considered,
then proponent can choose on which constituent the game or debate is continued, and in
the case of A � B, the opponent has the choice [Bla92, Bla96]. Consequently, a winning
strategy for A � B consists of a pair of winning strategies, one for A and one for B; and a
winning strategy for A � B consists of a winning strategy, either for A or for B, together
with an indication whether it is for A or for B.

The multiplicative disjunction � can be interpreted as playing two games in parallel,
where proponent has to win one of them. With this interpretation in mind, it can be
intuitively explained why the formula A � A⊥ is provable: The proponent in the game
for A � A⊥ plays simultaneously two copies of the game A, one as proponent and one as
opponent. The winning strategy is the following: Proponent copies in each game the move
of his adversary in the other game. Then he certainly wins in exactly one of the two games
(it is assumed that every game is finite and has a winner).

Another possible intuition for linear logic comes from concurrency, where A � B can be
seen as parallel composition of processes A and B, that can communicate. The additive
disjunction � is then interpreted as choice operator. In this context, linear negation repre-
sents the duality between input and output. The formula A�A⊥ can then be interpreted as
two parallel processes, one sending message A and the other receiving it. The provability of
A � A⊥ resembles the transition a|ā→ 0, as it occurs in process algebras like CCS [Mil89].

Linear logic also has two modalities (called exponentials), denoted by ! and ?, which
are dual to each other. The formula !C means that C can be used an arbitrary number of
times inside a proof. In the example shown above, the formula !C would express an infinite
supply of croissants.

In summarising, one can say that linear logic is able to naturally express certain phe-
nomena that occur in computer science. The probably most significant aspect of linear
logic is that the concepts of resource consciousness and duality are combined in a single
coherent logical system that has the cut elimination property. In fact, the introduction of
linear logic led to a considerable increase of research in proof theory and its application to
computer science. One hope is, for example, to conceive a computational model (like the
λ-calculus), that is based on linear logic, in the same way as the λ-calculus is based on
intuitionistic logic [Wad91, Wad92, MOTW95, BW96].

1.2. Linear Logic 7

The maybe most harmful drawback of linear logic is that, in the eyes of many, there
is no natural semantics, although there exist various kinds of denotational semantics for
linear logic. Besides the various forms of games semantics, which I have mentioned before,
there are also coherence spaces [Gir87a], which provide a natural interpretation of proofs of
linear logic. (In fact, linear logic has been discovered on the grounds of coherence spaces.)
In addition to that there are many other kinds of semantics including Banach spaces [Gir96]
and categorical axiomatisations [Bar91, See89].

Much of the difficulty of finding a natural semantics is probably caused by the fact that
one has to switch between various viewpoints in order to grasp the intuition behind the
various connectives. For example the multiplicative conjunction � is more intuitive from
the viewpoint of actions and resources, whereas linear negation is more intuitive from the
viewpoint of games. In particular, there is still no formal semantics that meets the intuition
of resources as it has been discussed in the beginning of this section, although most “real-
world applications” of linear logic are based on that. For example, linear logic has been
used for specifying and verifying the TCP/IP protocols [Sin99].

I believe that one reason for the somewhat experimental stage of the semantics is that
the syntax of linear logic is rather underdeveloped and not yet well enough understood. This
has consequences for applications of linear logic in computer science. The problems in the
presentation of logic in general, and of linear logic in particular, translate into limitations
in the applicability of proof theory. Consequently, it is necessary to find new presentations
for linear logic, i.e. to develop new logical systems, that are equivalent to linear logic, but
have better proof theoretical properties. Positive evidence for this is, for example, Forum
[Mil94, Mil96, HP96]. On one side Forum can be seen as just another presentation of linear
logic (the set of provable formulae did not change), and on the other side Forum can be
seen as a first-class logic programming language because uniform proofs are complete for
it. In particular, it is the only logic programming language that can model the concept
of state in a natural way and can incorporate simple notions of concurrency. It has been
successfully employed as specification language. For example in [Chi95], the sequential
and pipelined operational semantics of DLX, a prototypical RISC processor, were specified
and shown to be equivalent. In the same work, Forum is used for specifying many of
the imperative features of Standard ML, like assignable variables and exceptions, and for
proving equivalences of code phrases.

Besides that, it can be argued that for many applications in computer science linear
logic is too simple. In particular from the viewpoint of concurrency this is not far-fetched.
Compared to the rich syntax of process algebras like CCS or the π-calculus [Mil01], the
syntactic possibilities of linear logic seem quite poor. However, there exist preliminary
results showing that a relation between process algebras and logical systems can be estab-
lished [Mil92, Bru02c]. In order to pursue the idea of using proof theoretical methods in
concurrency theory, it is therefore necessary to develop new logical systems that go beyond
linear logic.

Let me conclude this section by stating the following two research problems which I
consider important and which have implicitly already been mentioned.

(1) Find better syntactic presentations for linear logic. More precisely, design new log-
ical systems that are logically equivalent to linear logic and that have better proof
theoretical properties. This means, in particular, that they should better express the

8 1. Introduction

mutual relationship between the various connectives of linear logic, and that they
should allow for new kinds of normal forms for derivations and proofs.

(2) Design new logical systems that go beyond linear logic, in the sense that they are more
expressive and have more syntactic possibilities, such that they are better suited for
applications in computer science, without losing good proof theoretical properties,
like cut elimination. An example of such a new syntactic possibility is the ability of
dealing with noncommutativity.

1.3 Noncommutativity

Noncommutative operations occur in many places in computer science. One fundamental
example is the sequential composition of processes, which plays an important role in con-
currency theory. Similarly, in the context of planning in artificial intelligence, the order in
which two actions are carried out is of importance.

Even in the case of logic programming, where commutativity is desired (the goal � A,B
holds if and only if the goal � B,A does hold), noncommutative methods are needed to
understand different computational behaviours of evaluating A before B and vice versa
[BGLM94].

For propagating the idea of using proof theoretical methods for computer science, it is
therefore necessary to make the concept of noncommutativity accessible to proof theory.
This means that logics with noncommutative connectives should be studied. The first logic
of this kind was the Lambek calculus [Lam58] (introduced by J. Lambek for studying the
syntax of natural languages), which contains a noncommutative conjunction together with
two implications (left and right). After the introduction of linear logic, several proposals
for a noncommutative linear logic have been made: D. Yetter’s cyclic linear logic [Yet90],
M. Abrusci’s noncommutative logic with two negations [Abr91] or the noncommutative
logic used by P. Lincoln et al. in [LMSS92]. There is more than one version of “a noncom-
mutative linear logic” because forcing the multiplicative conjunction to be noncommutative
opens several possibilities for treating linear negation. Without going too much into detail,
the important observation to make is that all these logics are purely noncommutative, i.e.
contain no (multiplicative) connective that is commutative. But there are various applica-
tions in computer science that require commutative as well as noncommutative operations.
It is therefore desirable to design logics that contain both, commutative and noncommu-
tative connectives. The problem has been known to be difficult and up to now there exist
two different approaches.

The first is to extend the multiplicative conjunction � and the multiplicative disjunction
� of linear logic by a self-dual noncommutative connective, that I will here denote by �.
Self-duality of � means that it is its own dual with respect to linear negation:

(A� B)⊥ = A⊥ �B⊥ .

This idea did first occur in C. Retoré’s pomset logic [Ret93] and was then taken up in
A. Guglielmi’s system BV [Gug99]. In fact, I conjecture that both systems are different
presentations of the same logic.

The second approach for having commutative and noncommutative connectives inside a
single logical system is to have two pairs of multiplicative connectives, one commutative (i.e.

1.4. The Calculus of Structures 9

the � and � from linear logic) and one noncommutative. The noncommutative conjunction,
denoted by
, and the noncommutative disjunction, denoted by ∇, are dual to each other
with respect to linear negation:

(A
B)⊥ = B⊥∇A⊥ and (A∇B)⊥ = B⊥
A⊥ .

Observe that the order of A and B is inversed, which was not the case in the first ap-
proach of having only one noncommutative connective. This approach has been presented
in M. Abrusci’s and P. Ruet’s noncommutative logic [AR00, Rue00], which is a conservative
extension of linear logic and cyclic linear logic.

Both approaches can be presented naturally in proof nets, which have been introduced
by J.-Y. Girard for normalizing proofs of linear logic [Gir87a]. The motivation for this was
that the traditional proof theoretical formalism for studying the normalisation of proofs,
natural deduction [Pra65], was not suited for linear logic.

A similar situation now occurs with another traditional proof theoretical formalism for
studying logical systems and their properties, the sequent calculus [Gen34], which has prob-
lems with both approaches for combining commutative and noncommutative connectives
inside a single logical system.

In the case of the noncommutative logic, which is inhabited by two pairs of multiplicative
connectives, sequents are no longer sets, multisets or lists of formulae, as it is the case in
traditional systems, but order varieties of formulae. (An order variety is a set equipped
with a ternary relation satisfying certain properties.)

For the other approach, where a single self-dual noncommutative connective is added,
the situation is more drastic: for pomset logic, even after 10 years of research no presentation
in the sequent calculus could be found; and for BV , A. Tiu has shown that it is impossible
to present it in the sequent calculus [Tiu01].

As a consequence, research in proof theory has been confronted with the following
problem:

(3) Develop a new proof theoretical formalism that is able to present new logics that defy
the sequent calculus. The new formalism should have at least the same flexibility
as the sequent calculus and should allow to investigate the same proof theoretical
properties. In particular, it should come with methods for proving cut elimination
and for doing proof search.

A solution to this problem is given by the calculus of structures.

1.4 The Calculus of Structures

The calculus of structures has been conceived by A. Guglielmi in [Gug99] for presenting
system BV . It is a proof theoretical formalism for presenting logical systems and studying
the properties of proofs. By this, it follows the tradition of D. Hilbert’s formalism [Hil22,
Hil26, HA28], natural deduction [Gen34, Pra65], the sequent calculus [Gen34, Gen35], and
proof nets [Gir87a].

Since the calculus of structures can be seen as generalisation of the sequent calculus, I
will here explain its basic ideas from the viewpoint of the sequent calculus.

10 1. Introduction

On a technical level, the main difference is that inference rules do not operate on se-
quents, which are sets, multisets or lists of formulae, but on structures, which are equivalence
classes of formulae. Structures can be seen as intermediate expressions between formulae
and sequents. They are built from atomic expressions via various syntactic constructions as
it is usually done for formulae, and they are subject to laws like associativity or commuta-
tivity as usually imposed on sequents. Such a notion of structure first occurs in N. Belnap’s
display logic [Bel82] and is established in the tradition of philosophical and substructural
logics [Res00]. However, an important difference is that in the calculus of structures, struc-
tures are the only kind of expression allowed. They are built from atoms and not from
formulae as in [Bel82, Res00]. As a consequence, binary connectives disappear and there
is no longer a difference between logical rules and structural rules. All rules (apart from
identity and cut) are structural in the sense that they rearrange substructures inside a
structure. In particular, the notion of main connective loses its pivotal role.

The second technical difference to the sequent calculus is that in the calculus of struc-
tures every rule has only one premise. This means that there is no branching in a proof.
Proofs in the calculus of structures are not trees of instances of inference rules as in the
sequent calculus, but chains or sequences of instances of inference rules.

On a more fundamental level, the differences to the sequent calculus are more drastic.
The calculus of structures draws from the following basic principles:

• Deep inference: Inference rules can be applied anywhere deep inside structures.

• Top-down symmetry: Derivations are no longer trees but “superpositions” of trees,
which are upward- and downward-oriented. This yields a top-down symmetry for
derivations.

From a proof theoretical viewpoint, the idea of deep inference did already occur in [Sch60],
but the systems presented there are highly asymmetric. A weak form of deep inference is
also available in display logic [Bel82], but again, there is no top-down symmetry present.
Nevertheless, it is a substantial task for future research to investigate the precise relation
between the calculus of structures and display logic.

In computer science, the notion of deep rewriting is well-known from term rewriting
(e.g. [BN98]). The resemblance between the calculus of structures and term rewriting
systems becomes even more vivid when the inference rules in the calculus of structures are
inspected. Usually they are of the shape

S{T}
ρ

S{R} ,

where premise and conclusion are structures. A structure S{R} is a structure context S{ },
whose hole is filled by the structure R. The rule scheme ρ above specifies that if a structure
matches the conclusion, in an arbitrary context S{ }, it can be rewritten as in the premise,
in the same context S{ } (or vice versa if one reasons top-down). In the terminology of
term rewriting this scheme describes a rewriting step modulo an equational theory (since
structures are equivalence classes of formulae) where R is the redex and T the contractum.

Because of this resemblance, the calculus of structures might help to establish a bridge
between term rewriting and proof theory, in the sense that results from one area can be
applied to the other.

1.4. The Calculus of Structures 11

However, one should observe that it is not (trivially) possible to present the calculus of
structures in general in the terminology of term rewriting (although it might be possible
to translate some systems in the calculus of structures into term rewriting systems). There
are two main reasons: first, rules in the calculus of structures are not necessarily context
independent, and second, negation needs special attention.

To a proof theorist, a probably quite appealing property of calculus of structures is the
explicit duality between identity and cut. For example, for linear logic, the two rules are
given in the sequent calculus as follows:

id � A,A⊥ and
� A,Φ � A⊥, Ψ

cut � Φ,Ψ
.

It demands some proof theoretical insight to understand the duality between these two
rules because from a syntactic viewpoint they are not dual to each other. The syntactic
restrictions of the sequent calculus prevent the duality from appearing explicitely in the
rules. In the calculus of structures, identity and cut for linear logic are given as follows:

S{1}
i↓

S{A � A⊥} and
S{A � A⊥}

i↑
S{⊥} ,

where 1 and ⊥ are the units for the binary connectives � and �, respectively. The duality
between the two rules is now explicitely reflected in the syntax.

For logics with an involutive negation (i.e. the double negation of a proposition is logi-
cally equivalent to the proposition itself), like classical and linear logic, this duality can be
observed for all rules, meaning that for every rule

S{T}
ρ↓

S{R} (down rule) ,

there is a dual (co-)rule
S{R̄}

ρ↑
S{T̄} (up rule) .

This duality derives from the duality between T ⇒ R and R̄⇒ T̄ , where ·̄ and ⇒ are the
negation and implication, respectively, of the underlying logic. In the case of linear logic
these are linear negation, denoted by (·)⊥, and linear implication, denoted by −◦. The cut
elimination property can then be generalised: instead of eliminating only the cut rule, it
becomes possible to eliminate all up rules. This is the basis for a modular decomposition of
the cut elimination argument because the cut rule can be decomposed into several up rules
and one can eliminate the up rules independently from each other. This can be seen as
another important feature of the calculus of structures because in [Gir87b], J.-Y. Girard has
argued that the lack in modularity is one of the two main technical limitations in current
proof theory.

The calculus of structures derives its ability of presenting logics that defied the sequent
calculus from the new freedom of designing inference rules. In fact, any axiom T ⇒ R of
a generic Hilbert system, where there is no structural relation between T and R, could be
used as an inference rule. But then all the good proof theoretical properties that systems

12 1. Introduction

in the sequent calculus usually have would be lost. This means that the main challenge in
developing logical systems in the calculus of structures lies in designing the rules carefully
enough such that it is still possible to prove cut elimination and to have (an equivalent of)
the subformula property.

Besides linear logic and a form of noncommutativity, which will be studied in this thesis,
several other logical systems, including classical logic [BT01, Brü03b, BG03], minimal logic
[Brü03c], several modal logics [SS03], and cyclic linear logic [Gia03], have been presented
in the calculus of structures.

1.5 Summary of Results

Before I summarise the results that are contained in this thesis, let me recall the three
problems mentioned in Sections 1.2 and 1.3:

(1) Design new logical systems that are equivalent to linear logic, but have better proof
theoretical properties.

(2) Design new logical systems that are more expressive than linear logic (with respect
to certain computational phenomena).

(3) Develop a proof theoretical formalism for presenting these new systems.

The calculus of structures (which is an outcome of research on the third problem), is a
good candidate for helping to make progress on the first two problems because of the new
proof theoretical properties that are associated to it. Consequently, in this thesis I study
several logical systems presented in the calculus of structures and explore their properties.
Some of these systems are equivalent to linear logic or its fragments and others go beyond
linear logic. The investigation of these systems does not only contribute to problems (1)
and (2), but also helps to establish the calculus of structures as a first-class proof theoretical
formalism.

In order to give the reader some guidance to the following description of the major
results, I have shown in Figure 1.1 the most important logical systems occurring in this
thesis. Although not all of them are mentioned in this introduction, I included them in the
figure, in case the reader wishes to consult it again later while reading this work. The figure
shows a graph, where the nodes are labeled by the names of logical systems in the calculus
of structures. The annotations in parentheses are the names of the equivalent sequent
systems, where ∅ means that there is no sequent system. An arrow from one system to
another means that the latter one can be obtained from the former one by adding what is
written on the arrow. For example NEL is obtained from BV by adding the exponentials.
If the arrow is solid, then the second system is a conservative extension of the first one and
if the arrow is dotted, then this is not the case. For example, LS and LLS are conservative
extensions of ELS, but ELS◦ is not.

There are three main results contained in this thesis:

• Linear logic in the calculus of structures. First, I present system LS in the
calculus of structures, which is equivalent to the traditional system LL for linear logic
in the sequent calculus. System LS is not a “trivial” translation of LL, but naturally
employs the new symmetry of the calculus of structures, and exhibits the mutual

1.5. Summary of Results 13

S
(MLL)

additives

�� exponentials

��

1=⊥ �� S◦

(MLL+mix+mix0)

exponentials

��

noncommutativity

��
ALS

(MALL)

exponentials

��

BV (?= pomset logic)
∅

exponentials

��

ELS
(MELL)

1=⊥ ��

additives

��

ELS◦

(MELL+mix+mix0)

noncommutativity

		
LS,LLS

(LL)
NEL

∅

Figure 1.1: Overview of logical systems discussed in this thesis

relationship between the connectives of linear logic better than the sequent calculus
system. The two maybe most surprising facts about system LS are the following:

– The global promotion rule of LL (it is called global because it requires inspecting
the whole sequent, when applied) is replaced by a local version.

– The additive conjunction rule (see Section 1.2) is decomposed into two rules

∗ a “multiplicative” rule, that deals with both additive conjunction and addi-
tive disjunction at the same time (the rule is multiplicative in the sense that
no context has to be shared), and

∗ a contraction rule for dealing with the additive context treatment (i.e. the
duplication of formulae).

This means that the distinction between “multiplicative” and “additive” context
treatment is intrinsically connected to the sequent calculus and not to linear logic.

For system LS, I present a cut elimination result and a syntactic proof of it,
which is independent from the sequent calculus and which is based on a new method
called splitting [Gug02e]. This proof shows that the calculus of structures is a proof
theoretical formalism with its own syntactic methods for studying cut elimination.

Besides that, I will present a local system for linear logic (system LLS). The
system is local in the sense that no rule requires a global knowledge of a certain

14 1. Introduction

substructure. This means that the amount of computational resources (i.e. time and
space) that is needed for applying the rules is bounded. This is achieved by having
only two kinds kinds of rules in the system:

– Either a rule operates only on atoms, i.e. no generic structures are involved,

– or a rule only rearranges substructures of a structure, without duplicating, delet-
ing, or comparing the contents of a substructure.

This means in particular, that there are no rules like the generic contraction rule

� ?A, ?A,Φ
?c � ?A,Φ

,

which requires to duplicate a formula of unbounded size while going up in a derivation.
In fact, it has been shown in [Brü02b] that in the sequent calculus it is impossible to
restrict contraction to an atomic version.

• Decomposition. For linear logic and its fragments, I show several decomposition
theorems. In general, decomposition is the property of being able to separate any
given derivation or proof into several phases, each of which consists of applications of
rules coming from mutually disjoint fragments of a given logical system.

In principle, decomposition is not a new property in proof theory. For example, in
natural deduction one can decompose any derivation into an ‘introduction’ phase and
an ‘elimination’ phase, and this corresponds to a proof in normal form. In the sequent
calculus, an example of a decomposition result is Herbrand’s theorem that allows a
separation between the rules for the quantifiers and the rules for the connectives. But
apart from these rather simple consequences of normalisation and cut elimination,
decomposition does not receive much attention.

However, in the calculus of structures, decomposition reaches an unprecedented
level of detail. For example, in the case of multiplicative exponential linear logic
(MELL), it is possible to separate seven disjoint subsystems.

The decomposition theorems can be considered as the most fundamental results
of this thesis, for the following three reasons:

– They embody a new kind of normal form for proofs and derivations. Further-
more, because of the new top-down symmetry of the calculus, they are not
restricted to derivations without nonlogical axioms (as it is the case for cut elim-
ination), but they do hold for arbitrary derivations, where proper hypotheses are
present.

– They stand in a close relationship to cut elimination. More precisely, cut elimi-
nation can be proved by using decomposition. In this case the hyperexponential
blow-up of the proof is caused by obtaining the decomposition (i.e. a certain nor-
mal form of the proof in which the cut is still present), and not by the elimination
of the cut afterwards.

– They show that the calculus of structures is more powerful than other proof
theoretical formalisms because it allows to state properties of logical systems
that are not observable in other formalisms.

1.6. Overview of Contents 15

Besides the general proof theoretical interest, a possible use of the decomposition
theorems lies in denotational semantics. Through the decomposition of proofs and
derivations into subderivations carried out in smaller subsystems, it becomes possible
to study the semantics of those subsystems separately. The results can then be put
together. By this, the decomposition theorems can also help in the search for new
semantics of proofs.

• Noncommutativity. I will present a logical system, called NEL, which is an ex-
tension of MELL by A. Guglielmi’s self-dual noncommutative connective seq. More
precisely, it is a conservative extension of A. Guglielmi’s system BV [Gug99] and mul-
tiplicative exponential linear logic with mix and nullary mix (system ELS◦). Since
system NEL is a conservative extension of BV , it follows immediately from the re-
sult by A. Tiu [Tiu01] that there is no sequent system for NEL. For this reason,
system NEL is presented in the calculus of structures.

For system NEL, I will show cut elimination by combining the techniques of split-
ting and decomposition. Proving cut elimination for NEL has been difficult because
there is no equivalent system in the sequent calculus. As a consequence, completely
new techniques had to be developed to prove cut elimination. In fact, the two tech-
niques of decomposition and splitting have originally been invented for that problem,
but are now considered as results of independent interest.

Furthermore, I will show that NEL is Turing-complete by showing that any com-
putation of a two counter machine can be simulated in NEL. This result will gain
importance in the case that MELL is decidable (which is still an open problem),
because then the border to undecidability is crossed by A. Guglielmi’s seq.

Since the seq corresponds quite naturally to the sequential composition of pro-
cesses, system NEL might find applications in concurrency theory, as the work by
P. Bruscoli [Bru02c] shows.

Before going on, the reader should be aware of the fact that work in proof theory tends
to suffer from long and technical proofs of short and concise theorems. Gentzen’s ground-
breaking work [Gen34, Gen35] is one example. Unfortunately, this thesis is no exception.
Although most of the definitions are simple, the theorems are stated in a concise form and
the statements of the theorems are easy to understand, the proofs are quite long and tedious
because of complex syntactic constructions.

It is quite paradoxical that on one side syntax is the playground of proof theory and on
the other side syntax seems to be the greatest obstacle in proof theoretical research.

1.6 Overview of Contents

In Chapter 2, I will introduce the well-known sequent calculus system LL for linear logic
and show the basic ideas of the cut elimination argument in the sequent calculus. The
reader who is already familiar with linear logic is invited to skip this chapter.

Then, I will introduce the calculus of structures in Chapter 3, and present system LS
for linear logic. I will show the equivalence to the sequent calculus system LL and the cut
elimination result.

Chapter 4 is devoted to the multiplicative exponential fragment of linear logic. I will
first study the permutation of rules and then show two decomposition results and a proof of

16 1. Introduction

cut elimination based on rule permutation. As a consequence, I will obtain an interpolation
theorem for multiplicative exponential linear logic. Referring to Figure 1.1, the systems
MELL and ELS are investigated in this chapter.

In Chapter 5, I will present system LLS, the local system for linear logic. In particular,
I will explain, how contraction can be reduced to an atomic version. Furthermore, I will
show several decomposition results for LLS. The reader who is only interested in locality
can just read Sections 3.1 to 3.3, Section 3.5, and Chapter 5. On the other hand, if the
reader is not interested in locality, he can skip this chapter entirely.

In Chapter 6, I will move the focus from the left-hand side of Figure 1.1 to the right-
hand side. More precisely, I study the systems ELS◦ and S◦, which means that I show how
the rules mix and nullary mix are incorporated in the calculus of structures.

Finally, system NEL is investigated in Chapter 7. I will show that it is a conservative
extension of ELS◦ and BV . Then, I will extend the two decomposition theorems of Chapter 4
to system NEL. Further, I will present the cut elimination proof for NEL based on splitting.
Finally, the undecidability of NEL is shown via an encoding of two counter machines.

The results of Chapter 4 have partially been published in [GS01, Str01], the results of
Chapters 3 and 5 have partially been published in [Str02], and the results of Chapter 7 can
be found in [GS02a, GS02b] and [Str03a, Str03b].

2
Linear Logic
and the Sequent Calculus

The sequent calculus has been introduced by G. Gentzen in [Gen34, Gen35] as a tool to
reason about proofs as mathematical objects and to manipulate them. It has been used
since then by proof theorists as one of the main tools to describe logical systems and to
study their properties. In this chapter, I will define linear logic, introduced by J.-Y. Girard
in [Gir87a], in the formalism of the sequent calculus. By exploiting the De Morgan dualities,
I will restrict myself to the one-sided sequent calculus [Sch50].

The reader who is already familiar with linear logic is invited to skip this chapter.

2.1 Formulae and Sequents

As the name suggests, in the sequent calculus, rules operate on sequents. Sequents are,
in the general case, syntactic expressions built from formulae, which in turn are syntactic
expressions built from atoms by means of the connectives of the logic to be studied. Since
in this thesis I will discuss only propositional logics, the atoms are the smallest syntactic
entities to be considered, i.e. there are no terms and relation symbols from which atoms are
built.

Here, I will study linear logic, whose atoms and formulae are defined as follows.

2.1.1 Definition There are countably many atoms, denoted by a, b, c, . . . The set of
atoms, denoted by A, is equipped with a bijective function (·)⊥ : A → A, such that for
every a ∈ A, we have a⊥⊥ = a and a⊥ �= a. There are four selected atoms, called constants,
which are denoted by ⊥, 1, 0, and � (called bottom, one, zero, and top, respectively). The
function (·)⊥ is defined on them as follows:

1⊥ := ⊥ , ⊥⊥ := 1 ,
�⊥ := 0 , 0⊥ := � .

The formulae of linear logic, or LL formulae, are denoted with A,B,C, . . ., and are built
from atoms by means of the (binary) connectives �, �, �, and � (called par , times, plus, and

17

18 2. Linear Logic and the Sequent Calculus

with, respectively) and the modalities ! and ? (called of-course and why-not , respectively).
Linear negation is the extension of the function (·)⊥ to all formulae by De Morgan equations:

(A � B)⊥ := A⊥
� B⊥ , (A � B)⊥ := A⊥

� B⊥ ,
(A � B)⊥ := A⊥

� B⊥ , (A � B)⊥ := A⊥
� B⊥ ,

(!A)⊥ := ?A⊥ , (?A)⊥ := !A⊥ .

Linear implication −◦ is defined by A−◦B = A⊥
� B.

2.1.2 Remark I will say formula instead of LL formula if no ambiguity is possible.
However, since more logics will be discussed in this thesis, I will have to define different
notions of formula. Then, I will say LL formula in order to avoid ambiguities.

2.1.3 Remark Since for all atoms we have a = a⊥⊥, it follows immediately from Def-
inition 2.1.1 (by induction on formulae and a case analysis) that also A = A⊥⊥ for every
formula A.

2.1.4 Definition The connectives � and �, together with the constants ⊥ and 1, re-
spectively, are called multiplicatives. The connectives � and �, together with the constants
0 and �, respectively, are called additives. The modalities ? and ! are called exponentials
[Gir87a].

2.1.5 Definition A sequent is an expression of the kind � A1, . . . , Ah, where h � 0
and the comma between the formulae A1, . . . , Ah stands for multiset union. Multisets of
formulae are denoted with Φ and Ψ .

Observe that the laws of associativity and commutativity are present implicitly in the
definition of sequents.

2.2 Rules and Derivations

The general notion of a rule in the sequent calculus is independent from the logic to be
specified. For this reason, I will first define the notions of rules and derivations in general
and then present the inference rules for linear logic.

2.2.1 Definition An (inference) rule in the sequent calculus is a scheme of the shape

� Φ1 � Φ2 . . . � Φn
ρ � Φ

,

for some n � 0, where � Φ is called the conclusion and � Φ1, � Φ2, . . . , � Φn are the
premises of the rule. An inference rule is called an axiom if it has no premise, i.e. the rule
is of the shape

ρ � Φ
.

A (formal) system S is a finite set of rules.

2.2. Rules and Derivations 19

2.2.2 Definition A derivation ∆ in a system S is a tree where the nodes are sequents
to which a finite number (possibly zero) of instances of the inference rules in S are applied.
The sequents in the leaves of ∆ are called premises, and the sequent in the root is the
conclusion. A derivation with no premises is a proof , denoted with Π. A sequent � Φ is
provable in S if there is a proof Π with conclusion � Φ.

Sometimes in the discussion only the premises and the conclusion of a derivation are of
importance. In this case, a derivation in the sequent calculus is depicted in the following
way:

� Φ1 · · · � Φn

��
��

��
��

��
��

��������������

∆

� Φ ,

where the sequents � Φ1, . . . , � Φn are the premises and � Φ is the conclusion. A proof is
then depicted as follows:

��
��

��
��

��
��

��������������

Π

� Φ .

Let me now inspect the rules for linear logic.

2.2.3 Definition The two rules

id � A,A⊥ and
� A,Φ � A⊥, Ψ

cut � Φ,Ψ

are called identity and cut , respectively.

The rules identity and cut form the so-called identity group. They are of importance
in most sequent calculus systems. The identity rule expresses the fact that from A we can
conclude A. The rule is necessary for observing proofs because it allows us to close a branch
in the tree. The cut rule expresses the transitivity of the logical consequence relation and
is therefore necessary for using lemmata inside a proof.

Opposed to the identity group stands the so called logical group, which contains for each
connective, modality or constant one or more logical rules. In the case of linear logic, this
group is subdivided into the multiplicative, additive and exponential groups.

2.2.4 Definition The multiplicative group contains the rules

� A,Φ � B,Ψ
� � A � B,Φ, Ψ

,
� A,B,Φ

� � A � B,Φ
,

� Φ⊥ � ⊥, Φ
, 1 � 1 ,

which are called times, par , bottom, and one, respectively. The additive group contains the
rules

� A,Φ � B,Φ
� � A � B,Φ

,
� A,Φ

�1 � A � B,Φ
,

� B,Φ
�2 � A � B,Φ

, � � �, Φ
,

20 2. Linear Logic and the Sequent Calculus

id � A,A⊥
� A,Φ � A⊥, Ψ

cut � Φ,Ψ

� A,Φ � B,Ψ
� � A � B,Φ, Ψ

� A,B,Φ
� � A � B,Φ

� Φ⊥ � ⊥, Φ
1 � 1

� A,Φ � B,Φ
� � A � B,Φ

� A,Φ
�1 � A � B,Φ

� B,Φ
�2 � A � B,Φ

� � �, Φ

� A,Φ
?d � ?A,Φ

� ?A, ?A,Φ
?c � ?A,Φ

� Φ
?w � ?A,Φ

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

(n � 0)

Figure 2.1: System LL in the sequent calculus

which are called with, plus left , plus right , and top, respectively. (Note that there is no rule
for zero.) The exponential group contains the rules

� Φ
?w � ?A,Φ

,
� ?A, ?A,Φ

?c � ?A,Φ

� A,Φ
?d � ?A,Φ

,
� A, ?B1, . . . , ?Bn

! � !A, ?B1, . . . , ?Bn

(n � 0) ,

which are called weakening , contraction, dereliction, and promotion, respectively.

An important observation is that all logical rules of Definition 2.2.4 have the subformula
property , that is, the premises of each rule contain only subformulae of the formulae in the
conclusion of the rule.

2.2.5 Remark Usually, in a sequent calculus system, there is a third group of rules,
the so-called structural rules. As introduced in [Gen34], these rules are usually contraction,
weakening and exchange. In the case at hand, the exchange rule is built into the definition
of sequents, and the rules of contraction and weakening are not present in linear logic (but
they are available in a restricted way in the form of the rules for the exponentials).

2.2.6 Definition The system LL for linear logic in the sequent calculus is shown in
Figure 2.1.

2.2.7 Example Here are two examples for proofs in system LL:

id � R⊥, R
id � U⊥, U

� � R⊥, U⊥, R � U
id � T⊥, T

� � R⊥
� T⊥, U⊥, R � U, T

� � R⊥
� T⊥, U⊥, (R � U) � T

� ,� (R⊥
� T⊥) � U⊥, (R � U) � T

id � R⊥, R
id � T⊥, T

� � R⊥
� T⊥, R, T

?d � ?(R⊥
� T⊥), R, T

?d � ?(R⊥
� T⊥), ?R,T

! � ?(R⊥
� T⊥), ?R, !T

� .� ?(R⊥
� T⊥), ?R � !T

2.2. Rules and Derivations 21

2.2.8 Remark The identity rule

id � A,A⊥

can be replaced by an atomic version

id � a, a⊥

without affecting provability. This can be shown by using an inductive argument for replac-
ing each general instance of the identity rule by a derivation containing atomic instances of
identity and some other rules. For example if A = B � C we can replace

id by� B � C,B⊥
� C⊥

id � B,B⊥ id � C,C⊥
� � B � C,B⊥, C⊥
� .� B � C,B⊥

� C⊥

However, for the cut rule such a reduction is impossible. For example, the instance

� B � C,Φ � B⊥
� C⊥, Ψ

cut � Φ,Ψ

of the cut cannot be replaced by a derivation

� B � C,Φ � B⊥
� C⊥, Ψ

������������������������������

� Φ,Ψ ,

using only atomic cuts, because every atomic cut branches the derivation tree. If we try
for example

� B,Φ

� C � B⊥, C⊥, Ψ
cut � B⊥, Ψ

cut ,� Φ,Ψ

there is no way to bring the two leftmost branches back together.

2.2.9 Remark Let me draw the attention of the reader to the following well-known fact
regarding the connectives of linear logic. If we define a new pair of connectives �

′ and �
′

with the same rules as for the connectives � and �:

� A,Φ � B,Φ
�
′
� A �

′ B,Φ
,

� A,Φ
�
′
1 � A �

′ B,Φ
,

� B,Φ
�
′
2 � A �

′ B,Φ
,

then we can show that the connectives �
′ and �, as well as � and �

′ are equivalent. If we
do the same to the exponentials, i.e. define two new modalities ?′ and !′ by the same rules
as for ? and !, then there is no possibility to show any relation between ! and !′, or between
? and ?′.

22 2. Linear Logic and the Sequent Calculus

2.3 Cut Elimination

In system LL all rules, except for the cut, enjoy the subformula property. That means that
every derivation that does not use the cut rule does also have the subformula property, i.e.
each formula that occurs inside the derivation is a subformula of a formula occurring in the
conclusion.

An important consequence of the subformula property is that the number of possibilities
in which a rule can be applied to a given sequent is finite. This is of particular importance
for proof search because at each step there is only a finite number of possibilities to continue
the search.

The cut elimination theorem says that every provable sequent can be proved without
using the cut rule. This rather surprising result has first been shown by G. Gentzen in
[Gen34] for the two system LK and LJ, which are systems for classical and intuitionistic
logic, respectively. In fact, this result was the main purpose for introducing the sequent
calculus at all.

2.3.1 Theorem (Cut Elimination) Every proof Π of a sequent � Φ in system LL
can be transformed into a cut-free proof Π′ (i.e. a proof in system LL that does not contain
the cut rule) of the same sequent. [Gir87a]

I will not show the proof in this thesis, because it is rather long and technical. A very
good presentation of the proof can be found in the appendix of [LMSS92] or in [Bra96].
Here I will present only the basic idea, which is that all cuts occurring in the proof are
permuted up until they reach the identity axioms where they dissappear as follows:

id � A,A⊥
��

��
��

������
Π

� A,Φ
cut is replaced by� A,Φ

��
��

��
������

Π

� A,Φ
.

In order to permute up an instance of the cut, it has to be matched against each other
rule in the system. There are two types of cases: The first type, called commutative case,
occurs if the principal formula of one of the two rules above the cut is not the cut formula.
Then the situation is as follows:

��
��

��
������

Π1

� A,Φ
��

��
��

������
Π2

� B,Ψ,C
� � A � B,Φ, Ψ,C

��
��

��
������

Π3

� C⊥, Σ
cut .� A � B,Φ, Ψ,Σ

This can be replaced by

��
��

��
������

Π1

� A,Φ

��
��

��
������

Π2

� B,Ψ,C
��

��
��

������
Π3

� C⊥, Σ
cut � B,Ψ,Σ

� .� A � B,Φ, Ψ,Σ

2.3. Cut Elimination 23

The cases for the other rules are similar. But it should be noted that it can happen that
the cut is duplicated:

��
��

��
������

Π1

� A,Φ,C
��

��
��

������
Π2

� B,Φ,C
� � A � B,Φ,C

��
��

��
������

Π3

� C⊥, Ψ
cut � A � B,Φ, Ψ

is replaced by

��
��

��
������

Π1

� A,Φ,C
��

��
��

������
Π3

� C⊥, Ψ
cut � A,Φ, Ψ

��
��

��
������

Π2

� B,Φ,C
��

��
��

������
Π3

� C⊥, Ψ
cut � B,Φ, Ψ

� � A � B,Φ, Ψ

This can blow-up of the proof exponentially.
The second type of case, called key case, occurs when both cut formulas coincide with

the principal formulae of the two rules above the cut. Then the situation is as follows:

��
��

��
������

Π1

� A,B,Φ
� � A � B,Φ

��
��

��
������

Π2

� A⊥, Ψ
��

��
��

������
Π3

� B⊥, Σ
� � A⊥

� B⊥, Ψ,Σ
cut ,� Φ,Ψ,Σ

which can be replaced by

��
��

��
������

Π1

� A,B,Φ
��

��
��

������
Π2

� A⊥, Ψ
cut � B,Φ, Ψ

��
��

��
������

Π3

� B⊥, Σ
cut .� Φ,Ψ,Σ

Observe that the number of cuts has increased, but their rank (the size of the cut formula)
has decreased. This is used in an induction to show the termination of the whole procedure.
But there is also the following case:

��
��

��
������

Π1

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

��
��

��
������

Π2

� ?A⊥, ?A⊥, Φ
?c � ?A⊥, Φ

cut ,� ?B1, . . . , ?Bn, Φ

24 2. Linear Logic and the Sequent Calculus

which can be replaced by

��
��

��
������

Π1

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

��
��

��
������

Π1

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

��
��

��
������

Π2

� ?A⊥, ?A⊥, Φ
cut � ?A⊥, ?B1, . . . , ?Bn, Φ

cut � ?B1, . . . , ?Bn, ?B1, . . . , ?Bn, Φ
?c ...

?c .� ?B1, . . . , ?Bn, Φ

Observe that in this case the rank of the cut does not decrease. For this reason, this case is
also called a pseudo key case [Bra96]. In order to ensure termination, we can use the fact
that the number of contractions above the cut has decreased.

It should be mentioned here that removing all cuts from a proof can increase its size
hyperexponentially.

2.4 Discussion

In this chapter, I have defined the system for linear logic in the sequent calculus and
presented the basic idea of the cut elimination procedure. For further details, the reader is
referred to the extensive literature on the subject, e.g. [Gir87a, Gir95, Bra96, Tro92].

3
Linear Logic
and the Calculus of Structures

Similar to the sequent calculus, the calculus of structures, introduced in [Gug99], is a
formalism for describing logical systems and for studying the properties of proofs. Its basic
principles are described in Section 1.4.

The purpose of this chapter is to introduce the calculus of structures at a technical
level. In Sections 3.1 and 3.2, I will show how linear logic can be presented in the calculus
of structures. In Section 3.3, I will show the relation to the sequent system discussed in the
previous chapter. In Section 3.4, I will show how one can prove cut elimination within the
calculus of structures, without using the sequent calculus or semantics. Finally, Section 3.5
contains a discussion on some interesting features of the new system for linear logic and its
major differences to the sequent system.

3.1 Structures for Linear Logic

In the calculus of structures, rules operate on structures, which are syntactic expressions
intermediate between formulae and sequents. More precisely, structures can be seen as
equivalence classes of formulae, where the equivalence relation is based on laws like asso-
ciativity and commutativity which are usually imposed on sequents.

In this section I will define the structures for linear logic. In later chapters I will discuss
other logics, and therefore, shall define new structures.

Structures are built from atoms, in the same way as the formulae defined in the previous
chapter. However, here I will use the bar ·̄ to denote negation.

Instead of using the infix notation for binary connectives, as it is done in formulae, I will
employ the comma as it is done in sequents. For example, the structure [R1, . . . , Rh] corre-
sponds to a sequent � R1, . . . , Rh in linear logic, whose formulae are essentially connected
by pars. For the other connectives, I will do the same. I order to distinguish between the
connectives, different pairs of parentheses are used.

3.1.1 Definition Let A be a countable set equipped with a bijective function ·̄ : A →
A, such that ¯̄a = a and ā �= a for every a ∈ A. The elements of A are called atoms (denoted

25

26 3. Linear Logic and the Calculus of Structures

Associativity

[R, [T,U]] = [[R,T], U]
(R, (T,U)) = ((R,T), U)
[•R, [•T,U]•]• = [•[•R,T]•, U]•

(•R, (•T,U)•)• = (•(•R,T)•, U)•

Commutativity

[R,T] = [T,R]
(R,T) = (T,R)
[•R,T]• = [•T,R]•

(•R,T)• = (•T,R)•

Exponentials

??R = ?R
!!R = !R

Units

[⊥, R] = R

(1, R) = R

[•0, R]• = R

(•�, R)• = R

[•⊥,⊥]• = ⊥ = ?⊥
(•1, 1)• = 1 = !1

Negation

[R,T] = (R̄, T̄)

(R,T) = [R̄, T̄]

[•R,T]• = (•R̄, T̄)•

(•R,T)• = [•R̄, T̄]•

?R = !R̄
!R = ?R̄
¯̄R = R

Figure 3.1: Basic equations for the syntactic congruence for LS structures

with a, b, c, . . .). The set A contains four selected elements, called constants, which are
denoted by ⊥, 1, 0, and � (called bottom, one, zero, and top, respectively). The function ·̄
is defined on them as follows:

1̄ := ⊥ , ⊥̄ := 1 ,
�̄ := 0 , 0̄ := � .

Let R be the set of expressions generated by the following syntax:

R ::= a | [R,R] | (R,R) | [•R,R]• | (•R,R)• | !R | ?R | R̄ ,

where a stands for any atom. On the set R, the relation = is defined to be the smallest
congruence relation induced by the equations shown in Figure 3.1. An LS structure (denoted
by P , Q, R, S, . . .) is an element of R/=, i.e. an equivalence class of expressions. For a
given LS structure R, the LS structure R̄ is called its negation.

3.1.2 Remark To be formally precise, the set of equations shown in Figure 3.1 should
also contain the equation ā = ā, where the ·̄ on the left-hand side stands for the syntactic
negation and the ·̄ on the right-hand side for the involution function defined on atoms. In
other words, on atoms the negation is defined to be the involution.

3.1.3 Remark The set of equations shown in Figure 3.1 is not minimal. It was not
my goal to produce a minimal set because in this case minimality does not contribute to
clarity.

3.1.4 Notation In order to denote a structure, I will pick one expression from the
equivalence class. Because of the associativity, superfluous parentheses can be omitted.
For example, [a, b, c, d] will be written for [[[a, b], c], d] and [[a, b], [c, d]]. This notation

3.1. Structures for Linear Logic 27

is closer to the notation for sequents than to the notation for formulae. Because of this
notation, it was under consideration to use [], (), [•]• and (•)• instead of ⊥, 1, 0 and �,
respectively, to denote the units. But for the following two reasons I chose not to do so:
First, Girard’s notation for the units is now standard and I did not want to make the life
of the reader even more difficult, and second, for reasons of personal taste, I prefer not to
denote a unit by two separate symbols.

3.1.5 Remark Because of the equational theory, there are many (in fact, countable
many) expressions denoting the same structure. This is not problematic because one can
consider structures to be in a certain normalform, where negation is pushed to the atoms
and superfluous units and parentheses are omitted. For example, the expressions [a,⊥, b̄],
([⊥, b̄], [•ā, 0]•) and (ā, 1, b) denote the same structure, but none of them is in normalform.
The two expressions (ā, b) and (b, ā) are both equivalent to the previous three and both are
in normalform. Observe that because of commutativity the normalform is not necessarily
unique, but there is only finite number of them for a given structure.

3.1.6 Definition A structure [R1, . . . , Rh] is called a par structure, (R1, . . . , Rh) is
called a times structure, [•R1, . . . , Rh]• is called a plus structure, (•R1, . . . , Rh)• is called a with
structure, !R is called an of-course structure, and ?R is called a why-not structure.

3.1.7 Definition We can define LS contexts, to be LS structures with a hole. Formally,
they are generated by

S ::= { } | [R,S] | (R,S) | [•R,S]• | (•R,S)• | !S | ?S .

3.1.8 Remark The idea of Remark 2.1.2 does also apply here: I will use the term
structure (or context) if no ambiguity is possible, but I will say LS structure (or LS context)
to distinguish between other types of structures or contexts to be defined in later chapters.

Because of the De Morgan laws there is no need to include the negation into the definition
of the context, which means that the structure that is plugged into the hole of a context will
always be positive. Contexts will be denoted with S{ }, T{ }, Then, S{R} denotes the
structure that is obtained by replacing the hole { } in the context S{ } by the structure R.
The structure R is a substructure of S{R} and S{ } is its context . For a better readability,
I will omit the context braces if no ambiguity is possible, e.g. I will write S [R,T] instead
of S{[R,T]}.
3.1.9 Example Let S{ } = [(a, ![{ }, ?a], b̄), b] and R = c and T = (b̄, c̄). Then

S [R,T] = [(a, ![c, (b̄, c̄), ?a], b̄), b] .

3.1.10 Definition The function ·
S

defines the obvious translation from LL formulae
into LS structures:

⊥
S

= ⊥ , A � B
S

= [A
S
, B

S
] , a

S
= a ,

1
S

= 1 , A � B
S

= (A
S
, B

S
) , ?A

S
= ?A

S
,

0
S

= 0 , A � B
S

= [•A
S
, B

S
]• , !A

S
= !A

S
,

�
S

= � , A � B
S

= (•A
S
, B

S
)• , A⊥

S
= A

S
.

28 3. Linear Logic and the Calculus of Structures

The domain of ·
S

is extended to sequents by

�
S

= ⊥ and
� A1, . . . , AhS

= [A1
S
, . . . , AhS

] , for h � 0 .

3.2 Rules and Derivations

In this section, I will define the general notions of rules, derivations and proofs. Those
definitions are independent from linear logic and are the same for all logical systems in the
calculus of structures discussed in this thesis.

Afterwards, I will show the rules for linear logic.

3.2.1 Definition In the calculus of structures, an inference rule is a scheme of the kind

T
ρ

R
,

where ρ is the name of the rule, T is its premise and R is its conclusion. An inference rule
is called an axiom if its premise is empty, i.e. the rule is of the shape

ρ
R

.

3.2.2 Remark A typical rule has the shape

S{T}
ρ

S{R}
and specifies a step of rewriting inside a generic context S{ }. But in general it is not
forbidden to put constraints on the context. In particular, it is possible to have rules
without context. This would then correspond to the to the case of the sequent calculus.

3.2.3 Remark It has already been mentioned in the introduction that it is not (triv-
ially) possible to present the calculus of structures in general in the terminology of term
rewriting. At this point I will explain the reasons in more detail.

• There are logical systems in the calculus of structures, where the rules are not in-
dependent from the context S{ }. For example, one could imagine a quantifier rule
like

S{R}∀
S{∀x.R} ,

where x is not allowed to be free in the context S{ }. It is also possible, to translate
sequent calculus rules directly into the calculus of structures, which would yield rules
without generic context. For example

(Φ ∨A) ∧ (Φ ∨B)∧
Φ ∨ (A ∧B)

.

Both cases are difficult to accommodate in a general term rewriting system.

3.2. Rules and Derivations 29

• Many systems in the calculus of structures contain rules whose application is restricted
to atoms. For example the atomic contraction rule

S{a ∨ a}
ac↓

S{a}
allows to duplicate only atoms, whereas the generic contraction rule

S{R ∨R}
c↓

S{R}
allows to duplicate arbitrary structures. To make this distinction in a term rewriting
system, one would need two different kind of variables.

• A more difficult issue is probably the notion of negation. The first observation to
make is that negation cannot simply be encoded as unary function symbol not(·),
because in the rule scheme

S{T}
ρ

S{R} ,

the rewriting is not allowed to be inside a negation. This condition would be difficult
to check in a term rewriting system. On the other hand, in many systems in the
calculus of structures (in particular, in all systems discussed in this thesis) negation is
via the De Morgan laws pushed to the atoms. So, one could imagine to have positive
and negative atoms. But then, it becomes difficult to translate the generic identity
rule

S{true}
id

S{A ∨ Ā} ,

where Ā stands for the negation of A.

However, it is possible to translate some systems in the calculus of structures into term
rewriting systems.

3.2.4 Definition A (formal) system S is a set of inference rules.

3.2.5 Definition A derivation ∆ in a certain formal system is a finite chain of instances
of inference rules in the system:

R
ρ

R′
ρ′ ...
ρ′′ .

R′′

A derivation can consist of just one structure. The topmost structure in a derivation, if
present, is called the premise of the derivation, and the bottommost structure is called its
conclusion. A derivation ∆ whose premise is T , whose conclusion is R, and whose inference
rules are in S will be indicated with

T
∆‖S .
R

30 3. Linear Logic and the Calculus of Structures

A proof Π in the calculus of structures is a derivation whose topmost inference rule is an
axiom. It will be denoted by −

Π‖S .
R

The length of a derivation ∆ is the number of instances of inference rules used in ∆. It
is denoted by length(∆). The length of a proof Π, denoted by length(Π), is defined in the
same way.

3.2.6 Definition A rule ρ is derivable in a system S if ρ /∈ S and for every instance

of
T

ρ
R

, there is a derivation
T

∆‖S
R

.

3.2.7 Definition Two systems S and S ′ are strongly equivalent if for every derivation
T

∆‖S
R

there is a derivation
T

∆′‖S ′

R
, and vice versa.

3.2.8 Definition A rule ρ is admissible for a system S if ρ /∈ S and for every proof
−

Π‖S∪{ρ}
R

there is a proof −
Π′‖S

R
.

3.2.9 Definition Two systems S and S ′ are (weakly) equivalent if for every proof
−

Π‖S
R

there is a proof −
Π′‖S ′

R
, and vice versa.

In the following, I will show the inference rules for linear logic in the calculus of struc-
tures. The proof of the equivalence to the rules in the sequent calculus, which have been
presented in the previous chapter, will follow in Section 3.3. Before I start, let me recall
that in the sequent calculus, rules can be divided into three groups: identity rules, logical
rules and structural rules. Because there is no longer a difference between formulae and
sequents, there is also no difference between structural and logical rules. Therefore, there
are only two groups of rules in the calculus of structures: the so called interaction rules,
which correspond to the identity rules in the sequent calculus, and the structural rules,
which correspond to the structural and logical rules in the sequent calculus.

Let me now begin with the interaction rules.

3.2.10 Definition The rules
S{1}

i↓
S [R, R̄]

and
S(R, R̄)

i↑
S{⊥}

are called interaction and cut (or cointeraction), respectively.

These rules correspond to the identity and cut rule in the sequent calculus (the technical
details of this correspondence are shown in the proof of Theorem 3.3.2 on page 38). But
in the calculus of structures, the duality between the two rules is more obvious than in
the sequent calculus. Furthermore, in the calculus of structures, the duality between two
rules can be defined formally in the following way: A rule ρ′ is dual to a rule ρ if it is
the contrapositive of ρ, i.e. it is obtained from ρ by exchanging and negating premise and
conclusion.

3.2. Rules and Derivations 31

3.2.11 Definition The structural rule

S([R,U], T)
s
S [(R,T), U]

is called switch.

Observe that the switch rule is self-dual, i.e. if premise and conclusion are negated and
exchanged, we obtain again an instance of switch. This can be seen easily as follows:

S [(R,T), U] = S′{[(R,T), U]} , for some context S′{ }
= S′((R,T), Ū)
= S′([R̄, T̄], Ū)
= S′([R′, U ′], T ′) , for some structures R′, T ′ and U ′ .

Similarly, we can get S([R,U], T) = S′ [(R′, T ′), U ′] for the same context S′{ } and struc-
tures R′, T ′ and U ′.

The switch rule stands for the linear implication A � (B � C)−◦ (A � B) � C, which is
also known as weak distributivity [CS97]. In [Gug99], the switch rule has been conceived
by enforcing cut elimination in a certain combinatorial computational model, entirely in-
dependent from weakly distributive categories.

The two interaction rules and the switch rule have together a remarkable property (as
already observed in [Gug99]), namely that they make for every rule ρ its dual rule derivable.

3.2.12 Proposition Let ρ and ρ′ be two rules that are dual to each other. Then ρ′ is
derivable in {i↓, i↑, s, ρ}.

Before I will show the proof, let me introduce two notational conventions whose solely
purpose is to ease the checking of such proofs for the reader:

(1) Sometimes I will insert the (pseudo-)rule

T
=

R
,

where R = T . This will help checking the correctness of a derivation when R and T
are quite different expressions for the same structure.

(2) Sometimes I will use a light grey background to mark the place of the redex of a
rewriting step when the derivation is read bottom-up. (The notion of redex will be
defined precisely in Section 4.2, when the permutation of rules is studied.)

Although derivations are top-down symmetric objects that can be read top-down as well
as bottom-up, the reader is therefore advised to read them bottom-up in case he wants to
verify them.

32 3. Linear Logic and the Calculus of Structures

Proof of Proposition 3.2.12: Let
S{P}

ρ
S{Q} be given. Then any instance of

S{Q̄}
ρ′

S{P̄}
can be replaced by the following derivation:

S{Q̄}
=

S(Q̄, 1)
i↓

S(Q̄, [P, P̄])
s
S [(Q̄, P), P̄]

ρ
S [(Q̄, Q), P̄]

i↑
S [⊥, P̄]

= .
S{P̄} ��

3.2.13 Definition The structural rules

S(• [R,U], [T, V])•
d↓

S [(•R,T)•, [•U, V]•]
,

S([•R,U]•, (•T, V)•)
d↑

S [•(R,T), (U, V)]•
,

S{0}
t↓

S{R} ,
S{R}

t↑
S{�} ,

S [•R,R]•
c↓

S{R} ,
S{R}

c↑
S(•R,R)•

are called additive (d↓), coadditive (d↑), thinning (t↓), cothinning (t↑), contraction (c↓),
and cocontraction (c↑), respectively. They form the additive group.

Although those rules and the rules for the additives in the sequent calculus (see Chap-
ter 2) have a very different shape, they are equivalent. This is shown in detail in Section 3.3.

3.2.14 Definition The exponential group is formed by the structural rules

S{![R,T]}
p↓

S [!R, ?T]
,

S(?R, !T)
p↑

S{?(R,T)} ,

S{⊥}
w↓

S{?R} ,
S{!R}

w↑
S{1} ,

S [?R,R]
b↓

S{?R} ,
S{!R}

b↑
S(!R,R)

,

which are called promotion (p↓), copromotion (p↑), weakening (w↓), coweakening (w↑),
absorption (b↓), and coabsorption (b↑), respectively.

These rules capture exactly the behaviour of the rules for the exponentials in the sequent
calculus. For the weakening and absorption rules this is not surprising. The surprising fact
is, that the promotion rule is no longer global, i.e. it does not need to check an unbounded
number of formulae in the context. Again, the exact correspondence is shown in in Sec-
tion 3.3.

As in the sequent system for linear logic, there is also a multiplicative group: its only
member is the switch rule.

3.2. Rules and Derivations 33

Since for every rule in the calculus of structures we can give a dual rule, we can also
give for every derivation a dual derivation. For example,

(• [a, b̄], 1)•
i↓

(• [a, b̄], [b, b̄])•
d↓

[(•a, b)•, [•b̄, b̄]•]
c↓

[(•a, b)•, b̄]
w↓ is dual to

[(•a, b)•, ?c̄, b̄]

([•ā, b̄]•, !c, b)
w↑

([•ā, b̄]•, b)
c↑

([•ā, b̄]•, (•b, b)•)
d↑

[•(ā, b), (b̄, b)]•
i↑ .

[•(ā, b),⊥]•

3.2.15 Definition The rules

S{1}
ai↓

S [a, ā]
and

S(a, ā)
ai↑

S{⊥}
are called atomic interaction and atomic cut (or atomic cointeraction), respectively.

The rules ai↓ and ai↑ are obviously instances of the rules i↓ and i↑ above. It is well
known that in many systems in the sequent calculus, the identity rule can be reduced to
its atomic version. In the calculus of structures we can do the same. But furthermore, by
duality, we can do the same to the cut rule, which is impossible in the sequent calculus (see
Remark 2.2.8).

3.2.16 Proposition The rule i↓ is derivable in the system {ai↓, s,d↓,p↓}. Dually, the
rule i↑ is derivable in {ai↑, s,d↑,p↑}.

Proof: For a given application of
S{1}

i↓
S [R, R̄]

, by structural induction on R, I will construct

an equivalent derivation that contains only ai↓, s, d↓ and p↓.
• R is an atom: Then the given instance of i↓ is an instance of ai↓.
• R = [P,Q], where P �= ⊥ �= Q: Apply the induction hypothesis to

S{1}
i↓

S [Q, Q̄]
=

S(1, [Q, Q̄])
i↓

S([P, P̄] , [Q, Q̄])
s
S [P, (P̄ , [Q, Q̄])]
s .

S [P, Q, (P̄ , Q̄)]

• R = (P,Q), where P �= 1 �= Q: Similar to the previous case.

• R = [•P,Q]•, where P �= 0 �= Q: Apply the induction hypothesis to

S{1}
=

S(•1, 1)•
i↓

S(•1, [Q, Q̄])•
i↓

S(• [P, P̄] , [Q, Q̄])•
d↓ .

S [[•P,Q]•, (•P̄ , Q̄)•]

34 3. Linear Logic and the Calculus of Structures

• R = (•P,Q)•, where P �= � �= Q: Similar to the previous case.

• R = ?P , where P �= ⊥: Apply the induction hypothesis to

S{1}
=

S{!1}
i↓

S{! [P, P̄]}
p↓ .

S [?P, !P̄]

• R = !P , where P �= 1: Similar to the previous case.

The second statement is dual to the first. ��
3.2.17 Definition The system

{ai↓, ai↑, s,d↓,d↑, t↓, t↑, c↓, c↑,p↓,p↑,w↓,w↑,b↓,b↑} ,

shown in Figure 3.2, is called symmetric (or self-dual) linear logic in the calculus of struc-
tures, or system SLS. The set {ai↓, s,d↓, t↓, c↓,p↓,w↓,b↓} is called the down fragment and
{ai↑, s,d↑, t↑, c↑,p↑,w↑,b↑} is called the up fragment . Further, the subsystem

{ai↓, ai↑, s,d↓,d↑, t↓, t↑, c↓, c↑}
is called the multiplicative additive fragment , or system SALS. Similarly, the system

{ai↓, ai↑, s,p↓,p↑,w↓,w↑,b↓,b↑}
is called the multiplicative exponential fragment , or system SELS. The system

{ai↓, ai↑, s}
is called the multiplicative fragment , or system SS.

System SELS will be investigated in more detail in Chapter 4.
Observe that in Proposition 3.2.16 only the rules s, d↓, d↑, p↓ and p↑ are used to reduce

the general interaction and the general cut to their atomic versions, whereas all other rules
are not used. This motivates the following definition.

3.2.18 Definition The core of a system in the calculus of structures is the set of struc-
tural rules, that are needed to reduce interaction and cut to atomic form. All other struc-
tural rules are called noncore. In system SLS, the core is the set {s,d↓,d↑,p↓,p↑} and is
denoted by SLSc.

So far we are only able to write derivations. In order to present proofs, we need an
axiom.

3.2.19 Definition The following rule is called one:

1↓
1

.

In the language of the sequent calculus it simply says that � 1 is provable. I will put
this rule to the down fragment of system SLS and by this break the top-down symmetry of
derivations and observe proofs.

3.2. Rules and Derivations 35

S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

}
Interaction

S([R,U], T)
s

S [(R,T), U]

}
Multiplicatives

S(• [R,U], [T, V])•
d↓

S [(•R,T)•, [•U, V]•]

S([•R,U]•, (•T, V)•)
d↑

S [•(R,T), (U, V)]•

S{0}
t↓

S{R}
S{R}

t↑
S{�}

Additives

S [•R,R]•
c↓

S{R}
S{R}

c↑
S(•R,R)•

S{![R,T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R,T)}

S{⊥}
w↓

S{?R}
S{!R}

w↑
S{1}

Exponentials

S [?R,R]
b↓

S{?R}
S{!R}

b↑
S(!R,R)

Figure 3.2: System SLS

3.2.20 Definition The system {1↓, ai↓, s,d↓, t↓, c↓,p↓,w↓,b↓}, shown in Figure 3.3,
that is obtained from the down fragment of system SLS together with the axiom, is called
linear logic in the calculus of structures, or system LS. The restriction to the multiplica-
tive additive fragment {1↓, ai↓, s,d↓, t↓, c↓} is called system ALS, the restriction to the
multiplicative exponential fragment {1↓, ai↓, s,p↓,w↓,b↓} is called system ELS, and the
restriction to the multiplicative fragment {1↓, ai↓, s} is called system S.

In every proof in system LS, the rule 1↓ occurs exactly once, namely as the topmost
rule of the proof.

The following theorem says, that the general cut rule i↑ is as powerful as the whole up
fragment of the system SLS, and vice versa.

3.2.21 Theorem The systems SLS ∪ {1↓} and LS ∪ {i↑} are strongly equivalent.

Proof: Immediate consequence of Propositions 3.2.16 and 3.2.12. ��

36 3. Linear Logic and the Calculus of Structures

1↓
1

S{1}
ai↓

S [a, ā]

S([R,U], T)
s
S [(R,T), U]

S{0}
t↓

S{R}
S [•R,R]•

c↓
S{R}

S(• [R,U], [T, V])•
d↓

S [(•R,T)•, [•U, V]•]

S{⊥}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

S{![R,T]}
p↓

S [!R, ?T]

Figure 3.3: System LS

3.3 Equivalence to the Sequent Calculus System

In this section, I will show the exact correspondence between the sequent calculus system
LL for linear logic (shown in Figure 2.1 on page 20) and the two systems in the calculus of
structures shown in the previous section.

More precisely, every proof in system SLS ∪ {1↓} has a translation in system LL, and
every cut-free proof in LL has a translation in system LS. As a consequence, we can
obtain an (easy) proof of cut elimination for system LS ∪ {i↑} (or equivalently for system
SLS ∪ {1↓}).

First, it is important to note that under the translation ·
S

(Definition 3.1.10) the
equations shown in Figure 3.1 are logical equivalences of linear logic. Therefore, we have
for any two formulae A and B, if A

S
= B

S
then A and B are logically equivalent (i.e. A−◦B

and B −◦A are provable).
It is possible to invert the function ·

S
, which is done by the function ·

L
:

⊥
L

= ⊥ ,

1
L

= 1 ,

0
L

= 0 ,

�
L

= � ,

[R,T]
L

= R
L

� T
L

,

(R,T)
L

= R
L

� T
L

,

[•R,T]•
L

= R
L

� T
L

,

(•R,T)•
L

= R
L

� T
L

,

a
L

= a ,

?R
L

= ?R
L

,

!R
L

= !R
L

,

R̄
L

= (R
L
)⊥ .

Observe that the formula R
L

depends on the chosen representation of the structure R.
Therefore, the mapping ·

L
does not map structures uniquely to formulae. This is not

problematic since the mapping ·
L

is only used in the following theorem and its proof, where
each statement concerning a formula R

L
is independent from the chosen representation of

R, because whenever R = T , then R
L

and T
L

are logically equivalent formulae.

3.3.1 Theorem If a given structure P is provable in system SLS ∪ {1↓}, then � P
L

is
provable in LL (with cut).

Proof: Suppose, we have a proof Π of P in system SLS∪{1↓}. By induction on the length
of Π, let us build a proof Π

L
of � P

L
in LL.

3.3. Equivalence to the Sequent Calculus System 37

Base case: Π is 1↓
1

: Let Π
L

be the proof 1 � 1 .

Inductive case: Suppose Π is

−
Π′

∥∥SLS∪{1↓}
S{W}

ρ .
S{Z}

In other words,
S{W}

ρ
S{Z} is the last rule applied in Π. The following LL proofs show that

� (W
L
)⊥, Z

L
is provable in LL for every rule

S{W}
ρ

S{Z} in SLS, i.e. W
L
−◦ Z

L
is a theorem

in LL:

• For the rules ai↓ and ai↑:
id � a, a⊥
� � a � a⊥⊥ .� ⊥, a � a⊥

• For the rule s:
id � R⊥, R

id � T⊥, T
� � R⊥, T⊥, R � T

id � U⊥, U
� � R⊥

� U⊥ , T⊥, R � T,U
� � R⊥

� U⊥, T⊥, (R � T) � U
� .� (R⊥

� U⊥) � T⊥ , (R � T) � U

• For the rules d↓ and d↑:
id � R⊥, R

id � U⊥, U
� � R⊥

� U⊥ , R, U
� � R⊥

� U⊥, R, U � V
� � (R⊥

� U⊥) � (T⊥
� V ⊥), R, U � V

id � T⊥, T
id � V ⊥, V

� � T⊥
� V ⊥ , T, V

� � T⊥
� V ⊥, T, U � V

� � (R⊥
� U⊥) � (T⊥

� V ⊥), T, U � V
� � (R⊥

� U⊥) � (T⊥
� V ⊥), R � T ,U � V

� .� (R⊥
� U⊥) � (T⊥

� V ⊥), (R � T) � (U � V)

• For the rules t↓ and t↑:
� .� �, R

• For the rules c↓ and c↑:
id � R⊥, R

id � R⊥, R
� .� R⊥

� R⊥ , R

38 3. Linear Logic and the Calculus of Structures

• For the rules p↓ and p↑:
id � R⊥, R

id � T⊥, T
� � R⊥

� T⊥ , R, T
?d � ?(R⊥

� T⊥), R, T
?d � ?(R⊥

� T⊥), ?R,T
! � ?(R⊥

� T⊥), ?R, !T
� .� ?(R⊥

� T⊥), ?R � !T

• For the rules w↓ and w↑:
1 � 1

?w ,� 1, ?R

• For the rules b↓ and b↓:

id � !R⊥, ?R

id � R⊥, R
?d � R⊥, ?R

� � !R⊥
� R⊥ , ?R, ?R

?c .� !R⊥
� R⊥, ?R

This means that for any context S{ }, we also have that S{W}
L
−◦ S{Z}

L
is a theorem

in LL, i.e. � (S{W}
L
)⊥, S{Z}

L
has a proof Π′ in LL. By induction hypothesis we also have

a proof Π′′
L

of � S{W}
L

in LL. By applying the cut rule

��
��

��
������

Π′′

� S{W}
L

��
��

��
������

Π′

� (S{W}
L
)⊥, S{Z}

Lcut ,� S{Z}
L

we get a proof Π
L

of � S{Z}
L
. ��

3.3.2 Theorem (a) If a given sequent � Φ is provable in LL (with cut), then the struc-
ture � Φ

S
is provable in system SLS ∪ {1↓}. (b) If a given sequent � Φ is cut-free provable

in LL, then the structure � Φ
S
is provable in system LS.

Proof: Let Π be the proof of � Φ in LL. By structural induction on Π, we will construct
a proof Π

S
of � Φ

S
in system SLS ∪ {1↓} (or in system LS if Π is cut-free).

• If Π is id � A,A⊥ for some formula A, then let Π
S

be the proof obtained via Propo-

sition 3.2.16 from
1↓
1

i↓ .
[A
S
, A

S
]

3.3. Equivalence to the Sequent Calculus System 39

• If
� A,Φ � A⊥, Ψ

cut � Φ,Ψ
is the last rule applied in Π, then there are by induction

hypothesis two derivations
1

∆1‖SLS
[A
S
, Φ

S
]

and
1

∆2‖SLS
[A
S
, Ψ

S
]

.Let Π
S

be the proof obtained via

Proposition 3.2.16 from
1↓
1

∆1

∥∥SLS
[A
S
, Φ

S
]

=
([A

S
, Φ

S
], 1)

∆2

∥∥SLS
([A

S
, Φ

S
], [A

S
, Ψ

S
])

s
[([A

S
, Φ

S
], A

S
), Ψ

S
]

s
[(A

S
, A

S
), Φ

S
, Ψ

S
]

i↑
[⊥, Φ

S
, Ψ

S
]

= .
[Φ
S
, Ψ

S
]

• If
� A,B,Φ

� � A � B,Φ
is the last rule applied in Π, then let Π

S
be the proof of [A

S
, B

S
, Φ

S
]

that exists by induction hypothesis.

• If
� A,Φ � B,Ψ

� � A � B,Φ, Ψ
is the last rule applied in Π, then there are by induction hy-

pothesis two derivations
1

∆1‖SLS
[A
S
, Φ

S
]

and
1

∆2‖SLS
[B

S
, Ψ

S
]

. Let Π
S

be the proof

1↓
1

∆1

∥∥SLS
[A
S
, Φ

S
]

=
([A

S
, Φ

S
], 1)

∆2

∥∥SLS
([A

S
, Φ

S
], [B

S
, Ψ

S
])

s
[([A

S
, Φ

S
], B

S
), Ψ

S
]

s .
[(A

S
, B

S
), Φ

S
, Ψ

S
]

• If
� Φ⊥ � ⊥, Φ

is the last rule applied in Π, then let Π
S

be the proof of � Φ
S

that exists

by induction hypothesis (since � ⊥, Φ
S

= � Φ
S
).

• If Π is 1 � 1 , then let Π
S

be 1↓
1

.

40 3. Linear Logic and the Calculus of Structures

• If
� A,Φ � B,Φ

� � A � B,Φ
is the last rule applied in Π, then there are by induction hy-

pothesis two derivations
1

∆1‖SLS
[A
S
, Φ

S
]

and
1

∆2‖SLS
[B

S
, Φ

S
]

. Let Π
S

be the proof

1↓
1

=
(•1, 1)•
∆1

∥∥SLS
(• [A

S
, Φ

S
], 1)•

∆2

∥∥SLS
(• [A

S
, Φ

S
], [B

S
, Φ

S
])•

d↓
[(•A

S
, B

S
)•, [•Φ

S
, Φ

S
]•]

c↓ .
[(•A

S
, B

S
)•, Φ

S
]

• If
� A,Φ

�1 � A � B,Φ
is the last rule applied in Π, then let Π

S
be the proof

−
Π′

∥∥SLS∪{1↓}
[A
S
, Φ

S
]

=
[[•A

S
, 0]•, Φ

S
]

t↓ ,
[[•A

S
, B

S
]•, Φ

S
]

where Π′ exists by induction hypothesis.

• The case for the rule
� B,Φ

�2 � A � B,Φ
is similar.

• If Π is � � �, Φ
, then let Π

S
be the proof

1↓
1

ai↓
[�, 0]

t↓ .
[�, Φ

S
]

• If
� A,Φ

?d � ?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

−
Π′

∥∥SLS∪{1↓}
[A
S
, Φ

S
]

w↓
[?A

S
, A

S
, Φ

S
]

b↓ ,
[?A

S
, Φ

S
]

where Π′ exists by induction hypothesis.

3.4. Cut Elimination 41

• If
� ?A, ?A,Φ

?c � ?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

−
Π′

∥∥SLS∪{1↓}
[?A

S
, ?A

S
, Φ

S
]

=
[??A

S
, ?A

S
, Φ

S
]

b↓
[??A

S
, Φ

S
]

= ,
[?A

S
, Φ

S
]

where Π′ exists by induction hypothesis.

• If
� Φ

?w � ?A,Φ
is the last rule applied in Π, then let Π

S
be the proof

−
Π′

∥∥SLS∪{1↓}
Φ
S=

[⊥, Φ
S
]

w↓ ,
[?A

S
, Φ

S
]

where Π′ exists by induction hypothesis.

• If
� A, ?B1, . . . , ?Bn

! � !A, ?B1, . . . , ?Bn

is the last rule applied in Π, then there exists by induction

hypothesis a derivation
1

∆‖SLS
[A
S
, ?B1

S
, . . . , ?Bn

S
]

. Now let Π
S

be the proof

1↓
1

=
!1

∆
∥∥SLS

![A
S
, ?B1

S
, . . . , ?Bn

S
]

p↓ ...
p↓

[![A
S
, ?B1

S
], ??B2

S
, . . . , ??Bn

S
]

p↓
[!A

S
, ??B1

S
, ??B2

S
, . . . , ??Bn

S
]

= .
[!A

S
, ?B1

S
, ?B2

S
, . . . , ?Bn

S
] ��

3.4 Cut Elimination

One of the reasons for doing cut elimination in the sequent calculus is to eliminate the only
rule that violates the subformula property. Since in the calculus of structures we do no
longer distinguish between sequents and formulae, it is no longer clear what the subformula
property is. In the sequent calculus, the most important consequence of the subformula
property is that for every rule (except the cut) there is, for a given sequent, only a finite
number of possibilities to apply that rule. This property is still present in the calculus of

42 3. Linear Logic and the Calculus of Structures

structures. Hence, in the calculus of structures the subformula property could be formulated
as follows: A rule has the subformula property if its premise is built of substructures of its
conclusion, such that there is only a finite number of possibilities to apply the rule (in a
nontrivial way).

This property holds for most of the rules of system SLS ∪ {1↓}. The only rules which
violate this property are the rules ai↑, t↑ and w↑. It would therefore be sufficient to eliminate
those three rules in order to get a system in which each rule enjoys the subformula property,
which essentially would be a cut elimination result.

But we can get more. We can show that the whole up fragment of system SLS is
admissible. This section contains two very different proofs of this fact.

The first uses the cut elimination proof for LL in the sequent calculus:

3.4.1 Theorem (Cut Elimination) System LS is equivalent to every subsystem of the
system SLS ∪ {1↓} containing LS.

Proof: Given a proof in SLS∪{1↓}, transform it into a proof in LL (by Theorem 3.3.1), to
which we can apply the cut elimination procedure in the sequent calculus (Theorem 2.3.1).
The cut-free proof in LL can then be transformed into a proof in system LS by Theo-
rem 3.3.2. ��

3.4.2 Corollary The rule i↑ is admissible for system LS.

Proof: Immediate consequence of Theorems 3.2.21 and 3.4.1. ��

Another immediate consequence of the cut elimination theorem is the following corollary,
that makes explicit the relation between derivations and proofs. In particular, it shows that
system SLS can be seen as a system for derivations and LS as a system for proofs.

3.4.3 Corollary Let R and T be two structures. Then we have

T
‖SLS
R

if and only if −‖LS
[T̄ , R]

.

Proof: For the first direction, perform the following transformations:

T
∆‖SLS
R

1
�

[T̄ , T]
∆‖SLS

[T̄ , R]

2
�

1↓
1

i↓
[T̄ , T]
∆‖SLS

[T̄ , R]

3
�

−
Π‖LS

[T̄ , R]
.

In the first step we replace each structure S occurring inside ∆ by [T̄ , S], which is then
transformed into a proof by adding an instance of i↓ and 1↓. Then we apply Proposi-
tion 3.2.16 and cut elimination (Theorem 3.4.1) to obtain a proof in system LS. For the

other direction, let −
Π‖LS

[T̄ , R]
be given. Then there is a derivation

1
∆‖LS\{1↓}

[T̄ , R]
, from which

3.4. Cut Elimination 43

we can construct the derivation

T
=

(T, 1)
∆
∥∥LS\{1↓}

(T, [T̄ , R])
s

[(T, T̄), R]
i↑

[⊥, R]
=

R

,

to which we apply Proposition 3.2.16 to get a derivation
T
‖SLS
R

. ��

3.4.4 Remark From Corollary 3.4.3, we immediately get the correspondence between
derivability in system SLS and linear implication. For any two formulae A and B, we have
that

A
S

‖SLS
B
S

if and only if A−◦B .

The second proof of cut elimination will be carried out inside the calculus of structures,
completely independent from the sequent calculus, and by using methods that are not
available in the sequent calculus. Before I will go into the details of this proof, let me
explain why it is indeed a challenge to prove cut elimination in the calculus of structures
and why the methods of the sequent calculus cannot be applied.

In the cut elimination process in the sequent calculus (see Section 2.3), we know at each
step whether we have a commutative case or a key case, and if we have a key case, we know
(because of the principle of the main connective) how to decompose the cut formula and
reduce the rank of the cut. Because there is no main connective in the calculus of structures
and rules can applied anywhere deep inside structures, we cannot easily permute up the
cut. For instance, if in a derivation

Q
ρ

S(R, R̄)
i↑

S{⊥}
the rule ρ modifies some substructure of R, we do not know how deep inside R the rule is
applied. Furthermore, there is no reason to assume that any rule ρ′ above ρ does the exact
dual of ρ inside the structure R̄. On the other hand, a great simplification is made possible
in the calculus of structures by the reduction of cut to its atomic form. The remaining
difficulty is actually understanding what happens, while going up in a proof, around the
atoms produced by an atomic cut. The two atoms of an atomic cut can be produced inside
any structure, and they do not belong to distinct branches, as in the sequent calculus. This
means that complex interactions with their context are possible. As a consequence, the
techniques for showing cut elimination inside the calculus of structures are quite different
from the traditional ones.

44 3. Linear Logic and the Calculus of Structures

In the following, I will present a proof of Theorem 3.4.1, that uses the techniques of
splitting and context reduction that have been introduced in [Gug02e]. Because the whole
proof is rather long and technical and uses some concepts that are introduced only in
later chapters, the reader is invited to skip it in the first reading and jump immediately
to Section 3.5 on page 80. Furthermore, this thesis contains in Chapter 7 another cut
elimination proof based on splitting, which is much simpler. Therefore the reader interested
in splitting is strongly advised not to read the splitting proof in this chapter until he has
mastered the proof in Section 7.3. For that reason I also postponed the introductory notes
on splitting and context reduction to that section, where I will explain the basic ideas on
an informal level.

3.4.1 Splitting

In this section, I will prove the splitting lemma for system LS, which is stated as follows:

3.4.5 Lemma (Splitting) Let R, T , P be any structures, and let a be an atom.

(a) If [(•R,T)•, P] is provable in LS, then

−‖LS
[R,P]

and −‖LS
[T, P]

.

(b) If [[•R,T]•, P] is provable in LS, then there are structures PR and PT , such that

(•PR, PT)•
‖LS
P

and −‖LS
[R,PR]

and −‖LS
[T, PT]

.

(c) If [(R,T), P] is provable in LS, then there is an n � 0 and there are structures
PR1, . . . , PRn and PT1, . . . , PTn, such that

(• [0,�], . . . , [0,�], [PR1, PT1], . . . , [PRn, PTn])•
‖LS
P

and

−‖LS
[R,PRi]

and −‖LS
[T, PT i]

for every i ∈ {1, . . . , n}.
(d) If [!R,P] is provable in LS, then there are n � 0 and k1, . . . , kn � 0 and structures

PR11, . . . , PR1k1 , PR21, . . . , PR2k2 , . . . , PRn1, . . . , PRnkn , such that

(• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1k1], . . . , [?PRn1, . . . , ?PRnkn])•
‖LS
P

and

−‖LS
[R,PRi1, . . . , PRiki

]

for every i ∈ {1, . . . , n}.

3.4. Cut Elimination 45

(f) If [a, P] is provable in LS, then there is a derivation

(• [0,�], . . . , [0,�], ā, . . . , ā)•
‖LS
P

.

3.4.6 Remark In the statement of Lemma 3.4.5, the structure (• [0,�], . . . , [0,�])• con-
sists of an arbitrary number (including zero) of copies of the structure [0,�]. In other
words, (• [0,�], . . . , [0,�])• can stand for any of the structures

� , [0,�] , (• [0,�], [0,�])• , (• [0,�], [0,�], [0,�])• , . . .

This convention is used throughout the remainder of this chapter.

The proof of the splitting lemma is rather technical. Before studying it, the reader
should have developed some familiarity with the calculus of structures. In particular, the
reader should have mastered at least Sections 4.2 and 7.3. Since this is the only place in
this thesis where I use concepts that I introduce only later, one might argue about putting
this proof into an appendix. This is not done for the following reasons: (1) conceptually
this proof belongs to this chapter, and (2) for reasons of personal taste I do not like the
idea of putting proofs into an appendix.

As mentioned in Section 7.3.1, the biggest difficulty in proving the splitting lemma is
finding the right induction measure. The presence of the rules c↓ and b↓ makes this even
more difficult for system LS. In order to simplify the situation, the following rules are
introduced:

S(• [R,U], [T,U])•
cd↓

S [(•R,T)•, U]
,

S [?R, ?R]
cb↓

S{?R} and
S{R}

cr↓
S{?R} .

The following derivations show that the rules cd↓, cb↓, and cr↓, are all derivable in LS.

S(• [R,U], [T,U])•
d↓

S [(•R,T)•, [•U,U]•]
c↓ ,

S [(•R,T)•, U]

S [?R, ?R]
=

S [??R, ?R]
b↓

S{??R}
= and

S{?R}

S{R}
w↓

S [?R,R]
b↓ .

S{?R}
The rule cd↓ will simplify the case analysis because it cannot be applied as freely as the
rule c↓ can. Through the presence of the rule cb↓ the induction measure can be simplified
because cb↓ can be permuted down (which will be shown in Lemma 3.4.9) but b↓ cannot.

Another (technical) difficulty for determining the proper induction measure is caused
by the presence of the constants. For that reason, the rules cd′↓ and s′ are introduced,
which are identical to cd↓ and s, respectively, with the difference that in the case of cd′↓
we have R �= � �= T , and in the case of s′ we have that R �= 1. The two rules are special
cases of cd↓ and s, respectively, and therefore derivable in LS. Lemma 3.4.8 will show that
completeness is not lost when they replace the general rules. It will also be necessary to
restrict the applicability of the rule t↓. Let

S [0, T]
t′↓

S [R,T]
(where R �= ⊥ �= T) and

S{T}
t′′↓

S [•R,T]•
(where T �= 0) .

46 3. Linear Logic and the Calculus of Structures

1↓
1

�↓ �
S{1}

ai↓
S [a, ā]

S(• [R,U], [T,U])•
cd′↓

S [(•R,T)•, U]
(where R �= � �= T)

S([R,U], T)
s′

S [(R,T), U]
(where R �= 1)

S [0, T]
t′↓

S [R,T]
(where R �= ⊥ �= T)

S{T}
t′′↓

S [•R,T]•
(where T �= 0)

S{![R,T]}
p↓

S [!R, ?T]

S{⊥}
w↓

S{?R}
S [?R, ?R]

cb↓
S{?R}

S{R}
cr↓

S{?R}

Figure 3.4: System LS′

both are derivable in LS because they are special cases of t↓. However, if they are used to
replace t↓, then completeness is lost, but can be regained by adding another axiom

�↓ ,�

which is derivable in LS:
1↓
1

ai↓
[0,�]

t↓
[⊥,�]

= .�
3.4.7 Definition The system {1↓,�↓, ai↓, s′, cd′↓, t′↓, t′′↓,p↓,w↓, cb↓, cr↓}, shown in
Figure 3.4, is called system LS′.

It should be obvious that system LS′ is equivalent to LS because its rules are closer
to the sequent system LL for linear logic. The precise relation between system LS′ and
system LS is given by the following lemma.

3.4.8 Lemma Let R and T be structures.

(a) If there is a derivation
T

∆′‖LS′
R

, then there is a derivation
T

∆‖LS
R

.

(b) If there is a proof −
Π‖LS
R

, then there is a proof −
Π′‖LS′

R
.

Proof: (a) As mentioned before, the rules �↓, cd′↓, s′, t′↓, t′′↓, cb↓ and cr↓ are all derivable
in LS.

3.4. Cut Elimination 47

(b) A given proof Π in LS will be transformed into a proof Π′ in LS′ according to the
following steps. First replace all instances of the rules d↓ and b↓ by the following derivations:

S(• [R,U], [T, V])•
t↓

S(• [R,U], [T, [•U , V]•])•
t↓

S(• [R, [•U, V]•], [T, [•U, V]•])•
cd↓ and

S [(•R,T)•, [•U, V]•]

S [?R,R]
cr↓

S [?R, ?R]
cb↓ .

S{?R}

In the second step, the instances of t↓ are permuted up until they disappear or become
instances of t′↓ or t′′↓. Following the case analysis in 4.2.3, we have that the cases (1)
to (3) are trivial, and cases (4) and (6) are impossible. If case (5) occurs we have one of
the following:

(i) The instance of t↓ is duplicated by an instance of cd↓, c↓ or cb↓, or it is eliminated
by w↓, t′↓ or t′′↓.

(ii) The 0 in the contractum of t↓ appears actively in the redex of the rule above (as in
case (5) in the proof of Lemma 5.3.18). Then we have already an instance of t′′↓.

(iii) The 0 in the contractum of t↓ appears in the redex of i↑. Then we either have already
an instance of t′↓, or we have the situation

S{1}
ai↓

S [0,�]
t↓ .

S [⊥,�]

In this case remove the subderivation and replace the 1 occurring in the premise
everywhere by �, which either disappears somewhere as unit in a context (•. . .)• or
remains until the very top of the proof where the rule �↓ can be used.

In the third step, eliminate all instances of cd↓ that are not instances of cd′↓, i.e. they are
of the form

S(• [R,U], [�, U])•
cd↓ .

S [R,U]

Consider the topmost such instance and replace the substructure [�, U] everywhere above
by �. (By this every rule modifying [�, U] becomes trivial and will be eliminated too.)
Repeat this for every instance of cd↓ that is not an instance of cd′↓.

Now, all instances of s that are not instances of s′ are eliminated. For this, consider the
topmost instance of

S([1, U], T)
s ,

S [T,U]

which can be permuted up in the proof until it disappears (i.e. U = ⊥ or T = 1). As before,
follow 4.2.3. The situation

S([1, U,W], T)
s′

S [([1, U], T),W]
s ,

S [T,U ,W]

48 3. Linear Logic and the Calculus of Structures

which can occur in case (5), is replaced by

S([1, U,W], T)
s .

S [T,U,W]

It remains to eliminate the rule c↓. For doing so, let me introduce the super rule

S [•R1, R2]•
sc↓

S{R} , where there are derivations
R1

∆1‖LS′
R

and
R2

∆2‖LS′
R

.

Observe that c↓ is an instance of sc↓. I will now show that the rule sc↓ is admissible
for LS′. This will be done by permuting all instances of sc↓ to the top where they disappear
eventually. More precisely, if an instance of sc↓ appears at the top of a proof, i.e. we have
the situation

1↓
S [•R1, R2]•

sc↓ ,
S{R}

then S [•R1, R2]• = 1. Therefore one of R1 and R2 must be equal to 0. Without loss of
generality, assume R1 = 0. Then we can replace the derivation by

1↓
S{R2}
∆2‖LS′
S{R}

.

Now consider
Q

π
S [•R1, R2]•

sc↓ ,
S{R}

where π ∈ LS′ is nontrivial. According to 4.2.3, there are the following cases to consider

(4) The redex of π is inside an active structure of the contractum of sc↓. We have the
following subcases:

(i) The redex of π is inside R1. Then

S [•R′
1, R2]•

π
S [•R1 , R2]•

sc↓ yields
S{R}

S [•R′
1, R2]•

sc↓ ,
S{R}

because there is a derivation
R′

1
‖LS′
R

.

(ii) The redex of π is inside R2. This is similar to (i).

(iii) The redex of π overlaps with both, R1 and R2. Then π = t′′↓ and R1 = [•R′
1, R

′′
1]•

and R2 = [•R′
2, R

′′
2]•. We have

S [•R′
1, R

′′
2]•

t′′↓
S [•R′

1, R
′′
1 , R′

2 , R′′
2]•

sc↓ yields
S{R}

S [•R′
1, R

′′
2]•

sc↓ .
S{R}

3.4. Cut Elimination 49

(5) The contractum of sc↓ is inside an active structure of the redex of π. There are four
subcases:

(i) π = cd↓ and the contractum [•R1, R2]• of sc↓ occurs inside the substructure which
is duplicated in the instance of cd↓. In other words, we have

S(• [V,U [•R1, R2]•], [T,U [•R1, R2]•])•
cd↓

S [(•V, T)•, U [•R1, R2]•]
sc↓ ,

S [(•V, T)•, U{R}]

which can be replaced by

S(• [V,U [•R1, R2]•], [T,U [•R1, R2]•])•
sc↓

S(• [V,U [•R1, R2]•], [T,U{R}])•
sc↓

S(• [V,U{R}], [T,U{R}])•
cd↓ .

S [(•V, T)•, U{R}]

(ii) π = cb↓. Similar to (i).

(iii) π = t′↓ or π = t′′↓. Then

S{0}
t′↓

S{U [•R1, R2]•}
sc↓ yields

S{U{R}}
S{0}

t′↓ .
S{U{R}}

(iv) π = w↓. Similar to (iii).

(6) The redex of π and the contractum [•R1, R2]• of sc↓ overlap. This is only possible, if
π = t′′↓. In the most general case we have S{ } = S′ [•{ }, T]• and R1 = [•R′

1, R
′′
1]• and

R2 = [•R′
2, R

′′
2]•. Then

S′ [•R′
1, R

′′
2]•

t′′↓
S′ [•R′

1, R
′′
1 , R′

2 , R′′
2 , T]•

sc↓ yields
S′ [•R,T]•

S [•R′
1, R

′′
2]•

sc↓
S{R}

t′′↓ ,
S′ [•R, T]•

which is similar to case (4.iii). ��
The following lemma says that the rule cb↓ can be separated from the other rules in

system LS′. This property contributes considerably for simplifying the induction measure
for the proof of the splitting lemma because it will suffice to find a induction measure for
the system LS′ \ {cb↓}.

3.4.9 Lemma For every proof −‖LS′
R

, there is a proof

−‖LS′\{cb↓}
R′

‖{cb↓}
R

,

50 3. Linear Logic and the Calculus of Structures

for some structure R′.

Proof: All instance of the rule cb↓ can be permuted down. To see this, consider

S [?Z, ?Z]
cb↓

S{?Z}
ρ ,

P

where ρ ∈ LS′ \ {cb↓} and cb↓ are nontrivial. According to the case analysis in 4.2.3, we
have the following cases to consider

(4) The redex ?Z of cb↓ is inside an active structure of the contractum of ρ. This is only
possible if ρ = cd′↓ and we have

S(• [R,U [?Z, ?Z]], [T,U{?Z}])•
cb↓

S(• [R,U{?Z}], [T,U{?Z}])•
cd′↓ ,

S [(•R,T)•, U{?Z}]
which can be replaced by

S(• [R,U [?Z, ?Z]], [T,U{?Z}])•
w↓

S(• [R,U [?Z, ?Z]], [T,U [?Z, ?Z]])•
cd′↓

S [(•R,T)•, U [?Z, ?Z]]
cb↓ .

S [(•R,T)•, U{?Z}]
(5) The contractum of ρ is inside the redex ?Z of cb↓. Then we have

S [?Z, ?Z]
cb↓

S{?Z}
ρ , which can be replaced by

S{?Z ′}

S [?Z, ?Z]
ρ

S [?Z, ?Z ′]
ρ

S [?Z ′ , ?Z ′]
cb↓ .

S{?Z ′}
(6) The redex ?Z of cb↓ and the contractum of ρ overlap. This is impossible.

According to this, all instances of cb↓ can be permuted down until the derivation has the
desired shape. ��

In the following, I will show the splitting lemma for system LS′ \{cb↓} (Lemma 3.4.19),
from which the splitting lemma for system LS (Lemma 3.4.5) will easily follow. Before I
show the (rather technical) proof of splitting, let me explain the induction measure.

Consider the finite multisets of natural numbers, or equivalently, the elements of the
free commutative monoid generated by N. Let M and N be two such multisets. Then
define

M + N = { n + m | n ∈ N and m ∈ N } .

This sum is the sum of the free commutative monoid, and distributes over the union: Given
three such multisets M , N , and O, then

(M ∪N) + O = (M + O) ∪ (N + O) .

3.4. Cut Elimination 51

On the set of multisets of natural numbers, let me define the binary relation < as follows:
We have M < N iff there exists an injective f : M → N such that for all n ∈ M we have
m � f(m) and there is an n ∈ N such that f−1(n) is undefined or f−1(n) < n. Transitivity
of < is obvious. Since we consider only finite multisets, < is also irreflexive. Hence < is
a strict partial order. That < is well-founded follows immediately. I will write M � N if
M < N or M = N .

In the following, I will define the size of a structure to be a multiset of natural numbers
(or, equivalently, an element of the free commutative monoid generated by N). For this,
I consider structures to be in normal form (see Remark 3.1.5), in particular, superfluous
units are omitted. The size of an LS structure R, denoted by size

(
R

)
, is inductively defined

as follows:

size
(
a
)

= {1} (for every atom, including ⊥, 1, 0, and �) ,

size
(
[R,T]

)
= size

(
R

)
+ size

(
T

)
,

size
(
(R,T)

)
= size

(
R

) ∪ size
(
T

)
,

size
(
[•R,T]•

)
= size

(
R

) ∪ size
(
T

)
,

size
(
(•R,T)•

)
= size

(
R

) ∪ size
(
T

)
,

size
(
!R

)
= size

(
R

)
,

size
(
?R

)
= size

(
R

)
.

3.4.10 Example Let R = [!(1, a, [c, c̄], (•?ā,�, b,⊥)•), c]. Then we have that
R = [!(a, [c, c̄], (•?ā, b,⊥)•), c], which has

size
(
R

)
= ({1} ∪ ({1} + {1}) ∪ {1} ∪ {1} ∪ {1}) + {1} = {2, 3, 2, 2, 2} .

3.4.11 Observation Let
T

ρ
R

be an application of a rule ρ ∈ LS′ \ {cb↓}. Then we

have size
(
T

)
� size

(
R

)
. This is the reason, why the rule s′ and cd′↓ have been introduced

and the restriction of R �= ⊥ has been put on t′↓.

3.4.12 Observation Let R and T be structures and S{ } be a context. If size
(
T

)
<

size
(
R

)
, then size

(
S{T}) < size

(
S{R}). (This follows immediately from the definitions by

using induction on S{ }).

3.4.13 Observation Let R and T be structures. If T is a proper substructure of R
(i.e. R = S{T} for some nontrivial context S{ }), then size

(
T

)
< size

(
R

)
.

Observations 3.4.11 to 3.4.13 ensure that in the proof of Lemma 3.4.19, which will follow
below, the induction hypothesis can indeed be applied in every case where it is applied. Let
me use two typical examples.

If R, P1, P2 and P3 are given such that P1 �= � �= P2, then

size
(
[R,P1, P3]

)
< size

(
[R, (•P1, P2)•, P3]

)
and

size
(
[R,P2, P3]

)
< size

(
[R, (•P1, P2)•, P3]

)
.

52 3. Linear Logic and the Calculus of Structures

If R, P1, P2, P3, Q and S{ } are given such that P1 �= 1 �= P2 and
S{Q}
‖LS′\{cb↓}
P3

, then

size
(
[R,P1, Q]

)
< size

(
[R, (P1, P2), P3]

)
.

The full induction measure in the proof of Lemma 3.4.19 will be the size of the proofs,
which is defined as follows:

3.4.14 Definition The size of a proof −
Π‖
R

is the pair

size
(
Π

)
=

〈
size

(
R

)
, length(Π)

〉
.

Given two proofs −
Π‖
R

and −
Π′‖
R′

, then define

size
(
Π

)
< size

(
Π′) ⇐⇒ size

(
R

)
< size

(
R′) or

size
(
R

)
= size

(
R′) and length(Π) < length(Π′) .

I will make heavy use of the following lemmata (without explicitly mentioning them all
the time).

3.4.15 Lemma Let n,m � 0 and let R1, . . . , Rn and T1, . . . , Tm be any structures. Then
there is are derivations

(• [R1, T1], [R1, T2], . . . , [R1, Tm], . . . , [Rn, T1], [Rn, T2], . . . , [Rn, Tm])•
∆
∥∥{c↓,d↓}

[(•R1, . . . , Rn)•, (•T1, . . . , Tm)•]

and
(• [R1, T1], [R1, T2], . . . , [R1, Tm], . . . , [Rn, T1], [Rn, T2], . . . , [Rn, Tm])•

∆′
∥∥{cd′↓}

[(•R1, . . . , Rn)•, (•T1, . . . , Tm)•]
.

Proof: The derivation ∆ consists of (n− 1)(m− 1) instances of c↓ and d↓. ��

3.4.16 Lemma Let n � 0 and let R1, . . . , Rn structures that are provable in LS. Then
(•R1, . . . , Rn)• is also provable in LS.

Proof: Immediate from the definitions (use (•1, 1)• = 1). ��

3.4.17 Lemma Let n,m � 0 and let R1, . . . , Rn and T1, . . . , Tm be any structures. If
for every i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, the structure [Ri, Tj] is provable in LS, then
[(•R1, . . . , Rn)•, (•T1, . . . , Tm)•] is also provable in LS.

Proof: Immediate consequence of the previous two lemmata. ��

3.4. Cut Elimination 53

3.4.18 Lemma Let R be any structures. Then [R, 0,�] is provable in LS.

Proof: Use
1↓
1

ai↓
[0,�]

t↓ .
[R, 0,�] ��

Observe that Lemmata 3.4.16 to 3.4.18 do also hold for system LS′ \ {cb↓}. It follows
the splitting lemma for the system LS′ \{cb↓}. Its proof is essentially the same as the proof
of splitting for system NELm in Chapter 7. But in the presence of the additives, the cases
are more complex.

3.4.19 Lemma Let R, T , P be any structures, and let a be an atom.

(a) If [(•R,T)•, P] is provable in LS′ \ {cb↓}, then

−‖LS′\{cb↓}
[R,P]

and −‖LS′\{cb↓}
[T, P]

.

(b) If [[•R,T]•, P] is provable in LS′ \ {cb↓}, then there are structures PR and PT , such
that

(•PR, PT)•
‖LS′\{cb↓}
P

and −‖LS′\{cb↓}
[R,PR]

and −‖LS′\{cb↓}
[T, PT]

.

(c) If [(R,T), P] is provable in LS′\{cb↓}, then there is an n � 0 and there are structures
PR1, . . . , PRn and PT1, . . . , PTn, such that

(• [0,�], . . . , [0,�], [PR1, PT1], . . . , [PRn, PTn])•
‖LS′\{cb↓}
P

and

−‖LS′\{cb↓}
[R,PRi]

and −‖LS′\{cb↓}
[T, PT i]

,

for every i ∈ {1, . . . , n}.
(d) If [!R,P] is provable in LS′ \ {cb↓}, then there are n � 0 and k1, . . . , kn � 0 and

structures PR11, . . . , PR1k1 , PR21, . . . , PR2k2 , . . . , PRn1, . . . , PRnkn , such that

(• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1k1], . . . , [?PRn1, . . . , ?PRnkn])•
‖LS′\{cb↓}
P

and

−‖LS′\{cb↓}
[R,PRi1, . . . , PRiki

]

for every i ∈ {1, . . . , n}.

54 3. Linear Logic and the Calculus of Structures

(e) If [?R,P] is provable in LS′ \{cb↓}, then either P is provable in LS′ \{cb↓}, or there
are n � 0 and k � n and structures PR1, . . . , PRn, such that

(• [0,�], . . . , [0,�], !PR1, . . . , !PRk, PRk+1, . . . , PRn)•
‖LS′\{cb↓}
P

and

−‖LS′\{cb↓}
[R,PRi]

for every i ∈ {1, . . . , n}.
(f) If [a, P] is provable in LS, then there is a derivation

(• [0,�], . . . , [0,�], ā, . . . , ā)•
‖LS′\{cb↓}
P

.

Proof: All six statements are proved simultaneously by the induction on the size of the
proof as defined before. What follows is a case analysis which is conceptually similar to the
cut elimination proof in the sequent calculus.

(a) I will consider only the case where R �= � �= T (otherwise the statement is trivially
true). Observe that also in the case R = 1 = T the statement is trivially true.
Consider now the bottommost rule instance ρ in the proof −

Π‖LS′\{cb↓}
[(•R,T)•, P]

. Without

loss of generality, we can assume that the application of ρ is nontrivial. As in the
splitting proof in Chapter 7, we can distinguish between three conceptually different
cases:

(1) The redex of ρ is inside R, T or P .

(2) The substructure (•R,T)• is inside the redex of ρ, but the application of ρ does
not decompose the structure (•R,T)•.

(3) The application of ρ decomposes the substructure (•R,T)•.

Case (2) can be compared to a commutative case in a cut elimination proof in the
sequent calculus (see Section 2.3), and case (3) to a key case. Case (1) has no coun-
terpart in the sequent calculus because there is no possibility of deep inference.

(1) The redex of ρ is inside R, T or P . Then there are three subcases of which I show
only the first, the other two being similar (compare the proof of Lemma 7.3.5 on
page 217).

(i) The redex of ρ is inside R. Then the proof Π has the shape

−
Π′

∥∥LS′\{cb↓}
[(•R′, T)•, P]

ρ .
[(•R,T)•, P]

3.4. Cut Elimination 55

By applying the induction hypothesis, we get

−‖LS′\{cb↓}
[R′, P]

and −‖LS′\{cb↓}
[T, P]

,

from which we get
−∥∥LS′\{cb↓}

[R′, P]
ρ .

[R,P]

(2) The substructure (•R,T)• is inside the redex of ρ, but the application of ρ does
not decompose the structure (•R,T)•. We have the following subcases:

(i) ρ = s′ and P = [(P1, P2), P3, P4] (and P1 �= 1 �= P2) and Π is

−
Π′

∥∥LS′\{cb↓}
[([(•R,T)•, P1, P3], P2), P4]
s′ .

[(•R,T)•, (P1, P2), P3 , P4]

By applying the induction hypothesis to Π′, we get an n � 0 and structures
Q11, . . . , Q1n and Q21, . . . , Q2n, such that

(• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1n, Q2n])•
∆P‖LS′\{cb↓}

P4

and

−
Π1i‖LS′\{cb↓}

[(•R,T)•, P1, P3, Q1i]
and −

Π2i‖LS′\{cb↓}
[P2, Q2i]

for every i ∈ {1, . . . , n}. By applying the induction hypothesis again to Π1i,
we get

−
ΠRi‖LS′\{cb↓}

[R,P1, P3, Q1i]
and −

ΠTi‖LS′\{cb↓}
[T, P1, P3, Q1i]

.

From which we can build for every i ∈ {1, . . . , n}:

−
ΠRi

∥∥LS′\{cb↓}
[R,P1, P3, Q1i]

Π2i

∥∥LS′\{cb↓}
[R, (P1, [P2, Q2i]), P3, Q1i]
s′ and

[R, (P1, P2), P3, Q1i, Q2i]

−
ΠTi

∥∥LS′\{cb↓}
[T, P1, P3, Q1i]

Π2i

∥∥LS′\{cb↓}
[T, (P1, [P2, Q2i]), P3, Q1i]
s′ .

[T, (P1, P2), P3, Q1i, Q2i]

56 3. Linear Logic and the Calculus of Structures

We can now obtain the proof
−∥∥LS′\{cb↓}

(• [R, (P1, P2), P3, 0,�], . . . , [R, (P1, P2), P3, 0,�],
[R, (P1, P2), P3, Q11, Q21], . . . , [R, (P1, P2), P3, Q1n, Q2n])•∥∥{cd′↓}

[R, (P1, P2), P3, (• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1n, Q2n])•]
∆P

∥∥LS′\{cb↓}
[R, (P1, P2), P3, P4]

= .
[R,P]

Similarly, we can get a proof of [T, P].

(ii) ρ = cd′↓ and P = [(•P1, P2)•, P3, P4] and Π is
−

Π′
∥∥LS′\{cb↓}

[(• [(•R,T)•, P1, P3], [(•R,T)•, P2, P3])•, P4]
cd′↓ .

[(•R,T)•, (•P1, P2)•, P3 , P4]

By applying the induction hypothesis to Π′, we get
−

Π1‖LS′\{cb↓}
[(•R,T)•, P1, P3, P4]

and −
Π2‖LS′\{cb↓}

[(•R,T)•, P2, P3, P4]
.

Applying the induction hypothesis again to Π1 and Π2 yields the four proofs:

−‖LS′\{cb↓}
[R,P1, P3, P4]

and −‖LS′\{cb↓}
[T, P1, P3, P4]

and

−‖LS′\{cb↓}
[R,P2, P3, P4]

and −‖LS′\{cb↓}
[T, P2, P3, P4]

.

We can now obtain
−∥∥LS′\{cb↓}

(• [R,P1, P3, P4], [R,P2, P3, P4])•
cd′↓

[R, (•P1, P2)•, P3, P4]
= ,

[R,P]

and a similar proof for [T, P].

(iii) ρ = t′↓ and P = [P1, P2] and Π is
−

Π′
∥∥LS′\{cb↓}

[0, P2]
t′↓ .

[(•R,T)•, P1 , P2]

We can get:
−‖LS′\{cb↓}

[0, P2]
t′↓

[R,P1, P2]
and

−‖LS′\{cb↓}
[0, P2]

t′↓ .
[T, P1, P2]

3.4. Cut Elimination 57

(3) The application of ρ decomposes the substructure (•R,T)•. This case is the crucial
one. We have only one subcase:

(i) ρ = cd′↓ and R = (•R1, R2)• and T = (•T1, T2)• and P = [P1, P2] and Π is

−
Π′

∥∥LS′\{cb↓}
[(• [(•R1, T1)•, P1], [(•R2, T2)•, P1])•, P2]

cd′↓ .
[(•R1, R2, T1, T2)•, P1 , P2]

By applying the induction hypothesis to Π′, we get

−
Π1‖LS′\{cb↓}

[(•R1, T1)•, P1, P2]
and −

Π2‖LS′\{cb↓}
[(•R2, T2)•, P1, P2]

.

Applying the induction hypothesis again to Π1 and Π2 yields the four proofs:

−‖LS′\{cb↓}
[R1, P1, P2]

and −‖LS′\{cb↓}
[T1, P1, P2]

and

−‖LS′\{cb↓}
[R2, P1, P2]

and −‖LS′\{cb↓}
[T2, P1, P2]

.

We can now obtain

−∥∥LS′\{cb↓}
(• [R1, P1, P2], [R2, P1, P2])•

cd′↓
[(•R1, R2)•, P1, P2]

= ,
[R,P]

and a similar proof for [T, P].

(b) I will consider only the case where R �= 0 �= T because otherwise the statement is
trivially true. (If R = 0 let PR = �.) Also the case where R = ⊥ = T is trivially
true (let PR = PT = 1). Consider now the bottommost rule instance ρ in the proof

−
Π‖LS′\{cb↓}

[[•R,T]•, P]
. Without loss of generality, we can assume that the application of ρ

is nontrivial. As in case (a), we can distinguish between the following three cases:

(1) The redex of ρ is inside R, T or P . This is similar to case (a.i).

(2) The substructure [•R,T]• is inside the redex of ρ, but the application of ρ does
not decompose the structure [•R,T]•. This case is also similar to (a), but there
are some differences.

(i) ρ = s′ and P = [(P1, P2), P3, P4] and Π is

−
Π′

∥∥LS′\{cb↓}
[([[•R,T]•, P1, P3], P2), P4]
s′ .

[[•R,T]•, (P1, P2), P3 , P4]

58 3. Linear Logic and the Calculus of Structures

By applying the induction hypothesis to Π′, we get an n � 0 and structures
Q11, . . . , Q1n and Q21, . . . , Q2n, such that

(• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1n, Q2n])•
∆P‖LS′\{cb↓}

P4

and

−
Π1i‖LS′\{cb↓}

[[•R,T]•, P1, P3, Q1i]
and −

Π2i‖LS′\{cb↓}
[P2, Q2i]

for every i ∈ {1, . . . , n}. By applying the induction hypothesis again to Π1i,
we get structures PRi and PT i, such that

(•PRi, PT i)•
∆Qi‖LS′\{cb↓}

[P1, P3, Q1i]
and −‖LS′\{cb↓}

[R,PRi]
and −‖LS′\{cb↓}

[T, PT i]
.

Now let PR = (•PR1, . . . , PRn)• and PT = (•PT1, . . . , PTn, [0,�], . . . , [0,�])•,
and build

(•PR, PT)•
=

(• [0,�], . . . , [0,�], PR1, PT1, . . . , PRn, PTn)•
∆Qi

∥∥LS′\{cb↓}
(• [0,�], . . . , [0,�], [P1, P3, Q11])•, . . . , [P1, P3, Q1n]

Π2i

∥∥LS′\{cb↓}
(• [0,�], . . . , [0,�], [(P1, [P2, Q21], P3, Q11)], . . . , [(P1, [P2, Q2n], P3, Q1n)])•∥∥{t′↓,s′}
(• [(P1, P2), P3, 0,�], . . . , [(P1, P2), P3, 0,�],

[(P1, P2), P3, Q11, Q21], . . . , [(P1, P2), P3, Q1n, Q2n])•∥∥{cd′↓}
[(P1, P2), P3, (• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1n, Q2n])•]

∆P

∥∥LS′\{cb↓}
[(P1, P2), P3, P4]

=
P

and −∥∥LS′\{cb↓}
(• [R,PR1], . . . , [R,PRn])•∥∥{cd′↓}

[R, (•PR1, . . . , PRn)•]
=

[R,PR]

and −∥∥LS′\{cb↓}
(• [T, PT1], . . . , [T, PTn], [T, 0,�], . . . , [T, 0,�])•∥∥{cd′↓}

[T, (•PT1, . . . , PTn, [0,�], . . . , [0,�])•]
= .

[T, PT]

3.4. Cut Elimination 59

(ii) ρ = cd′↓ and P = [(•P1, P2)•, P3, P4] and Π is
−

Π′
∥∥LS′\{cb↓}

[(• [[•R,T]•, P1, P3], [[•R,T]•, P2, P3])•, P4]
cd′↓ .

[[•R,T]•, (•P1, P2)•, P3 , P4]

By applying the induction hypothesis to Π′, we get
−

Π1‖LS′\{cb↓}
[[•R,T]•, P1, P3, P4]

and −
Π2‖LS′\{cb↓}

[[•R,T]•, P2, P3, P4]
.

Applying the induction hypothesis again to Π1 and Π2 yields structures PR1,
PR2, PT1, and PT2, such that

(•PR1, PT1)•
‖LS′\{cb↓}

[P1, P3, P4]
and −‖LS′\{cb↓}

[R,PR1]
and −‖LS′\{cb↓}

[T, PT1]

and

(•PR2, PT2)•
‖LS′\{cb↓}

[P2, P3, P4]
and −‖LS′\{cb↓}

[R,PR2]
and −‖LS′\{cb↓}

[T, PT2]
.

Now let PR = (•PR1, PR2)• and PT = (•PT1, PT2)•, and build

(•PR, PT)•
=

(•PR1, PT1, PR2, PT2)•∥∥LS′\{cb↓}
(• [P1, P3, P4], [P2, P3, P4])•

cd′↓
[(•P1, P2)•, P3, P4]

=
P

and −∥∥LS′\{cb↓}
(• [R,PR1], [R,PR2])•

cd′↓
[R, (•PR1, PR2)•]

= and
[R,PR]

−∥∥LS′\{cb↓}
(• [T, PT1], [T, PT2])•

cd′↓
[T, (•PT1, PT2)•]

= .
[T, PT]

(iii) ρ = t′↓ and P = [P1, P2] and Π is
−

Π′
∥∥LS′\{cb↓}

[0, P2]
t′↓ .

[[•R,T]•, P1 , P2]

Now let PR = P = [P1, P2] and PT = �. We can get:

(•PR, PT)•
= and

P

−∥∥LS′\{cb↓}
[0, P2]

t′↓ and
[R,P1 , P2]

1↓
1

ai↓
[0,�]

t′↓ .
[T ,�]

60 3. Linear Logic and the Calculus of Structures

(Remark: If [R,P1] = ⊥ then exchange PR and PT . If T = ⊥, then use the
axiom �↓ for proving [T,�]. It cannot be the case that [R,P1] = ⊥ = T
because then [[•R,T]•, P1] = ⊥.)

(3) The application of ρ decomposes the substructure [•R,T]•. Again, we have only
one possible case:

(i) ρ = t′′↓ and R = [•R1, R2]• and T = [•T1, T2]• and Π is

−
Π′

∥∥LS′\{cb↓}
[[•R1, T1]•, P]

t′′↓ .
[[•R1, R2, T2 , T1]•, P]

By applying the induction hypothesis to Π′, we get structures PR and PT ,
such that

(•PR, PT)•
‖LS′\{cb↓}
P

and −
ΠR1
‖LS′\{cb↓}

[R1, PR]
and −

ΠT1
‖LS′\{cb↓}

[T1, PT]
.

In the case where R1 �= 0 we can get

−∥∥LS′\{cb↓}
[R1, PR]

t′′↓ .
[[•R1, R2]•, PR]

If R1 = 0 and R2 �= ⊥, then use

−∥∥LS′\{cb↓}
[R1, PR]

t′↓ .
[[•R1, R2]•, PR]

If R1 = 0 and R2 = ⊥, then apply the induction hypothesis to ΠR1 , which
yields

(• [0,�], . . . , [0,�],�, . . . ,�)•
‖LS′\{cb↓}

PR

,

from which we can get

−∥∥LS′\{cb↓}
(• [0,�], . . . , [0,�],�, . . . ,�)•∥∥LS′\{cb↓}

PR
=

[[•0,⊥]•, PR]
= .

[[•R1, R2]•, PR]

Similarly, we get a proof of [T, PT].

3.4. Cut Elimination 61

(c) I will consider only the case where R �= 1 �= T because otherwise the statement is
trivially true. (If R = 1, let n = 1 and PR1 = ⊥ and PT1 = P . For T = 1 the
situation is similar.) As before, consider the bottommost rule instance ρ in the proof

−
Π‖LS′\{cb↓}

[(R,T), P]
. Without loss of generality, we can assume that the application of ρ

is nontrivial. As in case (a), we can distinguish between the following three cases:

(1) The redex of ρ is inside R, T or P . This is similar to case (a.i).

(2) The substructure (R,T) is inside the redex of ρ, but the application of ρ does
not decompose the structure (R,T). Again, this case is similar to (a), but there
are some differences.

(i) ρ = s′ and P = [(P1, P2), P3, P4] and Π is

−
Π′

∥∥LS′\{cb↓}
[([(R,T), P1, P3], P2), P4]
s′ .

[(R,T), (P1, P2), P3 , P4]

By applying the induction hypothesis to Π′, we get an h � 0 and structures
Q11, . . . , Q1n and Q21, . . . , Q2h, such that

(• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1h, Q2h])•
∆P‖LS′\{cb↓}

P4

and

−
Π1i‖LS′\{cb↓}

[(R,T), P1, P3, Q1i]
and −

Π2i‖LS′\{cb↓}
[P2, Q2i]

for every i ∈ {1, . . . , h}. By applying the induction hypothesis again to Π1i,
we get an mi � 0 and structures PRi1, . . . , PRimi and PT i1, . . . , PT imi , such
that

(• [0,�], . . . , [0,�], [PRi1, PT i1], . . . , [PRimi , PT imi])•
∆Qi‖LS′\{cb↓}

[P1, P3, Q1i]
and

−‖LS′\{cb↓}
[R,PRij]

and −‖LS′\{cb↓}
[T, PT ij]

,

62 3. Linear Logic and the Calculus of Structures

for every j ∈ {1, . . . ,mi}. Now let n = m1 + · · · + mh. We can get

(• [0,�], . . . , [0,�], [PR11, PT11], . . . , [PR1m1 , PT1m1], . . . ,
[PRh1, PTh1], . . . , [PRhmh

, PThmh
])•

∆Qi

∥∥LS′\{cb↓}
(• [0,�], . . . , [0,�], [P1, P3, Q11], . . . , [P1, P3, Q1h])•

Π2i

∥∥LS′\{cb↓}
(• [0,�], . . . , [0,�], [(P1, [P2, Q21]), P3, Q11], . . . , [(P1, [P2, Q2h]), P3, Q1h])•∥∥{t′↓,s′}
(• [(P1, P2), P3, 0,�], . . . , [(P1, P2), P3, 0,�],

[(P1, P2), P3, Q11, Q21], . . . , [(P1, P2), P3, Q1h, Q2h])•∥∥{cd′↓}
[(P1, P2), P3, (• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1h, Q2h])•]

∆P

∥∥LS′\{cb↓}
[(P1, P2), P3, P4]

= .
P

(ii) ρ = cd′↓ and P = [(•P1, P2)•, P3, P4] and Π is

−
Π′

∥∥LS′\{cb↓}
[(• [(R,T), P1, P3], [(R,T), P2, P3])•, P4]

cd′↓ .
[(R,T), (•P1, P2)•, P3 , P4]

By applying the induction hypothesis to Π′, we get

−
Π1‖LS′\{cb↓}

[(R,T), P1, P3, P4]
and −

Π2‖LS′\{cb↓}
[(R,T), P2, P3, P4]

.

Applying the induction hypothesis again to Π1 and Π2 yields an h � 0 and
structures PR1, . . . , PRh and PT1, . . . , PTh, such that

(• [0,�], . . . , [0,�], [PR1, PT1], . . . , [PRh, PTh])•
∆P1‖LS′\{cb↓}

[P1, P3, P4]
and

−‖LS′\{cb↓}
[R,PRi]

and −‖LS′\{cb↓}
[T, PT i]

,

for every i ∈ {1, . . . , h}, and an h′ � 0 and structures P ′
R1, . . . , P

′
Rh′ and

P ′
T1, . . . , P

′
Th′ , such that

(• [0,�], . . . , [0,�], [P ′
R1, P

′
T1], . . . , [P ′

Rh′ , P ′
Th′])•

∆P2‖LS′\{cb↓}
[P1, P3, P4]

and

−‖LS′\{cb↓}
[R,P ′

Rj]
and −‖LS′\{cb↓}

[T, P ′
Tj]

,

3.4. Cut Elimination 63

for every j ∈ {1, . . . , h′}. Now let n = h + h′, we can get

(• [0,�], . . . , [0,�], [PR1, PT1], . . . , [PRh, PTh], [P ′
R1, P

′
T1], . . . , [P ′

Rh′ , P ′
Th′])•

∆P1,∆P2

∥∥LS′\{cb↓}
(• [P1, P3, P4], [P2, P3, P4])•

cd′↓
[(•P1, P2)•, P3, P4]

= .
P

(iii) ρ = t′↓ and P = [P1, P2] and Π is

−
Π′

∥∥LS′\{cb↓}
[0, P2]

t′↓ .
[(R,T), P1 , P2]

By applying the induction hypothesis to Π′, we get

(• [0,�], . . . , [0,�],�, . . . ,�)•
‖LS′\{cb↓}
P2

,

from which we can get the following (let n = 0):

(• [0,�], . . . , [0,�])•∥∥{t′↓}
(• [P1, 0,�], . . . , [P1, 0,�])•∥∥{cd′↓}
[P1, (• [0,�], . . . , [0,�])•]

= .
[P1, (• [0,�], . . . , [0,�],�, . . . ,�)•]∥∥LS′\{cb↓}

[P1, P2]
= ,

P

(3) The application of ρ decomposes the substructure (R,T). As before, this case is
the crucial one and there is one subcase:

(i) ρ = s′ and R = (R1, R2) and T = (T1, T2) and P = [P1, P2] and Π is

−
Π′

∥∥LS′\{cb↓}
[([(R1, T1), P1], R2, T2), P2]
s′ .

[(R1, R2, T1, T2), P1 , P2]

By applying the induction hypothesis to Π′, we get an h � 0 and structures
Q11, . . . , Q1h and Q21, . . . , Q2h, such that

(• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1h, Q2h])•
∆P‖LS′\{cb↓}

P2

and

64 3. Linear Logic and the Calculus of Structures

−
Π1i‖LS′\{cb↓}

[(R1, T1), P1, Q1i]
and −

Π2i‖LS′\{cb↓}
[(R2, T2), Q2i]

for every i ∈ {1, . . . , h}. Applying the induction hypothesis again to Π1i

and Π2i yields an mi � 0 and structures PRi1, . . . , PRimi and PT i1, . . . , PT imi ,
such that

(• [0,�], . . . , [0,�], [PRi1, PT i1], . . . , [PRimi , PT imi])•
∆Q1i
‖LS′\{cb↓}

[P1, Q1i]
and

−‖LS′\{cb↓}
[R,PRij]

and −‖LS′\{cb↓}
[T, PT ij]

,

for every j ∈ {1, . . . ,mi}, and an m′
i � 0 and structures P ′

Ri1, . . . , P
′
Rim′

i
and

P ′
T i1, . . . , P

′
T im′

i
, such that

(• [0,�], . . . , [0,�], [P ′
Ri1, P

′
T i1], . . . , [P ′

Rim′
i
, P ′

T im′
i
])•

∆Q2i
‖LS′\{cb↓}

Q2i

and

−‖LS′\{cb↓}
[R,P ′

Rik]
and −‖LS′\{cb↓}

[T, P ′
T ik]

,

for every k ∈ {1, . . . ,m′
i}. Now let n = m1m

′
1 + · · ·+ mhm′

h. We can get

(• [0,�], . . . , [0,�],
[PR11, P

′
R11, PT11, P

′
T11], . . . , [PR1m1

, P ′
R1m′

1
, PT1m1

, P ′
T1m′

1
], . . . ,

[PRh1, P
′
Rh1, PTh1, P

′
Th1], . . . , [PRhmh

, P ′
Rhm′

h
, PThmh

, P ′
Thm′

h
])•∥∥{t′↓,cd′↓}

(• [0,�], . . . , [0,�],
[(• [0,�], . . . , [0,�], [PR11, PT11], . . . , [PR1m1 , PT1m1])•,
(• [0,�], . . . , [0,�], [P ′

R11, P
′
T11], . . . , [P ′

R1m′
1
, P ′

T1m′
1
])•], . . . ,

[(• [0,�], . . . , [0,�], [PRh1, PTh1], . . . , [PRhmh
, PThmh

])•,
(• [0,�], . . . , [0,�], [P ′

Rh1, P
′
Th1], . . . , [P ′

Rhm′
h
, P ′

Thm′
h

])•])•

∆Q1i
,∆Q2i

∥∥LS′\{cb↓}
(• [P1, 0,�], . . . , [P1, 0,�], [P1, Q11, Q21], . . . , [P1, Q1h, Q2h])• .∥∥{cd′↓}

[P1, (• [0,�], . . . , [0,�], [Q11, Q21], . . . , [Q1h, Q2h])•]
∆P

∥∥LS′\{cb↓}
[P1, P2]

=
P

(d) Consider the bottommost rule instance ρ in the proof −
Π‖LS′\{cb↓}

[!R,P]
. Without loss of

generality, we can assume that the application of ρ is nontrivial. As in case (a), we
can distinguish between the following three cases:

3.4. Cut Elimination 65

(1) The redex of ρ is inside R or P . This is similar to case (a.i).

(2) The substructure !R is inside the redex of ρ, but the application of ρ does not
decompose the structure !R. This case is similar to (c.2).

(3) The application of ρ decomposes the substructure !R. This is only possible if
ρ = p↓. Hence, there is only one subcase:

(i) ρ = p↓, P = [?P1, P2] and Π is

−
Π′

∥∥LS′\{cb↓}
[![R,P1], P2]

p↓ .
[!R, ?P1 , P2]

By applying the induction hypothesis to Π′, we get n � 0 and l1, . . . , ln �
0 and structures PR11, . . . , PR1l1 , PR21, . . . , PR2l2 , . . . , PRn1, . . . , PRnln , such
that

(• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1l1], . . . , [?PRn1, . . . , ?PRnln])•
∆P‖LS′\{cb↓}

P2

and −‖LS′\{cb↓}
[R,P1, PRi1, . . . , PRili]

,

for every i ∈ {1, . . . , n}. Now let ki = li + 1 and PRiki
= P1. We can get

(• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1k1], . . . , [?PRn1, . . . , ?PRnkn])•∥∥{t′↓}
(• [?P1, 0,�], . . . , [?P1, 0,�],

[?P1, ?PR11, . . . , ?PR1l1], . . . , [?P1, ?PRn1, . . . , ?PRnln])•∥∥{cd′↓}
[?P1, (• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1l1], . . . , [?PRn1, . . . , ?PRnln])•] .

∆P

∥∥LS′\{cb↓}
[?P1, P2]

=
P

(e) Consider the bottommost rule instance ρ in the proof −
Π‖LS′\{cb↓}

[?R,P]
. Without loss of

generality, we can assume that the application of ρ is nontrivial. As in case (a), we
can distinguish between the following three cases:

(1) The redex of ρ is inside R or P . This is similar to case (a.i).

(2) The substructure ?R is inside the redex of ρ, but the application of ρ does not
decompose the structure ?R. As in the previous case, this is similar to (c.2).

(3) The application of ρ decomposes the substructure ?R. We have the following
subcases:

66 3. Linear Logic and the Calculus of Structures

(i) ρ = w↓, and Π is −
Π′

∥∥LS′\{cb↓}
P

w↓ .
[?R,P]

Then P is provable in LS′ \ {cb↓}.
(ii) ρ = cr↓, and Π is −

Π′
∥∥LS′\{cb↓}

[R,P]
cr↓ .

[?R,P]

Then let n = 1 and k = 0 and PR1 = P .

(iii) ρ = p↓, P = [!P1, P2] and Π is

−
Π′

∥∥LS′\{cb↓}
[![R,P1], P2]

p↓ .
[?R, !P1 , P2]

By applying the induction hypothesis to Π′, we get n � 0 and l1, . . . , ln �
0 and structures PR11, . . . , PR1l1 , PR21, . . . , PR2l2 , . . . , PRn1, . . . , PRnln , such
that

(• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1l1], . . . , [?PRn1, . . . , ?PRnln])•
∆P‖LS′\{cb↓}

P2

and −‖LS′\{cb↓}
[R,P1, PRi1, . . . , PRili]

,

for every i ∈ {1, . . . , n}. Now let k = n and PRi = [P1, PRi1, . . . , ?PRili]. We
can get

(• [0,�], . . . , [0,�], ![P1, PR11, . . . , ?PR1l1], . . . , ![P1, PRn1, . . . , ?PRnln])•∥∥{t′↓,p↓}
(• [!P1, 0,�], . . . , [!P1, 0,�],

[!P1, ?PR11, . . . , ?PR1l1], . . . , [!P1, ?PRn1, . . . , ?PRnln])•∥∥{cd′↓}
[!P1, (• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1l1], . . . , [?PRn1, . . . , ?PRnln])•] .

∆P

∥∥LS′\{cb↓}
[!P1, P2]

=
P

(f) Consider the bottommost rule instance ρ in the proof −
Π‖LS′\{cb↓}

[a, P]
. Without loss of

generality, we can assume that the application of ρ is nontrivial. As in case (a), we
can distinguish between the following three cases:

3.4. Cut Elimination 67

(1) The redex of ρ is inside P . This is similar to case (a.i).

(2) The atom a is inside the redex of ρ, but the application of ρ does not “decompose”
the atom a. As before, this is similar to (c.2).

(3) The application of ρ “decomposes” the atom a: In other words, a is used in an
application of the rule ai↓, i.e. there is only one case:

(i) ρ = ai↓, P = [ā, P1] and Π is

−
Π′

∥∥LS′\{cb↓}
[1, P1]

ai↓ .
[a, ā, P1]

By applying the induction hypothesis to Π′, we get

(• [0,�], . . . , [0,�],⊥, . . . ,⊥)•
∆P‖LS′\{cb↓}

P1

From this we can get

(• [0,�], . . . , [0,�], ā . . . , ā)•∥∥{t′↓}
(• [ā, 0,�], . . . , [ā, 0,�], [ā,⊥], . . . , [ā,⊥])•∥∥{cd′↓}

[ā, (• [0,�], . . . , [0,�],⊥, . . . ,⊥)•] .
∆P

∥∥LS′\{cb↓}
[ā, P1]

=
P ��

From splitting for LS′ \ {cb↓}, we can immediately obtain a proof of the splitting state-
ment for system LS:

Proof of Lemma 3.4.5: I will show only the case (c). The others are similar. Let

−‖LS
[[•R,T]•, P]

be given. By Lemma 3.4.8 there is a proof

−‖LS′
[[•R,T]•, P]

,

which can by Lemma 3.4.9 be decomposed into

−‖LS′\{cb↓}
U
‖{cb↓}

[[•R,T]•, P]

,

68 3. Linear Logic and the Calculus of Structures

for some structure U . Since the redex of cb↓ is always a why-not structure, we have that
U = [[•R′, T ′]•, P ′] for some structures R′, T ′ and P ′, such that

R′

‖{cb↓}
R

and
T ′

‖{cb↓}
T

and
P ′

‖{cb↓}
P

.

We can now apply splitting for LS′ \ {cb↓} (Lemma 3.4.19). This yields structures PR

and PT , such that

(•PR, PT)•
‖LS′\{cb↓}
P ′

and −‖LS′\{cb↓}
[R′, PR]

and −‖LS′\{cb↓}
[T ′, PT]

.

with the derivations above, we get

(•PR, PT)•
‖LS′\{cb↓}
P ′

‖{cb↓}
P

and

−‖LS′\{cb↓}
[R′, PR]
‖{cb↓}

[R,PR]

and

−‖LS′\{cb↓}
[T ′, PT]
‖{cb↓}

[T, PT]

.

By applying Lemma 3.4.8 we get

(•PR, PT)•
‖LS
P

and −‖LS
[R,PR]

and −‖LS
[T, PT]

.
��

The splitting lemma can also be proved directly for system LS, without introducing LS′.
In this presentation I used the detour over system LS′ for the following reasons:

(1) For system LS the induction measure is more complicated because it has to be defined
such that size

(
[?R,R]

)
� size

(
?R

)
.

(2) Because of the behaviour of the units, the size of a structure must be such that
size

(
a
)

= 0 for a ∈ {⊥, 0, 1,�}. This causes some problems in the applicability of the
induction hypothesis.

(3) Because of the rule c↓, the case analysis for system LS is more tedious than for
LS′ \ {cb↓} in the proof of Lemma 3.4.19.

(4) I was not able to find the right splitting statement for why-not structures for sys-
tem LS, as it has been done for LS′ \ {cb↓} (case (e) in Lemma 3.4.19). But such a
statement is needed for the elimination of the rule p↑ (see Section 3.4.3). Therefore,
splitting for LS′ \ {cb↓} is employed.

3.4.2 Context Reduction

The idea of context reduction is to reduce a problem that concerns an arbitrary (deep)
context S{ } to a problem that concerns only a shallow context [{ }, P]. In the case of
cut elimination, for example, we will then be able to apply splitting.

Due to the presence of the additives and the exponentials, the situation is not as simple
as in [Gug02e].

3.4. Cut Elimination 69

3.4.20 Definition Let S be a finite (possibly empty) set of structures. The set W of
woo structures over S is the smallest set such that

• 1 ∈ W,

• if R ∈ S, then R ∈ W,

• if R1, R2 ∈ W, then (•R1, R2)• ∈ W,

• if R ∈ W, then !R ∈ W.

The name woo comes from w
¯

ith, o
¯
f-course and o

¯
ne. The following lemma shows a crucial

property of woo structures.

3.4.21 Lemma Let S be a set of structures and let W be the set of woo structures over
S. If for every R ∈ S there is a proof −‖LS

R
, then for every T ∈ W there is a proof −‖LS

T
.

Proof: Immediate from the definition and the fact that (•1, 1)• = 1 = !1. ��
3.4.22 Lemma (Context Reduction) Let R be a structure and S{ } be a context
where the hole is not inside a why-not structure. If S{R} is provable in LS, then there is
an n � 0 and structures PR1, . . . , PRn, such that such that [R,PRi] is provable in LS for
every i ∈ {1, . . . , n}, and and such that for every structure X, we have

W
‖LS

S{X}
,

where W is a woo structure over the set
{

[X,PR1], . . . , [X,PRn]
}
.

Proof: The proof will be carried out by induction on the context S{ }.
(1) S{ } = { }. Then the lemma is trivially true for n = 1, PR1 = ⊥ and W = [X,⊥].

(2) S{ } = [S′{ }, P] for some P , such that S{R} is not a proper par structure.

(i) S′{ } = { }. Then the lemma is trivially true for n = 1 and PR1 = P and
W = [X,⊥].

(ii) S′{ } = (•S′′{ }, T)• for some context S′′{ } and structure T �= �. Then we can
apply splitting (Lemma 3.4.5) to the proof of [(•S′′{R}, T)•, P] and get:

−
ΠS‖LS

[S′′{R}, P]
and −

ΠT‖LS
[T, P]

.

By applying the induction hypothesis to ΠS we get n � 0 and PR1, . . . , PRn such
that −‖LS

[R,PRi]
for every i ∈ {1, . . . , n} and for every X

W ′

‖LS
[S′′{X}, P]

.

70 3. Linear Logic and the Calculus of Structures

where W ′ is a woo structure over the set
{

[X,PR1], . . . , [X,PRn]
}
. Now let

W = (•W ′, 1)• and build:

(•W ′, 1)•∥∥LS
(• [S′′{X}, P], 1)•

ΠT

∥∥LS
(• [S′′{X}, P], [T, P])•

d↓
[(•S′′{X}, T)•, [•P,P]•]

c↓
[(•S′′{X}, T)•, P]

.

(iii) S′{ } = [•S′′{ }; T]• for some context S′′{ } and structure T �= 0. Then we can
apply splitting (Lemma 3.4.5) to the proof of [[•S′′{R}; T]•, P] and get:

(•PS , PT)•
∆P‖LS

P
and −

ΠS‖LS
[S′′{R}, PS]

and −
ΠT‖LS
[T, PT]

.

By applying the induction hypothesis to ΠS we get n � 0 and PR1, . . . , PRn such
that −‖LS

[R,PRi]
for every i ∈ {1, . . . , n} and for every X

W ′

‖LS
[S′′{X}, P]

.

where W ′ is a woo structure over the set
{

[X,PR1], . . . , [X,PRn]
}

. Now let
W = (•W ′, 1)• and build:

(•W ′, 1)•∥∥LS
(• [S′′{X}, P], 1)•

ΠT

∥∥LS
(• [S′′{X}, PS], [T, PT])•

d↓ .
[[•S′′{X}, T]•, (•PS , PT)•]

∆P

∥∥LS
[[•S′′{X}, T]•, P]

(iv) S′{ } = (S′′{ }, T) for some context S′′{ } and structure T �= 1. Then we can
apply splitting (Lemma 3.4.5) to the proof of [(S′′{R}, T), P] and get: an h � 0
and structures PS1, . . . , PSh and PT1, . . . , PTh, such that

(• [0,�], . . . , [0,�], [PS1, PT1], . . . , [PSh, PTh])•
‖LS
P

and

−
ΠSj‖LS

[S′′{R}, PSj]
and −

ΠTj‖LS
[T, PTj]

.

3.4. Cut Elimination 71

for every j ∈ {1, . . . , h}. By applying the induction hypothesis to every ΠSj, we

get nj � 0 and PRj1, . . . , PRjnj such that −‖LS
[R,PRji]

for every i ∈ {1, . . . , nj}

and for every X

Wj

‖LS
[S′′{X}, PSj]

.

where Wj is a woo structure over the set
{

[X,PRj1], . . . , [X,PRjnj]
}

. Now let
W = (•1,W1, . . . ,Wh)• and n = n1 + · · ·+ nh and build:

(•1,W1, . . . ,Wh)•∥∥LS
(•1, [S′′{X}, PS1], . . . , [S′′{X}, PSh])•

ΠT1,...,ΠTh

∥∥LS
(•1, [(S′′{X}, [T, PT1]), PS1], . . . , [(S′′{X}, [T, PTh]), PSh])•∥∥{s}

(•1, [(S′′{X}, T), PT1, PS1], . . . , [(S′′{X}, T), PTh, PSh])•∥∥{ai↓,t↓}
(• [(S′′{X}, T), 0,�], . . . , [(S′′{X}, T), 0,�],

[(S′′{X}, T), PT1, PS1], . . . , [(S′′{X}, T), PTh, PSh])•∥∥{d↓,c↓}
[(S′′{X}, T), (• [0,�], . . . , [0,�], [PS1, PT1], . . . , [PSh, PTh])•] .

∆P

∥∥LS
[(S′′{X}, T), P]

(v) S′{ } = !S′′{ } for some context S′′{ }. Then we can apply the splitting lemma
(Lemma 3.4.5) to the proof of [!S′′{R}, P] and get: h � 0 and k1, . . . , kh � 0
and structures PS11, . . . , PS1k1 , PS21, . . . , PS2k2 , . . . , PSh1, . . . , PShkh

, such that

(• [0,�], . . . , [0,�], [?PS11, . . . , ?PS1k1], . . . , [?PSh1, . . . , ?PShkh
])•

‖LS
P

and

−
ΠSj‖LS

[S′′{R}, PSj1, . . . , PSjkj
]

.

for every j ∈ {1, . . . , h}. By applying the induction hypothesis to every ΠSj

we get we get nj � 0 and PRj1, . . . , PRjnj such that −‖LS
[R,PRji]

for every i ∈

{1, . . . , nj} and for every X

Wj

‖LS
[S′′{X}, PSj1, . . . , PSjkj

]
.

72 3. Linear Logic and the Calculus of Structures

where Wj is a woo structure over the set
{

[X,PRj1], . . . , [X,PRjnj]
}
. Now let

W = (•1, !W1, . . . , !Wh)• and n = n1 + · · ·+ nh and build:

(•1, !W1, . . . , !Wh)•∥∥LS
(•1, ![S′′{X}, PS11, . . . , PS1k1], . . . , ![S′′{X}, PSh1, . . . , PShkh

])•∥∥{p↓}
(•1, [!S′′{X}, ?PS11, . . . , ?PS1k1], . . . , [!S′′{X}, ?PSh1, . . . , ?PShkh

])•∥∥{ai↓,t↓}
(• [!S′′{X}, 0,�], . . . , [!S′′{X}, 0,�],

[!S′′{X}, ?PS11, . . . , ?PS1k1], . . . , [!S′′{X}, ?PSh1, . . . , ?PShkh
])•∥∥{d↓,c↓}

[!S′′{X}, (• [0,�], . . . , [0,�], [?PS11, . . . , ?PS1k1], . . . , [?PSh1, . . . , ?PShkh
])•] .

∆P

∥∥LS
[!S′′{X}, P]

(3) S{ } = (•S′{ }, T)• for some context S′{ } and T �= �. This is a special case of (2.ii)
for P = ⊥.

(4) S{ } = [•S′{ }, T]• for some context S′{ } and T �= 0. This is a special case of (2.iii)
for P = ⊥.

(5) S{ } = (S′{ }, T) for some context S′{ } and T �= 1. This is a special case of (2.iv)
for P = ⊥.

(6) S{ } = !S′{ } for some context S′{ }. This is a special case of (2.v) for P = ⊥. ��

3.4.3 Elimination of the Up Fragment

In this section, I will first show a series of lemmata, which are all easy consequences of
splitting and which say that the up rules of system SLS are admissible if they are applied
in a shallow context [{ }, P]. Then I will show how context reduction is used to extend
these lemmata to any context. As a result we get a modular proof of cut elimination.

3.4.23 Lemma Let P be a structure and let a be an atom. If [(a, ā), P] is provable in
LS, then P is also provable in LS.

Proof: Apply splitting (Lemma 3.4.5) to the proof

−‖LS
[(a, ā), P]

.

We get an n � 0 and structures Pa1, . . . , Pan and Pā1, . . . , Pān, such that

(• [0,�], . . . , [0,�], [Pa1, Pā1], . . . , [Pan, Pān])•
∆P‖LS

P
and −

Π1‖LS
[a, Pai]

and −
Π2‖LS

[ā, Pāi]

3.4. Cut Elimination 73

for every i ∈ {1, . . . , n}. By applying splitting to Π1 and Π2, we obtain

(• [0,�], . . . , [0,�], ā, . . . , ā)•
‖LS

Pai

and
(• [0,�], . . . , [0,�], a, . . . , a)•

‖LS
Pāi

.

From this we can build for every i ∈ {1, . . . , n} (by applying Lemmata 3.4.17 and 3.4.18):

−∥∥LS
[(• [0,�], . . . , [0,�], ā, . . . , ā)•, (• [0,�], . . . , [0,�], a, . . . , a)•]∥∥LS

[Pai, Pāi]

.

Plugging this into the derivation ∆P yields a proof of P . ��

3.4.24 Lemma Let R,T,U, V and P be structures. If [([•R,U]•, (•T, V)•), P] is provable
in LS, then [[•(R,T), (U, V)]•, P] is also provable in LS.

Proof: Apply splitting (Lemma 3.4.5) to the proof

−‖LS
[([•R,U]•, (•T, V)•), P]

.

We get an n � 0 and structures PRU1, . . . , PRUn and PV T1, . . . , PV Tn, such that

(• [0,�], . . . , [0,�], [PRU1, PV T1], . . . , [PRUn, PV Tn])•
∆P‖LS

P
and

−
ΠRUi‖LS

[[•R,U]•, PRUi]
and −

ΠTV i‖LS
[(•T, V)•, PTV i]

for every i ∈ {1, . . . , n}. By applying splitting again to every ΠRUi and ΠTV i, we get

(•PRi, PUi)•
∆RUi‖LS

PRUi

and −
ΠRi‖LS
[R,PRi]

and −
ΠUi‖LS
[U,PUi]

and

−
ΠV i‖LS

[V, PTV i]
and −

ΠTi‖LS
[T, PTV i]

.

74 3. Linear Logic and the Calculus of Structures

From this we can build for every i ∈ {1, . . . , n}:
−

ΠV i,ΠTi

∥∥LS
(• [T, PTV i], [V, PTV i])•

ΠRi,ΠUi

∥∥LS
(• [([R,PRi], T), PTV i], [([U,PUi], V), PTV i])•
s

(• [([R,PRi], T), PTV i], [(U, V), PUi , PTV i])•
s

(• [(R,T), PRi , PTV i], [(U, V), PUi, PTV i])•
d↓

[[•(R,T), (U, V)]•, (• [PRi, PTV i], [PUi, PTV i])•]
d↓

[[•(R,T), (U, V)]•, (•PRi, PUi)•, [•PTV i, PTV i]•]
c↓ .

[[•(R,T), (U, V)]•, (•PRi, PUi)•, PTV i]
∆RUi

∥∥LS
[[•(R,T), (U, V)]•, PRUi, PTV i]

Now we can build (by applying Lemma 3.4.15 and Lemma 3.4.18):
−∥∥LS

(• [[•(R,T), (U, V)]•, 0,�], . . . , [[•(R,T), (U, V)]•, 0,�],
[[•(R,T), (U, V)]•, PRU1, PV T1], . . . , [[•(R,T), (U, V)]•, PRUn, PV Tn])•∥∥{c↓,d↓}

[[•(R,T), (U, V)]•, (• [0,�], . . . , [0,�], [PRU1, PV T1], . . . , [PRUn, PV Tn])•] .
∆P

∥∥LS
[[•(R,T), (U, V)]•, P] ��

3.4.25 Lemma Let R and P be structures. If [R,P] is provable in LS, then [�, P] and
[(•R,R)•, P] are also provable in LS.

Proof: Use the proofs

1↓
1

ai↓
[�, 0]

t↓ and
[�, P]

−∥∥LS
(• [R,P], [R,P])•

d↓
[(•R,R)•, [•P,P]•]

c↓ .
[(•R,R)•, P] ��

3.4.26 Lemma Let R and P be structures. If [!R,P] is provable in LS, then [1, P] and
[(!R,R), P] are also provable in LS.

Proof: Apply splitting (Lemma 3.4.5) to the proof
−‖LS

[!R,P]
.

We get an n � 0 and k1, . . . , kn � 0, and structures PR11, . . . , PR1k1 , PR21, . . . , PR2k2 , . . . ,
PRn1, . . . , PRnkn , such that

(• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1k1], . . . , [?PRn1, . . . , ?PRnkn])•
∆P‖LS

P

3.4. Cut Elimination 75

−‖LS
[R,PRi1, . . . , PRiki

]

for every i ∈ {1, . . . , n}. We can build:

1↓
1∥∥{w↓}

[1, ?PRi1, . . . , ?PRiki
]

and

−∥∥LS
(![R,PRi1, . . . , PRiki

], [R,PRi1, . . . , PRiki
])∥∥{p↓}

([!R, ?PRi1, . . . , ?PRiki
], [R,PRi1, . . . , PRiki

])∥∥{s}
[(!R,R), ?PRi1, PRi1, . . . , ?PRiki

, PRiki
]∥∥{b↓}

[(!R,R), ?PRi1, . . . , ?PRiki
]

.

From this we get:

−∥∥LS
(• [1, 0,�], . . . , [1, 0,�], [1, ?PR11, . . . , ?PR1k1], . . . , [1, ?PRn1, . . . , ?PRnkn])•∥∥{c↓,d↓}

[1, (• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1k1], . . . , [?PRn1, . . . , ?PRnkn])•]
∆P

∥∥LS
[1, P]

and

−∥∥LS
(• [(!R,R), 0,�], . . . , [(!R,R), 0,�],

[(!R,R), ?PR11, . . . , ?PR1k1], . . . , [(!R,R), ?PRn1, . . . , ?PRnkn])•∥∥{c↓,d↓}
[(!R,R), (• [0,�], . . . , [0,�], [?PR11, . . . , ?PR1k1], . . . , [?PRn1, . . . , ?PRnkn])•] .

∆P

∥∥LS
[(!R,R), P] ��

3.4.27 Lemma Let R,T and P be structures. If [(?R, !T), P] is provable in LS, then
[?(R,T), P] is also provable in LS.

Although the statement and the purpose of this lemma is quite similar to the previous
lemmata, its proof is a little different because in the case of system LS we do not have a
splitting statement for why-not structures (case (e) is missing in Lemma 3.4.5). However,
we have such a statement for system LS′ \ {cb↓} (see case (e) in Lemma 3.4.19). This will
be employed here.

3.4.28 Lemma Let h � 0 and let R, T , P , and V1, . . . , Vh be structures. If [?R,P] and
[T, V1, . . . , Vh] are provable in LS′ \ {cb↓}, then [?(R,T), P, ?V1, . . . , ?Vh] is also provable
in LS′ \ {cb↓}.

76 3. Linear Logic and the Calculus of Structures

Proof: By applying splitting for LS′ \ {cb↓} (Lemma 3.4.19) to the proof of [?R,P], we
either have that P is provable in LS′\{cb↓}, or we get some n � 0 and k � n and structures
PR1, . . . , PRn such that

(• [0,�], . . . , [0,�], !PR1, . . . , !PRk, PRk+1, . . . , PRn)•
‖LS′\{cb↓}
P

and −‖LS′\{cb↓}
[R,PRi]

for every i = 1, . . . , n. If we have a proof of P , then we can obtain

−‖LS′\{cb↓}
P
‖{w↓}

[?(R,T), P, ?V1, . . . , ?Vh]

.

Otherwise we can obtain

−∥∥LS′\{cb↓}
[T, V1, . . . , Vh]∥∥LS′\{cb↓}

[([R,PRj], T), V1, . . . , Vh]
s and

[(R,T), PRj , V1, . . . , Vh]∥∥{cr↓}
[?(R,T), PRj , ?V1, . . . , ?Vh]

1↓
!1∥∥LS′\{cb↓}

![T, V1, . . . , Vh]∥∥LS′\{cb↓}
![([R,PRi], T), V1, . . . , Vh]
s ,

![(R,T), PRi, V1, . . . , Vh]∥∥{p↓}
[?(R,T), !PRi, ?V1, . . . , ?Vh]

for every i = 1, . . . , k and j = k + 1, . . . , n. From this we can build the following proof,
where ?V stands for [?V1, . . . , ?Vh]:

−∥∥LS′\{cb↓}
(• [?(R,T), ?V, 0,�], . . . , [?(R,T), ?V, 0,�],

[?(R,T), !PR1, ?V], . . . , [?(R,T), !PRk, ?V],
[?(R,T), PRk+1, ?V], . . . , [?(R,T), PRn, ?V])•∥∥{cd↓}

[?(R,T), (• [0,�], . . . , [0,�], !PR1, . . . , !PRk, PRk+1, . . . , PRn)•, ?V] .∥∥LS′\{cb↓}
[?(R,T), P, ?V] ��

3.4.29 Lemma Let h � 0 and let R, T , P , and V1, . . . , Vh be structures. If [?R,P] and
[T, V1, . . . , Vh] are provable in LS, then [?(R,T), P, ?V1, . . . , ?Vh] is also provable in LS.

Proof: By Lemma 3.4.8 (b) and Lemma 3.4.9, there is a proof

−‖LS′\{cb↓}
U
‖{cb↓}

[?R,P]

,

3.4. Cut Elimination 77

for some structure U . Since the redex of cb↓ is always a why-not structure, we have
k � 1 and structures R1, . . . , Rk and P ′, such that U = [?R1, . . . , ?Rk, P

′] and there are
derivations

R1

‖{cb↓}
R

,
R2

‖{cb↓}
R

, · · · ,
Rk

‖{cb↓}
R

, and
P ′

‖{cb↓}
P

.

Now apply the previous lemma k-times to the proof −‖LS′\{cb↓}
[?R1, . . . , ?Rk, P

′]
. This yields:

−
Π
∥∥LS′\{cb↓}

[?(R1, T), . . . , ?(Rk, T), P ′, ?V, . . . , ?V]
,

where ?V stands for [?V1, . . . , ?Vh], which occurs k times in the conclusion of Π. Further,
we can construct a derivation

[?(R1, T), . . . , ?(Rk, T), P ′, ?V, . . . , ?V]∥∥{cb↓}
[?(R,T), P, ?V]

.

By Lemma 3.4.8 (a), we get the desired proof

−‖LS
[?(R,T), P, ?V1, . . . , ?Vh]

. ��

Proof of Lemma 3.4.27: By splitting (Lemma 3.4.5), we get an n � 0 and structures
PR1, . . . , PRn and PT1, . . . , PTn, such that

(• [0,�], . . . , [0,�], [PR1, PT1], . . . , [PRn, PTn])•
∆P‖LS

P
and

−
ΠRi‖LS

[?R,PRi]
and −

ΠTi‖LS
[!T, PT i]

for every i ∈ {1, . . . , n}. By applying splitting again to every ΠT i, we get an mi � 0 and
ki1, . . . , kimi � 0 and structures Vi11, . . . , Vi1ki1

, Vi21, . . . , Vi2ki2
, . . . , Vimi1, . . . , Vimikimi

, such
that

(• [0,�], . . . , [0,�], [?Vi11, . . . , ?ViR1ki1
], . . . , [?Vimi1, . . . , ?Vimikimi

])•
∆Ti‖LS

PT i

and

−‖LS
[T, Vij1, . . . , Vijkij

]

for every j ∈ {1, . . . ,mi}. By Lemma 3.4.29, we get for every i ∈ {1, . . . , n} and j ∈
{1, . . . ,mi} a proof −‖LS

[?(R,T), PRi, ?Vij1, . . . , ?Vijkij
]

.

78 3. Linear Logic and the Calculus of Structures

Now we can build for every i ∈ {1, . . . , n} the following proof, where ?Vij stands for
[?Vij1, . . . , ?Vijkij

].

−∥∥LS
(• [?(R,T), PRi, 0,�], . . . , [?(R,T), PRi, 0,�], [?(R,T), PRi, ?Vi1], . . . , [?(R,T), PRi, ?Vimi])•∥∥{c↓,d↓}

[?(R,T), PRi, (• [0,�], . . . , [0,�], ?Vi1, . . . , ?Vimi)•] .
∆Ti

∥∥LS
[?(R,T), PRi, PT i]

From this we can now build:
−∥∥LS

(• [?(R,T), 0,�], . . . , [?(R,T), 0,�], [?(R,T), PR1, PT1], . . . , [?(R,T), PRn, PTn])•∥∥{c↓,d↓}
[?(R,T), (• [0,�], . . . , [0,�], [PR1, PT1], . . . , [PRn, PTn])•] .

∆P

∥∥LS
[?(R,T), P] ��

3.4.30 Lemma Let ρ ∈ {ai↑,d↑, t↑, c↑,p↑,w↑,b↑} be one of the up rules in system SLS
and let S{ } be a context in which the hole does not occur inside a why-not structure. Then

for every proof

−‖LS
S{V }

ρ
S{Z} , there is a proof

−‖LS
S{Z} .

Proof: Apply context reduction to the proof
−‖LS

S{V }
.

This yields some n � 0 and structures PV 1, . . . , PV n, such that for every i ∈ {1, . . . , n}, the
structure [V, PV i] is provable in LS, and such that there is a derivation

W
‖LS

S{Z}
,

where W is a woo structure over the set
{

[Z,PV 1], . . . , [Z,PV n]
}

. By Lemmata 3.4.23
to 3.4.26, we have that [Z,PV i] is provable in LS for every i ∈ {1, . . . , n}. By Lemma 3.4.21,
the structure W is also provable in LS. Hence, we have

−‖LS
W
‖LS

S{Z}

.

��
It remains to show how to handle the situation when an up rule that should be eliminated

is applied inside a why-not structure. This is the purpose of the following definition and
lemma.

3.4. Cut Elimination 79

3.4.31 Definition An application of a rule
S{T}

ρ
S{R} is called semishallow , if the hole

of the context S{ } does not occur inside a why-not structure (i.e. there are no contexts
S′{ } and S′′{ }, such that S{ } = S′{?S′′{ }}. A derivation ∆ is called semishallow ,
every rule application occurring in ∆ is semishallow. A proof Π is called semishallow ,
every rule application occurring in Π, except the axiom, is semishallow.

3.4.32 Observation An inspection of the proofs for splitting and context reduction
shows that they preserve the property of being semishallow. More precisely, splitting
(Lemma 3.4.5) and context reduction (Lemma 3.4.22) do also hold for semishallow LS,
i.e. system LS where each rule is replaced by its semishallow version.

3.4.33 Lemma Let ρ ∈ {ai↑,d↑, t↑, c↑,p↑,w↑,b↑} be one of the up rules in system SLS
and let S{ } be an arbitrary context. Then

for every proof

−‖LS
S{V }

ρ
S{Z} , there is a semishallow proof

−
Π‖LS∪{ρ}

S{Z} .

Proof: The proof Π can be obtained by simple permutation of rules, i.e. all nonsemishallow
rules are permuted up until they disappear or become semishallow. To see this, consider
the topmost instance of a rule σ that is not semishallow:

Q
π

S{W}
σ ,

S{P}
where π ∈ LS∪{ρ} is semishallow and nontrivial. According to 4.2.3, the cases to consider
are:

(4) The redex of π is inside an active structure of the contractum of σ. This is impossible
because π is semishallow and σ is not.

(5) The contractum of σ is inside an active structure of the redex of π. Since π is
semishallow and σ is not, only the following four cases are possible:

(i) π = c↓. Then

S [•R{W}, R{W}]•
c↓

S{R{W}}
σ yields

S{R{P }}

S [•R{W}, R{W}]•
σ

S [•R{W}, R{P }]•
σ

S [•R{P }, R{P}]•
c↓ .

S{R{P}}
(ii) π = b↓. Similar to (i).

(iii) π = t↓. Then
S{0}

t↓
S{R{W}}

σ yields
S{R{P }}

S{0}
t↓ .

S{R{P}}

80 3. Linear Logic and the Calculus of Structures

(iv) π = w↓. Similar to (iii).

(6) The redex of π and the contractum of σ (properly) overlap. This is impossible because
π is semishallow and σ is not.

The following lemma says that Lemma 3.4.30 does also hold for arbitrary contexts S{ }.

3.4.34 Lemma Let ρ ∈ {ai↑,d↑, t↑, c↑,p↑,w↑,b↑} be one of the up rules in system SLS
and let S{ } be a context. Then

for every proof

−‖LS
S{V }

ρ
S{Z} , there is a proof

−‖LS
S{Z} .

Proof: Let −‖LS
S{V }

ρ
S{Z}

be given. Transform it into a semishallow proof

−
Π‖LS∪{ρ}

S{Z}
,

which exists by Lemma 3.4.33. From Π eliminate all instances of ρ, starting with the
topmost one, by repeatedly applying Lemma 3.4.30. ��

The cut elimination result is now an easy consequence.

Proof of Theorem 3.4.1: Let

−
Π‖SLS∪{1↓}
R

be given. Remove each instance of an up rule inside Π (starting with the topmost) by
applying Lemma 3.4.34. The result is a proof −‖LS

R
. ��

3.5 Discussion

The main purpose of this chapter was to introduce the calculus of structures and to show
that linear logic can benefit from its presentation in the calculus of structures. In particular,
there are the following surprising phenomena to observe:

• The global promotion rule in the sequent calculus

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

(for n � 0) ,

3.5. Discussion 81

has been replaced by a local version

S{![R,T]}
p↓

S [!R, ?T]
,

in the sense that is is no longer necessary to check a context of unbounded size. This
shows that it is not linear logic that causes the !-rule to be global, but the restrictions
of the sequent calculus. (See also the introductory part of Chapter 5 for a discussion
on locality.)

• The rule for the additive conjunction in the sequent calculus

� A,Φ � B,Φ
� � A � B,Φ

has been replaced by two rules,

– the rule
S(• [R,U], [T, V])•

d↓
S [(•R,T)•, [•U, V]•]

,

which is purely multiplicative, in the sense that no context or substructure is
shared or duplicated,

– and a contraction rule
S [•R,R]•

c↓
S{R} ,

which is responsible for the duplication.

This means that the distinction between additive and multiplicative context treatment
is intrinsically connected to the sequent calculus and not to the connectives of linear
logic.

• The rule for the multiplicative conjunction in the sequent calculus

� A,Φ � B,Ψ
� � A � B,Φ, Ψ

has from the point of view of proof search the problem that one has to decide how
to split the context of the formula A � B at the moment the rule is applied. For n
formulas in Φ,Ψ , there are 2n possibilities. Of course, there are methods, like lazy
evaluation, that can circumvent this problem inside an implementation [HM94], but
the switch rule

S([R,U], T)
s
S [(R,T), U]

is able to handle this problem inside the logical system, as already observed in [Gug99].

• The duality between the two rules

id � A,A⊥ and
� A,Φ � A⊥, Ψ

cut � Φ,Ψ
,

82 3. Linear Logic and the Calculus of Structures

which is hidden in the sequent calculus, is made obvious in the calculus of structures
by the two rules

S{1}
i↓

S [R, R̄]
and

S(R, R̄)
i↑

S{⊥} .

In particular, both are reducible to their atomic version (as already observed in
[Gug99]), and not only one, as in the sequent calculus.

• If we define another pair of modalities !′ and ?′ by the same rules as for ! and ? (i.e. we
do the same experiment as in Remark 2.2.9), then (as in the sequent calculus) there
is no relation between ! and !′, or between ? and ?′. The interesting observation is
now, that if we define a new pair of structural contexts [•′. . .]•′ and (• ′. . .)•′ via the same
rules as for [•. . .]• and (•. . .)•, then there is also no relation between [•. . .]• and [•′. . .]•′, or
between (•. . .)• and (• ′. . .)•′. This means that the calculus of structures provides a certain
uniformity, which is not present in the sequent calculus.

Furthermore, this chapter shows that it is possible to do proof theory with the calculus
of structures, in the sense that we have a notion of cut and can provide a cut elimination
procedure. Since the general cut rule i↑, which corresponds to the sequent calculus cut,
can be decomposed into several up rules, which can be eliminated independently from each
other, we have a wide variety of equivalent systems with different degrees of expressiveness
in proof construction. For example, in the case presented in this chapter, we have seven
up rules, which means that there are 27 = 128 different systems that are all equivalent to
system LS. This means that the user has a large amount of possibilities to adapt the system
for his application, without need to worry about soundness or completeness of the system.
Such a modularity is not available in the sequent calculus.

4
The Multiplicative Exponential
Fragment of Linear Logic

As the name suggests, the multiplicative exponential fragment of linear logic (MELL) is
the restriction of linear logic to the multiplicatives and the exponentials. This fragment
deserves particular attention because, on one hand, it incorporates the resource sensitiveness
of linear logic with a controlled way of contraction, which makes it suitable to a wide range of
applications, and on the other hand, it is the only fragment of linear logic whose decidability
is still not known.

In the first section of this chapter, I will show system MELL in the sequent calculus and
then discuss the two systems SELS and ELS in the calculus of structures that have already
been defined in Section 3.2. Then, in Section 4.2, I will show some permutation results that
will be needed in the other sections and also in later chapters.

In Section 4.3, I will show two decomposition theorems for system SELS. These two
theorems can be seen as the central results of this chapter (and, in some sense, also of
this thesis). Section 4.3 is rather long because of the technical effort that has to be made
to prove the decomposition theorems. The impatient reader who is not interested in the
proofs might read only the introductory part of this section, which also gives a sketch of
the proofs.

Section 4.4, contains another proof of the cut elimination theorem for system ELS. This
proof will be based on decomposition and the permutation of rules. Using the permuta-
tion of rules for proving cut elimination is conceptually similar to the sequent calculus.
However, due to the new top-down symmetry of the calculus of structures, it is possible to
obtain an interpolation theorem, which can be seen as a top-down symmetric version of cut
elimination. This interpolation theorem is discussed in Section 4.5.

4.1 Sequents, Structures and Rules

In this section, I will define the systems for MELL in the sequent calculus and the calculus
of structures. They will, in fact, be restrictions of the systems already defined in Chapters 2
and 3.

83

84 4. The Multiplicative Exponential Fragment of Linear Logic

id � A,A⊥
� A,Φ � A⊥, Ψ

cut � Φ,Ψ

� A,Φ � B,Ψ
� � A � B,Φ, Ψ

� A,B,Φ
� � A � B,Φ

� Φ⊥ � ⊥, Φ
1 � 1

� A,Φ
?d � ?A,Φ

� ?A, ?A,Φ
?c � ?A,Φ

� Φ
?w � ?A,Φ

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

(n � 0)

Figure 4.1: System MELL in the sequent calculus

4.1.1 Definition A MELL formula is an LL formula that does not contain an additive
connective �, �, or constant 0, �. The rules for system MELL are shown in Figure 4.1.

Of course, the cut elimination result does also hold for MELL. This can be seen as a
consequence of the cut elimination result for full linear logic (Theorem 2.3.1) because the
rules for the additives, which are missing in system MELL are not needed in a cut-free proof
of a MELL formula in which the additive connectives do not occur. But it is also easily
possible to obtain a direct proof from the proof of the cut elimination result for full linear
logic by omitting all the cases that involve the additives.

4.1.2 Theorem (Cut Elimination) Every proof Π of a sequent � Φ in system MELL
can be transformed into a cut-free proof Π′ in system MELL of the same sequent.

In the calculus of structures the situation is similar.

4.1.3 Definition An ELS structure is an LS structure that does not contain the con-
stants 0, �, or a substructure of the shape [•R1, . . . , Rh]• or (•R1, . . . , Rh)•.

4.1.4 Remark In the case of ELS structures, the equations concerning the additives
can be removed from the underlying equational theory. For convenience, the remaining
equations are show in Figure 4.2.

System SELS = {ai↓, ai↑, s,p↓,p↑,w↓,w↑,b↓,b↑} (see Definition 3.2.17) is shown in
Figure 4.3. The core (see Definition 3.2.18) of system SELS is SELSc= {s,p↓,p↑}. System
ELS = {1↓, ai↓, s,p↓,w↓,b↓}, which is obtained from the down fragment of system SELS
together with the axiom, is shown in Figure 4.4.

All results concerning systems SLS and LS presented in Chapter 3 remain true for
systems SELS and ELS. The most important are listed below.

4.1.5 Theorem The systems SELS∪ {1↓} and ELS∪ {i↑} are strongly equivalent.

Proof: Similar to the proof of Theorem 3.2.21. Proposition 3.2.12 is independent from the
additives and in the proof of Proposition 3.2.16, the rules d↓ and d↑ are needed only for
decomposing structures of the shape [•R1, . . . , Rh]• or (•R1, . . . , Rh)•. ��

4.1. Sequents, Structures and Rules 85

Associativity

[R, [T,U]] = [[R,T], U]
(R, (T,U)) = ((R,T), U)

Commutativity

[R,T] = [T,R]
(R,T) = (T,R)

Exponentials

??R = ?R
!!R = !R

Units

[⊥, R] = R

(1, R) = R

?⊥ = ⊥
!1 = 1

Negation

[R,T] = (R̄, T̄)

(R,T) = [R̄, T̄]

?R = !R̄
!R = ?R̄
¯̄R = R

Figure 4.2: Basic equations for the syntactic congruence of ELS structures

4.1.6 Theorem If a given structure R is provable in system SELS ∪ {1↓}, then its
translation � R

L
is provable in MELL (with cut).

Proof: The proof is literally the same as the proof of Theorem 3.3.1, except that the cases
for the rules d↓, d↑, t↓, t↑, c↓ and c↑ are not needed, which means that the sequent calculus
rules for �, � and � are not needed. ��

4.1.7 Theorem (a) If a given sequent � Φ is provable in MELL (with cut), then the
structure � Φ

S
is provable in system SELS ∪ {1↓}. (b) If a given sequent � Φ is cut-free

provable in MELL, then the structure � Φ
S
is provable in system ELS.

Proof: The proof is literally the same as the proof of Theorem 3.3.2, except that the cases
for the rules �, �1, �2 and � are omitted, which means that the rules d↓, t↓, and c↓ are
not needed. ��

As a consequence we have already two different proofs for the cut elimination theorem
for system ELS at hand.

4.1.8 Theorem (Cut Elimination) System ELS is equivalent to every subsystem of
the system SELS∪ {1↓} containing ELS.

The first proof uses the translation to the sequent calculus system, and the second one
uses the technique of splitting and context reduction (see Section 3.4, observe that the
statements of splitting and context reduction become much simpler in the case of ELS).
In this chapter, in Section 4.4, I will present a third proof of the same theorem, using the
techniques of decomposition and permutation.

We immediately get the following two corollaries, whose proofs are the same as for full
linear logic.

4.1.9 Corollary The rule i↑ is admissible for system ELS.

86 4. The Multiplicative Exponential Fragment of Linear Logic

S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

S([R,U], T)
s
S [(R,T), U]

S{![R,T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R,T)}

S{⊥}
w↓

S{?R}
S{!R}

w↑
S{1}

S [?R,R]
b↓

S{?R}
S{!R}

b↑
S(!R,R)

Figure 4.3: System SELS

1↓
1

S{1}
ai↓

S [a, ā]

S([R,U], T)
s

S [(R,T), U]

S{![R,T]}
p↓

S [!R, ?T]

S{⊥}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

Figure 4.4: System ELS

4.1.10 Corollary Let R and T be two structures. Then we have

T
‖SELS
R

if and only if −‖ELS
[T̄ , R]

.

4.2 Permutation of Rules

Various applications of proof theory are based on the permutability of rules [Cur52]. For
example the idea of focusing proofs [And92] relies on it. In the case of Forum [Mil94, Mil96],
a logic programming language based on linear logic, the permutability of rules has been used
for adapting the notion of uniform proof to multiple conclusion sequents. The observation,
that some rules permute over each other and others do not, offers the possibility of defining
new inference rules of a larger granularity, whose application can then be seen as the

4.2. Permutation of Rules 87

application of several rules (that permute over each other) in parallel. For example the
development of ludics in [Gir01] has been influenced by this idea.

The top-down symmetry of derivations in the calculus of structures enables us to study
the mutual permutability of rules in a very natural way. This is the starting point for the
investigation of several properties of logical systems in the calculus of structures. If we
have, for example, a system with three rule ρ, π and σ, and we know that ρ permutes over
π and σ, then we can transform every derivation

T
‖{ρ,π,σ}
R

into a derivation
T
‖{ρ}
T ′

‖{π,σ}
R

for some structure T ′. This is the basis for most of the decomposition theorems in this
thesis (see Sections 4.3, 5.3 and 7.2). Also the cut elimination proof of Section 4.4 is based
on the permutability of rules.

4.2.1 Definition A rule ρ permutes over a rule π (or π permutes under ρ) if for every

derivation

Q
π

U
ρ

P

there is a derivation

Q
ρ

V
π

P

for some structure V .

In order to study the permutation properties of rules, some more definitions are needed.
The inference rules of the systems SLS, SELS (shown in Figures 3.2 and 4.3, respectively)
and all other systems in the calculus of structures, that will be discussed in this thesis, are
of the kind

S{W}
ρ

S{Z} ,

where the structure Z is called the redex and W the contractum of the rule’s instance. A
substructure that occurs exactly once in the redex as well as in the contractum of a rule
without changing is called passive, and all substructures of redexes and contracta, that are
not passive, (i.e. that change, disappear or are duplicated) are called active. More precisely,
let R be a substructure of both, Z and W , i.e. we have that Z = Z ′{R} and W = W ′{R}
for some contexts Z ′{ } and W ′{ }. Then R is called passive, if for every structure X, we
have that

S{W ′{X}}
ρ

S{Z ′{X}}
is a valid instance of the rule ρ. Otherwise R is called active. Consider for example the
rules

S{![R,T]}
p↓

S [!R, ?T]
and

S [?R,R]
b↓

S{?R} .

88 4. The Multiplicative Exponential Fragment of Linear Logic

ρ π

(I)
π

ρ
(II)

π

ρ

(III)
π

ρ
(IV)

π

ρ

Figure 4.5: Possible interferences of redex and contractum of two consecutive rules

In p↓, the redex is [!R, ?T] and the contractum is ![R,T]; the structures R and T are
passive; the structures [!R, ?T], !R and ?T are active in the redex; and the structures
![R,T] and [R,T] are active in the contractum. In b↓ there are no passive structures; in
the redex the structures ?R and R are active and in the contractum [?R,R], ?R, R and R
are active (i.e. both occurrences of the structure R are active).

4.2.2 Definition An application of a rule
T

ρ
R

will be called trivial if R = T . Otherwise,
it is called nontrivial .

For example, an application of the rule

S{![R,T]}
p↓

S [!R, ?T]

becomes trivial if R = 1 and T = ⊥, because then S [!R, ?T] = S{1} = S{![R,T]}.
4.2.3 Case Analysis In order to find out whether a rule ρ permutes over a rule π, we
have to consider all possibilities of interference of the redex of π and the contractum of ρ
in a situation

Q
π

U
ρ .

P

It can happen that one is inside the other, that they overlap or that they are independent.
The four possible interferences are shown Figure 4.5. Although the situation is symmetric
with respect to ρ and π, in most cases the situation to be considered will be of the shape

Q
π

S{W}
ρ ,

S{Z}

4.2. Permutation of Rules 89

(1)

(1, d, [a, c], b)
ai↓

([b, b̄] , d, [a, c], b)
s

([b, b̄], d, [(a, b), c])

(2)

(!(a, 1, c), [ā, d])
s

[ā, (!(a, 1, c), d)]
ai↓

[ā, (!(a, [b, b̄] , c), d)]

(3)

([a, 1, c], b)
ai↓

([(a, [b, b̄]), c], b)
s

[(a, [b, b̄], b), c]

(4)

(a, ![b, (c, d)])
p↓

(a, [!b, ?(c, d)])
s

[(a, !b), ?(c, d)]

(5)

[a, b,⊥]
w↓

[a, b, ?[(c, c̄), ā]]
ai↑

[a, b, ?[⊥, ā]]

(6)

[?[a, b], a, ([b, c], d)]
s

[?[a, b], a, b, (c, d)]
b↓

[?[a, b] , (c, d)]

Figure 4.6: Examples for interferences between two consecutive rules

where the redex Z and the contractum W of ρ are known and we have to make a case analysis
for the position of the redex of π inside the structure S{W}. There are altogether six cases,
which are listed below. Figure 4.6 shows an example for each case. In Figure 4.5 only four
cases occur because the there is no distinction between active and passive structures.

(1) The redex of π is inside the context S{ } of ρ. This corresponds to case (I) in
Figure 4.5.

(2) The contractum W of ρ is inside a passive structure of the redex of π. This is a
subcase of (II) in Figure 4.5.

(3) The redex of π is inside a passive structure of the contractum W of ρ. This is a
subcase of (III) in Figure 4.5.

(4) The redex of π is inside an active structure of the contractum W of ρ but not inside
a passive one. This is a subcase of (III) in Figure 4.5.

(5) The contractum W of ρ is inside an active structure of the redex of π but not inside
a passive one. This is a subcase of (II) in Figure 4.5.

(6) The contractum W of ρ and the redex of π (properly) overlap. This corresponds to
case (IV) in Figure 4.5. Observe that this case can happen because of associativity.

In the first two cases, we have that Q = S′{W} for some context S′{ }. This means that
the derivation above is of the shape

S′{W}
π

S{W}
ρ ,

S{Z}

90 4. The Multiplicative Exponential Fragment of Linear Logic

where we can permute ρ over π as follows

S′{W}
ρ

S′{Z}
π .

S{Z}

In the third case, we have that Z = Z ′{R} and W = W ′{R} for some contexts Z ′{ } and
W ′{ } and some structure R, and Q = S{W ′{R′}} for some structure R′. This means the
derivation is

S{W ′{R′}}
π

S{W ′{R}}
ρ ,

S{Z ′{R}}
where R is passive for ρ, and we can permute ρ over π as follows

S{W ′{R′}}
ρ

S{Z ′{R′}}
π .

S{Z ′{R}}

This means that in a proof of a permutation result the cases (1) to (3) are always trivial,
whereas for the remaining cases (4) to (6), more elaboration will be necessary. In every
proof concerning a permutation result, I will follow this scheme.

In the remainder of this section, I will show some permutation results that will be needed
for the decomposition theorems of the next section.

4.2.4 Lemma The rule w↓ permutes over the rules ai↓, ai↑,p↓ and w↑.

Proof: Consider a derivation
Q

π
S{⊥}

w↓ ,
S{?Z}

where π ∈ {ai↓, ai↑,p↓,w↑}. Without loss of generality, assume that the application of π is
nontrivial. According to the case analysis 4.2.3, there are six cases, where the first three
do not need to be considered. The remaining cases are:

(4) The redex of π is inside (an active structure of) the contractum ⊥ of w↓. This is
impossible because ⊥ cannot have a proper substructure. If the redex of π is equal
to ⊥, then this case can be reduced to case (1) by using the fact that ⊥ = [⊥,⊥].

(5) The contractum ⊥ of w↓ is inside an active structure of the redex of π but not inside
a passive one. This case is impossible, as the following case analysis shows:

(i) If π is w↑ then the redex is 1, and ⊥ cannot be inside it.

(ii) If π is ai↑ then the redex is ⊥, and we can reduce this case to case (1) by using
the fact that ⊥ = [⊥,⊥].

4.2. Permutation of Rules 91

(iii) If π is p↓, then the active structures of the redex are [!R, ?T], !R and ?T . If ⊥ is
inside !R or ?T , then it can be considered inside R or T , respectively, which are
passive. Hence, this is covered by case (2). If ⊥ is inside [!R, ?T] but not inside
!R or ?T , then we can use [!R,⊥, ?T] = [[!R, ?T],⊥] to reduce this case to (1).

(iv) For π = ai↓, the situation is similar. The active structures of the redex are [a, ā],
a and ā. If ⊥ is inside [a, ā], then use [a,⊥, ā] = [[a, ā],⊥] to reduce this case
to (1). If one of a or ā is ⊥, then the application of ai↓ is trivial.

(6) The contractum ⊥ of w↓ and the redex of π overlap. This case is impossible because
the structure ⊥ cannot properly overlap with any other structure. ��

4.2.5 Lemma The rule w↑ permutes under the rules ai↓, ai↑,p↑ and w↓.

Proof: Dual to Lemma 4.2.4. ��

4.2.6 Lemma The rule ai↓ permutes over the rules ai↑, s,p↑ and w↑.

Proof: Consider a derivation
Q

π
S{1}

ai↓ ,
S [a, ā]

where π ∈ {ai↑, s,p↑,w↑}. Without loss of generality, assume that the application of π is
nontrivial. Again, follow 4.2.3:

(4) The redex of π is inside (an active structure of) the contractum 1 of ai↓. This is
impossible because 1 cannot have a proper substructure. If the redex of π is equal to
1, then this case can be reduced to case (1) by using the fact that 1 = (1, 1).

(5) The contractum 1 of ai↓ is inside an active structure of the redex of π, but not inside
a passive one. This case is not possible. This can be seen from a similar analysis as
in the proof of Lemma 4.2.4.

(6) The contractum 1 of ai↓ and the redex of π overlap. This case is impossible because
the structure 1 cannot properly overlap with any other structure. ��

4.2.7 Lemma The rule ai↑ permutes under the rules ai↓, s,p↓ and w↓.

Proof: Dual to Lemma 4.2.6. ��

Observe that the rule w↓ does not permute over p↑. For example in the derivation

S(?R, !T)
p↑

S{?(R,T)}
=

S{?[(R,T),⊥]}
w↓ .

S{?[(R,T), ?Z]}

92 4. The Multiplicative Exponential Fragment of Linear Logic

it is unclear how the instance of w↓ could be permuted up. However, with the help of the
switch rule, we can get

S(?R, !T)
=

S(?R, ![T,⊥])
w↓

S(?R, ![T, ?Z])
p↑

S{?(R, [T, ?Z])}
s .
S{?[(R,T), ?Z]}

In other words, the switch is used to move the structure ?Z inside a passive structure of
the redex of p↑. For the rules ai↓ and p↓ the situation is similar:

S′{![R,T]}
p↓

S′ [!R, ?T]
=

S′ [(!R, 1), ?T]
ai↓ yields

S′ [(!R, [a, ā]), ?T]

S′{![R,T]}
=

S′(![R,T], 1)
ai↓

S′(![R,T], [a, ā])
p↓

S′([!R, ?T] , [a, ā])
s .

S′ [(!R, [a, ā]), ?T]

This time the switch is used to move the disturbing structure [a, ā] outside the redex of p↓.
Another example is the situation

S{⊥}
w↓

S{?(a, b)}
=

S{?(a, 1, b)}
ai↓ ,

S{?(a, [c, c̄] , b)}

where it is unclear, how the rule ai↓ could be permuted over w↓. But we can replace the
whole derivation by a single application of w↓:

S{⊥}
w↓ .

S{?(a, [c, c̄], b)}

This leads to the following definition.

4.2.8 Definition A rule ρ permutes over a rule π by a rule σ if for every derivation

Q
π

U
ρ

P

,

there exists one of the derivations

Q
ρ

V
π

P

,

Q
ρ

V
π

V ′
σ

P

,
Q

π
P

,
Q

ρ
P

or
Q

σ
P

,

4.2. Permutation of Rules 93

for some structures V and V ′. Dually, a rule π permutes under a rule ρ by a rule σ if for
every derivation

Q
π

U
ρ

P

,

there exists one of following the derivations (for some structures V and V ′):

Q
ρ

V
π

P

,

Q
σ

V
ρ

V ′
π

P

,
Q

π
P

,
Q

ρ
P

or
Q

σ
P

.

4.2.9 Lemma (a) The rule w↓ permutes over p↑ and s by s. (b) The rule w↑ permutes
under p↓ and s by s. (c) The rule ai↓ permutes over p↓ and w↓ by s. (d) The rule ai↑
permutes under p↑ and w↑ by s.

Proof: (a) Consider a derivation
Q

π
S{⊥}

w↓ ,
S{?Z}

where π ∈ {p↑, s} is nontrivial. Then the cases (1)–(4) and (6) are as in the proof of
Lemma 4.2.4. The remaining case is:

(5) The contractum ⊥ of w↓ is inside an active structure of the redex of π but not inside
a passive one. Then there are two subcases

(i) If π = p↑, then the redex is ?(R,T). The active structures are ?(R,T) and
(R,T). There are several possibilities for ⊥ to be inside. They are all covered
by the general case where R = (R1, R2) and T = (T1, T2), for some R1, R2, T1,
and T2, and we have

?(R,T) = ?(R1, R2, T1, T2) = ?(R1, [(R2, T1),⊥], T2) .

In the situation above, we then get S{⊥} = S′{?(R1, [(R2, T1),⊥], T2)} for some
context S′{ }. Then

S′(?(R1, R2), !(T1, T2))
p↑

S′{?(R1, R2, T1, T2)}
=

S′{?(R1, [(R2, T1),⊥], T2)}
w↓ yields

S′{?(R1, [(R2, T1), ?Z], T2)}

S′(?(R1, R2), !(T1, T2))
=

S′(?(R1, [R2,⊥]), !(T1, T2))
w↓

S′(?(R1, [R2, ?Z]), !(T1, T2))
p↑

S′{?(R1, [R2, ?Z], T1, T2)}
s .

S′{?(R1, [(R2, T1), ?Z] , T2)}
(ii) If π = s, the situation is similar. The most general case for ⊥ occurring inside an

active structure of the redex [(R,T), U] is when R = (R1, R2) and T = (T1, T2),
for some R1, R2, T1, and T2, and

[(R,T), U] = [(R1, R2, T1, T2), U] = [(R1, [(R2, T1),⊥], T2), U] .

94 4. The Multiplicative Exponential Fragment of Linear Logic

Then we have S{⊥} = S′ [(R1, [(R2, T1),⊥], T2), U] for some context S′{ } :

S′([(R1; R2), U], T1, T2)
s

S′ [(R1, R2, T1, T2), U]
=

S′ [(R1, [(R2, T1),⊥], T2), U]
w↓ yields

S′ [(R1, [(R2, T1), ?Z], T2), U]

S′([(R1; R2), U], T1, T2)
=

S′([(R1, [R2,⊥]), U], T1, T2)
w↓

S′([(R1, [R2, ?Z]), U], T1, T2)
s

S′ [(R1, [R2, ?Z], T1, T2), U]
s .
S′ [(R1, [(R2, T1), ?Z] , T2), U]

(b) Dual to (a).
(c) Consider a derivation

Q
π

S{1}
ai↓ ,

S [a, ā]

where π ∈ {p↓,w↓} is nontrivial. The cases (1)–(4) and (6) are as in the proof of
Lemma 4.2.6. The remaining case is:

(5) The contractum 1 of ai↓ is inside an active structure of the redex of π, but not inside
a passive one. There are the following subcases:

(i) It π = p↓, then the redex is [!R, ?T]. The possibilities for 1 to occur inside are
[(!R, 1), ?T] and [!R, (?T, 1)]. Both are similar and I show only the first, where
S{1} = S′ [(!R, 1), ?T] for some S′{ }. Then

S′{![R,T]}
p↓

S′ [!R, ?T]
=

S′ [(!R, 1), ?T]
ai↓ yields

S′ [(!R, [a, ā]), ?T]

S′{![R,T]}
=

S′(![R,T], 1)
ai↓

S′(![R,T], [a, ā])
p↓

S′([!R, ?T] , [a, ā])
s .
S′ [(!R, [a, ā]), ?T]

(ii) If π = w↓, then the redex is ?R. If 1 occurs inside, we have ?R = ?R′{1} for
some context R′{ }. Then S{1} = S′{?R′{1}} for some S′{ }, and

S′{⊥}
w↓

S′{?R′{1}}
ai↓ yields

S′{?R′ [a, ā]}
S′{⊥}

w↓ .
S′{?R′ [a, ā]}

(d) Dual to (c). ��

This is sufficient to show that in any derivation that does not contain the rules b↓ and
b↑, we can permute all instances of w↓ and ai↓ to the top of the derivation and all instances
of w↑ and ai↑ to the bottom.

4.2. Permutation of Rules 95

4.2.10 Proposition For every derivation
T

∆‖SELS\{b↓,b↑}
R

there are structures T ′ and

R′ and derivations ∆1, ∆2, and ∆3, such that

T
∆1‖{ai↓,w↓}

T ′

∆2‖{s,p↓,p↑}
R′

∆3‖{ai↑,w↑}
R

.

4.2.11 Remark The statement of Proposition 4.2.10 can be strengthened because the

derivation
T

∆1‖{ai↓,w↓}
T ′

can be further decomposed into

T
‖{ai↓}

T ′′

‖{w↓}
T ′

and

T
‖{w↓}

T ′′′

‖{ai↓}
T ′

,

for some T ′′ and T ′′′. Dually, the derivation
R′

∆3‖{ai↑,w↑}
R

can be be decomposed into

R′

‖{ai↑}
R′′

‖{w↑}
R

and

R′

‖{w↑}
R′′′

‖{ai↑}
R

,

for some structures R′′ and R′′′.

Proposition 4.2.10 gives a first idea of how a decomposition theorem does look like. For
the full decomposition theorems for system SELS to be discussed in the following section,
it is necessary to handle the rules b↓ and b↑. Unfortunately, this is impossible with such
easy permutation arguments that have been shown in this section. For example, permuting
b↑ over another rule π can cause the duplication of π:

S{!R′}
π

S{!R}
b↑ �

S(!R,R)

S{!R′}
b↑

S(!R′, R′)
π

S(!R′, R)
π .

S(!R,R)

96 4. The Multiplicative Exponential Fragment of Linear Logic

Permuting b↑ under another rule ρ is impossible. This can be seen from the derivation

S{!R}
b↑

S(!R,R)
ρ ,

S(!R, R′)

where b↑ cannot be applied to (!R,R′) because R and R′ are in general not equal. For b↓,
the situation is dual.

4.3 Decomposition

The new top-down symmetry of derivations in the calculus of structures allows to study
properties that are not observable in the sequent calculus. The most remarkable results
so far are decomposition theorems. In general, a decomposition theorem says that a given
system S can be divided into n pairwise disjoint subsystems S1, . . . , Sn such that every
derivation ∆ in system S can be rearranged as composition of n derivations ∆1, . . . , ∆n,
where ∆i uses only rules of Si, for every 1 � i � n.

In this section, I will state and prove two such decomposition theorems for derivations
in system SELS. Both of them allow a decomposition of system SELS into seven disjoint
subsystems.

4.3.1 Theorem (First Decomposition) For every derivation
T

∆‖SELS
R

there are struc-

tures T1, T2, T3, R1, R2, R3, and derivations ∆1, . . . , ∆7, such that

T

∆1

∥∥{b↑}
T1

∆2

∥∥{w↓}
T2

∆3

∥∥{ai↓}
T3

∆4

∥∥{s,p↓,p↑}
R3

∆5

∥∥{ai↑}
R2

∆6

∥∥{w↑}
R1

∆7

∥∥{b↓}
R

.

Apart from a decomposition into seven subsystems, the first decomposition theorem can
also be read as a decomposition into three subsystems that can be called creation, merging ,
and destruction. In the creation subsystem, each rule increases the size of the structure;
in the merging system, each rule does some rearranging of substructures, without changing

4.3. Decomposition 97

the size of the structures; and in the destruction system, each rule decreases the size of the
structure. In a decomposed derivation, the merging part is in the middle of the derivation,
and (depending on your preferred reading of a derivation) the creation and destruction are
at the top and at the bottom:

T

T ′
creation

�

�

destruction

R′

��
merging

��

R

destruction
�

creation

�

.

In system SELS the merging part contains the rules s, p↓ and p↑. In the top-down reading
of a derivation, the creation part (where the size of the structure is increased) contains
the rules b↑, w↓ and ai↓, and the destruction part (where the size of the structure is
decreased) consists of b↓, w↑ and ai↑. In the bottom-up reading, creation and destruction
are exchanged.

The second decomposition is almost the same statement, with the only difference that
the rules w↓ and w↑ are exchanged.

4.3.2 Theorem (Second Decomposition) For every derivation
T

∆‖SELS
R

there are

structures T1, T2, T3, R1, R2, R3, and derivations ∆1, . . . , ∆7, such that

T

∆1

∥∥{b↑}
T1

∆2

∥∥{w↑}
T2

∆3

∥∥{ai↓}
T3

∆4

∥∥{s,p↓,p↑}
R3

∆5

∥∥{ai↑}
R2

∆6

∥∥{w↓}
R1

∆7

∥∥{b↓}
R

.

The second decomposition theorem allows a separation between core and noncore of the
system, such that the up fragment and the down fragment of the noncore are not merged,
as it is the case in the first decomposition. More precisely, we can separate the following

98 4. The Multiplicative Exponential Fragment of Linear Logic

five subsystems:
T∥∥noncore (up)

T ′∥∥interaction (down)

T ′′∥∥core (up and down)

R′′∥∥interaction (up)

R′∥∥noncore (down)

R

.

This decomposition will also considerably simplify the cut elimination argument because
we no longer have to deal with the noncore rules (up and down) which usually make the
cut elimination proof hard.

In the following, I will first give only a sketch of the proofs of the decomposition theo-
rems, and then the detailed proofs will follow in Sections 4.3.1 and 4.3.2.

The first decomposition is obtained in three steps as follows:

T
∆‖SELS
R

1
�

T
∆1‖{b↑}

T1

∆′‖SELS\{b↓,b↑}
R1

∆7‖{b↓}
R

2
�

T
∆1‖{b↑}

T1

∆2‖{w↓}
T2

∆′′‖{ai↓,ai↑,s,p↓,p↑}
R2

∆6‖{w↑}
R1

∆7‖{b↓}
R

3
�

T
∆1‖{b↑}

T1

∆2‖{w↓}
T2

∆3‖{ai↓}
T3

∆4‖{s,p↓,p↑}
R3

∆5‖{ai↓}
R2

∆6‖{w↑}
R1

∆7‖{b↓}
R

.

The second and third step are realised by the results of Section 4.2: we can use Proposi-
tion 4.2.10 together with Remark 4.2.11. The first step is more difficult. The basic idea is
to permute the instances of b↑ over all the other rules. The most problematic case is when

S{![R,T]}
p↓

S [!R, ?T]
b↑ is replaced by

S [(!R,R), ?T]

S{![R,T]}
b↑

S(![R,T], [R,T])
p↓

S([!R, ?T] , [R,T])
s
S [([!R, ?T], R), T]
s

S [(!R,R), ?T , T]
b↓ ,

S [(!R,R), ?T]

4.3. Decomposition 99

T
‖SELS
R

�

T
‖{b↑}
T1

‖SELS\{b↑}
R

�

T
‖{b↑}
T1

‖SELS\{b↓}
R1

‖{b↓}
R

�

T
‖{b↑}
T2

‖SELS\{b↑}
R1

‖{b↓}
R

�

T
‖{b↑}
T2

‖SELS\{b↓}
R2

‖{b↓}
R

� . . . �

T
‖{b↑}
Tk

‖SELS\{b↓,b↑}
Rh

‖{b↓}
R

Figure 4.7: Permuting b↑ up and b↓ down

because a new instance of b↓ is introduced. After all b↑ have reached the top of the deriva-
tion, the instances of b↓ are permuted down by the dual procedure, where new instances
of b↑ might be introduced; and so on.

The problem is to show that this process, visualised in Figure 4.7, does terminate
eventually. This is done as follows: I will introduce the notion of a certain type of cycle
inside a derivation. Then, I will show that the assumption of a nontermination can be
reduced to the existence of such a cycle. From a derivation that contains such a cycle, I
will extract a derivation

([!R1, ?T1], [!R2, ?T2], . . . [!Rn, ?Tn])
∆
∥∥{s}

[(!R2, ?T1), (!R3, ?T2), . . . (!R1, ?Tn)]
,

for some n � 1 and structures R1, . . . , Rn and T1, . . . , Tn. Then, I will show that such a
derivation cannot exist. This will prove the termination. In fact, the nonexistence of such
a derivation is the deep reason behind the decomposition theorems, and the only purpose
of all the effort made in Sections 4.3.1 and 4.3.2 is to carry out the technical details. (Here
we have another example where syntax seems to be the enemy of proof theory.)

The proof of the second decomposition is also done in three steps:

T
∆‖SELS
R

1
�

T
∆1‖{b↑}

T1

∆′‖SELS\{b↓,b↑}
R1

∆7‖{b↓}
R

2
�

T
∆1‖{b↑}

T1

∆2‖{w↑}
T2

∆′′‖{ai↓,ai↑,s,p↓,p↑}
R2

∆6‖{w↓}
R1

∆7‖{b↓}
R

3
�

T
∆1‖{b↑}

T1

∆2‖{w↑}
T2

∆3‖{ai↓}
T3

∆4‖{s,p↓,p↑}
R3

∆5‖{ai↓}
R2

∆6‖{w↓}
R1

∆7‖{b↓}
R

.

100 4. The Multiplicative Exponential Fragment of Linear Logic

The first and the last step are exactly the same as for the first decomposition. In the second
step, we have to permute the rule w↑ up and the rule w↓ down. When permuting w↑ up,
the problematic case is when

S{![R,T]}
p↓

S [!R, ?T]
w↑ is replaced by

S [1, ?T]

S{![R,T]}
w↑

S{1}
=

S [1,⊥]
w↓ ,

S [1, ?T]

because a new instance of w↓ is introduced. After all w↑ have reached the top of the deriva-
tion, the instances of w↓ are permuted down by the dual procedure, where new instances
of w↑ might be introduced; and so on. This means that there is the same termination
problem as for the separation of absorption in the first step. However, since the weakening
rule deletes material instead of duplicating it, termination will be much easier to show than
for the separation of absorption.

4.3.1 Chains and Cycles in Derivations

In this section, I will provide a tool for dealing with the rules b↓ and b↑ in the decomposition
theorems. The goal is to permute in any derivation all instances of b↑ up to the top and all
instances of b↓ down to the bottom. If we try to permute the rule b↑ over the other rules
in system SELS applying the schema in 4.2.3, we encounter (among others) the following
case:

S{![R,T]}
p↓

S [!R, ?T]
b↑ ,

S [(!R,R), ?T]

where it is unclear, how the instance of b↑ could be permuted over p↓. But the derivation
can be replaced by

S{![R,T]}
b↑

S(![R,T], [R,T])
p↓

S([!R, ?T] , [R,T])
s

S [([!R, ?T], R), T]
s

S [(!R,R), ?T , T]
b↓ .

S [(!R,R), ?T]

This seems to solve the problem because now the instance of b↑ is above the instance of
p↓. However, there is now a new instance of b↓ which needs to be permuted down to the
bottom of the derivation. Applying the schema in 4.2.3 again, we encounter the dual case:

S(!R, [?T, T])
b↓

S(!R, ?T)
p↑ .

S{?(R,T)}

4.3. Decomposition 101

This has now to be replaced by

S(!R, [?T, T])
b↑

S(!R,R, [?T, T])
s
S([(!R, ?T), T] , R)
s
S [(!R, ?T), (R,T)]

p↑
S [?(R,T), (R,T)]

b↓ ,
S{?(R,T)}

which introduces a new instance of b↑. And so on.
The problem is to show that this cannot run forever, but must terminate eventually (see

Figure 4.7). In order to do so, we have to inspect the “path” that is taken by an instance
of b↑ while it moves up to the top and the “path” taken by a b↓ while it moves down. This
is the motivation for the definition of !-chains and ?-chains. These chains can be composed
to give complex chains. I will show that in the process described above, the instances of
b↑ and b↓ travel up and down along such chains. Further, the process will not terminate
if such a chain has the form of a cycle. The purpose of this section is to show that there is
no such cycle.

In Definition 3.1.7, I introduced the concept of a context as a structure with a hole,
and then used S{R} for denoting a structure with a substructure R. In this section, I
also need to denote structures with more than one distinctive substructure. For example,
I will write S{R1}{R2} to denote a structure with two independent substructures R1 and
R2. More generally, S{R1} . . . {Rn} has R1, . . . , Rn as substructures. Removing those
substructures and replacing them by { }, yields an n-ary context S{ } . . . { }. For example,
[!{ }, (a, { }, b)] is a binary context.

4.3.3 Definition Let ∆ be a derivation. A !-link in ∆ is any !-structure !R that occurs
as substructure of a structure S inside a derivation.

The purpose of the definition of a !-link is to define !-chains, which consist of !-links.
In general, in a given derivation ∆, most of the !-links in ∆ do not belong to a !-chain.
Later, I will mark those !-links that belong to a !-chain or that are for other reason under
discussion with a !!!�.

4.3.4 Example The derivation

(!!!�[(b, !a), ā][(b, !a), ā][(b, !a), ā] , !c)
p↓

([!!!�(b, !a)(b, !a)(b, !a) , ?ā] , !c)
s

[!(b, !!!�aaa), (?ā, !!!�ccc)]
p↑

[!(b, !a), ?(ā, c)]

contains many !-links, but only four of them are marked. (So far, there is no relation
between markings and chains.)

102 4. The Multiplicative Exponential Fragment of Linear Logic

(1)
S{!!!�RRR}{W}

ρ
S{!!!�RRR}{Z}

S{???�TTT }{W}
ρ

S{???�TTT }{Z}

(2)
S{W{!!!�RRR}}

ρ
S{Z{!!!�RRR}}

S{W{???�TTT }}
ρ

S{Z{???�TTT }}

(3)
S{!!!�R{W}R{W}R{W}}

ρ
S{!!!�R{ZZZ}R{ZZZ}R{ZZZ}}

S{???�T{W}T{W}T{W}}
ρ

S{???�T{ZZZ}T{ZZZ}T{ZZZ}}

(4.i)
S{!!!�[R,T][R,T][R,T] }

p↓
S [!!!�RRR, ?T]

S(!R, ???�TTT)
p↑

S{???�(R,T)(R,T)(R,T) }

(4.ii)
S{!!!�RRR}

b↑
S(!!!�RRR,R)

S(???�TTT , T)
b↑

S{???�TTT }

(4.iii)
S{!V {!!!�RRR}}

b↑
S(!V {!!!�RRR}, V {!R})

S [?U{???�TTT }, U{?T}]
b↓

S{?U{???�TTT }}

(4.iv)
S{!V {!!!�RRR}}

b↑
S(!V {!R}, V {!!!�RRR})

S [?U{?T}, U{???�TTT }]
b↓

S{?U{???�TTT }}

(4.v)
S [?U{!!!�RRR}, U{!R}]

b↓
S{?U{!!!�RRR}}

S{!V {???�TTT }}
b↑

S(!V {???�TTT }, V {?T})

(4.vi)
S [?U{!R}, U{!!!�RRR}]

b↓
S{?U{!!!�RRR}}

S{!V {???�TTT }}
b↑

S(!V {?T}, V {???�TTT })

Figure 4.8: Connection of !-links and ?-links

4.3.5 Definition Two !-links !!!�RRR and !!!�R′R′R′ inside a derivation ∆ are connected if they
occur in two consecutive structures, i.e. ∆ is of the shape

P
‖

S′{!!!�R′R′R′ }
ρ ,

S{!!!�RRR}
‖
Q

and one of the following cases holds:

(1) The link !!!�RRR is inside the context of ρ, i.e. R = R′ and S{!!!�RRR} = S′′{!!!�RRR}{Z} and

4.3. Decomposition 103

S′{!!!�R′R′R′ } = S′′{!!!�RRR}{W} for some context S′′{ }{ }, where Z and W are redex and
contractum of ρ:

S′′{!!!�RRR}{W}
ρ

S′′{!!!�RRR}{Z} .

(2) The link !!!�RRR is inside a passive structure of the redex of ρ, i.e. R = R′ and there are
contexts S′′{ }, Z ′{ } and W ′{ } such that S{!!!�RRR} = S′′{Z{!!!�RRR}} and S′{!!!�R′R′R′ } =
S′′{W{!!!�RRR}}, where Z{!!!�RRR} and W{!!!�RRR} are redex and contractum of ρ:

S′′{W{!!!�RRR}}
ρ

S′′{Z{!!!�RRR}} .

(3) The redex of ρ is inside R, i.e. S{ } = S′{ } and there is a context R′′{ } such that
S{!!!�RRR} = S{!!!�R′′{Z}R′′{Z}R′′{Z}} and S′{!!!�R′R′R′ } = S{!!!�R′′{W}R′′{W}R′′{W}}, where Z and W are redex
and contractum of ρ:

S{!!!�R′′{W}R′′{W}R′′{W}}
ρ

S{!!!�R′′{ZZZ}R′′{ZZZ}R′′{ZZZ}} .

(4) The link !!!�RRR is inside an active structure of the redex of ρ, but not inside a passive
one. Then six subcases are possible:

(i) ρ = p↓ and there is a structure T such that we have S{!!!�RRR} = S′ [!!!�RRR, ?T] and
S′{!!!�R′R′R′ } = S′{!!!�[R,T][R,T][R,T] }, i.e. R′ = [R,T]:

S′{!!!�[R,T][R,T][R,T] }
p↓

S′ [!!!�RRR, ?T]
.

(ii) ρ = b↑, R = R′, S{!!!�RRR} = S′(!!!�RRR,R) and S′{!!!�R′R′R′ } = S′{!!!�RRR}:
S′{!!!�RRR}

b↑
S′(!!!�RRR,R)

.

(iii) ρ = b↑, R = R′ and there are contexts S′′{ } and V { } such that
S{!!!�RRR} = S′′(!V {!!!�RRR}, V {!R}) and S′{!!!�R′R′R′ } = S′′{!V {!!!�RRR}}:

S′′{!V {!!!�RRR}}
b↑

S′′(!V {!!!�RRR}, V {!R}) .

(iv) ρ = b↑, R = R′ and there are contexts S′′{ } and V { } such that
S{!!!�RRR} = S′′(!V {!R}, V {!!!�RRR}) and S′{!!!�R′R′R′ } = S′′{!V {!!!�RRR}}:

S′′{!V {!!!�RRR}}
b↑

S′′(!V {!R}, V {!!!�RRR}) .

(v) ρ = b↓, R = R′ and there are contexts S′′{ } and U{ } such that
S{!!!�RRR} = S′′{?U{!!!�RRR}} and S′{!!!�R′R′R′ } = S′′ [?U{!!!�RRR}, U{!R}]:

S′′ [?U{!!!�RRR}, U{!R}]
b↓

S′′{?U{!!!�RRR}} .

104 4. The Multiplicative Exponential Fragment of Linear Logic

(vi) ρ = b↓, R = R′ and there are contexts S′′{ } and U{ } such that
S{!!!�RRR} = S′′{?U{!!!�RRR}} and S′{!!!�R′R′R′ } = S′′ [?U{!R}, U{!!!�RRR}]:

S′′ [?U{!R}, U{!!!�RRR}]
b↓

S′′{?U{!!!�RRR}} .

On the left-hand side of Figure 4.8, I have listed all possibilities, how !-links can be
connected.

4.3.6 Example In the derivation shown in Example 4.3.4, the two !-links !!!�[(b, !a), ā][(b, !a), ā][(b, !a), ā]
and !!!�(b, !a)(b, !a)(b, !a) are connected (by case (4.i)), whereas the !-link !!!�aaa is neither connected to
!!!�(b, !a)(b, !a)(b, !a) nor to !!!�ccc .

4.3.7 Definition A !-chain χ inside a derivation ∆ is a sequence of connected !-links.
The bottommost !-link of χ is called its tail and the topmost !-link of χ is called its head .

Throughout this work, I will visualise !-chains by giving the derivation and marking all
!-links of the chain by !!!�.

4.3.8 Example The following derivation shows a !-chain with tail !!!�(b, ?a)(b, ?a)(b, ?a) and head !!!�bbb :

(!!!�bbb , !c)
b↑ (4.ii)

(!!!�bbb , b, !c)
=

(!!!�bbb , !c, b)
ai↓ (3)

(!!!�(b, [a, ā][a, ā][a, ā])(b, [a, ā][a, ā][a, ā])(b, [a, ā][a, ā][a, ā]) , !c, b)
w↓ (3)

(!!!�(b, [?a?a?a, a, ā])(b, [?a?a?a, a, ā])(b, [?a?a?a, a, ā]) , !c, b)
s (3)

(!!!�[(b, [?a, a]), ā][(b, [?a, a]), ā][(b, [?a, a]), ā][(b, [?a, a]), ā][(b, [?a, a]), ā][(b, [?a, a]), ā][(b, [?a, a]), ā][(b, [?a, a]), ā][(b, [?a, a]), ā] , !c, b)
b↓ (3)

(!!!�[(b, ?a?a?a), ā][(b, ?a?a?a), ā][(b, ?a?a?a), ā] , !c, b)
p↓ (4.i)

([!!!�(b, ?a)(b, ?a)(b, ?a) , ?ā] , !c, b)
s (2)

([!!!�(b, ?a)(b, ?a)(b, ?a) , (?ā, !c)] , b)
p↑ (1) .

([!!!�(b, ?a)(b, ?a)(b, ?a) , ?(ā, c)], b)

On the right-hand side of the derivation I indicated by which case (of Figure 4.8) the links
are connected. (Observe that every subchain is also a !-chain. For example the bottommost
four !-links are also a !-chain.)

4.3.9 Definition The notion of ?-link is defined in the same way as the one of !-link.
The notion of ?-chain is defined dually to !-chain, in particular, the tail of a ?-chain is its
topmost ?-link and its head is its bottommost ?-link.

Similar to !-links, I will mark ?-links that are under discussion with ???�. In particular,
?-chains are marked by marking every link of the ?-chain by ???�. For convenience, I have
listed on the right-hand side of Figure 4.8 all possibilities how ?-links can be connected
inside a ?-chain. Observe that cases (4.i) and (4.ii) are the only cases in which both sides
differ. The cases (1) to (3) are exactly the same on both sides. The cases (4.iii) and (4.v)
as well as the cases (4.iv) and (4.vi) are exchanged in order to maintain the duality.

4.3. Decomposition 105

4.3.10 Example The following derivation shows an example for a ?-chain with tail ???�aaa
and head ???�(a, c)(a, c)(a, c) :

![!c, (???�aaa, !c), 1]
p↓ (2)

[?!c, ![(???�aaa, !c), 1]]
=

[?!([⊥, 1], !c), ![(???�aaa, !c), 1]]
w↓ (1)

[?!([?a, 1], !c), ![(???�aaa, !c), 1]]
s (1)

[?! [(?a, !c), 1] , ![(???�aaa, !c), 1]]
b↓ (4.iv)

?![(???�aaa, !c), 1]
ai↓ (1)

?![(???�aaa, !c), b, b̄]
p↓ (2)

?[![(???�aaa, !c), b], ?b̄]
b↑ (4.v)

?[(![(???�aaa, !c), b], [(?a, !c), b]), ?b̄]
p↑ (4.i) .

?[(![???�(a, c)(a, c)(a, c) , b], [(?a, !c), b]), ?b̄]

Again, I indicated on the right-hand side of the derivation the cases by which the links are
connected.

4.3.11 Definition Let ∆ be a derivation. An upper link in ∆ is any structure [!R, ?T]
that occurs as substructure of a structure S inside ∆. Dually, a lower link is any structure
(?T, !R) that occurs as substructure of a structure S inside ∆.

Similar to the marking of !-links and ?-links, I will mark upper links as [[[!!!�RRR, ???�TTT]]] and
lower links as (((???�TTT , !!!�RRR))).

4.3.12 Definition Let ∆ be a derivation. The set X(∆) of chains in ∆ is defined
inductively as follows:

(1) For every !-chain χ in ∆, we have χ ∈ X(∆).

(2) For every ?-chain χ in ∆, we have χ ∈ X(∆).

(3) If ∆ contains two chains χ1 and χ2 and an upper link [[[!!!�RRR, ???�TTT]]] such that !!!�RRR is
the head of χ1 and ???�TTT is the tail of χ2, then the concatenation of χ1 and χ2 forms a
chain χ3 ∈ X(∆). The tail of χ3 is the tail of χ1 and the head of χ3 is the head of χ2.

(4) If ∆ contains two chains χ1 and χ2 and a lower link (((???�TTT , !!!�RRR))) such that ???�TTT is the
head of χ1 and !!!�RRR is the tail of χ2, then the concatenation of χ1 and χ2 forms a
chain χ3 ∈ X(∆). The tail of χ3 is the tail of χ1 and the head of χ3 is the head of χ2.

(5) There are no other chains in X(∆).

4.3.13 Definition The length of a chain χ is the number of !-chains and ?-chains it is
composed of.

106 4. The Multiplicative Exponential Fragment of Linear Logic

(![c, d], !a, ?b)
p↓

([[[!!!�ccc, ???�ddd]]], !a, ?b)
s

([!!!�ccc , (!a, ???�ddd)], ?b)
s

[(!!!�ccc , ?b), (!a, ???�ddd)]
w↓

[?(!c, [[[!!!�aaa, ???�bbb]]], ?d), (!!!�ccc, ?b), (!a, ???�ddd)]
s

[?(!c, [(!!!�aaa, ?d), ???�bbb]), (!!!�ccc, ?b), (!a, ???�ddd)]
s

[?[(!!!�aaa, ?d)], (!c, ???�bbb), (!!!�ccc, ?b), (!a, ???�ddd)]
b↓

?[(((???�bbb , !!!�ccc))), (!!!�aaa, ???�ddd)]
p↑

?[?(b, c), (((!!!�aaa, ???�ddd)))]
w↑

?[?(b, c), ?d]

Figure 4.9: A cycle χ with n(χ) = 2

4.3.14 Example Here are two examples of chains in derivations (for TEXnical reasons
the redices of the rule applications are no longer marked):

(![a, (c, c̄), b], !!!�ccc)
p↓

([![a, (c, c̄)], ?b], !!!�ccc)
ai↑

([[[!!!�aaa, ???�bbb]]], !!!�ccc)
s

[!!!�aaa, (((???�bbb , !!!�ccc)))]
p↑

[!!!�aaa, ?(b, c)]
ai↓ and

[!!!�(a, [d, d̄])(a, [d, d̄])(a, [d, d̄]) , ?(b, c)]

(a, ![c, d])
p↓

(a, [[[!!!�ccc, ???�ddd]]])
s

[(a, !!!�ccc), ???�ddd]
w↓

[([a, ???�bbb], !!!�ccc), ???�ddd]
s

[a, (((???�bbb , !!!�ccc))), ???�ddd]
w↑

[a, ?b, ???�ddd]
b↓ .

[?b, ???�ddd]

In the first chain, the tail is !!!�(a, [d, d̄])(a, [d, d̄])(a, [d, d̄]) and the head is !!!�ccc . In the second example the tail
is ???�bbb and the head is ???�ddd . Both have length l = 3.

4.3.15 Definition Let ∆ be a derivation. A chain χ ∈ X(∆) is called a cycle if ∆
contains an upper link [[[!!!�RRR, ???�TTT]]] such that !!!�RRR is the head of χ and ???�TTT is the tail of χ,
or ∆ contains a lower link (((???�TTT , !!!�RRR))) such that ???�TTT is the head of χ and !!!�RRR its tail.

In other words, a cycle can be seen as a chain without head or tail. Figure 4.9 shows an
example for a cycle. Observe that for every cycle χ there is a number n = n(χ) � 1 such
that χ consists of n !-chains, n ?-chains, n upper links and n lower links. I will call this
n(χ) the characteristic number of χ. For the example in Figure 4.9, we have n = 2.

4.3.16 Definition A cycle χ is called a promotion cycle if every upper link of χ is redex
of a p↓-rule (called link promotion) and every lower link of χ is contractum of a p↑-rule
(called link copromotion).

The example in Figure 4.9 is not a promotion cycle because the upper link [[[!!!�aaa, ???�bbb]]]
is not redex of a p↓-rule and the lower link (((!!!�aaa, ???�ddd))) is not contractum of a p↑-rule.

4.3. Decomposition 107

!(![a, b], ![c, d], ![e, f])
p↓

!([[[!!!�aaa, ???�bbb]]], ![c, d], ![f, e])
p↓

!([!!!�aaa, ???�bbb], ![c, d], [[[???�fff , !!!�eee]]])
b↑

(!([!!!�aaa, ?b], ![c, d], [!e, ???�fff]), [!a, ???�bbb], ![c, d], [!!!�eee , ?f])
w↑

(!([!!!�aaa, ?b], [!e, ???�fff]), [!a, ???�bbb], ![c, d], [!!!�eee, ?f])
s

(![(!!!�aaa, [!e, ???�fff]), ?b], [!a, ???�bbb], ![c, d], [!!!�eee, ?f])
s

(![(((!!!�aaa, ???�fff))), !e, ?b], [!a, ???�bbb], ![c, d], [!!!�eee , ?f])
p↑

(![?(a, f), !e, ?b], [!a, ???�bbb], ![c, d], [!!!�eee , ?f])
w↑

([!a, ???�bbb]![c, d], [!!!�eee, ?f])
p↓

([!a, ???�bbb], [[[!!!�ccc, ???�ddd]]], [!!!�eee, ?f])
s

([([!a, ???�bbb], !!!�ccc), ???�ddd], [!!!�eee, ?f])
s

([(((???�bbb , !!!�ccc))), !a, ???�ddd], [!!!�eee, ?f])
p↑

([?(b, c), !a, ???�ddd], [!!!�eee, ?f])
s

[?(b, c), !a, (???�ddd, [!!!�eee , ?f])]
s

[?(b, c), !a, (((???�ddd, !!!�eee))), ?f]
p↑

[?(b, c), !a, ?(d, e), ?f]

Figure 4.10: A promotion cycle χ with n(χ) = 3

Figure 4.10 shows an example for a promotion cycle. Observe that it is not necessarily the
case that all upper links are above all lower links in the derivation.

4.3.17 Definition Let χ be a cycle inside a derivation ∆, and let all !-links and ?-links
of χ be marked with !!!� or ???�, respectively. Then, χ is called forked if one of the following
holds:

(i) There is an instance of
S [?T, T]

b↓
S{?T} inside ∆, such that both substructures ?T and

T of the contractum contain at least one substructure marked by !!!� or ???�.

(ii) There is an instance of
S{!R}

b↑
S(!R,R)

inside ∆, such that both substructures ?R and

R of the redex contain at least one substructure marked by !!!� or ???�.

A cycle is called nonforked if it is not forked.

Both examples for cycles, that I have shown, are forked cycles. I did not show an
example of a nonforked cycle because nonforked cycles cannot exist. The purpose of this
section is to prove this fact.

4.3.18 Definition If a context is generated by the syntax

S ::= { } | [R,S] | (R,S) ,

108 4. The Multiplicative Exponential Fragment of Linear Logic

i.e. the hole does not occur inside an !- or ?-structure, then it is called a basic context .

4.3.19 Example The contexts [a, b, (ā, [c, d, b̄, { }, a], ?c)] and ([!(b, ?a), { }], b) are ba-
sic, whereas ([!({ }, ?a), ?(ā, c)], b) is not basic.

4.3.20 Lemma Let S{ } be a basic context and R and T be structures. Then there is
a derivation

S [R,T]
∆‖{s}

[S{R}, T]
.

Proof: By structural induction on S{ }.
• S = { }. This case is trivial because S [R,T] = [R,T] = [S{R}, T].

• S = [S′, S′′{ }] for some structure S′ and context S′′{ }. Then by induction hypoth-
esis we have

[S′, S′′ [R,T]]
∆‖{s}

[S′, S′′{R}, T]
.

• S = (S′, S′′{ }) for some structure S′ and context S′′{ }. Then let ∆ be

(S′, S′′ [R,T])
∆′‖{s}

(S′, [S′′{R}, T])
s ,

[(S′, S′′{R}), T]

where ∆′ exists by induction hypothesis. ��
4.3.21 Definition A cycle χ is called pure if

(i) for each !-chain and each ?-chain that is contained in χ, head and tail are equal, and

(ii) all upper links occur in the same structure and all lower links occur in the same
structure.

For example, the two cycles in Figures 4.9 and 4.10 are not pure. Although in both
cases condition (i) is fulfilled, condition (ii) is not. Figure 4.11 shows an example for a pure
cycle.

If a derivation
P

∆‖SELS
Q

contains a pure cycle then there are structures R1, . . . , Rn and T1, . . . , Tn (for some n � 1)
and two n-ary contexts S{ } . . . { } and S′{ } . . . { }, such that ∆ is of the shape

P

∆1

∥∥SELS
S [[[!!!�R1R1R1 , ???�T1T1T1]]] [[[!!!�R2R2R2 , ???�T2T2T2]]] . . . [[[!!!�RnRnRn , ???�TnTnTn]]]

∆2

∥∥SELS
S′(((???�T1T1T1 , !!!�R2R2R2)))(((???�T2T2T2 , !!!�R3R3R3))) . . . (((???�TnTnTn , !!!�R1R1R1)))

∆3

∥∥SELS
Q

,

4.3. Decomposition 109

[?(!c, [!a, ?b], ?d), (![c, d], !a, ?b)]
p↓

[?(!c, [[[!!!�aaa, ???�bbb]]], ?d), ([[[!!!�ccc, ???�ddd]]], !a, ?b)]
s

[?(!c, [!!!�aaa, ???�bbb], ?d), ([!!!�ccc , (!a, ???�ddd)], ?b)]
s

[?(!c, [!!!�aaa, ???�bbb], ?d), (!!!�ccc , ?b), (!a, ???�ddd)]
s

[?(!c, [(!!!�aaa, ?d), ???�bbb]), (!!!�ccc, ?b), (!a, ???�ddd)]
s

[?[(?d, !!!�aaa), (???�bbb , !c)], (!!!�ccc, ?b), (!a, ???�ddd)]
b↓

?[(((???�bbb , !!!�ccc))), (((!!!�aaa, ???�ddd)))]
p↑

?[?(c, b), (!a, ?d)]

Figure 4.11: A pure cycle χ with n(χ) = 2

where inside ∆1 and ∆3 no structures are marked with !!!� or ???� because the structure

S [[[!!!�R1R1R1 , ???�T1T1T1]]] [[[!!!�R2R2R2 , ???�T2T2T2]]] . . . [[[!!!�RnRnRn , ???�TnTnTn]]]

contains all upper links and

S′(((???�T1T1T1 , !!!�R2R2R2)))(((???�T2T2T2 , !!!�R3R3R3))) . . . (((???�TnTnTn , !!!�R1R1R1)))

contains all lower links of the pure circle. In other words, the cycle is completely inside ∆2.
It seems rather intuitive that every cycle can be transformed into a pure cycle by

permuting rules up and down until all upper links are in one structure, all lower links
are in one structure, and all links belonging to a !-subchain (or ?-subchain) are equal.
The following proposition makes this precise for nonforked cycles. More precisely, every
nonforked promotion cycle will be transformed into a nonforked pure cycle. The proof is
rather long because of the technical details to be carried out. But the basic idea is quite
simple: Whenever there is a situation

S{!!!�RRR}
π

S′{!!!�R′R′R′ }
ρ ,

S′′{!!!�R′′R′′R′′ }
where the three links are connected and ρ can be permuted over π by one of the cases (1),
(2), or (3) of 4.2.3 to get

S{!!!�RRR}
ρ

V
π ,

S′′{!!!�R′′R′′R′′ }
for some structure V , then V must contain a link !!!�R′′′R′′′R′′′ that is connected to !!!�RRR and !!!�R′′R′′R′′ .
In other words, we have V = S′′′{!!!�R′′′R′′′R′′′ } for some context S′′′{ } :

S{!!!�RRR}
ρ

S′′′{!!!�R′′′R′′′R′′′ }
π .

S′′{!!!�R′′R′′R′′ }

110 4. The Multiplicative Exponential Fragment of Linear Logic

P
‖

S1{![R1, T1]}
p↓

S1 [[[!!!�R1R1R1 , ???�T1T1T1]]]
‖

S2{![R2, T2]}
p↓

S2 [[[!!!�R2R2R2 , ???�T2T2T2]]]
‖

S′
1(((!!!�R′

2R′
2R′
2 , ???�T ′

1T ′
1T ′
1)))

p↑
S′

1{?(R′
2, T

′
1)}

‖
S3{![R3, T3]}

p↓
S3 [[[!!!�R3R3R3 , ???�T3T3T3]]]

‖
S′

3(((!!!�R′
1R′
1R′
1 , ???�T ′

3T ′
3T ′
3)))

p↑
S′

3{?(R′
1, T

′
3)}

‖
S′

2(((!!!�R′
3R′
3R′
3 , ???�T ′

2T ′
2T ′
2)))

p↑
S′

2{?(R′
3, T

′
2)}

‖
Q

�

P
‖

S1{![R1, T1]}
p↓�

S1 [[[!!!�R1R1R1 , ???�T1T1T1]]]
‖

S2{![R2, T2]}
p↓�

S2 [[[!!!�R2R2R2 , ???�T2T2T2]]]
‖

S′
1(((!!!�R′

2R′
2R′
2 , ???�T ′

1T ′
1T ′
1)))

p↑�
S′

1{?(R′
2, T

′
1)}

‖
S3{![R3, T3]}

p↓�
S3 [[[!!!�R3R3R3 , ???�T3T3T3]]]

‖
S′

3(((!!!�R′
1R′
1R′
1 , ???�T ′

3T ′
3T ′
3)))

p↑�
S′

3{?(R′
1, T

′
3)}

‖
S′

2(((!!!�R′
3R′
3R′
3 , ???�T ′

2T ′
2T ′
2)))

p↑�
S′

2{?(R′
3, T

′
2)}

‖
Q

�

P
‖

S1{!!!�[R1, T1][R1, T1][R1, T1] }
p↓�

S1 [[[!!!�R1R1R1 , ???�T1T1T1]]]
‖

S2{!!!�[R2, T2][R2, T2][R2, T2] }
p↓�

S2 [[[!!!�R2R2R2 , ???�T2T2T2]]]
‖

S′
1(((!!!�R′

2R′
2R′
2 , ???�T ′

1T ′
1T ′
1)))

p↑�
S′

1{???�(R′
2, T

′
1)(R′

2, T
′
1)(R′

2, T
′
1)}

‖
S3{!!!�[R3, T3][R3, T3][R3, T3] }

p↓�
S3 [[[!!!�R3R3R3 , ???�T3T3T3]]]

‖
S′

3(((!!!�R′
1R′
1R′
1 , ???�T ′

3T ′
3T ′
3)))

p↑�
S′

3{???�(R′
1, T

′
3)(R′

1, T
′
3)(R′

1, T
′
3)}

‖
S′

2(((!!!�R′
3R′
3R′
3 , ???�T ′

2T ′
2T ′
2)))

p↑�
S′

2{???�(R′
3, T

′
2)(R′

3, T
′
2)(R′

3, T
′
2)}

‖
Q

Figure 4.12: Example (with n(χ) = 3) for the marking inside ∆

This means that a cycle cannot be destroyed by simple rule permutations.

4.3.22 Proposition If there is a derivation
P

∆‖SELS
Q

that contains a nonforked pro-

motion cycle, then there is a derivation
P̃

∆̃‖{ai↓,ai↑,s}
Q̃

that contains a pure cycle.

Proof: Let χ be the nonforked promotion cycle inside ∆ and let all !-links and ?-links of
χ be marked with !!!� and ???�, respectively (see Figure 4.12, first derivation). Further, let
all instances of a link promotion (Definition 4.3.15) and all instances of a link copromotion
be marked as p↓� and p↑�, respectively (see Figure 4.12, second derivation). Now I will
stepwise construct ∆̃ from ∆ by adding some further markings and by permuting, adding
and removing rules until the cycle is pure. Observe that the transformations will not destroy
the cycle but might change premise and conclusion of the derivation.

I. Let n be the characteristic number of χ. For each of the n marked instances of

S{![Ri, Ti]}
p↓�

S [[[!!!�RiRiRi , ???�TiTiTi]]]

proceed as follows: Mark the contractum ![Ri, Ti] as !!!�[Ri, Ti][Ri, Ti][Ri, Ti] and continue the
marking for all !-links of the (maximal) !-chain that has !!!�[Ri, Ti][Ri, Ti][Ri, Ti] as tail. There is

4.3. Decomposition 111

always a unique choice how to continue the marking (see Definition 4.3.5), except for
one case: the marking reaches a

S [?U,U]
b↓

S{?U}
and the last marked !!!�-structure is inside the redex ?U . Then there are two possi-
bilities: either continue inside ?U (case (4.v) of Definition 4.3.5) or continue inside U
(case (4.vi) of Definition 4.3.5). Choose that side that already contains a marked !!!�-
or ???�-structure. Since the cycle χ is nonforked, it cannot happen that both sides al-
ready contain a marked !!!�- or ???�-structure. If there is no marked !!!�- or ???�-structure
inside the contractum [?U,U] of the b↓, then choose either one.

Proceed dually for all marked

S(((!!!�R′
iR′
iR′
i , ???�T ′

iT ′
iT ′
i)))

p↑�
S{?(R′

i, T
′
i)}

,

i.e. mark the redex ?(R′
i, T

′
i) as ???�(R′

i, T
′
i)(R′

i, T
′
i)(R′

i, T
′
i) and mark also all links of the ?-chain that

has ???�(R′
i, T

′
i)(R′

i, T
′
i)(R′

i, T
′
i) as tail (see Figure 4.12, third derivation).

II. Now consider all !-substructures and all ?-substructures that occur somewhere in the
derivation ∆. They can be divided into three groups:

(a) those which are marked with !!!� or ???�,

(b) those which are a substructure of a marked !!!�- or ???�-structure, and

(c) all the others.

In this step replace all substructures !R and ?T that fall in group (c) by R and T
respectively, i.e. remove the exponential. This rather drastic step will, of course,
yield a nonvalid derivation because correct rule applications might become incorrect.
Observe that all instance of ai↓, ai↑ and s inside ∆ do not suffer from this step, i.e. they
remain valid. Let us now inspect more closely what could happen to the instances of
p↓, p↑, w↓, w↑, b↓ and b↑.

• Consider any instance of
S{![R,T]}

p↓
S [!R, ?T]

in ∆. Then the following cases exhaust
all possibilities.

(i) There are two contexts S′{ } and S′′{ } such that S{ } = S′{!!!�S′′{ }S′′{ }S′′{ }}
or S{ } = S′{???�S′′{ }S′′{ }S′′{ }}. Then redex and contractum of the p↓ remain
unchanged and the rule remains valid.

(ii) The p↓ is marked as
S{!!!�[R,T][R,T][R,T] }

p↓�
S [[[!!!�RRR, ???�TTT]]]

. Then it also remains unchanged.

(iii) The p↓ is marked as
S{!!!�[R,T][R,T][R,T] }

p↓
S [!!!�RRR, ?T]

. Then the exponentials inside ?T are

removed, and we obtain an instance

S{!!!�[R,T][R,T][R,T] }
p̂↓

S [!!!�RRR,T ′]
.

112 4. The Multiplicative Exponential Fragment of Linear Logic

Observe that T ′ and T might be different because inside T all exponentials
remain as they are inside !!!�[R,T][R,T][R,T] , whereas inside T ′ some or all exponentials
are removed.

(iv) The p↓ is not marked and does not occur inside a marked structure. Then
it becomes

S [R′, T ′]
p↓′

S [R′, T ′]
,

where R′ and T ′ are obtained from R and T , respectively, by removing some
(or all) exponentials.

There are no other cases because there are no other markings possible. Observe
that the rule p↓′ in case (iv) is vacuous and can therefore be removed in the
whole derivation. Hence, it only remains to remove all instances of the rule p̂↓
(case (iii)). This will be done in Step V.

• The rule
S(!R, ?T)

p↑
S{?(R,T)} is dual to the rule p↓. Hence the only problem lies in

the new rule
S(R′, ???�TTT)

p̂↑
S{???�(R,T)(R,T)(R,T)} ,

where R′ is obtained from R by removing the exponentials. This rule will also
be removed in Step V.

• For the rule
S{⊥}

w↓
S{?T} only two cases are possible.

(i) There are two contexts S′{ } and S′′{ } such that S{ } = S′{!!!�S′′{ }S′′{ }S′′{ }}
or S{ } = S′{???�S′′{ }S′′{ }S′′{ }}. Then redex and contractum of the w↓ remain
unchanged and the rule remains valid.

(ii) The rule becomes
S{⊥}

ŵ↓
S{T ′} ,

where T ′ is obtained from T by removing some or all exponentials.

Observe that the marking
S{⊥}

w↓
S{???�TTT } is impossible.

• For the rule
S{!R}

w↑
S{1} the situation is dual and we obtain

S{R′}
ŵ↑

S{1} ,

where R′ is obtained from R by removing the exponentials. The two rules ŵ↓
and ŵ↑ will be removed in Step IV.

4.3. Decomposition 113

• For
S [?T, T]

b↓
S{?T} the situation is a little more intricate. The possible cases are:

(i) There are two contexts S′{ } and S′′{ } such that S{ } = S′{!!!�S′′{ }S′′{ }S′′{ }}
or S{ } = S′{???�S′′{ }S′′{ }S′′{ }}. Then redex and contractum of the b↓ remain
unchanged and the rule remains valid.

(ii) The rule is marked as
S [???�TTT , T]

b↓
S{???�TTT } . Then it becomes

S [???�TTT , T ′]
b↓′

S{???�TTT } ,

where T ′ is obtained from T by removing (some or all) exponentials.

(iii) Neither redex nor contractum of the rule contain any marked !!!�- or ???�-
structure, nor are they contained in a marked structure. Then the rule
becomes

S [T ′, T ′]
b↓′′

S{T ′} ,

where T ′ is obtained from T by removing the exponentials.

(iv) There are marked !!!�- or ???�-structures inside the structure T in the redex.
Then all those markings reoccur in one of the two substructures T in the
contractum whereas the other T does not contain any marking (because the
cycle χ is nonforked). Hence the rule becomes

S [T ′′, T ′]
b↓′′′

S{T ′′} ,

where in T ′ all exponentials are removed and in T ′′ some exponentials are
removed and some remain.

Observe that all instances of b↓′, b↓′′ and b↓′′′ are instances of

S [T, T ′]
b̂↓

S{T} ,

where S{ } is a basic context, and T and T ′ are arbitrary structures.

• Dually, for
S{!R}

b↑
S(!R,R)

, we obtain

S{R}
b̂↑

S(R,R′)
,

where S{ } is a basic context. The new instances of b̂↓ and b̂↑ will be removed
in the next step.

114 4. The Multiplicative Exponential Fragment of Linear Logic

Let me summarise what is achieved after this step. The original derivation

P
∆‖SELS
Q

has been transformed into

P
∆̂‖SELS∪{p↓�,p↑�,p̂↓,p̂↑,ŵ↓,ŵ↑,b̂↓,b̂↑}
Q

,

where the cycle together with the extentions of its !- and ?-chains is marked. In the
following steps, I will remove all rules (including p̂↓, p̂↑, ŵ↓, ŵ↑, b̂↓, b̂↑) that prevent
the cycle from being pure.

III. First, I will remove all instances of b̂↓ and b̂↑. Consider the bottommost occurrence
of b̂↓ inside ∆̂. Replace

P
∆1‖

S [T, T ′]
∆̂ = b̂↓

S{T}
∆2‖

Q

by

P
∆1‖

S [T, T ′]
∆3‖{s}

[S{T}, T ′]
∆2‖
[Q,T ′]

,

where ∆2 does not contain any b̂↓ and ∆3 exists by Lemma 4.3.20. Repeat this until
there are no more b̂↓ in the derivation. Then proceed dually to remove all b̂↑, i.e.
start with the topmost b̂↑. This gives us a derivation

P ′

∆̂′‖SELS∪{p↓�,p↑�,p̂↓,p̂↑,ŵ↓,ŵ↑}
Q′

.

Observe that premise and conclusion of the derivation have changed now, but the
cycle is still present.

IV. In this step, I will remove all instances of ŵ↓ and ŵ↑. For this, observe that the proofs
of Lemmata 4.2.4 and 4.2.9 (a) do also work for ŵ↓. Further observe that it can never

happen that the contractum ⊥ of
S{⊥}

ŵ↓
S{T} is inside an active structure of the redex

of p↑, p̂↑, b↓, b↑ or w↓ because then the redex T would be inside a marked !!!�- or
???�-structure, which is impossible by the construction of ŵ↓ in Step II. Hence, the rule
ŵ↓ permutes (by s) over all other rules in the derivation ∆̂′. Dually, ŵ↑ permutes

4.3. Decomposition 115

under all other rules in ∆̂′ (by s). This means that ∆̂′ can easily be transformed into

P ′

∆′
1‖{ŵ↓}
P ′′

∆̂′′‖SELS∪{p↓�,p↑�,p̂↓,p̂↑}
Q′′

∆′
2‖{ŵ↑}
Q′

by permuting stepwise all ŵ↓ up and all ŵ↑ down. Let us now consider only

P ′′

∆̂′′‖SELS∪{p↓�,p↑�,p̂↓,p̂↑}
Q′′

,

in which the cycle χ is still present.

V. Inside ∆̂′′ mark all rules ρ whose redex is inside a marked !!!�-structure as ρ�. Addi-
tionally, mark all instances of p̂↓ as p̂↓�. Dually, mark all rules p̂↑ as well as all rules
ρ whose contractum is inside a marked ???�-structure as ρ�. Now mark all remaining,
i.e. not yet marked, rules ρ as ρ◦. This means, we now have a derivation

P ′′

∆̂′′‖{p↓�,p↑�,ρ�,ρ�,ρ◦}
Q′′

,

which will in this step be decomposed into

P ′′

∆̂′′
1‖{ρ�}
P ′′′

∆̂′′
2‖{p↓�}
P̃

∆̃‖{ρ◦}
Q̃

∆̂′′
3‖{p↑�}
Q′′′

∆̂′′
4‖{ρ�}
Q′′

only by permutation of rules. In order to obtain this decomposition, we need to show
that

(a) all rules marked as ρ� permute over all other rules,

(b) all rules marked as ρ� permute under all other rules,

(c) all rules p↓� permute over all rules marked as ρ◦ or p↑�, and

(d) all rules p↑� permute under all rules marked as ρ◦ or p↓�.

116 4. The Multiplicative Exponential Fragment of Linear Logic

All four statements are proved according to the scheme discussed in Section 4.2.

(a) Consider
Q

π
S{W}

ρ� ,
S{Z}

where π is not marked as π� and nontrivial. According to 4.2.3 the cases to
consider are:

(4) The redex of π is inside an active structure of the contractum W of ρ�. This
is impossible because

(i) if the redex of ρ� is inside a !!!�-structure, then the contractum of ρ�

is also inside a !!!�-structure, and hence, the redex of π is inside a !!!�-
structure, and therefore π is π�;

(ii) if ρ� = p̂↓�, then the redex of π is also inside a !!!�-structure, and therefore
π is π�.

(5) The contractum W of ρ� is inside an active structure of the redex of π but
not inside a passive one. There are the following subcases:

(i) The redex of ρ� is inside a !!!�-structure. This is impossible because then
the contractum of ρ� is also inside a !!!�-structure. Since it is also inside
an active structure of the redex of π, we have that either this active
structure is a !!!�-structure and therefore π = p̂↓�, or the whole redex of
π is inside a !!!�-structure and therefore π must be marked as π�.

(ii) ρ� = p̂↓� and π = p̂↓. This is impossible because then π is marked
as π�.

(iii) ρ� = p̂↓� and π = p↓. Then π = p↓� because there are no other p↓ that
have a marked !!!�-structure in the redex, and we can replace

S′{!!!�[R,T1, T2][R,T1, T2][R,T1, T2] }
p↓�

S′ [[[!!!�[R,T1][R,T1][R,T1] , ???�T2T2T2]]]
p̂↓� by

S′ [!!!�RRR,T ′
1, ???�T2T2T2]

S′{!!!�[R,T1, T2][R,T1, T2][R,T1, T2] }
p̂↓�

S′ [!!!�[R,T2][R,T2][R,T2] , T ′
1]

p↓� .
S′ [[[[!!!�RRR, ???�T2T2T2]]], T ′

1]

(6) The contractum W of ρ◦ and the redex of π overlap. This is impossible.

(b) Dual to (a).

(c) Consider
Q

π
S{!!!�[R,T][R,T][R,T] }

p↓� ,
S [[[!!!�RRR, ???�TTT]]]

where π ∈ {ρ◦,p↑�} is nontrivial.

(4) The redex of π is inside an active structure of the contractum of p↓�. This is
impossible because then the redex of π is inside a !!!�-structure, and therefore
π is π�.

4.3. Decomposition 117

(5) The contractum !!!�[R,T][R,T][R,T] of p↓� is inside an active structure of the redex of
π but not inside a passive one. This is impossible because then π were p̂↓�
or p↓�.

(6) The contractum of p↓� and the redex of π overlap. As before, this is impos-
sible.

(d) Dual to (c).

Now it only remains to show that the subderivation

P̃
∆̃‖{ρ◦}
Q̃

obtained in the last step has indeed the desired properties (i.e. contains a pure cycle and
consists only of the rules ai↓, ai↑ and s). Observe that all rules ρ ∈ {p↓,p↑,w↓,w↑,b↓,b↑}
in ∆

• either have been transformed into ρ̂ in Step II and then been removed in the Steps III,
IV and V,

• or remained unchanged in Step II (because they occurred inside a marked !!!�- or
???�-structure) and have then been marked as ρ� or ρ� and removed in Step V.

This means that only the rules ai↓, ai↑ and s are left inside ∆̃. Now consider the premise P̃
of ∆̃. Since it is also the conclusion of ∆̂′′

2 which consists only of p↓�, it is of the shape

S [!!!�R1R1R1 , ???�T1T1T1] [!!!�R2R2R2 , ???�T2T2T2] . . . [!!!�RnRnRn , ???�TnTnTn]

for some structures R1, . . . , Rn, T1, . . . , Tn and some n-ary context S{ }{ } . . . { }. Simi-
larly, we have that

Q̃ = S′(!!!�R′
1R′
1R′
1 , ???�T ′

1T ′
1T ′
1)(!!!�R′

2R′
2R′
2 , ???�T ′

2T ′
2T ′
2) . . . (!!!�R′

nR′
nR′
n , ???�T ′

nT ′
nT ′
n)

for some structures R′
1, . . . , R

′
n, T ′

1, . . . , T
′
n and some n-ary context S′{ }{ } . . . { }. Since

no transformation in Steps II to V destroyed the cycle, it must still be present in ∆̃. Since ∆̃
contains no rule that operates inside a !!!�- or ???�-structure, we have that R′

1 = R2, R′
2 = R3,

. . . , R′
n = R1 and T ′

1 = T1, T ′
2 = T2, . . . , T ′

n = Tn. This means that ∆̃ does indeed contain
a pure cycle. ��
4.3.23 Definition Let S be a structure and R and T be substructures of S. Then
the structures R and T are in par-relation in S if there are contexts S′{ }, S′′{ } and
S′′′{ } such that S = S′ [S′′{R}, S′′′{T}]. Similarly, R and T are in times-relation in S if
S = S′(S′′{R}, S′′′{T}) for some contexts S′{ }, S′′{ } and S′′′{ }.

4.3.24 Lemma If there is a derivation
P

∆‖{ai↓,ai↑,s}
Q

that contains a pure cycle χ, then

there is a derivation
([!R1, ?T1], [!R2, ?T2], . . . , [!Rn, ?Tn])

∆̃‖{s}
[(!R2, ?T1), (!R3, ?T2), . . . , (!R1, ?Tn)]

,

118 4. The Multiplicative Exponential Fragment of Linear Logic

for some structures R1, . . . , Rn, T1, . . . , Tn, where n is the characteristic number of χ.

Proof: By Lemma 4.2.6 and Lemma 4.2.7, the derivation ∆ can be decomposed into

P
∆1‖{ai↓}

P ′

∆2‖{s}
Q′

∆3‖{ai↑}
Q

.

As before, this transformation does not destroy the cycle. Hence, the pure cycle is contained
in ∆2. In other words, ∆2 has a subderivation

S [[[!!!�R1R1R1 , ???�T1T1T1]]] [[[!!!�R2R2R2 , ???�T2T2T2]]] . . . [[[!!!�RnRnRn , ???�TnTnTn]]]
∆′

∥∥{s}
S′(((!!!�R2R2R2 , ???�T1T1T1)))(((!!!�R3R3R3 , ???�T2T2T2))) . . . (((!!!�R1R1R1 , ???�TnTnTn)))

for some structures R1, . . . , Rn and T1, . . . , Tn, and for two n-ary contexts S{ } . . . { } and
S′{ } . . . { }. In the premise of ∆′, for every i = 1, . . . , n, the substructures !!!�RiRiRi and ???�TiTiTi

are in par-relation. The switch rule is not able (and also no other rule in system SELS) to
transform a par-relation into a times-relation while going down in a derivation. Hence, for
every i = 1, . . . , n, the substructures !!!�RiRiRi and ???�TiTiTi are also in par-relation in the conclusion
of ∆′. This means that the context S′{ } . . . { } = S′

0 [S′
1{ }, . . . , S′

n{ }] for some contexts
S′

0{ }, S′
1{ }, . . . , S′

n{ }. Dually, we have that S{ } . . . { } = S0(S1{ }, . . . , Sn{ }) for
some contexts S0{ }, S1{ }, . . . , Sn{ }. Hence, the derivation ∆′ has the shape

S0(S1 [[[!!!�R1R1R1 , ???�T1T1T1]]], S2 [[[!!!�R2R2R2 , ???�T2T2T2]]], . . . , Sn [[[!!!�RnRnRn , ???�TnTnTn]]])
∆′

∥∥{s}
S′

0 [S′
1(((!!!�R2R2R2 , ???�T1T1T1))), S′

2(((!!!�R3R3R3 , ???�T2T2T2))), . . . , S′
n(((!!!�R1R1R1 , ???�TnTnTn)))]

.

Observe that the two contexts S0(S1{ }, . . . , Sn{ }) and S′
0 [S′

1{ }, . . . , S′
n{ }] must contain

the same atoms because ∆′ contains no rules that could create or destroy any atoms. Hence,
the derivation ∆′ remains valid if those atoms are removed from the derivation, which gives
us the derivation

([[[!!!�R1R1R1 , ???�T1T1T1]]], [[[!!!�R2R2R2 , ???�T2T2T2]]], . . . , [[[!!!�RnRnRn , ???�TnTnTn]]])
∆̃
∥∥{s}

[(((!!!�R2R2R2 , ???�T1T1T1))), (((!!!�R3R3R3 , ???�T2T2T2))), . . . , (((!!!�R1R1R1 , ???�TnTnTn)))]
.

��

4.3.25 Lemma Let n � 1 and R1, . . . , Rn, T1, . . . , Tn be any structures. Then there is
no derivation

([!R1, ?T1], [!R2, ?T2], . . . , [!Rn, ?Tn])
∆‖{s}

[(!R2, ?T1), (!R3, ?T2), . . . , (!R1, ?Tn)]
.

Proof: By induction on n.

4.3. Decomposition 119

Base case: Let n = 1. Then it is easy to see that there is no derivation

[!R1, ?T1]
∆‖{s}

(!R1, ?T1)

because a times-relation can never become a par-relation while going up in a deriva-
tion.

Inductive case: By way of contradiction suppose there is a derivation

([!R1, ?T1], [!R2, ?T2], . . . , [!Rn, ?Tn])
∆‖{s}

[(!R2, ?T1), (!R3, ?T2), . . . , (!R1, ?Tn)]
.

Now consider the bottommost instance of

S([R̃, Ũ], T̃)
s
S [(R̃, T̃), Ũ]

in ∆. Without loss of generality we can assume that R̃ = !R2 and T̃ = ?T1. (The
case where R̃ = ?T1 and T̃ = !R2 is similar.) For matching Ũ , we have

Ũ = [(!Rk1+1, ?Tk1), (!Rk2+1, ?Tk2), . . . , (!Rkm+1, ?Tkm)] ,

for some m and k1, . . . , km. Hence, we get:

([!R1, ?T1], [!R2, ?T2], . . . [!Rn, ?Tn])
∆′

∥∥{s}
[([!R2, (!Rk1+1, ?Tk1), . . . , (!Rkm+1, ?Tkm)], ?T1), . . . , (!R1, ?Tn)]
s .

[(!R2, ?T1), (!R3, ?T2), (!R4, ?T3), . . . (!R1, ?Tn)]

Inside ∆′ the structures !R1, . . . , !Rn, ?T1, . . . , ?Tn occur only inside passive structures
of instances of s. Therefore, if we replace inside ∆′ any structure !Rj or ?Tj by
some other structure V , then the derivation ∆′ must remain valid. Without loss of
generality, assume that k1 < k2 < . . . < km and for every i = 2, . . . , km replace inside
∆′ the structures !Ri by ⊥ and the structures ?Ti by 1, which yields a derivation

([!R1, ?T1], [!Rkm+1, ?Tkm+1], . . . , [!Rn, ?Tn])
=

([!R1, ?T1], [⊥, 1], . . . , [⊥, 1], [!Rkm+1, ?Tkm+1], . . . , [!Rn, ?Tn])
∆′′

∥∥{s}
[([⊥, (⊥, 1), . . . , (⊥, 1), (!Rkm+1, 1)], ?T1), . . . , (!R1, ?Tn)]

= ,
[(!Rkm+1, ?T1), (!Rkm+2, ?Tkm+1), . . . , (!R1, ?Tn)]

which cannot exist by induction hypothesis. ��
As mentioned before, the property of the switch rule described by Lemma 4.3.25 seems

to be at the heart of the decomposition theorems. I will come back to this property of the
switch in Section 6.2.

120 4. The Multiplicative Exponential Fragment of Linear Logic

4.3.26 Theorem There exists no derivation containing a nonforked promotion cycle.

Proof: By way of contradiction, suppose there is a derivation ∆ containing a nonforked
promotion cycle χ. By Proposition 4.3.22, there is a derivation containing a pure cycle χ′.
Let n be its characteristic number. By Lemma 4.3.24 there is a derivation

([!R1, ?T1], [!R2, ?T2], . . . , [!Rn, ?Tn])
∆‖{s}

[(!R2, ?T1), (!R3, ?T2), . . . , (!R1, ?Tn)]
.

for some structures R1, . . . , Rn, T1, . . . , Tn. This is a contradiction to Lemma 4.3.25. ��
4.3.27 Corollary There exists no derivation containing a nonforked cycle.

Proof: Any (nonforked) cycle can easily be transformed into a (nonforked) promotion
cycle by adding instances of p↓ and p↑. ��

4.3.2 Separation of Absorption and Weakening

The process of permuting up all instances of b↑ in a given derivation
T

∆‖SELS
R

is realised
by the procedure b↑up:
4.3.28 Algorithm b↑up for permuting coabsorption up Consider the topmost oc-
currence of a subderivation

Q
π

S{!R}
b↑ ,

S(!R,R)

where π �= b↑. According to 4.2.3 there are the following cases (cases (3) and (6) are
impossible):

(1) If the redex of π is inside S{ }, or

(2) if the contractum !R of b↑ is inside a passive structure of the redex of π, then replace

S′{!R}
π

S{!R}
b↑ by

S(!R,R)

S′{!R}
b↑

S′(!R,R)
π .

S(!R,R)

(4) If the redex of π is inside the contractum !R of b↑, then replace

S{!R′}
π

S{!R}
b↑ by

S(!R,R)

S{!R′}
b↑

S(!R′, R′)
π

S(!R′, R)
π .

S(!R,R)

(5) If the contractum !R of b↑ is inside an active structure of the redex of π but not inside
a passive one, then there are three subcases:

4.3. Decomposition 121

(i) If π = p↓ and S{!R} = S′ [!R, ?T], then replace

S′{![R,T]}
p↓

S′ [!R, ?T]
b↑ by

S′ [(!R,R), ?T]

S′{![R,T]}
b↑

S′(![R,T], [R,T])
p↓

S′([!R, ?T] , [R,T])
s

S′ [([!R, ?T], R), T]
s

S′ [(!R,R), ?T , T]
b↓ .

S′ [(!R,R), ?T]

(ii) If π = w↓ and S{!R} = S′{?S′′{!R}}, then replace

S′{⊥}
w↓

S′{?S′′{!R}}
b↑ by

S′{?S′′(!R,R)}
S′{⊥}

w↓ .
S′{?S′′(!R,R)}

(iii) If π = b↓ and S{!R} = S′{?S′′{!R}}, then replace

S′ [?S′′{!R}, S′′{!R}]
b↓

S′{?S′′{!R}}
b↑ by

S′{?S′′(!R,R)}

S′ [?S′′{!R}, S′′{!R}]
b↑

S′ [?S′′(!R,R), S′′{!R}]
b↑

S′ [?S′′(!R,R), S′′(!R,R)]
b↓ .

S′{?S′′(!R,R)}

Repeat until all instances of b↑ are at the top of the derivation.

It is easy to see that if the Algorithm 4.3.28 terminates, the resulting derivation has the
shape

T
‖{b↑}
T ′

‖SELS\{b↑}
R

.

Although it is rather intuitive that b↑up should terminate, it is not easy to prove because
while permuting the rule b↑ up, it might happen that new instances of b↑ as well as new
instances of b↓ are introduced.

4.3.29 Lemma For an input derivation

T
∆‖SELS\{b↑}

S{!R}
b↑ ,

S(!R,R)

the b↑up procedure terminates.

Proof: The problem of showing termination is that the number of instances of b↑ might
increase during the process of permuting up b↑. This always happens when an upwards

122 4. The Multiplicative Exponential Fragment of Linear Logic

moving b↑ meets a b↓ as in case (5.iii) in 4.3.28. Further, the number of instances of b↓
inside ∆ is not fixed. The number of b↓ might increase when an upwards moving b↑ meets
an instance of p↓ as in case (5.i) in 4.3.28 or an instance of b↓ as in case (4). Therefore,
the difficulty lies in finding the right induction measure. For this, I will mark inside ∆
all !-chains that have the contractum !R of the b↑ instance as tail. But I will mark the
links not with !!!�, but with !n!n!n for some n � 1. Start with the contractum !R of the b↑ by
marking it with !1R!1R!1R. Now continue the marking as indicated in Figure 4.8 (on page 102)
by propagating the number n from conclusion to premise in each rule, with one exception:
If in case (2) of Definition 4.3.5 the rule ρ = p↓ and the situation is

T∥∥SELS\{b↑}
S′{![U, V {!R′}]}

p↓
S′ [!U, ?V {!nR′!nR′!nR′}]∥∥SELS\{b↑}

S{!1R!1R!1R}
b↑ ,

S(!R,R)

then continue the marking as follows:

T∥∥SELS\{b↑}
S′{![U, V {!2nR′!2nR′!2nR′}]}

p↓
S′ [!U, ?V {!nR′!nR′!nR′}]∥∥SELS\{b↑}

S{!1R!1R!1R}
b↑ ,

S(!R,R)

i.e. the marking number is multiplied by 2. For example, the derivation

![b, (b̄, ![([!a, ?b], [c, c̄]), a])]
p↓

![b, (b̄, [?([!a, ?b], [c, c̄]), !a])]
ai↓

![b, (b̄, [?([!a, ?b], [c, c̄]), (!a, [c, c̄])])]
w↓

![b, (b̄, [?([!a, ?b], [c, c̄]), ([!a, ?b], [c, c̄])])]
p↓

[!b, ?(b̄, [?([!a, ?b], [c, c̄]), ([!a, ?b], [c, c̄])])]
b↓

[!b, ?(b̄, ?([!a, ?b], [c, c̄]))]
s

[!b, ?(b̄, ?[!a, (?b, [c, c̄])])]
b↑

[!b, ?(b̄, ?[(!a, a), (?b, [c, c̄])])]

4.3. Decomposition 123

is marked as
![b, (b̄, !2 [([!4a!4a!4a, ?b], [c, c̄]), a]!2 [([!4a!4a!4a, ?b], [c, c̄]), a]!2 [([!4a!4a!4a, ?b], [c, c̄]), a])]

p↓
![b, (b̄, [?([!2a!2a!2a, ?b], [c, c̄]), !2a!2a!2a])]

ai↓
![b, (b̄, [?([!2a!2a!2a, ?b], [c, c̄]), (!2a!2a!2a, [c, c̄])])]

w↓
![b, (b̄, [?([!2a!2a!2a, ?b], [c, c̄]), ([!2a!2a!2a, ?b], [c, c̄])])]

p↓
[!b, ?(b̄, [?([!1a!1a!1a, ?b], [c, c̄]), ([!1a!1a!1a, ?b], [c, c̄])])]

b↓
[!b, ?(b̄, ?([!1a!1a!1a, ?b], [c, c̄]))]
s

[!b, ?(b̄, ?[!1a!1a!1a, (?b, [c, c̄])])]
b↑ .

[!b, ?(b̄, ?[(!a, a), (?b, [c, c̄])])]

Observe that it might happen that one marking is inside another. This happens if one
marking “is pulled inside” another by an instance of p↓ (as in the example above). In
this case the marking that is “pulled inside” is doubled. As a consequence we have that
whenever there is a marked structure !nR!nR!nR which has other markings inside, then those
markings are even. For notational convenience, let in the following R∗ denote the structure
R where all markings inside R are divided by two. (I will use this only for structures R,
where all markings are even.) Further, let R⊕ denote the structure R where all markings
inside R are multiplied by two. During the run of the Algorithm 4.3.28, the markings are
now removed as follows:

• In cases (1) and (2) replace

S′{!nR!nR!nR}
π

S{!nR!nR!nR}
b↑ by

S(!R∗, R∗)

S′{!nR!nR!nR}
b↑

S′(!R∗, R∗)
π .

S(!R∗, R∗)

• In case (4) replace

S{!nR′!nR′!nR′}
π

S{!nR!nR!nR}
b↑ by

S(!R∗, R∗)

S{!nR′!nR′!nR′}
b↑

S(!R′∗, R′∗)
π

S(!R′∗, R∗)
π .

S(!R∗ , R∗)

• In case (5.i) replace

S′{!n [R,T⊕]!n [R,T⊕]!n [R,T⊕]}
p↓

S′ [!nR!nR!nR, ?T]
b↑ by

S′ [(!R∗, R∗), ?T]

S′{!n [R,T⊕]!n [R,T⊕]!n [R,T⊕]}
b↑

S′(![R∗, T], [R∗, T])
p↓

S′([!R∗, ?T] , [R∗, T])
s

S′ [([!R∗, ?T], R∗), T]
s

S′ [(!R∗, R∗), ?T , T]
b↓ .

S′ [(!R∗, R∗), ?T]

• In case (5.ii) replace

S′{⊥}
w↓

S′{?S′′{!nR!nR!nR}}
b↑ by

S′{?S′′(!R∗, R∗)}
S′{⊥}

w↓ .
S′{?S′′(!R∗, R∗)}

124 4. The Multiplicative Exponential Fragment of Linear Logic

• In case (5.iii) replace

S′ [?S′′{!nR!nR!nR}, S′′{!nR!nR!nR}]
b↓

S′{?S′′{!nR!nR!nR}}
b↑ by

S′{?S′′(!R∗, R∗)}

S′ [?S′′{!nR!nR!nR}, S′′{!nR!nR!nR}]
b↑

S′ [?S′′(!R∗, R∗), S′′{!nR!nR!nR}]
b↑

S′ [?S′′(!R∗, R∗), S′′(!R∗, R∗)]
b↓ .

S′{?S′′(!R∗, R∗)}
All instances of b↑ travel up along a !-chain that has been marked in the beginning. Since
in the beginning there was only one instance of b↑, each marked !-chain can be used only
once (and is used exactly once) by an instance of b↑, and then the marking is removed. But
it might happen that new markings are introduced during the process because the length
of the derivation can increase. For a given structure S let σ(S) denote the sum of the
markings inside S. (For example for S = ![b, (b̄, !2 [([!4a!4a!4a, ?b], [c, c̄]), a]!2 [([!4a!4a!4a, ?b], [c, c̄]), a]!2 [([!4a!4a!4a, ?b], [c, c̄]), a])] we have σ(S) = 6.)
Then, for any two structures S and S′ occurring in ∆, such that S′ occurs above S, we
have σ(S′) � σ(S). Further, during the process of permuting up b↑, the value σ(S) never
increases for a structure S occurring in ∆. When a new structure S′ is inserted (in cases
(4), (5.i) and (5.iii)), we have σ(S′) = σ(S) for some structure S occurring below S′. With
this observation we can show termination by assigning to ∆ a pair

〈
n∆,m∆

〉 ∈ N × N,
where N×N is endowed with the lexicographic ordering〈

n,m
〉

<
〈
n′,m′〉 ⇐⇒ n < n′ or

n = n′ and m < m′ .

and the values of n∆ and m∆ are defined as follows: During the process of permuting up
b↑, the derivation has always the shape

T

∆1

∥∥{b↑}
T ′

∆2

∥∥SELS\{b↑}
S{!nR!nR!nR}

b↑ ,
S(!R,R)

∆3

∥∥SELS
U

where ∆1 contains the instances of b↑ that already have reached the top and ∆2 is nontrivial
and the instance of b↑ between ∆2 and ∆3 is the topmost to be permuted up. Now let
n∆ = σ(T ′) and m∆ = length(∆2). Then we have that

〈
n∆,m∆

〉
strictly decreases in each

permutation step and we have
〈
n∆,m∆

〉
=

〈
0, 0

〉
when all instances of b↑ have reached

the top. ��

4.3.30 Lemma The b↑up algorithm terminates for any input derivation
T

∆‖SELS
R

.

Proof: Apply Lemma 4.3.29 to every instance of b↑ in ∆. ��
The dual procedure to b↑up is b↓down, in which all instances of b↓ are moved down in

the derivation.

4.3. Decomposition 125

4.3.31 Algorithm b↓down for permuting absorption down Repeat the following
until all instances of b↓ are at the bottom of the derivation. Consider the bottommost
occurrence of a subderivation

S [?T, T]
b↓

S{?T}
ρ ,

P

where ρ �= b↓. The possible cases are (dual to 4.2.3):

(1) The contractum of ρ is inside S{ }, or

(2) the redex ?T of b↓ is inside a passive structure of the contractum of ρ. Then replace

S [?T, T]
b↓

S{?T}
ρ by

S′{?T}

S [?T, T]
ρ

S′ [?T, T]
b↓ .

S′{?T}
(4) The contractum of ρ is inside the redex ?T of b↓ Then replace

S [?T, T]
b↓

S{?T }
ρ by

S{?T ′}

S [?T, T]
ρ

S [?T, T ′]
ρ

S [?T ′ , T ′]
b↓ .

S{?T ′}
(5) The redex ?T of b↓ is inside an active structure of the contractum of ρ but not inside

a passive one. Then there are three cases:

(i) If ρ = p↑ and S{?T} = S′(!R, ?T), then replace

S′(!R, [?T, T])
b↓

S′(!R, ?T)
p↑ by

S′{?(R,T)}

S′(!R, [?T, T])
b↑

S′(!R,R, [?T, T])
s
S′([(!R, ?T), T] , R)
s
S′ [(!R, ?T), (R,T)]

p↑
S′ [?(R,T), (R,T)]

b↓ .
S′{?(R,T)}

(ii) If ρ = w↑ and S{?T} = S′{!S′′{?T}}, then replace

S′{!S′′ [?T, T]}
b↓

S′{!S′′{?T }}
w↑ by

S′{1}
S′{!S′′ [?T, T]}

w↑ .
S′{1}

(iii) If ρ = b↑ and S{?T} = S′{!S′′{?T}}, then replace

S′{!S′′ [?T, T]}
b↓

S′{!S′′{?T }}
b↑ by

S′(!S′′{?T}, S′′{?T})

S′{!S′′ [?T, T]}
b↑

S′(!S′′ [?T, T], S′′ [?T, T])
b↓

S′(!S′′ [?T, T], S′′{?T })
b↓ .

S′(!S′′{?T }, S′′{?T})
Remark: Cases (3) and (6) are impossible.

126 4. The Multiplicative Exponential Fragment of Linear Logic

4.3.32 Lemma The b↓down procedure terminates for every input derivation
T

∆‖SELS
Rand yields a derivation

T
∆′‖SELS\{b↓}
R′

∆′′‖{b↓}
R

.

Proof: Dual to Lemma 4.3.30. ��

4.3.33 Algorithm b↑↓split for separating absorption and coabsorption

I. If there are no subderivations of the shape

Q
π

U
b↑ ,

P

where π �= b↑, or of the shape

Q
b↓

V
ρ ,

P

where ρ �= b↓, then terminate.

II. Permute all instances of b↑ up by applying b↑up.

III. Permute all instances of b↓ down by applying b↓down.

IV. Go to Step I.

Lemma 4.3.30 and Lemma 4.3.32 ensure that each step of Algorithm 4.3.33 (depicted in
Figure 4.7, page 99) does terminate. It remains to show that the whole algorithm b↑↓split
does terminate eventually.

4.3.34 Lemma Let ∆ be a derivation that does not contain a promotion cycle. Then
the algorithm b↑↓split does terminate for ∆.

Proof: Without loss of generality, let ∆ be the outcome of a run of b↓down, i.e. there are
no instances of b↓ to consider. Since ∆ is finite, it contains only finitely many instances of
b↑. Hence, there are only finitely many chains, say χ1, . . . , χn, that have the contractum
!R of a b↑ as tail. Mark all those chains with !!!� and ???� as in the previous section, and let
li = l(χi) be the length of χi (see Definition 4.3.13) for each i = 1, . . . , n. Now run b↑up
and remove the markings !!!� as in the proof of Lemma 4.3.29 while the instances of b↑ are

4.3. Decomposition 127

permuted up. In case (5.i) replace

S′{!!!�[R,T][R,T][R,T] }
p↓

S′ [!!!�RRR, ???�TTT]
b↑ by

S′ [(!R,R), ???�TTT]

S′{!!!�[R,T][R,T][R,T] }
b↑

S′(![R,T], [R,T])
p↓

S′([!R, ?T], [R,T])
s
S′ [([!R, ?T], R), T]
s

S′ [(!R,R), ?T, T]
b↓ .

S′ [(!R,R), ???�TTT]

After this, all chains χi with length li = 1 are no longer marked. If l(χi) � 1, then
after the run of b↑up only a subchain χ′

i of χi with length l′i = l(χ′
i) = l(χi) − 1 remains

marked because it is impossible to add links to a chain at the head. (Each of the chains
χ1, . . . , χn has a head since there is no promotion cycle inside ∆.) It is only possible
to duplicate chains (case (4) of in 4.3.28). The situation for b↓down is dual. Hence the
number lmax = max{l(χi)} is reduced at each run of b↑up and b↓down. This ensures the
termination. ��
4.3.35 Lemma Let ∆ be a derivation that is obtained by a consecutive run of b↑up and
b↓down. Then ∆ does not contain a promotion cycle.

Proof: By way of contradiction, assume ∆ contains a promotion cycle χ. Since ∆ is the
outcome of a run of b↓down, all instances of b↓ are at the bottom of ∆. Hence, the cycle χ
can only be forked by instances of b↑, more precisely, χ is forked by kχ different instances
of b↑. If ∆ contains more than one promotion cycle, we can, without loss of generality,
assume that χ is the one for which kχ is minimal. I will now proceed by induction on kχ

to show a contradiction.

Base case: If kχ = 0, then we have an immediate contradiction to Theorem 4.3.26.

Inductive case: Now let kχ � 1 and consider the bottommost instance of b↑ that forks χ
and mark it as b↑∧. It has been introduced during the run of b↓down, when

S′(!R, [?T, T])
b↓

S′(!R, ?T)
p↑ was replaced by

S′{?(R,T)}

S′(!R, [?T, T])
b↑∧

S′(!R1, R2 , [?T, T])
s

S′([(!R1, ?T), T] , R2)
s

S′ [(!R1, ?T), (R2, T)]
p↑

S′ [?(R1, T), (R2, T)]
b↓∨

S′{?(R,T)}

(see case (5.i) in Algorithm 4.3.31). Here, I have marked the down moving b↓ as
b↓∨ and the two copies of R as R1 and R2. By inspecting the cases of b↓down (see
Algorithm 4.3.31), it is easy to see that while b↓∨ travels further down, the two copies
R1 and R2 are treated equally, i.e. whenever a rule ρ modifies R1, then there is another
instance of ρ that modifies R2 in same way. Further, if another b↓ is moved down in
the same run of b↓down and meets the new b↑∧ as in case (5.iii) in Algorithm 4.3.31,
then it is duplicated into both copies R1 and R2. Hence, after finishing the run of

128 4. The Multiplicative Exponential Fragment of Linear Logic

b↓down, every !-chain with head in R1 has a counterpart !-chain with head in R2, and
vice versa. Similarly, all ?-chains with tail in R1 and R2 correspond to each other.
This means that we can construct from χ a new promotion cycle χ′ by replacing each
subchain of χ with head or tail inside R1 by the corresponding chain with head or
tail in R2. Then the new cycle is not forked by b↑∧ since there are no more links
inside R1. Hence, the cycle χ′ is forked by kχ′ = kχ − 1 instances of b↑, which is a
contradiction to the induction hypothesis. ��

4.3.36 Proposition For every derivation
T

∆‖SELS
R

there is a derivation

T
∆1‖{b↑}

T ′

∆′‖SELS\{b↓,b↑}
R′

∆2‖{b↓}
R

.

Proof: Apply the algorithm b↑↓split, which terminates by Lemmata 4.3.35 and 4.3.34. ��
This completes the proof of the first decomposition theorem. For the second decompo-

sition, we have to separate weakening and coweakening.

4.3.37 Proposition For every derivation
T

∆‖SELS\{b↓,b↑}
R

there is a derivation

T
∆1‖{w↑}

T ′

∆′‖SELS\{b↓,b↑,w↓,w↑}
R′

∆2‖{w↓}
R

.

Proof: First, all instances of w↑ inside ∆ are permuted up to the top of the derivation.
For this, consider the topmost subderivation

Q
π

S{!R}
w↑ ,

S{1}
where π ∈ SELS\{b↓,b↑,w↑} is nontrivial. According to 4.2.3 there are the following cases:

(4) The redex of π is inside an active structure of the contractum !R of w↑. Then replace

S{!R′}
π

S{!R}
w↑ by

S{1}
S{!R′}

w↑ .
S{1}

4.4. Cut Elimination 129

(5) The contractum !R of w↑ is inside an active structure of the redex of π but not inside
a passive one. There are two possibilities:

(i) π = p↓ and S{!R} = S′ [!R, ?T] for some context S′{ } and some structure T .
Then replace

S′{![R,T]}
p↓

S′ [!R, ?T]
w↑ by

S′ [1, ?T]

S′{![R,T]}
w↑

S′{1}
=

S′ [1,⊥]
w↓ .

S′ [1, ?T]

(ii) π = w↓ and S{!R} = S′{?S′′{!R}} for some contexts S′{ } and S′′{ }. Then
replace

S′{⊥}
w↓

S′{?S′′{!R}}
w↑ by

S′{?S′′{1}}
S′{⊥}

w↓ .
S′{?S′′{1}}

(6) The contractum !R of w↑ and the redex of π (properly) overlap. This is impossible.

This terminates because the number of instances of w↑ does not increase and all reach the
top eventually. Then, proceed dually, to permute all instances of w↓ down to the bottom
of the derivation. Repeat the permuting up of w↑ and the permuting down of w↓ until
the derivation has the desired shape. It remains to show that this does indeed terminate,
because during the permuting up of w↑ new instances of w↓ are introduced and during
the permuting down of w↓ new instances of w↑ are introduced. The only possibility of
introducing a new w↓ while a w↑ is permuted up, is in case (5.i), when the w↑ meets a p↓.
But then this p↓ disappears. Since the number of instances of p↓ in the initial derivation
is finite and this number is not increased during the process of permuting w↑ up and w↓
down, the whole process must terminate eventually. ��

4.4 Cut Elimination

In this section, I will use the second decomposition theorem together with the technique of
permuting rules to show that the up fragment of system SELS is admissible.

More precisely, the second decomposition theorem is used to show that the rules b↑ and
w↑ (i.e. the noncore up rules) are admissible. Then, the rules p↑ and ai↑ are eliminated
by using the technique that has already been employed by G. Gentzen [Gen34]: For both
rules, I will give a super rule that is more general and that helps in the book-keeping of the
context. The super rules are permuted over all other rules until they reach the top of the
proof where they disappear.

This permutability is distributed over several lemmata. If new rules are added to the
system, then those lemmata remain valid: If rule ρ permutes over rule π, then the introduc-
tion of a rule σ does not change this fact. This modularity in the cut elimination argument
is not available in the sequent calculus.

Let me now start with the first step, which is a corollary of the second decomposition
theorem (Theorem 4.3.2).

130 4. The Multiplicative Exponential Fragment of Linear Logic

4.4.1 Corollary For every proof −
Π‖SELS∪{1↓}
R

, there is a proof

1↓
1
‖{ai↓}
T3

‖{s,p↓,p↑}
R3

‖{ai↑}
R2

‖{w↓}
R1

‖{b↓}
R

for some structures R1, R2, R3 and T3.

Proof: Apply Theorem 4.3.2 to the derivation
1
‖SELS
R

which is obtained from Π by re-
moving the axiom. This yields a derivation

1
∆1‖{b↑}

T1

∆2‖{w↑}
T2

∆3‖{ai↓}
T3

∆4‖{s,p↓,p↑}
R3

∆5‖{ai↑}
R2

∆6‖{w↓}
R1

∆7‖{b↓}
R

.

Now every application of b↑ in ∆1 must be trivial, i.e. of the shape
(!1, 1)

b↑
!1

. Hence

T1 = 1. The same is true for the applications of w↑ in ∆2. Hence T2 = 1. ��

This shows that the noncore rules w↑ and b↑ are admissible. Consider now the two
rules

S{?[R,T]}
r↓

S [?R, ?T]
and

S(!R, !T)
r↑

S{!(R,T)} .

The following derivation (together with Proposition 3.2.16) shows that both rules are sound,

4.4. Cut Elimination 131

i.e. derivable in system SELS:

S{?[R,T]}
=

S(!1, ?[R,T])
i↓

S(! [R,T, (R̄, T̄)] , ?[R,T])
p↓

S([?R, ![T, (R̄, T̄)]] , ?[R,T])
p↓

S([?R, ?T, !(R̄, T̄)], ?[R,T])
s
S [?R, ?T, (!(R̄, T̄), ?[R,T])]

i↑
S [?R, ?T,⊥]

= .
S [?R, ?T]

For technical reasons, I was not able to simply eliminate the rule p↑. Instead, I will eliminate
the rules p↑ and r↑ simultaneously, with the result that instances of r↓ might be introduced.
Those instances will be eliminated afterwards. For this reason, let me define system ELSr
to be system ELS extended by r↓, i.e.

ELSr = ELS∪ {r↓} .

All three rules p↑, r↑ and ai↑ are removed by a method that has already been used
in [Gug99] for proving the cut elimination for system BV , namely, by removing the super
rules sp↑, sr↑ and sai↑, respectively:

S([?R,U], [!T, V])
sp↑

S [?(R,T), U, V]
,

S([!R,U], [!T, V])
sr↑

S [!(R,T), U, V]
and

S([a,U], [ā, V])
sai↑

S [U, V]
.

Observe that the three rules p↑, r↑ and ai↑ are instances of their super rules sp↑, sr↑ and
sai↑, respectively. I will now show that every super rule can be permuted up in the proof
until it disappears or its application becomes trivial.

Before we can start, a few more definitions are necessary.

4.4.2 Definition A structure R is called a proper par , if there are two structures R′

and R′′ with R = [R′, R′′] and R′ �= ⊥ �= R′′. Similarly, a structure R is a proper times, if
there are two structures R′ and R′′ with R = (R′, R′′) and R′ �= 1 �= R′′.

4.4.3 Definition Let deep switch be the rule

S([R,T], U)
ds↓

S [(R,U), T]
,

where the structure R is not a proper times. The rule

S([(R,R′), T], U)
ns↑

S [(R,R′, U), T]
,

where R �= 1 �= R′, will be called nondeep switch. Let deep system ELS (or system dELS) be
the system that is obtained from system ELS by replacing the switch rule by deep switch:

dELS = {1↓, ai↓,ds↓,p↓,w↓,b↓} ,

132 4. The Multiplicative Exponential Fragment of Linear Logic

−‖SELS∪{1↓}
R

1
�

1↓
1
‖{ai↓}
T3

‖{s,p↓,p↑}
R3

‖{ai↑}
R2

‖{w↓}
R1

‖{b↓}
R

=

1↓
1
‖{ai↓}
T3

‖{ds↓,ns↑,p↓,sp↑}
R3

‖{sai↑}
R2

‖{w↓}
R1

‖{b↓}
R

2
�

1↓
1
‖{ai↓}
T ′

3

‖{ds↓,p↓,r↓}
R3

‖{sai↑}
R2

‖{w↓}
R1

‖{b↓}
R

3
�

1↓
1
‖{ai↓,ds↓,p↓,r↓}

R2

‖{w↓}
R1

‖{b↓}
R

4
�
−‖dELS
R

Figure 4.13: Cut elimination for system SELS∪ {1↓}

and accordingly

dELSr = dELS∪ {r↓} = {1↓, ai↓,ds↓,p↓, r↓,w↓,b↓} ,

Both rules, the deep switch and the nondeep switch, are instances of the switch rule,
and every instance of the switch rule is either an instance of deep switch or an instance of
nondeep switch.

Now we have all the sufficient material to outline the scheme of the full cut elimination
proof (shown in Figure 4.13). We start by applying Corollary 4.4.1. Then, all instances of
the rule s are replaced by ds↓ or ns↑, and all instances of p↑ and ai↑ are replaced by their
super rules. Then, all instances of the rules ns↑, sp↑ and sr↑ are permuted over ai↓, ds↓,
p↓ and r↓ in Step 2 (in this step the rules sr↑ and r↓ are introduced). In Step 3, the rule
sai↑ is permuted up. Finally, the rule r↓ is eliminated. Observe, that by this procedure, we
obtain a result which is stronger than Theorem 4.1.8, because we obtain a proof in system
dELS instead of ELS.

4.4.4 Lemma The rule ns↑ permutes over the rules ai↓, ds↓, p↓ and r↓ by the rule ds↓.

Proof: Consider the derivation

Q
π

S([(R,R′), T], U)
ns↑

S [(R,R′, U), T]

,

where the application of π ∈ {ai↓,ds↓,p↓, r↓} is nontrivial. Without loss of generality, we
can assume that R is not a proper times. According to 4.2.3, the cases to consider are:

(4) The redex of π is inside the contractum ([(R,R′), T], U) of ns↑, but not inside one of

4.4. Cut Elimination 133

the passive structures R,R′, T or U . Only one case is possible (π = ds↓):
S([R,T], R′, U)

ds↓
S([(R,R′), T] , U)

ns↑ yields
S [(R,R′, U), T]

S([R,T], R′, U)
ds↓ .

S [(R,R′, U), T]

(5) The contractum ([(R,R′), T], U) of ns↑ is inside an active structure of the redex of π
but not inside a passive one. Then π = ds↓ and

S([(R,R′), T], U) = S′ [([(R,R′), T], U, V),W] .

There are two possibilities:

S′([(R,R′), T,W], U, V)
ds↓

S′ [([(R,R′), T], U, V),W]
ns↑ yields

S′ [([(R,R′, U), T] , V),W]

S′([(R,R′), T,W], U, V)
ns↑

S′([(R,R′, U), T,W] , V)
ds↓ ,

S′ [([(R,R′, U), T], V),W]

and

S′([(R,R′), T], [U,W], V)
ds↓

S′ [([(R,R′), T], U, V),W]
ns↑ yields

S′ [([(R,R′, U), T] , V),W]

S′([(R,R′), T], [U,W], V)
ns↑

S′([(R,R′, [U,W]), T] , V)
ds↓

S′([(R,R′, U), T,W] , V)
ds↓ .

S′ [([(R,R′, U), T], V),W]

Note: The second case is only possible if U is not a proper times.

(6) The redex of π and the contractum ([(R,R′), T], U) of ns↑ overlap. This is impossible,
because the redex of π is always a par structure which cannot properly overlap with
a times structure. ��

4.4.5 Proposition For every proof −‖ELS\{b↓,w↓}
R

there is a proof −‖dELS\{b↓,w↓}
R

, and

for every proof −‖ELSr\{b↓,w↓}
R

there is a proof −‖dELSr\{b↓,w↓}
R

.

Proof: All instances of nondeep switch are permuted up applying Lemma 4.4.4. They
either disappear or reach the top of the proof. In this case they must be trivial because the
premise is 1. ��
4.4.6 Lemma The rules sai↑, sp↑ and sr↑ permute over the rule ds↓.
Proof: All three rules are of the shape

S([P,U], [P ′, V])
sx↑

S [P ′′, U, V]
,

where neither P nor P ′ is a proper par or a proper times. Now consider the derivation

Q
ds↓

S([P,U], [P ′, V])
sx↑ ,

S [P ′′, U, V]

where the application of ds↓ is nontrivial. According to 4.2.3, the cases to consider are:

134 4. The Multiplicative Exponential Fragment of Linear Logic

(4) The redex of ds↓ is inside the contractum ([P,U], [P ′, V]) of sx↑, but not inside a
passive structure. (Remark: If sx↑ is sai↑, then the passive structures are U and V . If
sx↑ is sp↑ or sr↑, then U , V , R and T are passive structures.) Observe that the redex
of ds↓ cannot be inside P or P ′ because they are neither a proper par nor a proper
times. Therefore, there are only two remaining cases.

(i) U = (U ′, U ′′). Without loss of generality assume that U ′ is not a proper times.
Then

S([P,U ′], [P ′, V], U ′′)
ds↓

S([P, (U ′, U ′′)] , [P ′, V])
sx↑ yields

S [P ′′, (U ′, U ′′), V]

S([P,U ′], [P ′, V], U ′′)
sx↑

S([P ′′, U ′, V] , U ′′)
ds↓ .

S [P ′′, (U ′, U ′′), V]

(ii) V = (V ′, V ′′). Similar to (i).

(5) The contractum ([P,U], [P ′, V]) of sx↑ is inside an active structure of the redex of
ds↓ but not inside a passive one. In the most general case we have that

S([P,U], [P ′, V]) = S′ [([P,U], [P ′, V],W), Z] ,

for some context S′{ } and some structures W and Z. Then

S([P,U,Z], [P ′, V],W)
ds↓

S′ [([P,U], [P ′, V],W), Z]
sx↑ yields

S′ [([P ′′, U, V] ,W), Z]

S([P,U,Z], [P ′, V],W)
sx↑

S′([P ′′, U, V, Z] ,W)
ds↓ ,

S′ [([P ′′, U, V],W), Z]

and

S([P,U], [P ′, V, Z],W)
ds↓

S′ [([P,U], [P ′, V],W), Z]
sx↑ yields

S′ [([P ′′, U, V] ,W), Z]

S([P,U], [P ′, V, Z],W)
sx↑

S′([P ′′, U, V, Z] ,W)
ds↓ .

S′ [([P ′′, U, V],W), Z]

(6) The redex of ds↓ and the contractum ([P,U], [P ′, V]) of sx↑ overlap. As in the
previous lemma, this case is impossible. ��

Observe that the rules sai↑, sp↑ and sr↑ do not permute over the rule s. For example in
the derivation

S([a,U], [([ā, V],W), Z])
s

S [([a,U], [ā, V],W), Z]
sai↑

S [([U, V] ,W), Z]

it is unclear how how the rule sai↑ could be permuted over the switch. This is the reason
why the deep switch has been introduced in [Gug99] in the first place.

4.4. Cut Elimination 135

4.4.7 Lemma For every derivation

Q
π

Z
ρ

P

with ρ ∈ {sp↑, sr↑} and π ∈ {p↓, r↓}, there is

either a derivation

Q
ρ

Z ′
π

P

for some structure Z ′ or a derivation

Q
ρ′

Z ′
s

Z ′′
π′

P

for some structures

Z ′ and Z ′′ and rules ρ′ ∈ {sp↑, sr↑} and π′ ∈ {p↓, r↓}.
Proof: Consider the derivation

Q
π

S([∗R,U], [!T, V])
ρ ,

S [∗(R,T), U, V]

where ρ ∈ {sp↑, sr↑}, ∗ ∈ {?, !} and the application of π ∈ {p↓, r↓} is nontrivial. According
to 4.2.3, the cases to consider are:

(4) The redex of π is inside the contractum ([∗R,U], [!T, V]) of ρ but not inside R,U, T
or V . There are the following five subcases:

(i) ρ = sp↑, ∗ = ?, π = p↓ and U = [!U ′, U ′′]. Then

S([![R,U ′], U ′′], [!T, V])
p↓

S([?R, !U ′ , U ′′], [!T, V])
sp↑ yields

S [?(R,T), !U ′, U ′′, V]

S([![R,U ′], U ′′], [!T, V])
sr↑

S [!([R,U ′], T), U ′′, V]
s
S [! [(R,T), U ′] , U ′′, V]

p↓ .
S [?(R,T), !U ′ , U ′′, V]

(ii) ρ = sp↑, ∗ = ?, π = p↓ and V = [?V ′, V ′′]. Then

S([?R,U], [![T, V ′], V ′′])
p↓

S([?R,U], [!T, ?V ′ , V ′′])
sp↑ yields

S [?(R,T), U, ?V ′, V ′′]

S([?R,U], [![T, V ′], V ′′])
sp↑

S [?(R, [T, V ′]), U, V ′′]
s
S [? [(R,T), V ′] , U, V ′′]

r↓ .
S [?(R,T), U, ?V ′ , V ′′]

(iii) ρ = sp↑, ∗ = ?, π = r↓ and U = [?U ′, U ′′]. Then

S([?[R,U ′], U ′′], [!T, V])
r↓

S([?R, ?U ′ , U ′′], [!T, V])
sp↑ yields

S [?(R,T), ?U ′, U ′′, V]

S([?[R,U ′], U ′′], [!T, V])
sp↑

S [?([R,U ′], T), U ′′, V]
s
S [?[(R,T), U ′] , U ′′, V]

r↓ .
S [?(R,T), ?U ′ , U ′′, V]

(iv) ρ = sr↑, ∗ = !, π = p↓ and U = [?U ′, U ′′]. Then

S([![R,U ′], U ′′], [!T, V])
p↓

S([!R, ?U ′ , U ′′], [!T, V])
sr↑ yields

S [!(R,T), ?U ′, U ′′, V]

S([![R,U ′], U ′′], [!T, V])
sr↑

S [!([R,U ′], T), U ′′, V]
s

S [! [(R,T), U ′] , U ′′, V]
p↓ .

S [!(R,T), ?U ′ , U ′′, V]

136 4. The Multiplicative Exponential Fragment of Linear Logic

(v) ρ = sr↑, ∗ = !, π = p↓ and V = [?V ′, V ′′]. Then

S([!R,U], [![T, V ′], V ′′])
p↓

S([!R,U], [!T, ?V ′ , V ′′])
sr↑ yields

S [!(R,T), U, ?V ′, V ′′]

S([!R,U], [![T, V ′], V ′′])
sr↑

S [!(R, [T, V ′]), U, V ′′]
s
S [! [(R,T), V ′] , U, V ′′]

p↓ .
S [!(R,T), U, ?V ′ , V ′′]

(5) The contractum ([∗R,U], [!T, V]) of ρ is inside an active structure of the redex of π,
but not inside a passive one. This is impossible for π ∈ {p↓, r↓}.

(6) The redex of π and the contractum ([∗R,U], [!T, V]) of ρ overlap. This case is
impossible because a par structure cannot overlap with a times structure. ��

4.4.8 Lemma The rules sp↑ and sr↑ permute over the rule ai↓.
Proof: Consider the derivation

Q
ai↓

S{W}
ρ ,

S{Z}
where the application of ρ ∈ {sr↑, sp↑} is nontrivial. According to 4.2.3, the cases to consider
are:

(4) The redex of ai↓ is inside an active structure of the contractum W of ρ but not inside
a passive one. This is impossible because an atom cannot be matched with a why-not
or with an of-course structure.

(5) The contractum W of ρ is inside an active structure of the redex of ai↓. This is
impossible because the application of ρ is nontrivial.

(6) The contractum W of ρ and the redex of π overlap. As before, this is impossible. ��
4.4.9 Observation If an instance of a rule ρ ∈ {sai↑, sp↑, sr↑} is topmost in a derivation
with premise 1, then the application of ρ must be trivial. This is easy to see because its
premise is 1, and hence its conclusion is also 1. (In case of sai↑, this is only possible if one
of a and ā is 1 and the other is ⊥.) This means that whenever a rule sai↑, sp↑, or sr↑ occurs
at the top of a proof, it can be removed.

4.4.10 Lemma (Atomic Cut Elimination) The rule sai↑ permutes over the rules
ai↓,ds↓,p↓ and r↓ by the rule ds↓.
Proof: Consider the derivation

Q
π

S([a,U], [ā, V])
sai↑ .

S [U, V]

If π = ds↓, then Lemma 4.4.6 applies. Now let π ∈ {w↓, ai↓,p↓, r↓} be nontrivial. According
to 4.2.3, the cases to consider are:

(4) The redex of π is inside the contractum ([a,U], [ā, V]) of sai↑ but not inside U or V .

4.4. Cut Elimination 137

(i) π = ai↓ and U = [ā, U ′]. Then

S([1, U ′], [ā, V])
ai↓

S([a, ā, U ′], [ā, V])
sai↑ yields

S [ā, U ′, V]

S([1, U ′], [ā, V])
ds↓ .

S [(1, [ā, V]), U ′]

(ii) π = ai↓ and V = [a, V ′]. This is similar to (i).

(5) The contractum ([a,U], [ā, V]) of sai↑ is inside an active structure of the redex of π
but not inside a passive one. This is impossible because an atom cannot match with
a why-not structure, an of-course structure or a proper times structure.

(6) The redex of π and the contractum of sai↑ overlap. This is impossible because no rule
π ∈ {w↓, ai↓,p↓, r↓} can have a proper times structure as redex. ��

4.4.11 Proposition For every proof
−

Π‖ELSr\{b↓,w↓}
T

ρ , where ρ ∈ {sai↑, sp↑, sr↑} ,
R

there is a proof −
Π′‖dELSr\{b↓,w↓}

R
.

Proof: First, the proof Π is transformed into a proof Πd in system dELSr by applying
Proposition 4.4.5. Then, if ρ ∈ {sp↑, sr↑}, apply Lemmata 4.4.6, 4.4.7, and 4.4.8, to permute
the instance of ρ up. By Observation 4.4.9, it disappears at the top. If ρ = sai↑, then apply
Lemma 4.4.10 to permute it up. ��
4.4.12 Lemma For every proof −‖dELSr\{b↓}

R
there is a proof −‖dELS\{b↓}

R
.

Proof: Instead of eliminating the rule r↓, I will eliminate the rule

S{?U}
sr↓

S [?R, ?T]
,

where U is any structure such that there is a derivation

U
∆‖{w↓,ai↓,ds↓,p↓}

[R,T]
.

Note that r↓ is an instance of sr↓. Now consider the topmost instance of sr↓ and permute
it up by applying the scheme in 4.2.3, i.e. consider a derivation

Q
π

S{?U}
sr↓ ,

S [?R, ?T]

where π ∈ dELS \ {b↓} = {1↓,w↓, ai↓,ds↓,p↓} is nontrivial. According to 4.2.3, the cases
to consider are:

138 4. The Multiplicative Exponential Fragment of Linear Logic

(4) The redex of π is inside the contractum ?U of sr↓. Then replace

S{?U ′}
π

S{?U}
sr↓ by

S [?R, ?T]

S{?U ′}
sr↓ .

S [?R, ?T]

(5) The contractum ?U of sr↓ is inside an active structure of the redex of π but not inside
a passive one. Then the following subcases are possible:

(i) π = p↓ and S{?U} = S′ [!V, ?U]. Then replace

S{![V,U]}
p↓

S [!V, ?U]
sr↓ by

S [!V, ?R, ?T]

S{![V,U]}
∆‖

S{![V,R, T]}
p↓

S [![V,R], ?T]
p↓ ,

S [!V, ?R, ?T]

where ∆ is the derivation that exists by definition of sr↓.
(ii) π = w↓ and ?U is the redex. Then replace

S{⊥}
w↓

S{?U}
sr↓ by

S [?R, ?T]

S{⊥}
w↓

S{?R}
w↓ .

S [?R, ?T]

(iii) π = w↓ and S{?U} = S′{?S′′{?U}}. Then replace

S′{⊥}
w↓

S′{?S′′{?U}}
sr↓ by

S′{?S′′ [?R, ?T]}
S′{⊥}

w↓ .
S′{?S′′ [?R, ?T]}

(iv) π = 1↓ and S{?U} = 1. This is only possible if U = ⊥, i.e. S{?U} = S{⊥}.
Then

S{⊥}
sr↓ can be replaced by

S [?R, ?T]

S{⊥}
w↓

S{?R}
w↓ .

S [?R, ?T]

(6) The redex of π and the contractum ?U of sr↓ overlap. This is impossible.

By this procedure, the topmost instance of sr↓ must disappear eventually. Repeat this for
all instances of sr↓ in the derivation. ��

Now we can give the complete proof of the cut elimination theorem.

4.4.13 Theorem (Cut Elimination) System dELS is equivalent to every subsystem
of the system SELS∪ {1↓} containing ELS.

Proof: The proof follows the steps shown in Figure 4.13. For the first step apply Corol-
lary 4.4.1, for the second and third step apply repeatedly Proposition 4.4.11, and for the
last step use Lemma 4.4.12. ��

Finally, there is also a decomposition result for proofs in system dELS.

4.5. Interpolation 139

4.4.14 Proposition For every proof −
Π‖dELS
R

, there is a proof

1↓
1
‖{ai↓}

R3

‖{ds↓,p↓}
R2

‖{w↓}
R1

‖{b↓}
R

for some structures R1, R2, R3.

Proof: We can easily permute b↓ and w↓ down. (There are no problematic cases, see 4.3.31
and the proof of Proposition 4.3.37.) Further, ai↓ can be permuted up by the results of
Section 4.2. The details are left to the reader. ��

4.5 Interpolation

The technique of permuting rules, as it has been used in the previous sections, allows to
obtain a top-down symmetric version of cut elimination: Instead of starting from a proof
an permuting the rules of the up fragment to the top, where they disappear, we can start
from a derivation and permute the rules of the up fragment to the top, where they remain.
Dually, one can permute the rules of the down fragment to the bottom. As a result, one
can obtain the following decomposition:

T∥∥up fragment

I∥∥down fragment

R

,

for some structure I. Observe that the structure I can only contain atoms that occur in
T as well as in R. This resembles Craig’s interpolation theorem for first-order classical
logic [Cra57, Bus98]. This is the motivation for calling the structure I interpolant . In
[Brü03a], K. Brünnler shows that for classical logic, in its presentation in the calculus of
structures, the interpolation theorem can be stated in terms of derivations, as shown above.

Here, I will show such a theorem for multiplicative exponential linear logic. More
precisely, with the second decomposition theorem (Theorem 4.3.2) and the lemmata of
the previous section, we can get such an interpolation result for system SELS. Because of
Proposition 4.4.14, the result can then be further decomposed. The only drawback is that
it is unclear how the rules r↓ and r↑ could be eliminated.

140 4. The Multiplicative Exponential Fragment of Linear Logic

4.5.1 Theorem (Interpolation) For every derivation
T

∆‖SELS
R

there are structures

I, T1, T2, T3, R1, R2, R3, and derivations ∆1, . . . , ∆8, such that

T

∆1

∥∥{b↑}
T1

∆2

∥∥{w↑}
T2

∆3

∥∥{s,p↑,r↑}
T3

∆4

∥∥{ai↑}
I

∆5

∥∥{ai↓}
R3

∆6

∥∥{s,p↓,r↓}
R2

∆7

∥∥{w↓}
R1

∆8

∥∥{b↓}
R

.

Proof: The decomposition is obtained in four steps as indicated in Figure 4.14. They are
quite similar to the four steps of the cut elimination proof (see Figure 4.13).

(1) The first step is an application of the second decomposition theorem (Theorem 4.3.2).
Then, the instances of p↑ are replaced by sp↑, the instances of ai↑ by sai↑, and the
instances of s by ds↓ and ns↑.

(2) In the second step the instances of ns↑ and sp↑ (and sr↑) are permuted up as in the
cut elimination proof (which causes the introduction of r↓). The only difference is,
that the rules do not disappear.

(3) In third step, the instances of sai↑ are permuted up (by Lemma 4.4.10).

(4) The last step is different from the cut elimination proof. First, the instances of ai↓
are permuted up (they have to permute only over the switch, which can be done by
Lemma 4.2.6). Then, the instances of sp↑ are replaced by

S([?R,U], [!T, V])
s

S [([?R,U], !T), V]
s

S [(?R, !T), U , V]
p↑ .

S [?(R,T), U, V]

Similarly, each instance of sr↑ is replaced by two instances of s and one instance of
r↑, and each instance of sai↑ is replaced by two instances of s and one instance of ai↑.
Finally the instances of ai↑ are permuted under the instances of s (by Lemma 4.2.7).

��

4.6. Discussion 141

T
‖SELS
R

1
�

T
‖{b↑}
T1

‖{w↑}
T2

‖{ai↓}
T ′

3

‖{ds↓,ns↑,p↓,sp↑}
R′

3

‖{sai↑}
R2

‖{w↓}
R1

‖{b↓}
R

2
�

T
‖{b↑}
T1

‖{w↑}
T2

‖{ns↑,sp↑,sr↑}
T ′′

3

‖{ai↓}
T ′′′

3

‖{ds↓,p↓,r↓}
R′

3

‖{sai↑}
R2

‖{w↓}
R1

‖{b↓}
R

3
�

T
‖{b↑}
T1

‖{w↑}
T2

‖{ns↑,sp↑,sr↑}
T ′′

3

‖{sai↑}
I
‖{ai↓,ds↓,p↓,r↓}

R2

‖{w↓}
R1

‖{b↓}
R

4
�

T
‖{b↑}
T1

‖{w↑}
T2

‖{s,p↑,r↑}
T3

‖{ai↑}
I
‖{ai↓}

R3

‖{s,p↓,r↓}
R2

‖{w↓}
R1

‖{b↓}
R

Figure 4.14: Proof of the interpolation theorem for system SELS

4.5.2 Remark Observe that the interpolation theorem could also be proved in the dual
way, i.e. by introducing “super down rules” and permuting them down. In the general case
the resulting derivation would be different from the one obtained via the previous proof.

Via the translation between structures and formulae as discussed in Chapter 3, it is also
possible to obtain an interpolation result for MELL.

4.5.3 Corollary Let A and B be two MELL formulae such that A −◦ B is provable in
LL. Then there is a MELL formula C such that C contains only atoms that occur in A as
well as in B and such that A−◦ C and C −◦B are provable in LL.

Proof: Apply Theorem 4.5.1 to the derivation

A
S

‖SELS
B
S

,

which can be obtained from Theorem 4.1.7 (and Corollary 4.1.10). Then let C = I
L
, where

I is (a representation of) the interpolant obtained via Theorem 4.5.1. The formulae A−◦C
and C −◦B are provable in LL because of Theorem 4.1.6. ��

4.6 Discussion

The results presented in this chapter were the first that I found during my work on the
calculus of structures. The main results of this chapter are the two decomposition theorems,

142 4. The Multiplicative Exponential Fragment of Linear Logic

the cut elimination proof via the permutation of rules, and the interpolation theorem.
There is an interesting observation connected to the cut elimination argument. The

separation between core and noncore allows us to split the cut elimination proof into two
very different phases. First, the noncore up fragment is eliminated and at the same time
the noncore down fragment is moved down, below all other rules. The surprising fact is
now, that this step is responsible for the hyperexponential blow-up that is caused by cut
elimination. Furthermore, all the difficulty connected to cut elimination went to the proof
of the decomposition theorems, more precisely, to the separation of absorption. After this
has been done, the cut elimination becomes rather simple. The elimination of the core up
fragment, which is the second phase of the whole procedure, causes then only an exponential
blow-up.

The use of permutation for eliminating the core up fragment, as it has been done in this
chapter, will probably become obsolete after the discovery of splitting in [Gug02e] (see also
Section 7.3). I included the proof in this thesis for the following reasons:

• It was the first correct purely syntactical cut elimination proof inside the calculus of
structures.

• The permutation lemmata are needed to prove the interpolation theorem. At the
current state of the art, I cannot see, how the technique of splitting can be employed
to get interpolation.

• In Section 6.2, I will use some of the permutation results again.

• The various permutation results exhibit the wide variety of possibilities how deriva-
tions in the calculus of structures can be manipulated.

5
A Local System for Linear Logic

In Chapter 3, I introduced the calculus of structures and used linear logic as an example
to show the the general principles. In this chapter, I will go one step further and explore
the new possibilities and the new freedom of the calculus of structures. More precisely,
I will show a system for linear logic, in which all rules are local , in the sense that their
application requires only a bounded amount of computational resources. In particular, the
contraction rule will be reduced to an atomic version, which is impossible in the sequent
calculus [Brü02b].

In Section 5.1, I will give a more detailed discussion on locality. Then, in Section 5.2,
I will present the local system, which is called SLLS. Although this system is quite big, it
bears various regularities. In particular, the top-down symmetry of the calculus of structures
is present also in system SLLS. I will show that SLLS it is strongly equivalent to system
SLS, which implies that it is indeed a system for linear logic. Further, I will show cut
elimination, by showing that the up fragment is admissible. Besides being local, system
SLLS unveils regularities of the connectives of linear logic and their mutual relationship,
that are hidden in the sequent calculus system. Then, in Section 5.3, I will show several
decomposition theorems for the new system.

5.1 Locality via Atomicity

Formal proofs (which are the object of research in proof theory), consist of applications of
inference rules. Proof theory can provide tools to modify proofs, for example, permuting
inference rules, or replacing inference rules by other inference rules. But proof theory
cannot look into the inference rules. An inference rule is like a black box, of which we can
see only the input and the output, i.e. premise and conclusion. Proof theory can say more
about the computational aspect of proof construction if less computation is hidden inside
the inference rules. This means in particular, that when it comes to the implementation
of a logical system, the application of each inference rule should consume only a bounded
amount of computational resources (i.e. time and space). However, most deductive systems
contain inference rules that do not have this property. Let me use as an example the sequent
calculus system for linear logic (introduced in Chapter 2, see Figure 2.1). In particular,

143

144 5. A Local System for Linear Logic

consider the following three rules,

� ?A, ?A,Φ
?c � ?A,Φ

,
� A,Φ � B,Φ

� � A � B,Φ
and

� A, ?B1, . . . , ?Bn
! � !A, ?B1, . . . , ?Bn

,

which are called contraction, with and promotion, respectively. If the contraction rule is
applied in a proof search, going from bottom to top, the formula ?A has to be duplicated.
Whatever mechanism is used for this duplication, it needs to inspect all of ?A. In other
words, the contraction rule needs a global view on ?A. Further, the computational resources
needed for applying contraction are not bounded, but depend on the size of ?A. A similar
situation occurs when the with rule is applied because the whole context Φ of the formula
A � B has to be copied. Another rule which involves a global knowledge of the context is
the promotion rule, where for each formula in the context of !A it has to be checked whether
it has the form ?B. Inference rules, like contraction, with and promotion, that require such
a global view on formulae or sequents of unbounded size, are called nonlocal , and all other
rules are called local [BT01]. For example, the two rules

� A,Φ � B,Ψ
� � A � B,Φ, Ψ

and
� A,B,Φ

� � A � B,Φ
,

which are called times and par , respectively, are local because they do not need to look
into the formulae A and B or their contexts. They require only a bounded amount of
computational resources because it would suffice to operate on pointers to A and B, which
depend not on the size of the formulae.

Observe that sharing cannot be used for implementing a nonlocal rule because after
copying a formula A in an application of the contraction or with rule, both copies of A
might be used and modified in a very different way.

In [BT01] it has been shown that it is possible to design a local system (i.e. a deductive
system in which all rules are local) for classical logic. Here, I will show a local system for
linear logic.

The basic idea for making a system local is replacing each nonlocal inference rule by
a local version. I have shown in Chapter 3, how the promotion rule can be made local
in the calculus of structures. For the other rules, locality can be achieved by restricting
their application to atoms, which are formulae of bounded size. This idea is not new: the
(nonlocal) identity rule in the sequent calculus can be replaced by its atomic counterpart
(which is considered to be local) without affecting provability. To make the contraction rule
admissible for its atomic version, it is necessary to add new inference rules to the system in
order to maintain completeness. As already observed in [BT01], these new rules cannot be
given in the sequent calculus which is too rigid. But they can be presented in the calculus
of structures which provides the necessary freedom for designing inference rules.

The atomicity of contraction is achieved by copying formulae stepwise, i.e. atom by
atom, and by using the new rules to restore the original formula to be copied. Opera-
tionally this itself is not very interesting. The surprising fact is that this can be done inside
a logical system without losing important properties like cut elimination, soundness and
completeness.

Apart from the proof theoretical interest in local rules, there is also interest from the
viewpoint of applications:

5.2. Rules and Cut Elimination 145

• Proof construction, in particular the notion of uniform provability, is mainly concerned
with controlling the nondeterminism that is intrinsically connected to proof search.
For linear logic, this is based on permutability properties, which yield optimised
presentations of cut free proofs [And92, HM94]. Although in the calculus of structures
(and in particular in the local systems) the nondeterminism in the proof search is much
higher than in the sequent calculus, the local system for linear logic provides much
more possibilities for permuting rules. This might yield new normal forms of cut free
proofs. From this, new methods for controlling the nondeterminism could emerge.

• Since distributed computing moves more and more into the focus of research in com-
puter science, it is natural to ask whether it is conceivable to implement proof search
in a distributed way. For this it is essential that each application of an inference rule
consumes only a bounded amount time and space. This is provided by a local system.

5.2 Rules and Cut Elimination

In this section, I will start from system SLS and produce a strongly equivalent system, in
which all rules are local, in the sense as discussed in the previous section.

Before discussing the new system, I will first list the nonlocal rules of system SLS
(Figure 3.2 on page 35) and give some informal reason why they are not local. Obviously the
rules c↓ and b↓ are nonlocal because they involve the duplication of a structure of unbounded
size. Also their corules c↑ and b↑ are nonlocal because they involve the comparison and the
deletion of structures of unbounded size (or, again a duplication if one reasons top-down).
Similarly, I consider the rules t↓ and w↓, as well as their corules t↑ and w↑ to be nonlocal
because they involve the deletion or introduction of structures of unbounded size. One could
argue that the deletion of a structure of unbounded size can be considered local because
it might suffice to delete just the pointer to the structure. But in a real implementation,
garbage collection would then become a problem. Another more important reason is that
the symmetry exhibited in system SLS should be carried through to the local system, and
therefore, the locality of a rule should be invariant under forming the contrapositive, i.e.
the corule.

Observe that all other rules of system SLS are already local. In particular, the two rules
ai↓ and ai↑ only involve atoms. In the switch rule

S([R,U], T)
s
S [(R,T), U]

the structures R, T and U all occur exactly once in redex and contractum, which means
that no structure of unbounded size has to be copied or deleted. For this reason, the switch
rule is considerd to be local. Informally, this can be motivated as follows: The rule could
be implemented by changing the marking of two nodes and exchanging two pointers, as
already observed in [BT01]:

S []
����� ���

��

()
����� ����

��
T

R U

�

S()
����� ���

��

[]
����� ���

���
U

R T

.

146 5. A Local System for Linear Logic

S{1}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{⊥}

S([R,U], T)
s
S [(R,T), U]

S(• [R,U], [T, V])•
d↓

S [(•R,T)•, [•U, V]•]

S([•R,U]•, (•T, V)•)
d↑

S [•(R,T), (U, V)]•

S{![R,T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R,T)}

S{0}
at↓

S{a}
S [•a, a]•

ac↓
S{a}

S{a}
ac↑

S(•a, a)•
S{a}

at↑
S{�}

S{0}
nm↓

S(•0, 0)•
S [•(•R,U)•, (•T, V)•]•

m
S(• [•R,T]•, [•U, V]•)•

S [•�,�]•
nm↑

S{�}

S{0}
nm1↓

S [0, 0]

S [•[R,U], [T, V]]•
m1↓

S [[•R,T]•, [•U, V]•]

S((•R,U)•, (•T, V)•)
m1↑

S(•(R,T), (U, V))•
S(�,�)

nm1↑
S{�}

S{0}
nm2↓

S(0, 0)

S [•(R,U), (T, V)]•
m2↓

S([•R,T]•, [•U, V]•)

S [(•R,U)•, (•T, V)•]
m2↑

S(• [R,T], [U, V])•
S [�,�]

nm2↑
S{�}

S{0}
nl1↓

S{?0}
S [•?R, ?T]•

l1↓
S{?[•R,T]•}

S{!(•R,T)•}
l1↑

S(•!R, !T)•
S{!�}

nl1↑
S{�}

S{0}
nl2↓

S{!0}
S [•!R, !T]•

l2↓
S{![•R,T]•}

S{?(•R,T)•}
l2↑

S(•?R, ?T)•
S{?�}

nl2↑
S{�}

S{⊥}
nz↓

S{?0}
S [?R,T]

z↓
S{?[•R,T]•}

S{!(•R,T)•}
z↑

S(!R,T)

S{!�}
nz↑

S{1}

Figure 5.1: System SLLS

For the rules d↓, d↑, p↓ and p↑, the situation is similar.
Let me summarise this discussion by explaining when I call a rule in the calculus of

structures local. For this, let us interpret the inference rules in the calculus of structures,
as I have shown them in the previous chapters, as term rewriting rules (see e.g. [BN98]).
We then have to distinguish between two sorts of variables, namely, those which stand for

5.2. Rules and Cut Elimination 147

arbitrary structures and those which stand for atoms. I will consider a rule to be local , if
each variable of the first kind, which occurs in the rule, occurs exactly once in the redex
and exactly once in the contractum. Further, there should be no restriction on the context.
In the terminology of term rewriting, locality would correspond to linearity. To make this
clear, let me use as example the following two rules:

S{!R}
b↑

S(!R,R)
and

S([a,U], [ā, V])
sai↑

S [U, V]
.

Whereas the first is nonlocal because the R occurs twice in the redex, the second rule is
local because U and V occur exactly once in redex and contractum and a and ā are atoms.

Let us now have a look at the new system, which is called system SLLS (the second L
stands for “local”) and which is shown in Figure 5.1. The reader should not be frightened
by the size of the system. I will discuss the rules later on. At this point I will draw the
attention to the fact that all rules in system SLLS are local. Either they handle only atoms,
or their implementation can be realised by exchanging pointers in a similar way as for the
switch rule. The equations shown in Figure 3.1 can be made local by implementing them in
the same way as the inference rules. This means that system SLLS is indeed a local system.
It remains to show that it is linear logic.

In order to do so, I will show that it is strongly equivalent to system SLS. Further, I will
define system LLS by adding the axiom 1↓ to the down fragment of system SLLS. System
LLS will be strongly equivalent to system LS. As a corollary we get a cut elimination result
for the local system.

Consider now the rules

S [•a, a]•
ac↓

S{a} and
S{a}

ac↑
S(•a, a)•

,

which are called atomic contraction and atomic cocontraction, respectively. They replace
their general nonlocal counterparts c↓ and c↑. But they are not powerful enough to ensure
completeness. For this reason, the medial rule

S [•(•R,U)•, (•T, V)•]•
m

S(• [•R,T]•, [•U, V]•)•
,

and its variations

S [•[R,U], [T, V]]•
m1↓

S [[•R,T]•, [•U, V]•]
,

S((•R,U)•, (•T, V)•)
m1↑

S(•(R,T), (U, V))•
,

S [•(R,U), (T, V)]•
m2↓

S([•R,T]•, [•U, V]•)
,

S [(•R,U)•, (•T, V)•]
m2↑

S(• [R,T], [U, V])•
,

S [•?R, ?T]•
l1↓

S{?[•R,T]•} ,
S{!(•R,T)•}

l1↑
S(•!R, !T)•

,

S [•!R, !T]•
l2↓

S{![•R,T]•} ,
S{?(•R,T)•}

l2↑
S(•?R, ?T)•

,

148 5. A Local System for Linear Logic

are introduced. These rules have the same purpose as the medial rule in [BT01]. There are
more medial rules in system SLLS because there are more connectives in linear logic than
in classical logic.

5.2.1 Proposition The rule c↓ is derivable in {ac↓,m,m1↓,m2↓, l1↓, l2↓}. Dually, the
rule c↑ is derivable in {ac↑,m,m1↑,m2↑, l1↑, l2↑}.

Proof: For a given instance
S [•R,R]•

c↓
S{R} , I will construct a derivation

S [•R,R]•
∆‖{ac↓,m,m1↓,m2↓,l1↓,l2↓}
S{R}

by structural induction on R.

• If R is an atom then the given instance of c↓ is an instance of ac↓.
• If R = [•P,Q]•, where P �= 0 �= Q, then apply the induction hypothesis to

S [•P,Q,P,Q]•
c↓

S [•P,P, Q]•
c↓ .

S [•P ,Q]•

• If R = [P,Q], where P �= ⊥ �= Q, then apply the induction hypothesis to

S [•[P,Q], [P,Q]]•
m1↓

S [[•P,P]•, [•Q,Q]•]
c↓

S [[•P,P]•, Q]
c↓ .

S [P ,Q]

• If R = (P,Q), where P �= 1 �= Q, then apply the induction hypothesis to

S [•(P,Q), (P,Q)]•
m2↓

S([•P,P]•, [•Q,Q]•)
c↓

S([•P,P]•, Q)
c↓ .

S(P ,Q)

• If R = (•P,Q)•, where P �= � �= Q, then apply the induction hypothesis to

S [•(•P,Q)•, (•P,Q)•]•
m

S(• [•P,P]•, [•Q,Q]•)•
c↓

S(• [•P,P]•, Q)•
c↓ .

S(•P ,Q)•

• If R = ?P , where P �= ⊥, then apply the induction hypothesis to

S [•?P, ?P]•
l1↓

S{?[•P,P]•}
c↓ .

S{?P }

5.2. Rules and Cut Elimination 149

• If R = !P , where P �= 1, then apply the induction hypothesis to

S [•!P, !P]•
l2↓

S{![•P,P]•}
c↓ .

S{!P }

The proof for c↑ is dual. ��

Let us now consider the rules

S{0}
at↓

S{a} and
S{a}

at↑
S{�} ,

called atomic thinning and atomic cothinning , respectively. Again, they are the replacement
for the general thinning and cothinning rules, and in order to keep completeness, we need
to add the rules

S{0}
nm↓

S(•0, 0)•
,

S{0}
nm1↓

S [0, 0]
,

S{0}
nm2↓

S(0, 0)
,

S{0}
nl1↓

S{?0} ,
S{0}

nl2↓
S{!0} ,

S [•�,�]•
nm↑

S{�} ,
S(�,�)

nm1↑
S{�} ,

S [�,�]
nm2↑

S{�} ,
S{!�}

nl1↑
S{�} ,

S{?�}
nl2↑

S{�} ,

which are the nullary versions of the medial rules. In the local system for classical logic
[BT01] these rules are hidden in the equational theory for structures. It might be argued
about doing the same for linear logic. In this presentation, I chose not to do so because of
the following reasons: First, not all of them are equivalences in linear logic, e.g. we have
0−◦ ?0 but not ?0−◦ 0, and second, for obvious reasons I want to use the same equational
theory for both systems, SLS and SLLS. But the new equations, e.g. 0 = !0, would be
redundant for system SLS.

5.2.2 Definition For notational convenience, let me define the following two systems:

SLLSt↓ = {at↓,nm↓,nm1↓,nm2↓,nl1↓,nl2↓} and
SLLSt↑ = {at↑,nm↑,nm1↑,nm2↑,nl1↑,nl2↑} .

5.2.3 Proposition The rule t↓ is derivable in SLLSt↓. Dually, t↑ is derivable in
SLLSt↑.

Proof: Similar to Proposition 5.2.1, I will for a given instance
S{0}

t↓
S{R} , construct a

derivation
S{0}
∆‖SLLSt↓
S{R}

,

by structural induction on R.

• If R is an atom then the given instance of t↓ is an instance of at↓.

150 5. A Local System for Linear Logic

• If R = (•P,Q)•, where P �= � �= Q, then apply the induction hypothesis to

S{0}
nm↓

S(•0, 0)•
t↓

S(•P , 0)•
t↓ .

S(•P, Q)•

The other cases are similar. The proof for t↑ is dual. ��

Now arises the problem that the rules w↓,w↑,b↓,b↑ cannot be reduced to their atomic
versions in the same way as this has been done for the rules t↓, t↑, c↓, c↑. This is not really
a surprise since the basic idea of the exponentials is to guard whole subformulas such that
no arbitrary weakening and contraction is possible. For this reason, I will reduce the rules
w↓,w↑,b↓,b↑ to the rules t↓, t↑, c↓, c↑, respectively, by using the well-known equivalence

!(A � B) ≡ !A � !B ,

which is encoded in the rules

S [?R,T]
z↓

S{?[•R,T]•} and
S{!(•R,T)•}

z↑
S(!R,T)

,

and their nullary versions

S{⊥}
nz↓

S{?0} and
S{!�}

nz↑
S{1} .

5.2.4 Proposition The rule w↓ is derivable in {nz↓, t↓}, and the rule b↓ is derivable
in {z↓, c↓}. Dually, the rule w↑ is derivable in {nz↑, t↑}, and the rule b↑ is derivable in
{z↑, c↑}.

Proof: Use the derivations

S{⊥}
nz↓

S{?0}
t↓ and

S{?R}

S [?R,R]
z↓

S{?[•R,R]•}
c↓ ,

S{?R}

for w↓ and b↓, respectively. ��

All new rules, introduced in this section, are sound, i.e. correspond to linear implications.
More precisely, we have:

5.2.5 Proposition The rules ac↓, m, m1↓, m2↓, l1↓, l2↓ are derivable in {t↓, c↓}, the
rule z↓ is derivable in {t↓,b↓}, the rules at↓, nm↓, nm1↓, nm2↓, nl1↓, nl2↓ are derivable in
{t↓}, and the rule nz↓ is derivable in {w↓}. Dually, the rules ac↑, m, m1↑, m2↑, l1↑, l2↑ are
derivable in {t↑, c↑}, the rule z↑ is derivable in {t↑,b↑}, the rules at↑, nm↑, nm1↑, nm2↑,
nl1↑, nl2↑ are derivable in {t↑}, and the rule nz↑ is derivable in {w↑}.

5.3. Decomposition 151

Proof: The rule ac↓ is an instance of c↓. For the rule m1↓, use the derivation

S [•[R,U], [T, V]]•
t↓

S [•[R,U], [T, [•U , V]•]]•
t↓

S [•[R,U], [[•R,T]•, [•U, V]•]]•
t↓

S [•[R, [•U, V]•], [[•R,T]•, [•U, V]•]]•
t↓

S [•[[•R, T]•, [•U, V]•], [[•R,T]•, [•U, V]•]]•
c↓ .

S [[•R,T]•, [•U, V]•]

The cases for the rules m, m2↓, l1↓, l2↓ and z↓ are similar. The rules at↓,nm↓, nm1↓, nm2↓,
nl1↓ and nl2↓ are instances of t↓, and nz↓ is an instance of w↓. ��
5.2.6 Theorem Systems SLLS and SLS are strongly equivalent.

Proof: Immediate consequence of Propositions 5.2.1–5.2.5. ��
Observe that Propositions 5.2.1–5.2.5 show that there is a certain modularity involved

in the equivalence of the two systems. For instance, the user can choose to have either the
rules at↓,nm↓,nm1↓,nm2↓,nl1↓,nl2↓ or the rule t↓ in the system without affecting the other
rules.

5.2.7 Definition System LLS, shown in Figure 5.2, is obtained from the down fragment
of system SLLS by adding the axiom 1↓.
5.2.8 Theorem The systems LLS and LS are strongly equivalent.

Proof: Again, use Propositions 5.2.1–5.2.5. ��
As an immediate consequence of Theorem 5.2.8 we have that splitting (Lemma 3.4.5)

and context reduction (Lemma 3.4.22) do also hold for system LLS. In particular, we also
have that the up fragment is admissible.

5.2.9 Corollary (Cut Elimination) System LLS is equivalent to every subsystem of
SLLS∪ {1↓} containing LLS.

5.2.10 Corollary The rule i↑ is admissible for system LLS.

System SLLS bears many regularities. For example, all medial rules follow the same
pattern. In Section 8.2, I will come back to this, and discuss the possibility of formulating
a general “recipe” of designing inference rules in the calculus of structures.

5.3 Decomposition

In this section, I will show several decomposition theorems for system SLLS. They are of a
different nature than the decompositions shown before, because the atomicity of contraction
allows manipulations that are impossible in system SLS. But compared to decomposition
results of system SELS in the previous chapter, in Section 4.3, the results presented here

152 5. A Local System for Linear Logic

1↓
1

S{1}
ai↓

S [a, ā]

S{0}
nm1↓

S [0, 0]

S [•[R,U], [T, V]]•
m1↓

S [[•R,T]•, [•U, V]•]

S([R,U], T)
s

S [(R,T), U]

S{0}
nm2↓

S(0, 0)

S [•(R,U), (T, V)]•
m2↓

S([•R,T]•, [•U, V]•)

S(• [R,U], [T, V])•
d↓

S [(•R,T)•, [•U, V]•]

S{0}
nm↓

S(•0, 0)•
S [•(•R,U)•, (•T, V)•]•

m
S(• [•R,T]•, [•U, V]•)•

S{![R,T]}
p↓

S [!R, ?T]

S{0}
nl1↓

S{?0}
S [•?R, ?T]•

l1↓
S{?[•R,T]•}

S{0}
at↓

S{a}
S{0}

nl2↓
S{!0}

S [•!R, !T]•
l2↓

S{![•R,T]•}

S [•a, a]•
ac↓

S{a}
S{⊥}

nz↓
S{?0}

S [?R,T]
z↓

S{?[•R,T]•}

Figure 5.2: System LLS

are rather simple. They should be considered as preliminary work for future research in
the topic of decomposition.

All proofs are based on simple permutation lemmata, as I have shown them before.
However, now there not only two, but four types of contexts. Furthermore, system SLLS is
considerably bigger than system SELS, which means that there are more rules to consider in
a case analysis. Nevertheless, the basic idea is always the same. Since this is a dissertation
thesis, I put some effort in listing all the cases, although they are in principle all the same.
This has the effect that the proofs in this section look rather involved. But the reader
should keep in mind that this is not the case. We have here just another example, where
syntax is an obstacle to short and concise proofs. This means that what has been said in
the previous chapter does also apply here: the impatient reader is invited to read only the
statements of the theorems at the beginning of each subsection and skip the proofs.

5.3.1 Separation of Atomic Contraction

The first theorem deals with atomic contraction. The intuition behind contraction is to
copy parts of a structure to make them usable more than once in a proof or derivation.
This intuition tells us that it should be possible to copy first everything as much as it is

5.3. Decomposition 153

needed and then go on with the proof without copying anything anymore. This is exactly,
what the following theorem says.

5.3.1 Theorem For every proof −‖LLS
R

there is a proof

−‖(LLS∪{nm↑})\{ac↓}
R′

‖{ac↓}
R

for some structure R′.

The top-down symmetry allows us, to extend this result to derivations:

5.3.2 Theorem For every derivation
T

∆‖SLLS
R

there is a derivation

T
‖{ac↑}
T ′

‖SLLS\{ac↑,ac↓}
R′

‖{ac↓}
R

for some structures T ′ and R′.

Before showing the proofs of the two theorems, let me point out the difficulties that
arise. In the proof of the decomposition theorems in the previous chapter, the separation of
absorption rule was problematic. The same problem has to be expected for contraction. In
fact, the case for contraction is even more difficult because the substructure to be contracted
is not guarded by an exponential. For example, in the following two derivations it is unclear
how the instances of cocontraction could be permuted up:

S([R,U1, U2], T)
s
S [(R,T), U1, U2]

c↑ and
S [(• [(R,T), U1], [(R,T), U1])•, U2]

S([(R1, R2), U], T1, T2)
s

S [(R1, R2, T1, T2), U]
c↑ .

S [(R1, (•(R2, T1), (R2, T1))•, T2), U]

For permuting contraction down, the situation is dual. This is the reason why I could not
give a decomposition theorem for system SLS, as it has been done in Section 4.3. The
situation becomes considerably simpler in the case of atomic contraction. But there are
still two major problems to solve.

154 5. A Local System for Linear Logic

(1) While permuting an instance of ac↑ up, it might happen that it meets an instance of
the interaction rule as follows:

S{1}
ai↓

S [a, ā]
ac↑ , which can be replaced by

S [(•a, a)•, ā]

S{1}
=

S(•1, 1)•
ai↓

S(• [a, ā] , 1)•
ai↓

S(• [a, ā], [a, ā])•
d↓

S [(•a, a)•, [•ā, ā]•]
ac↓ .

S [(•a, a)•, ā]

Here a new instance of ac↓ is introduced, which has to be permuted down afterwards.
The problem is to show that this does indeed terminate eventually.

(2) The atom to be contracted in an instance of ac↑ or ac↓ can also be one of the constants.
Then we might encounter cases like

S(?R, !T)
p↑

S{?(R,T)}
=

S{?[•(R,T), 0]•}
ac↑ ,

S{?[•(R,T), (•0, 0)•]•}
where it is not obvious how the instance of ac↑ can be permuted up.

The first problem is of the same nature as the problem with coabsorption and promotion
in Section 4.3. This indicates a possible solution via and analysis of chains and cycles in
derivations as in Section 4.3.1 (which must be more difficult here because there are four
binary connectives instead of two). However, instead of going through such a difficult
termination argument again, I will employ cut elimination, as it has been done in [BT01]
for the same theorem for classical logic. This can be done here because I will not use
Theorem 5.3.2 in a cut elimination argument.

For solving the second problem we have to use a case analysis and then find for each
problematic rule an individual solution. In the case of classical logic this rather painful task
has not to be done because there are only two connectives and two constants and there are
no problematic cases.

In the following, I will show how the rule ac↑ can be permuted up. In order to keep the
situation as clear as possible, I introduce the following five rules:

S{⊥}
ac↑⊥

S(•⊥,⊥)•
,

S{1}
ac↑1

S(•1, 1)•
,

S{0}
ac↑0

S(•0, 0)•
,

S{�}
ac↑�

S(•�,�)•
, and

S{a}
ac↑a

S(•a, a)•
, where a is not a constant.

Obviously, each of them is a special case of ac↑, and each instance of ac↑ is an instance of
one of ac↑⊥, ac↑1, ac↑0, ac↑�, ac↑a. The nm↑ in the statement of Theorem 5.3.1 is due to
the fact that ac↑0 is the same as nm↓, or dually, ac↓� is the same as nm↑. Furthermore,
all instances of the two rules ac↑1 and ac↑� are trivial because 1 = (•1, 1)• and � = (•�,�)•.
Hence, the only cases to deal with are ac↑a and ac↑⊥.

5.3. Decomposition 155

5.3.3 Lemma The rule ac↑a permutes over every rule π ∈ SLLS \ {ai↓, at↓, ac↓, ac↑}.

Proof: Consider a derivation
Q

π
S{a}

ac↑a ,
S(•a, a)•

where π ∈ SLLS\{ai↓, at↓, ac↓, ac↑}. Without loss of generality, assume that the application
of π is nontrivial. According to the case analysis in 4.2.3, the following cases are to consider:

(4) The redex of π is inside the contractum a. This is impossible because nothing can be
inside an atom.

(5) The contractum a of ac↑a is inside an active structure of the redex of π, but not inside
a passive one. The rules of system SLLS are designed such that this is impossible.

(6) The contractum a of ac↑a and the redex of π overlap. This is impossible because an
atom cannot properly ovelap with anything. ��

5.3.4 Definition A rule ρ permutes over a rule π by a system S , if for every deriva-

tion

Q
π

U
ρ

P

there is a derivation
Q

ρ
Q′

π
P ′

‖S
P

.

For notational convenience, let me define the following two systems:

SLLS↓ = SLLSt↓∪ {nz↓, ai↓, s,d↓,p↓, ac↓,m,m1↓,m2↓, l1↓, l2↓, z↓}
SLLS↑ = SLLSt↑∪ {nz↑, ai↑, s,d↑,p↑, ac↑,m,m1↑,m2↑, l1↑, l2↑, z↑}

In other words, the system SLLS↓ contains the down fragment of system SLLS and system
SLLS↑ contains the up fragment.

5.3.5 Lemma The rule ac↑⊥ permutes over every rule π ∈ (SLLS↑∪ {nm↓}) \ {ac↑} by
the system {s,d↑,m1↑}.

Proof: Consider a derivation
Q

π
S{⊥}

ac↑⊥ ,
S(•⊥,⊥)•

where π ∈ SLLS↑ \ {ac↑}. Without loss of generality, assume that the application of π is
nontrivial. Now, follow again the case analysis in 4.2.3.

(4) The redex of π is inside the contractum ⊥. This is impossible because the application
of π is nontrivial.

156 5. A Local System for Linear Logic

(5) The contractum ⊥ of ac↑⊥ is inside an active structure of the redex of π, but not
inside a passive one. This case is the problematic one. The situation is similar to
Section 4.2, where the weakening rule has been permuted up. Since here the additives
are also involved, there are more possibilities of interference. Since there are more
rules π, there are more cases to consider. But in principle, they are all the same.
Each rule π will be treated separately.

(i) If π ∈ SLLSt↑∪ {ai↑,nz↑}, then this case cannot occur.

(ii) If π = m2↑, we can reduce this case to an instance of case (2) by the associativity
of the par context.

(iii) Let us now consider the cases π ∈ {s,d↑,p↑,m1↑}. Let me use the rule m1↑ to
explain the situation. We have to check all possibilities, how the contractum ⊥
can appear inside the redex (•(R,T), (U, V))•. An example is (• [(R,T),⊥], (U, V))•.
The following derivation shows the most general case:

S′((•(R,R′), U)•, (•(T, T ′), V)•)
m1↑

S′(•(R,R′, T, T ′), (U, V))•
=

S′(•(R, [(R′, T),⊥], T ′), (U, V))•
ac↑⊥ .

S′(•(R, [(R′, T), (•⊥,⊥)•], T ′), (U, V))•

(If we set in this derivation R = T ′ = 1, we get the example mentioned before.
The case where the ⊥ occurs inside (U, V) is does not need to be considered
because of commutativity.) This is in fact very similar to the cases (5.i) and
(5.ii) of the proof of part (a) of Lemma 4.2.9 (page 93), where the switch rule
has been used to move the disturbing structure inside a passive structure of the
redex of π. Here, we do exactly the same:

S′((•(R,R′), U)•, (•(T, T ′), V)•)
=

S′((•([R,⊥], R′), U)•, (•(T, T ′), V)•)
ac↑⊥

S′((•([R, (•⊥,⊥)•], R′), U)•, (•(T, T ′), V)•)
m1↑

S′(•(R, [R′, (•⊥,⊥)•], T, T ′), (U, V))•
s .
S′(•(R, [(R′, T), (•⊥,⊥)•] , T ′), (U, V))•

For the rules s, d↑ and p↑, the situation is similar.

(iv) If π = z↑, we also use the switch, in a different way, namely, to move the
disturbing structure out of the redex of π into the context.

S′{!(•R,T)•}
z↑

S′(!R,T)
=

S′([!R,⊥], T)
ac↑⊥ yields

S′([!R, (•⊥,⊥)•], T)

S′{!(•R,T)•}
=

S′(!(•R,T)•, [1,⊥])
ac↑⊥

S′(!(•R,T)•, [1, (•⊥,⊥)•])
z↑

S′(!R, [1, (•⊥,⊥)•], T)
s
S′([(!R, 1), (•⊥,⊥)•] , T)

= .
S′([!R, (•⊥,⊥)•], T)

5.3. Decomposition 157

(v) If π ∈ {l1↑, l2↑,nm↓}, we use the switch together with the rule m1↑:

S′{!(•R,T)•}
l1↑

S′(•!R, !T)•
=

S′(• [!R,⊥], !T)•
ac↑⊥ yields

S′(• [!R, (•⊥,⊥)•], !T)•

S′{!(•R,T)•}
=

S′(!(•R,T)•, (•1, [1,⊥])•)
ac↑⊥

S′(!(•R,T)•, (•1, [1, (•⊥,⊥)•])•)
l1↑

S′((•!R, !T)•, (•1, [1, (•⊥,⊥)•])•)
m1↑

S′(•(!R, [1, (•⊥,⊥)•]), (!T, 1))•
=

S′(•(!R, [1, (•⊥,⊥)•], !T))•
s
S′(• [(!R, 1), (•⊥,⊥)•] , !T)•

= .
S′([!R, (•⊥,⊥)•], !T)

For π = l2↑ and π = nm↓, the situation is similar.

(vi) If π = m, the situation is similar as before:

S′ [•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•
m

S′(• [•R,R′, T, T ′]•, [•U, V]•)•
=

S′(• [•R, [[•R′, T]•,⊥], T ′]•, [•U, V]•)•
ac↑⊥ ,

S′(• [•R, [[•R′, T]•, (•⊥,⊥)•], T ′]•, [•U, V]•)•

but we have to insert an instance of d↑:

S′ [•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•
=

S′([•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•, (•1, 1, [1,⊥])•)
ac↑⊥

S′([•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•, (•1, 1, [1, (•⊥,⊥)•])•)
m

S′((• [•R,R′, T, T ′]•, [•U, V]•)•, (•1, 1, [1, (•⊥,⊥)•])•)
m1↑

S′(•([•R,R′, T, T ′]•, (•1, [1, (•⊥,⊥)•])•), ([•U, V]•, 1))•
=

S′(•([•R,R′, T, T ′]•, (•1, [1, (•⊥,⊥)•])•), [•U, V]•)•
d↑

S′(• [•(1, [•R,T ′]•), ([•R′, T]•, [1, (•⊥,⊥)•])]•, [•U, V]•)•
=

S′(• [•R, ([•R′, T]•, [1, (•⊥,⊥)•]), T ′]•, [•U, V]•)•
s
S′(• [•R, [([•R′, T]•, 1), (•⊥,⊥)•] , T ′]•, [•U, V]•)•

= .
S′(• [•R, [[•R′, T]•, (•⊥,⊥)•], T ′]•, [•U, V]•)•

(6) The contractum ⊥ of ac↑⊥ and the redex of π overlap. This is impossible. ��

5.3.6 Remark The interested reader might observe, that it is also possible, to permute
the rule ac↑⊥ over most rules of the down fragment of system SLLS. For example, for the
rules ai↓, p↓ and nm1↓, the situation is the same as for m2↑. For the rules m1↓ and m2↓,
we could construct similar derivations as for m. But I do not want to trouble the reader
with more details than necessary.

158 5. A Local System for Linear Logic

5.3.7 Lemma For every derivation
T

∆‖SLLS↑
R

there is a derivation

T
‖{ac↑}
T ′

‖(SLLS↑∪{nm↓})\{ac↑}
R

for some structure T ′.

Proof: Each instance of ac↑ inside ∆ is an instance of ac↑⊥, ac↑1, ac↑0, ac↑� or ac↑a. The
instances of ac↑1 and ac↑� can be removed because they are trivial, and the instances of
ac↑0 are replaced by nm↓. In order to permute ac↑a and ac↑⊥ to the top of ∆, repeatedly
apply Lemmata 5.3.3 and 5.3.5. ��

5.3.8 Lemma For every derivation
T

∆‖SLLS↓
R

there is a derivation

T
‖(SLLS↓∪{nm↑})\{ac↓}
R′

‖{ac↓}
R

for some structure R′.

Proof: Dual to Lemma 5.3.7. ��

Proof of Theorem 5.3.1: Immediate consequence of Lemma 5.3.8. ��

Now we have done all necessary preparations for the proof of Theorem 5.3.2, which is
similar to the proof of the same theorem for classical logic, presented in [BT01].

Proof of Theorem 5.3.2: Let
T

∆‖SLLS
R

be given. We perform the following transforma-
tions:

T
∆‖SLLS
R

1
�

[T, T̄]
∆‖SLLS

[R, T̄]

2
�

1↓
1

i↓
[T, T̄]
∆‖SLLS

[R, T̄]

3
�

−
Π‖LLS

[R, T̄]
.

In the first step we replace each structure S that occurs inside ∆ by [S, T̄], which is in
Step 2 transformed into a proof by adding an instance of i↓ and 1↓. Then, in Step 3, we

5.3. Decomposition 159

apply Proposition 3.2.16 and cut elimination (Theorem 5.2.8) to transform this proof into
a proof in system LLS.

4
�

1
Π′‖(LLS∪{nm↑})\{ac↓}

U
∆̃‖{ac↓}

[R, T̄]

5
�

1
Π′‖SLLS\{ac↓,ac↑}

U
∆̃‖{ac↓}

[R, T̄]

6
�

1
Π′‖SLLS\{ac↓,ac↑}

[R′, T̄ ′]
∆̃‖{ac↓}

[R, T̄]

.

In Step 4, we apply Theorem 5.3.1. Step 5 is a triviality because (LLS ∪ {nm↑}) \ {ac↓} ⊆
SLLS\{ac↓, ac↑}. Since the rule ac↓ cannot modify a par structure, we have that U = [R′, T̄ ′]
for some structures R′ and T̄ ′ such that there are derivations

R′

∆̃R‖{ac↓}
R

and
T̄ ′

∆̃T̄‖{ac↓}
T̄

.

Those two derivations are now separated in Step 7:

7
�

1
Π′‖SLLS\{ac↓,ac↑}

[R′, T̄ ′]
∆̃T̄‖{ac↓}
[R′, T̄]
∆̃R‖{ac↓}
[R, T̄]

8
�

(1, T)
Π′‖SLLS\{ac↓,ac↑}

([R′, T̄ ′], T)
∆̃T̄‖{ac↓}

([R′, T̄], T)
∆̃R‖{ac↓}

([R, T̄], T)

.

Step 8 is very similar to the first step: we set every structure in the derivation in a times
relation with T .

9
�

T
Π′‖SLLS\{ac↓,ac↑}

([R′, T̄ ′], T)
∆̃T̄‖{ac↓}

([R′, T̄], T)
∆̃R‖{ac↓}

([R, T̄], T)
s

[R, (T̄ , T)]
i↑

R

10
�

T
Π′‖SLLS\{ac↓,ac↑}

([R′, T̄ ′], T)
∆̃T̄‖{ac↓}

([R′, T̄], T)
s

[R′, (T̄ , T)]
i↑

R′

∆̃R‖{ac↓}
R

.

In Step 9, we add an instance of switch and cut to produce a derivation with conclusion R.
Since no instance of ac↓ in ∆̃R does modify T or T̄ we can in Step 10 move ∆̃R below the

160 5. A Local System for Linear Logic

instances of switch and cut.

11
�

T
Π′‖SLLS\{ac↓,ac↑}

([R′, T̄ ′], T)
∆̃T‖{ac↑}

([R′, T̄ ′], T ′)
s

[R′, (T̄ ′, T ′)]
i↑

R′

∆̃R‖{ac↓}
R

12
�

T
∆̃T‖{ac↑}

T ′

Π′‖SLLS\{ac↓,ac↑}
([R′, T̄ ′], T ′)
s

[R′, (T̄ ′, T ′)]
i↑

R′

∆̃R‖{ac↓}
R

13
�

T
∆̃T‖{ac↑}

T ′

∆′‖SLLS\{ac↓,ac↑}
R′

∆̃R‖{ac↓}
R

.

In Step 11, the derivation
T̄ ′

∆̃T̄‖{ac↓}
T̄

is replace by the dual derivation
T

∆̃T‖{ac↑}
T ′

. In order to

keep everything sound, T and T̄ have to be replaced by T ′ and T̄ ′ in the instance of i↑. Since

the derivation
1

Π′‖SLLS\{ac↓,ac↑}
[R′, T̄ ′]

does not modify the substructure T , the derivation ∆̃T can

be moved to the top in Step 12. Step 13 is then another application of Proposition 3.2.16
to get the desired derivation. ��

5.3.2 Separation of Atomic Interaction

The next theorem deals with interaction and cut. As already shown in Section 4.2, it is
possible to permute the identity up and the cut down. But here the situation is more
complex since the additive contexts have also be considered in the permutation lemmata.
However, since contraction is reduced to an atomic version, we can get the following result,
which was impossible for system SELS.

5.3.9 Theorem For every derivation
T

∆‖SLLS
R

there is a derivation

T
‖{ai↓}
T ′

‖SLLS\{ai↓,ai↑}
R′

‖{ai↑}
R

for some structures T ′ and R′.

Before I go into the proof, which will again use a permutation argument, let me explain
why this result is impossible without the atomicity of the contraction rule. More precisely,

5.3. Decomposition 161

it does not hold for system SLS, which has been discussed in Chapter 3, because the rule
ai↓ cannot be permuted over the rule c↑. The problematic case is the following:

S{R{1}}
c↑

S(•R{1}, R{1})•
ai↓ .

S(•R [a, ā] , R{1})•

This is also the reason why in both decomposition theorems in Section 4.3, the rule b↑
appears at the top and the rule b↓ at the bottom.

Although this problem cannot occur in the case of atomic contraction, there is another
problem which is caused by atomic contraction. More precisely, it is caused by the presence
of the medial rules. It is not (trivially) possible, to permute ai↓ over the rule l2↓. The
problematic case is the following:

S [•!R, !T]•
l2↓

S{![•R,T]•}
=

S{!([•R,T]•, 1)}
ai↓ .

S{!([•R,T]•, [a, ā])}
Fortunately, this concerns only the medial down rules and not the medial up rules. In
order to prove Theorem 5.3.9, we can therefore use the fact that all medial down rules
are derivable in {t↓, c↓} (by Proposition 5.2.5) together with Lemma 5.3.11, which follows
below.

5.3.10 Definition A rule ρ weakly permutes over a rule π,

if for every derivation

Q
π

U
ρ

P

there is a derivation

Q
‖{ρ}
U ′

π ,
P

for some structure U ′.

5.3.11 Lemma The rule ai↓ weakly permutes over the rules t↓ and c↓.
Proof: Consider a derivation

Q
π

S{1}
ai↓ ,

S [a, ā]

where the application of π ∈ {t↓, c↓} is nontrivial. By the case analysis in 4.2.3, we have
to consider the following cases:

(4) The redex of π is inside the contractum 1. This is possible since π is nontrivial.

(5) The contractum 1 of ai↓ is inside an active structure of the redex of π, but not inside
a passive one. There are two subcases:

162 5. A Local System for Linear Logic

(i) π = t↓. Then

S′{0}
t↓

S′{R{1}}
ai↓ yields

S′{R [a, ā]}
S′{0}

t↓ .
S′{R[a, ā]}

(ii) π = c↓. Then

S′ [•R{1}, R{1}]•
c↓

S′{R{1}}
ai↓ yields

S′{R [a, ā]}

S′ [•R{1}, R{1}]•
ai↓

S′ [•R{1}, R [a, ā]]•
ai↓

S′ [•R [a, ā] , R[a, ā]]•
c↓ .

S′{R[a, ā]}

(6) The contractum 1 of ai↓ and the redex of π overlap. As before, this is impossible. ��

Before showing how ai↓ is permuted over all other rules, let me, for notational conve-
nience, define the following two systems:

SLLSm↓ = SLLSt↓∪ {ac↓,m1↓,m2↓, l1↓, l2↓}
SLLSm↑ = SLLSt↑∪ {ac↑,m1↑,m2↑, l1↑, l2↑}

They will be needed only inside this section for the proof of Theorem 5.3.9.

5.3.12 Lemma The rule ai↓ permutes over all rules π ∈ SLLS \ SLLSm↓ by the sys-
tem {s,d↑,p↑,m1↑}.

Proof: Consider a derivation
Q

π
S{1}

ai↓ ,
S [a, ā]

where π ∈ SLLS\SLLSm↓ is nontrivial. According to 4.2.3, we have to consider the following
cases:

(4) The redex of π is inside the contractum 1. This is impossible.

(5) The contractum 1 of ai↓ is inside an active structure of the redex of π, but not inside
a passive one. This case is essentially the same, as case (5) in Lemma 5.3.7, but this
time the contractum is 1 instead of ⊥. There are the following subcases.

(i) If π ∈ SLLSt↑∪ {ai↑,nz↑}, then this case is impossible.

(ii) If π ∈ {s,d↑,p↑,m1↑, z↑}, then because of the associativity of the times context,
this case can be reduced to cases (1) and (2).

(iii) If π = p↓, then we have the same case as shown in case (5.i) in the proof of
part (c) of Lemma 4.2.9 (see page 93), i.e. an instance of the switch is inserted.

5.3. Decomposition 163

(iv) If π = d↓, then there are two possibilities:

S′(• [(•R,R′)•, U], [(•T, T ′)•, V])•
d↓

S′ [(•R,R′, T, T ′)•, [•U, V]•]
=

S′ [(•R, ((•R′, T)•, 1), T ′)•, [•U, V]•]
ai↓ and

S′ [(•R, ((•R′, T)•, [a, ā]), T ′)•, [•U, V]•]

S′(• [R, [•U,U ′]•], [T, [•V, V ′]•])•
d↓

S′ [(•R,T)•, [•U,U ′, V, V ′]•]
=

S′ [(•R,T)•, [•U, ([•U ′, V]•, 1), V ′]•]
ai↓ .

S′ [(•R,T)•, [•U, ([•U ′, V]•, [a, ā]), V ′]•]

In the first case, we use the rules s and m1↑ together to move the substructure
[a, ā] out of the way of π:

S′(• [(•R,R′)•, U], [(•T, T ′)•, V])•
=

S′((• [(•R,R′)•, U], [(•T, T ′)•, V])•, (•1, 1)•)
ai↓

S′((• [(•R,R′)•, U], [(•T, T ′)•, V])•, (•1, [a, ā])•)
d↓

S′([(•R,R′, T, T ′)•, [•U, V]•] , (•1, [a, ā])•)
s
S′ [((•R,R′, T, T ′)•, (•1, [a, ā])•), [•U, V]•]

m1↑
S′ [(•((•R,T ′)•, 1), ((•R′, T)•, [a, ā]))•, [•U, V]•]

= .
S′ [(•R, ((•R′, T)•, [a, ā]), T ′)•, [•U, V]•]

The second case is similar, but we use d↑ instead of m1↑:
S′(• [R, [•U,U ′]•], [T, [•V, V ′]•])•

=
S′((• [R, [•U,U ′]•], [T, [•V, V ′]•])•, (•1, 1)•)

ai↓
S′((• [R, [•U,U ′]•], [T, [•V, V ′]•])•, (•1, [a, ā])•)

d↓
S′([(•R,T)•, [•U,U ′, V, V ′]•] , (•1, [a, ā])•)
s

S′ [(•R,T)•, ([•U,U ′, V, V ′]•, (•1, [a, ā])•)]
d↑

S′ [(•R,T)•, [•([•U, V ′]•, 1), ([•U ′, V]•, [a, ā])]•]
= .

S′ [(•R,T)•, [•U, ([•U ′, V]•, [a, ā]), V ′]•]

(v) If π ∈ {ac↑, l1↑, l2↑}, then we can employ the rule m1↑ in the following way. I
will show only the case for l2↑ because the others are similar:

S′{?(•R,T)•}
l2↑

S′(•?R, ?T)•
=

S′(•(?R, 1), ?T)•
ai↓ yields

S′(•(?R, [a, ā]), ?T)•

S′{?(•R,T)•}
=

S′(?(•R,T)•, (•1, 1)•)
ai↓

S′(?(•R,T)•, (• [a, ā] , 1)•)
l2↑

S′((•?R, ?T)•, (• [a, ā], 1)•)
m1↑

S′(•(?R, [a, ā]), (?T, 1))•
= .

S′(•(?R, [a, ā]), ?T)•

164 5. A Local System for Linear Logic

(vi) If π = m, then we have

S′ [•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•
m

S′(• [•R,R′, T, T ′]•, [•U, V]•)•
=

S′(• [•R, ([•R′, T]•, 1), T ′]•, [•U, V]•)•
ai↓ ,

S′(• [•R, ([•R′, T]•, [a, ā]), T ′]•, [•U, V]•)•

where we can use the rules d↑ and m1↑ together:

S′ [•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•
=

S′([•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•, (•1, 1, 1)•)
ai↓

S′([•(• [•R,R′]•, U)•, (• [•T, T ′]•, V)•]•, (•1, 1, [a, ā])•)
m

S′((• [•R,R′, T, T ′]•, [•U, V]•)•, (•1, 1, [a, ā])•)
m1↑

S′(•([•R,R′, T, T ′]•, (•1, [a, ā])•), ([•U, V]•, 1))•
=

S′(•([•R,R′, T, T ′]•, (•1, [a, ā])•), [•U, V]•)•
d↑

S′(• [•([•R,T ′]•, 1), ([•R′, T]•, [a, ā])]•, [•U, V]•)•
= .

S′(• [•R, ([•R′, T]•, [a, ā]), T ′]•, [•U, V]•)•

Observe the similarity to case (5.vi) in the proof of Lemma 5.3.5.

(vii) If π = m2↑, then we have

S′ [(• [R,R′], U)•, (• [T, T ′], V)•]
m2↑

S′(• [R,R′, T, T ′], [U, V])•
=

S′(• [R, ([R′, T], 1), T ′], [U, V])•
ai↓ ,

S′(• [R, ([R′, T], [a, ā]), T ′], [U, V])•

where we can use the rules s and m1↑ together:

S′ [(• [R,R′], U)•, (• [T, T ′], V)•]
=

S′([(• [R,R′], U)•, (• [T, T ′], V)•], (•1, 1)•)
ai↓

S′([(• [R,R′], U)•, (• [T, T ′], V)•], (•1, [a, ā])•)
m2↑

S′((• [R,R′, T, T ′], [U, V])•, (•1, [a, ā])•)
m1↑

S′(•([R,R′, T, T ′], [a, ā]), ([U, V], 1))•
=

S′(•([R,R′, T, T ′], [a, ā]), [U, V])•
s .
S′(• [R, ([R′, T], [a, ā]), T ′] , [U, V])•

(viii) If π = z↓, then we have

S′ [?[•R,R′]•, [•T, T ′]•]
z↓

S′{?[•R,R′, T, T ′]•}
=

S′{?[•R, ([•R′, T]•, 1), T ′]•}
ai↓ ,

S′{?[•R, ([•R′, T]•, [a, ā]), T ′]•}

5.3. Decomposition 165

where we can use the rules d↑ and p↑ together:

S′ [?[•R,R′]•, [•T, T ′]•]
=

S([?[•R,R′]•, [•T, T ′]•], !(•1, 1)•)
ai↓

S([?[•R,R′]•, [•T, T ′]•], !(•1, [a, ā])•)
z↓

S′(?[•R,R′, T, T ′]•, !(•1, [a, ā])•)
p↑

S′{?([•R,R′, T, T ′]•, (•1, [a, ā])•)}
d↑

S′{?[•([•R,T ′]•, 1), ([•R′, T]•, [a, ā])]•}
= .

S′{?[•R, ([•R′, T]•, [a, ā]), T ′]•}
(ix) If π = nz↓, then the situation is similar as in the previous case, with the only

difference that the rule d↑ is not needed.

(6) The contractum 1 of ai↓ and the redex of π overlap. As before, this is impossible. ��
Now we can show the complete proof of Theorem 5.3.9.

Proof of Theorem 5.3.9: We can apply the following transformations to the given
derivation:

T
‖SLLS
R

1
�

T
‖(SLLS∪{t↓,c↓})\SLLSm↓
R

2
�

T
‖{ai↓}
T ′

‖(SLLS∪{t↓,c↓})\(SLLSm↓∪{ai↓})
R

.

In the first step, we apply Proposition 5.2.5 to replace all instances of rules in SLLSm↓ by
derivation consisting of t↓ and c↓. Then, Lemmata 5.3.11 and 5.3.12 are applied in Step 2,
to permute all instances of ai↓ to the top of the derivation.

3
�

T
‖{ai↓}
T ′

‖SLLS\{ai↓}
R

4
�

T
‖{ai↓}
T ′

‖(SLLS∪{t↑,c↑})\(SLLSm↑∪{ai↓})
R

.

In Step 3, we apply Propositions 5.2.1 and 5.2.3 to get again a derivation in SLLS: Observe,
that the number of instances of ai↑ in the whole derivation did not change during that
process. Step 4 is dual to Step 1: we replace all instances of rules in SLLSm↑ by instances
of t↑ and c↑.

5
�

T
‖{ai↓}
T ′

‖(SLLS∪{t↑,c↑})\(SLLSm↑∪{ai↓,ai↑})
R′

‖{ai↑}
R

6
�

T
‖{ai↓}
T ′

‖SLLS\{ai↓,ai↑}
R′

‖{ai↑}
R

.

In Step 5, we continue by permuting all instances of ai↑ down (dual to Step 2). This yields
the desired derivation because no new instances of ai↓ are introduced while ai↑ is permuted
down. In Step 6 we apply again Propositions 5.2.1 and 5.2.3 (dual to Step 3). ��

166 5. A Local System for Linear Logic

5.3.13 Remark The way how the rules in SLLSm↓ are handled while ai↓ is permuted
up is a compromise for simplifying the presentation. There are the following alternatives:
For the rule nm↓, we can use the m1↑ as in case (5.v) of Lemma 5.3.12. For the rule nm1↓
we can use the switch as in case (5.iii), and for m1↓ we use d↑ and s as in case (5.iv). The
rules nm2↓ and m2↓ fall under case (5.ii), and the rules nl1↓ and l1↓, are similar to nz↓ and
z↓, respectively. Only for the rules nl2↓ and l2↓ there is no such solution. For them we need
Lemma 5.3.11. An alternative would be to introduce the rule r↑, that has been used in the
cut elimination argument in Section 4.4. Then we can replace for example

S [•!R, !T]•
l2↓

S{![•R,T]•}
ai↓ by

S{!([•R,T]•, [a, ā])}

S [•!R, !T]•
ai↓

S([•!R, !T]•, ! [a, ā])
l2↓

S(![•R,T]•, ![a, ā])
r↑ .

S{!([•R,T]•, [a, ā])}

The rule r↑ is derivable in system SLLS, but we need cut and interaction for doing so. This
means that employing the rule r↑ (and r↓) in the proof of Theorem 5.3.9 would cause a
difficult termination problem.

5.3.14 Definition We can define the following two rules:

S{1}
ai↓0�

S [0,�]
and

S{1}
ai↓a

S [a, ā]
, where a is not a constant.

Obviously, both are special cases of ai↓, and each instance of ai↓ is either an instance of
ai↓0�, an instance of ai↓a, or trivial. The rules ai↑0� and ai↑a are defined dually:

S(0,�)
ai↑0�

S{⊥} and
S(a, ā)

ai↑a
S{⊥} , where a is not a constant.

Now we can strengthen Theorem 5.3.9.

5.3.15 Corollary For every derivation
T

∆‖SLLS
R

there is a derivation

T
‖{ai↓0�}
T ′

‖{ai↓a}
T ′′

‖SLLS\{ai↓,ai↑}
R′′

‖{ai↑a}
R′

‖{ai↑0�}
R

5.3. Decomposition 167

for some structures T ′, T ′′, R′′ and R′.

Proof: It is easy to see, that the two rules ai↓0� and ai↓a permute over each other by the
switch rule. The critical case looks as follows:

S{1}
ai↓a

S [a, ā]
ai↓0� yields

S [(a, [0,�]), ā]

S{1}
ai↓0�

S [0,�]
ai↓a

S([0,�], [a, ā])
s .
S [(a, [0,�]), ā]

Now we can get our result by first applying Theorem 5.3.9, and then permute all instances
of ai↓0� to the top. Then the remaining instances of ai↓a are permuted over the newly
introduced instances of s. Proceed dually to separate ai↑0� and ai↑a at the bottom. ��

5.3.3 Lazy Separation of Thinning

In the sequent calculus system for linear logic (see Chapter 2), the weakening rule can be
applied in a lazy way. This means that in a proof search, the application of a weakening is
delayed until the very last moment. This is also the case for classical logic [TS00, BT01].

In system SLLS, the thinning rule can also be applied in such a lazy way: In a derivation
all instances of rules ρ ∈ SLLSt↓ (which by Propositions 5.2.3 and 5.2.5 is strongly equivalent
to the rule t↓) can be permuted to the top and all instances of rules in SLLSt↑ (i.e. the rule
t↑) can be permuted to the bottom of the derivation. The rule t↓ can even be permuted
over the rule ai↓a (see Definition 5.3.14), but not over ai↓0�. This can be seen from the
following derivation:

S{1}
ai↓0�

S [0,�]
t↓ .

S [R,�]

5.3.16 Theorem For every derivation
T

∆‖SLLS
R

there is a derivation

T
‖{ai↓}
T ′

‖SLLSt↓
T ′′

‖SLLS\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
R′′

‖SLLSt↑
R′

‖{ai↑}
R

for some structures T ′, T ′′, R′′ and R.

168 5. A Local System for Linear Logic

5.3.17 Theorem For every derivation
T

∆‖SLLS
R

there is a derivation

T
‖{ai↓0�}
T ′

‖SLLSt↓
T ′′

‖{ai↓a}
T ′′′

‖SLLS\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
R′′′

‖{ai↑a}
R′′

‖SLLSt↑
R′

‖{ai↑0�}
R

for some structures T ′, T ′′, T ′′′, R′′′, R′′ and R′.

Before I can show the proofs of these two results, I have to investigate the permutation
of the rules ρ ∈ SLLSt↓ over the other rules of system SLLS. In order to simplify the
situation, I will permute the rule t↓ over the rules in SLLS \ SLLSt↓.

5.3.18 Lemma The rule t↓ permutes over every rule π ∈ (SLLS ∪ {ai↓a}) \ (SLLSt↓ ∪
{ai↓}) by {m,m1↓,m2↓, l1↓}.

Proof: Consider a derivation
Q

π
S{0}

t↓ ,
S{Z}

where π ∈ (SLLS ∪ {ai↓a}) \ (SLLSt↓ ∪ {ai↓}). Without loss of generality, assume that the
application of π is nontrivial. Now, follow again the case analysis in 4.2.3.

(4) The redex of π is inside the contractum 0 of t↓. This is not possible because the
application of π is nontrivial.

(5) The contractum 0 of t↓ is inside an active structure of the redex of π, but not inside a
passive one. As before, this case is the problematic one and as before, for each rule π,
I will show the most general case how the contractum 0 can interfere.

(i) If π ∈ SLLSt↑∪ {ac↓, ai↑,nz↑}, then this case is impossible.

(ii) If π ∈ {m,m1↓,m2↓, l1↓, l2↓, z↓}, we can reduce this case to case (2) by the
associativity of the plus context.

5.3. Decomposition 169

(iii) If π ∈ {ai↓a,p↓}, then we can use the rule m1↓:

S′{![R,T]}
p↓

S′ [!R, ?T]
=

S′ [[•!R, 0]•, ?T]
t↓ yields

S′ [[•!R, Z]•, ?T]

S′{![R,T]}
=

S′ [•![R,T], 0]•
t↓

S′ [•![R,T], [Z, 0]]•
p↓

S′ [• [!R, ?T] , [Z, 0]]•
m1↓

S′ [[•!R,Z]•, [•?T, 0]•]
= .

S′ [[•!R,Z]•, ?T]

For π = ai↓a, the situation is similar.

(iv) If π = d↓, then we have

S′(• [(•R,R′)•, U], [(•T, T ′)•, V])•
d↓

S′ [(•R,R′, T, T ′)•, [•U, V]•]
=

S′ [(•R, [•(•R′, T)•, 0]•, T ′)•, [•U, V]•]
t↓ ,

S′ [(•R, [•(•R′, T)•, Z]•, T ′)•, [•U, V]•]

where we use the rules m and m1↓ together:

S′(• [(•R,R′)•, U], [(•T, T ′)•, V])•
=

S′ [•(• [(•R,R′)•, U], [(•T, T ′)•, V])•, 0]•
t↓

S′ [•(• [(•R,R′)•, U], [(•T, T ′)•, V])•, [0, (•0, Z)•]]•
d↓

S′ [• [(•R,R′, T, T ′)•, [•U, V]•] , [0, (•0, Z)•]]•
m1↓

S′ [[•(•R,R′, T, T ′)•, (•0, Z)•]•, [•U, V, 0]•]
=

S′ [[•(•R,R′, T, T ′)•, (•0, Z)•]•, [•U, V]•]
m

S′ [(• [•(•R,T ′)•, 0]•, [•(•R′, T)•, Z]•)•, [•U, V]•]
= .

S′ [(•R, [•(•R′, T)•, Z]•, T ′)•, [•U, V]•]

(v) If π = d↑, then we have

S′([•(R,R′), U]•, (•(T, T ′), V)•)
d↑

S′ [•(R,R′, T, T ′), (U, V)]•
=

S′ [•(R, [•(R′, T), 0]•, T ′), (U, V)]•
t↓ ,

S′ [•(R, [•(R′, T), Z]•, T ′), (U, V)]•

where we use the rule m2↓:
S′([•(R,R′), U]•, (•(T, T ′), V)•)

=
S′ [•([•(R,R′), U]•, (•(T, T ′), V)•), 0]•

t↓
S′ [•([•(R,R′), U]•, (•(T, T ′), V)•), (0, Z)]•

d↑
S′ [•(R,R′, T, T ′), (0, Z), (U, V)]•

m2↓
S′ [•([•(R,T ′), 0]•, [•(R′, T), Z]•), (U, V)]•

= .
S′ [•(R, [•(R′, T), Z]•, T ′), (U, V)]•

170 5. A Local System for Linear Logic

(vi) If π = p↑, then we have

S′(?(R,R′), !(T, T ′))
p↑

S′{?(R,R′, T, T ′)}
=

S′{?(R, [•(R′, T), 0]•, T ′)}
t↓ ,

S′{?(R, [•(R′, T), Z]•, T ′)}
where we can use the rules m2↓ and l1↓:

S′(?(R,R′), !(T, T ′))
=

S′ [•(?(R,R′), !(T, T ′)), 0]•
t↓

S′ [•(?(R,R′), !(T, T ′)), ?(0, Z)]•
p↑

S′ [•?(R,R′, T, T ′), ?(0, Z)]•
l1↓

S′{?[•(R,R′, T, T ′), (0, Z)]•}
m2↓

S′{?([•(R,T ′), 0]•, [•(R′, T), Z]•, T ′)}
= .

S′{?(R, [•(R′, T), Z]•, T ′)}
(vii) If π ∈ {ac↑, l1↑, l2↑}, then use the rule m as follows:

S′{!(•R,T)•}
l1↑

S′(•!R, !T)•
=

S′(• [•!R, 0]•, !T)•
t↓ yields

S′(• [•!R, Z]•, !T)•

S′{!(•R,T)•}
=

S′ [•!(•R,T)•, 0]•
t↓

S′ [•!(•R,T)•, (•Z, 0)•]•
l1↑

S′ [•(•!R, !T)•, (•Z, 0)•]•
m

S′(• [•!R,Z]•, [•!T, 0]•)•
= .

S′(• [•!R,Z]•, !T)•

(viii) If π = m1↑, then we have

S′((•(R,R′), U)•, (•(T, T ′), V)•)
m1↑

S′(•(R,R′, T, T ′), (U, V))•
=

S′(•(R, [•(R′, T), 0]•, T ′), (U, V))•
t↓ ,

S′(•(R, [•(R′, T), Z]•, T ′), (U, V))•

where we can use the rules m2↓ and m:

S′((•(R,R′), U)•, (•(T, T ′), V)•)
=

S′ [•((•(R,R′), U)•, (•(T, T ′), V)•), 0]•
t↓

S′ [•((•(R,R′), U)•, (•(T, T ′), V)•), (•(Z, 0), 0)•]•
m1↑

S′ [•(•(R,R′, T, T ′), (U, V))•, (•(Z, 0), 0)•]•
m

S′(• [•(R,R′, T, T ′), (Z, 0)]•, [•(U, V), 0]•)•
=

S′(• [•(R,R′, T, T ′), (Z, 0)]•, (U, V))•
m2↓

S′(• ([•(R,T ′), 0]•, [•(R′, T), Z]•), (U, V))•
= .

S′(•(R, [•(R′, T), Z]•, T ′), (U, V))•

5.3. Decomposition 171

(ix) If π = m2↑, then the situation is similar to the previous case, but we use the
rule m1↓ instead of m2↓.

(x) If π = s, then the situation is also similar to the case of m1↑, but we use the
rules m2↓ and m1↓ together.

(xi) If π = z↑, then we can use the rule m2↓:

S′{!(•R,T)•}
z↑

S′(!R,T)
=

S′([•!R, 0]•, T)
t↓ yields

S′([•!R, Z]•, T)

S′{!(•R,T)•}
=

S′ [•!(•R,T)•, 0]•
t↓

S′ [•!(•R,T)•, (Z, 0)]•
z↑

S′ [•(!R,T), (Z, 0)]•
m2↓

S′([•!R,Z]•, [•T, 0]•)
= .

S′([•!R,Z]•, T)

(6) The contractum 0 of t↓ and the redex of π overlap. impossible. ��

Proof of Theorem 5.3.16: Apply the following transformations to the given derivation:

T
‖SLLS
R

1
�

T
‖{ai↓}
T ′

‖SLLS\{ai↓,ai↑}
R′

‖{ai↑}
R

2
�

T
‖{ai↓}
T ′

‖(SLLS∪{t↓})\(SLLSt↓∪{ai↓,ai↑})
R′

‖{ai↑}
R

.

In Step 1 we apply Theorem 5.3.9 and in Step 2 we replace all instances of rules in SLLSt↓
by an instance of t↓.

3
�

T
‖{ai↓}
T ′

‖{t↓}
T ′′

‖SLLS\(SLLSt↓∪{ai↓,ai↑})
R′

‖{ai↑}
R

4
�

T
‖{ai↓}
T ′

‖{t↓}
T ′′

‖(SLLS∪{t↑})\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
R′

‖{ai↑}
R

.

In Step 3, we continue by permuting up all instances of t↓ (by applying Lemma 5.3.18).
Then, dually, all instances of rules in SLLSt↑ are replaced by t↑ (in Step 4) and are permuted

172 5. A Local System for Linear Logic

down (in Step 5).

5
�

T
‖{ai↓}
T ′

‖{t↓}
T ′′

‖SLLS\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
R′′

‖{t↑}
R′

‖{ai↑}
R

6
�

T
‖{ai↓}
T ′

‖SLLSt↓
T ′′

‖SLLS\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
R′′

‖SLLSt↑
R′

‖{ai↑}
R

.

In the end, Proposition 5.2.3 is applied, to get the desired derivation (Step 6). ��

Proof of Theorem 5.3.17: Apply the following transformations to the given derivation:

T
‖SLLS
R

1
�

T
‖{ai↓0�}
T ′

‖{ai↓a}
Q
‖SLLS\{ai↓,ai↑}
P
‖{ai↑a}
R′

‖{ai↑0�}
R

2
�

T
‖{ai↓0�}
T ′

‖{ai↓a}
Q
‖{t↓}
Q′

‖SLLS\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
P ′

‖{t↑}
P
‖{ai↑a}
R′

‖{ai↑0�}
R

.

First, we apply Corollary 5.3.15. The second step is the same as Steps 2 to 5 of the previous
proof. Now, all instances of t↓ are permuted over ai↓a and all instances of t↑ are permuted

5.3. Decomposition 173

under ai↑a (by Lemma 5.3.18 and the dual statement).

3
�

T
‖{ai↓0�}
T ′

‖{t↓}
T ′′

‖{ai↓a,m1↓}
Q′

‖SLLS\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
P ′

‖{ai↑a,m1↑}
R′′

‖{t↑}
R′

‖{ai↑0�}
R

4
�

T
‖{ai↓0�}
T ′

‖{t↓}
T ′′

‖{ai↓a}
T ′′′

‖SLLS\(SLLSt↓∪SLLSt↑∪{ai↓,ai↑})
R′′′

‖{ai↑a}
R′′

‖{t↑}
R′

‖{ai↑0�}
R

.

The proof of Lemma 5.3.18 shows that new instances of m1↓ might be introduced when t↓
is permuted over ai↓a. By Remark 5.3.13, we can permute ai↓a over m1↓. This is done in
Step 4. For ai↑a we proceed dually. ��
5.3.19 Remark It should be mentioned here that I conjecture that it is also possible
to obtain a derivation

T
‖{t↓}
T ′

‖SLLS\(SLLSt↓∪SLLSt↑)
R′

‖{t↑}
R

,

by applying the following method: The rule t↓ is permuted up as described above, and if
it encounters an instance of ai↓0� (which is the only problematic case), then replace

S{1}
ai↓0�

S [0,�]
t↓ by

S [R,�]

S{1}
i↓

S [R, R̄]
t↑ ,

S [R,�]

and apply Proposition 3.2.16. Then proceed dually while the rule t↑ is permuted down.
In order to show termination, a similar argument as for the decomposition theorems for
system SELS in Section 4.3 has to be used.

5.3.4 Eager Separation of Atomic Thinning

The ability of applying inferences deep inside structures, allows us to apply thinning not
only in a lazy, but also in an eager way. This means that in a proof, we can first forget all
the material that is not needed by applying thinning and then go on with the proof without
applying thinning (or weakening) again.

174 5. A Local System for Linear Logic

5.3.20 Theorem For every proof −‖LLS
R

there is a proof

−‖LLS\{at↓}
R′

‖{at↓}
R

for some structure R′.

A similar result is impossible in the sequent calculus because it does not allow deep
inference. Again, the top-down symmetry allows us, to extend this result to derivations:

5.3.21 Theorem For every derivation
T

∆‖SLLS
R

there is a derivation

T
‖{at↑}
T ′

‖SLLS\{at↑,at↓}
R′

‖{at↓}
R

for some structures T ′ and R′.

The proofs of the two theorems will be very similar to the previous decomposition
results. I will show that at↑ can be permuted up and at↓ can be permuted down.

Before I start, I will again show the main difficulties that occur. First observe, that it is
again atomicity that makes everything work. For example, in the following two derivations
it is not clear how the instances of cothinning could be permuted up:

S([R,U1, U2], T)
s
S [(R,T), U1, U2]

t↑ and
S [�, U2]

S([(R1, R2), U], T1, T2)
s

S [(R1, R2, T1, T2), U]
t↑ .

S [(R1,�, T2), U]

The reason why this problem did not occur in the proof of Theorem 4.3.2 for the rule w↑,
is that in the case of w↑ the structure that is inserted is guarded by an exponential, which
is not the case for t↑.

But also in the case of atomic thinning, the result is not completely trivial. We encounter
in fact the same problems as for atomic contraction in Section 5.3.1:

(1) While permuting an instance of at↑ up, it might happen that it meets an instance of
the interaction rule as follows:

S{1}
ai↓

S [a, ā]
at↑ , which can be replaced by

S [�, ā]

S{1}
ai↓

S [�, 0]
at↓ .

S [�, ā]

5.3. Decomposition 175

Here a new instance of at↓ is introduced, which has to be permuted down afterwards.
The problem is to show that this does indeed terminate eventually.

(2) The atom to be inserted in an instance of at↑ or at↓ can be one of the constants. Then
we might encounter cases like

S(?R, !T)
p↑

S{?(R,T)}
=

S{?[•(R,T), 0]•}
at↑ ,

S{?[•(R,T),�]•}
where it is not obvious how the instance of at↑ can be permuted up.

Both problems will be solved in the same way as it has been done for atomic contraction
in Section 5.3.1. In other words, I will use cut elimination instead of permuting at↑ up and
at↓ down repeatedly until termination is reached. In [Brü03b], K. Brünnler actually uses
such a termination argument to show the same theorem for classical logic. However, the
reader familiar with that work should observe that in classical logic the situation is much
simpler because the instance of ai↓ is destroyed when “hit” by an atomic cothinning, which
is not the case in linear logic.

In the following, I will show how the rule at↑ can be permuted up. In order to keep the
situation as clear as possible, I introduce the following five rules:

S{⊥}
at↑⊥

S{�} ,
S{1}

at↑1
S{�} ,

S{0}
at↑0

S{�} ,
S{�}

at↑�
S{�} and

S{a}
ac↑a

S{�} , where a is not a constant.

Obviously, each of them is a special case of at↑, and each instance of at↑ is an instance of
one of at↑⊥, at↑1, at↑0, at↑�, at↑a. Further, all instances of the rule ac↑� are trivial.

5.3.22 Lemma The rule at↑a permutes over every rule π ∈ SLLS \ {ai↓, at↓, ac↓, at↑}.
Proof: Consider a derivation

Q
π

S{a}
at↑a ,

S{�}
where π ∈ SLLS\{ai↓, at↓, ac↓, at↑}. Without loss of generality, assume that the application
of π is nontrivial. Now, follow the case analysis in 4.2.3.

(4) The redex of π is inside the contractum a. impossible.

(5) The contractum a of at↑a is inside an active structure of the redex of π, but not inside
a passive one. This is only possible, if π = ac↑. Then we have

S′{a}
ac↑

S′(•a, a)•
at↑ , which yields

S′(•a,�)•
S′{a}

= .
S′(•a,�)•

176 5. A Local System for Linear Logic

(6) The contractum a of at↑a and the redex of π overlap. This is impossible. ��
It remains to show, how the rules at↑⊥, at↑1 and at↑0 can be permuted up. For this, the

following method would be possible: For permuting at↑⊥ up, one can use the same method
as for ac↑⊥ in Section 5.3.1; for at↑1, proceed similar as for ai↓ in Section 5.3.2; and for at↑0
proceed similar as for t↓ in Section 5.3.3.

However, for the sake of simplification, I will here use the following observation. Every
instance of at↑0 can be replaced by an instance of the rule m:

S{0}
at↑0

S{�} =
S [•0, 0]•

at↑0
S(•�,�)•

=
S [•(•0,�)•, (•�, 0)•]•

m
S(• [•0,�]•, [•�, 0]•)•

.

Similarly, every instance of at↑1 is an instance of m1↑, and every instance of at↑⊥ is an
instance of m2↑. This is enough to prove the following lemma:

5.3.23 Lemma For every derivation
T

∆‖SLLS↑
R

there is a derivation

T
‖{at↑}
T ′

‖SLLS↑\{at↑}
R

for some structure T ′.

Proof: Each instance of at↑ inside ∆ is an instance of at↑⊥, at↑1, at↑0, at↑� or at↑a. The
instances of ac↑� can be removed because they are trivial, and the instances of ac↑0, at↑1
and ac↑⊥ are replaced by m, m1↑ and m2↑, respectively. It remains to permute all instances
of at↑a to the top of ∆. For this, repeatedly apply Lemmata 5.3.22. ��

5.3.24 Lemma For every derivation
T

∆‖SLLS↓
R

there is a derivation

T
‖SLLS↓\{at↓}
R′

‖{at↓}
R

for some structure R′.

Proof: Dual to Lemma 5.3.23. ��
Proof of Theorem 5.3.20: Immediate consequence of Lemma 5.3.24. ��
Proof of Theorem 5.3.21: Similar to the proof of Theorem 5.3.2. ��

5.4. Discussion 177

The inspection of the proofs of Theorems 5.3.2 and 5.3.21 show that the rules at↑ and
ac↑ can both be permuted up independently, i.e. without introducing new instances of at↑
or ac↑. They can also be permuted over each other without introducing new rule instances.
Consequently, the results of Theorems 5.3.2 and 5.3.21 can be put together in the following
way:

5.3.25 Theorem For every derivation
T

∆‖SLLS
R

there is are derivations

T
‖{ac↑}

T ′′

‖{at↑}
T ′

‖SLLS\{at↑,ac↑,at↓,ac↓}
R′

‖{at↓}
R′′

‖{ac↓}
R

and

T
‖{at↑}

T ′′′

‖{ac↑}
T ′

‖SLLS\{at↑,ac↑,at↓,ac↓} ,
R′

‖{ac↓}
R′′′

‖{at↓}
R

for some structures T ′, T ′′, T ′′′ and R′, R′′, R′′′.

Proof: Again, the proof is similar to the proof of Theorem 5.3.2. ��

5.4 Discussion

In this chapter, I have shown that it is possible to present in the calculus of structures a local
system for linear logic, in particular, it is possible to reduce the application of contraction to
atoms. This is due to the ability of applying inferences deep inside structures and therefore
impossible in the sequent calculus.

There is one drawback in system LLS that has to be mentioned. Since the additives
are needed for reducing absorption and weakening to local rules, the separation property is
lost in system LLS. However, it is possible to consider the multiplicative additive fragment
independently from the exponentials.

The restriction of contraction to atoms may be useful in proof search if it is done in a
distributed way. However, the huge amount of nondeterminism induced by the freedom of
the applicability of the rules and the number of rules makes the system LLS, as it stands
now, unsuitable for practical proof search. This means that an important problem of future
research should be to control this nondeterminism. This might happen via focusing proofs
based on the relations between the connectives as it has been done in [And92, Mil96]. But
it might also be possible to find a way to focus proofs based on the depth of structures.

In Section 5.3, I have shown several decomposition results. All have been proved by the
use of permutation results, which in turn are based on tedious case analyses. The question
that arises is whether there is a general underlying principle that can be used to simplify
those proofs. Another open question is whether it is possible to find for system SLLS (or
equivalently system SLS) a similar decomposition as for system SELS in Theorem 4.3.2,

178 5. A Local System for Linear Logic

which allows a separation of core and noncore:

T
‖noncore (up)

T ′

‖interaction (down)

T ′′

‖core (up and down)

R′′

‖interaction (up)

R′

‖noncore (down)

R

.

I conjecture that this is possible and that there is a relation to cut elimination (see Sec-
tion 8.3 for further explanation). However, I think that the methods presented in this thesis
are not sufficient to bring light into this matter.

The maybe most interesting result of this chapter is system SLLS itself, together with
the fact that it is linear logic. To me, this was rather surprising because I found the system
on the basis of A. Guglielmi’s relation webs [Gug99], when I tried to reduce the absorbtion
rule of system SELS to an atomic version. I realised that (•. . .)• and [•. . .]• are the additives
of linear logic only after A. Tiu found the medial rule for classical logic [BT01] for reducing
contraction to an atomic version. It might amuse the reader to learn that system SLLS was
actually discovered before system SLS.

6
Mix and Switch

This chapter contains only two small sections. In Section 6.1, I will investigate how the
mix rule and its nullary version, which can be added to the sequent calculus system for
linear logic, are incorporated in the calculus of structures. The two rules are of importance
for this thesis because they are necessary for the noncommutative connective that will be
discussed in Chapter 7. Therefore, this section can be seen as a link between the previous
chapters (in particular Chapter 4) and the next chapter.

Then, in Section 6.2, I will restrict myself to the multiplicative fragment of linear logic,
extended by mix and nullary mix. In particular, I will study the derivability in the system
that contains only the switch rule. The purpose is to give an algebraic characterisation
for derivability, which can be seen as a symmetric version of the correctness criterion for
multiplicative proof nets [Ret99a].

Whereas Section 6.1 is crucial for the following chapter, Section 6.2 contains supple-
mentary results that are not needed later. However, from a mathematical viewpoint, the
results of Section 6.2 are of importance for the whole thesis. They can be seen as a first step
towards unveiling the algebraic principles behind the decomposition theorems of Chapter 4.
The ideas discussed here do also reappear in Chapter 7.

6.1 Adding the Rules Mix and Nullary Mix

The sequent calculus system for linear logic, as it has been presented in Chapter 2, is
sometimes extended by the the mix rule and its nullary version [AJ94, FR94, Ret93]:

� Φ � Ψ
mix and� Φ,Ψ

mix0 .�

One of the reasons is that these rules are valid in many semantics for linear logic, for
example coherence spaces [Gir87a] and game semantics [AJ94]. Both rules can be easily
translated into rules in the calculus of structures:

S(R,T)
x and

S [R,T]

S{1}
nx .

S{⊥}

179

180 6. Mix and Switch

Both rules are self-dual, and therefore part of both, the down fragment and the up fragment.
Here, I will consider only multiplicative exponential linear logic, as it has been discussed in
Chapter 4. If we add the two rules, we obtain the following systems:

MELL′ = MELL∪ {mix,mix0} ,

SELS′ = SELS∪ {x,nx} ,

ELS′ = ELS ∪ {x,nx} .

Theorems 4.1.5, 4.1.6 and 4.1.7 do also hold for the system SELS′, ELS′ and MELL′. In
particular, we also have cut elimination (Theorem 4.1.8). However, it is not obvious what
happens with decomposition. How should the rules x and nx, which belong to the noncore,
be incorporated in the decomposition theorems?

Instead of simply adding the rules x and nx, the calculus of structures offers a more
elegant solution, which employs the well-known fact that the mix and mix0 rules together
say that 1 = ⊥. This can be seen as follows. First, the rule nx presents the linear implication
1−◦ ⊥, and second, the rule

S{⊥}
x′

S{1} ,

which stands for the linear implication ⊥−◦ 1, is derivable in the system {x}:
S{⊥}

=
S(1,⊥)
x

S [1,⊥]
= .

S{1}
Hence, the presence of the rule x implies that ⊥−◦ 1. Conversely, the rule x is derivable in
the system {x′, s}:

S(R,T)
=

S(R, [⊥, T])
x′

S(R, [1, T])
s
S [(R, 1), T]

= .
S [R,T]

This means that the presence of the rules x and nx is equivalent to the presence of the
equation 1 = ⊥.

For this reason, I will follow [Gug99] and introduce a single symbol ◦ to denote the
unit for both, par and times, instead of introducing two different symbols together with
an equation that identifies them. This unit ◦ will not be considered as an atom. Since
the additives are not considered here, the set of atoms does now no longer contain any
constants.

6.1.1 Definition Let A be a countable set of atoms. Atoms are denoted by a, b, c, . . . ,
and the set A is equipped with a bijective function ·̄ : A → A, such that ¯̄a = a and ā �= a
for every a ∈ A. Let R be the set of expressions generated by the following syntax:

R ::= ◦ | a | [R,R] | (R,R) | !R | ?R | R̄ ,

6.1. Adding the Rules Mix and Nullary Mix 181

Associativity

[R, [T,U]] = [[R,T], U]
(R, (T,U)) = ((R,T), U)

Commutativity

[R,T] = [T,R]
(R,T) = (T,R)

Exponentials

??R = ?R
!!R = !R

Unit

[◦, R] = R

(◦, R) = R

?◦ = ◦
!◦ = ◦

Negation

◦ = ◦
[R,T] = (R̄, T̄)

(R,T) = [R̄, T̄]

?R = !R̄
!R = ?R̄
¯̄R = R

Figure 6.1: Basic equations for the syntactic congruence of ELS◦ structures

where ◦, the unit , is not an atom, and a stands for any atom. On the set R, the relation
= is defined to be the smallest congruence relation induced by the equations shown in
Figure 6.1. The ELS◦ structures (denoted with P , Q, R, S, . . .) are the elements of R/=,
i.e. equivalence classes of expressions.

6.1.2 Remark What has been said in Chapter 3 (see 3.1.3–3.1.8) does also apply here.
In particular, I will omit superfluous parentheses when referring to structures.

The rules s, p↓, p↑, b↓ and b↑ are not influenced by the new syntax. But the interaction
and weakening rules have to be modified in such a way that the two constants ⊥ and 1 are
replaced by the unit ◦ :

S{◦}
i↓

S [R, R̄]
,

S{◦}
ai↓

S [a, ā]
,

S(a, ā)
ai↑

S{◦} ,
S(R, R̄)

i↑
S{◦} ,

S{◦}
w↓

S{?R} ,
S{!R}

w↑
S{◦} .

Although those rules are formally different rules than the ones defined in Section 3.2, I
will use the same names. However, in order to avoid ambiguities, I will use the name SELS◦

for the new system, which is shown in Figure 6.2. As a consequence of the new syntax, we
also have to change the axiom. The rule

◦↓ ◦

is called unit . System ELS◦, which is obtained from the down fragment of system SELS◦

together with the axiom is shown in Figure 6.3.
All results concerning systems SELS and ELS presented in Chapter 4 do also hold for

systems SELS◦ and ELS◦. In particular, we have the two decomposition theorems and cut

182 6. Mix and Switch

S{◦}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{◦}

S([R,U], T)
s
S [(R,T), U]

S{![R,T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R,T)}

S{◦}
w↓

S{?R}
S{!R}

w↑
S{◦}

S [?R,R]
b↓

S{?R}
S{!R}

b↑
S(!R,R)

Figure 6.2: System SELS◦

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R,U], T)
s

S [(R,T), U]

S{![R,T]}
p↓

S [!R, ?T]

S{◦}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

Figure 6.3: System ELS◦

elimination, also in its stronger version (Theorem 4.4.13), where system dELS◦ is obtained
from system ELS◦ by replacing the switch rule by the deep switch. Consequently, the
interpolation theorem (Theorem 4.5.1) does also hold for system SELS◦.

All proofs are literally the same, except for the permutation results in Section 4.2.
Because of the collapsing of the units, some of the results presented there are no longer
true. For example the rule ai↓ does no longer permute over p↑. This can be seen from the
derivation

S(?U, !V)
p↑

S{?(U, V)}
=

S{?[(U, V), ◦]}
ai↓ .

S{?[(U, V), [a, ā]]}
But we can use the switch rule in the same way as it has been done for the rule w↓ in
Lemma 4.2.9. I will not go into further details here, because in Chapter 7, I will discuss

6.1. Adding the Rules Mix and Nullary Mix 183

S{◦}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{◦}

S([R,U], T)
s
S [(R,T), U]

Figure 6.4: System SS◦

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R,U], T)
s

S [(R,T), U]

Figure 6.5: System S◦

a conservative extension of ELS◦. In particular, in Section 7.2.1, I will show all relevant
permutation results.

Let us now consider only the multiplicative fragment.

6.1.3 Definition An S◦ structure is an ELS◦ structure that does not contain any ex-
ponentials, i.e. that does not have any substructure !R or ?R for some R.

6.1.4 Definition System SS◦ is built from the rules ai↓, ai↑, and s, and is shown in
Figure 6.4. System S◦ is obtained from the down fragment of SS◦ together with the axiom
◦↓ and is shown in Figure 6.5.

From the results of Section 3.3 and the discussion at the beginning of this section, it
follows immediately that System S◦, is equivalent to multiplicative linear logic (MLL) plus
mix and mix0. (A direct proof can also be found in [Gug02e], where system S◦ is called
system FBV .)

All the results mentioned for the systems SELS◦ and ELS◦ before, do obviously also
hold for the systems SS◦ and S◦. Since there are no noncore rules, the proofs become even
simpler. This is in particular the case for the decomposition theorems, which collapse to a
single decomposition theorem:

184 6. Mix and Switch

6.1.5 Theorem For every derivation
T

∆‖SS◦
R

there are structures T1 and R1, and deri-

vations ∆1, . . . , ∆3, such that
T

∆1‖{ai↓}
T1

∆2‖{s}
R1

∆3‖{ai↑}
R

.

Let me also mention the interpolation theorem, which will be needed in the next section.

6.1.6 Theorem (Interpolation) For every derivation
T

∆‖SS◦
R

there are structures

I, T1, R1 and derivations ∆1, . . . , ∆4, such that

T
∆1‖{s}

T1

∆2‖{ai↑}
I

∆3‖{ai↓}
R1

∆4‖{s}
R

.

Proof: This is in fact an immediate consequence of the interpolation theorem for SELS◦,
whose proof is literally the same as for Theorem 4.5.1 (as mentioned before, the relevant
permutation results are refined in Section 7.2.1). However, because for system SS◦, the
situation is much simpler, let me give here the direct proof. Observe that in the case of
system SS◦, it is not necessary to start from the decomposition theorem in order to obtain
the interpolation. It is only necessary to replace inside ∆ all instances of ai↑ by sai↑ (see
page 131) and all instances of s by ds↓ or ns↑ (Definition 4.4.3 on page 131). The derivation

T
∆′‖{ai↓,ds↓,ns↑,sai↑}

R
can now decomposed into

T
∆′

1‖{sai↑,ns↑}
I

∆′
2‖{ai↓,ds↓}
R

by applying Lemma 4.4.4 and Lemma 4.4.10. (For these two Lemmata the collapsing of
the constants is not problematic since the the rule to be permuted up is always considered
to be nontrivial.) The rules ds↓ and ns↑ are instances of s, and the instances of sai↑ inside

6.2. The Switch Rule 185

∆1 can be replaced by
S([a,U], [ā, V])
s

S [([a,U], ā), V]
s

S [(a, ā), U , V]
ai↑

S [◦, U, V]
= .

S [U, V]

Finally the instances of ai↓ are permuted up and the instances of ai↑ are permuted down
until the derivation has the desired shape. ��

The cut elimination result is an immediate consequence of interpolation.

6.1.7 Theorem (Cut Elimination) Systems S◦ and SS◦ ∪ {◦↓} are equivalent.

The following corollary will also be needed in the next section.

6.1.8 Corollary Let R and T be two S◦ structures. Then we have

T
‖SS◦
R

if and only if −‖S◦
[T̄ , R]

.

6.2 The Switch Rule

In this section, I will inspect the systems S◦ and SS◦ more closely. The main result will
be an algebraic criterion for the derivability of the switch rule. More precisely, I will show
what kind of criterion two S◦ structures R and T have to fulfill in order to have a derivation

T
‖{s}
R

.

The reader familiar with proof nets [Gir87a, DR89, Ret99a] might observe that this can
be seen as a top-down symmetric version of a correctness criterion for proof nets. Let me
make the relation to proof nets more precise. (The reader who is not familiar with proof
nets does not need to worry about this paragraph.) In [Ret99a], Ch. Retoré introduces
a way of presenting proof nets as series-parallel R&B-graphs. For these so called series-
parallel R&B proof structures, a correctness criterion is shown: A series-parallel R&B proof
structure is a proof net (i.e. corresponds to a sequent calculus proof in MLL plus mix plus
mix0) if and only if it does not contain a cordless Æ-circuit . In [Gug99], A. Guglielmi
introduces relation webs and shows their one-to-one correspondence to structures as they
are presented in this thesis. Furthermore, there is an obvious one-to-one correspondence
between A. Guglielmi’s relation webs and Ch. Retoré’s series-parallel R&B-graphs. (Below
I will give the basic ideas behind these objects.)

It is therefore possible to obtain from the correctness criterion for proof nets a criterion
for the provability of S◦ structures. In other words, for a given structure R it is possible to
judge from its algebraic properties whether there is a proof

−‖S◦
R

.

186 6. Mix and Switch

Since I will explain this criterion in terms of structures, there is no need for the reader to
be familiar with proof nets. I will also show directly how the relation between the criterion
and provability is established, without going the detour over proof nets.

6.2.1 Definition The multiset of occurrences of atoms in a S◦ structure R, denoted by
occR is defined inductively as follows:

occ◦ = ∅ ,
occ a = {a} ,

occ[R,T] = occ(R,T) = occR ∪ occT .

6.2.2 Definition A structure R is called balanced if each atom in R occurs exactly
once, i.e. occR is a set.

6.2.3 Example If R = [(a, [b, c], d), d̄, ([c̄, c], b, a, a)] and T = [(a, b), (b̄; ā)], then

occR = {a, a, a, b, b, c, c, c̄, d, d̄} and
occT = {a, b, ā, b̄} .

T is balanced, R is not.

6.2.4 Definition For a given balanced structure R, let me define the two binary rela-
tions ↓R and ↑R on the set occR as follows. For all atoms a, b ∈ occR, let a ↓R b if and only
if there exist contexts S{ }, Sa{ } and Sb{ } such that

R = S [Sa{a}, Sb{b}] ,

and let a ↑R b if and only if there exist contexts S{ }, Sa{ } and Sb{ } such that

R = S(Sa{a}, Sb{b}) .

In other words, I will write a ↓R b if a and b are in par-relation inside R, and a ↑R b,
if a and b are in times-relation (see Definition 4.3.23 on page 117). Immediately from
Definition 6.2.4, we can get the following two observations:

• For every structure R, the relations ↓R and ↑R are both symmetric.

• For any two atoms a, b ∈ occR (with a �= b), we have either a ↓R b or a ↑R b. In other
words,

↓R ∪ ↑R =
(
occR× occR) \ {

(a, a) | a ∈ occR }
and

↓R ∩ ↑R = ∅ .

The definition of the relations ↓R and ↑R can easily be extended from balanced structures
to arbitrary S◦ structures. This is essentially the idea behind A. Guglielmi’s relation webs
[Gug02e], which are coloured complete undirected graphs where the vertices are the atoms
of the structure and an edge (a, b) is colored green if a ↓R b and red if a ↑R b. Ch. Retoré’s
series-parallel R&B proof structures [Ret99a] are essentially the same: there is a red edge
between a and b if a ↑R b and no edge when a ↓R b. But there is a blue edge when a and b
are a matching pair of atoms. This is the reason, why R&B proof structures can only be
used for characterizing proofs and not for derivations.

6.2. The Switch Rule 187

6.2.5 Definition Let R and T be two S◦ structures. The structure T is a quasi-
substructure of R, if T can be obtained from R by replacing some atoms (possibly none)
by the unit.

6.2.6 Remark Every substructure of R is also a quasi-substructure of R.

6.2.7 Example The structure [(a, b), (c̄, a)] is a quasi-substructure (but not a substruc-
ture) of [(a, [b, c], d), d̄, ([c̄, c], b, a, a)], because

[(a, [b, ◦], ◦), ◦, ([c̄, ◦], ◦, ◦, a)] = [(a, b), (c̄, a)] .

6.2.8 Remark In the notion of relation web, which I explained above, a quasi-substruc-
ture would correspond to a (relation) subweb.

6.2.9 Definition Let m � 1 be even and let a1, a2, . . . , am be m different atoms. Then
the structure [(a2, a3), (a4, a5), . . . , (am, a1)] is called a

〈
a1, a2, . . . , am

〉
-circuit, and the

structure ([a1, a2], [a3, a4], . . . , [am−1, am]) is called a
〈
a1, a2, . . . , am

〉
-cocircuit. A circuit

is called a negation circuit if we have that a2 = ā1, a4 = ā3, . . . , am = ām−1.

6.2.10 Remark In terms of the relation webs and the relations ↓R and ↑R, the notions
of circuit and cocircuit can be explained as follows. Consider the graph with vertices
a1, . . . , am, where the edges (a1, a2), (a3, a4), . . . , (am−1, am) are green, and the edges
(a2, a3), (a4, a5), . . . , (am, a1) are red. This structure becomes a circuit if all other edges
in the complete graph are green and a cocircuit of all other edges are red. In this setting,
a negation circuit corresponds exactly to Ch. Retoré’s definition of a cordless Æ-circuit.

6.2.11 Definition Let R be an S◦ structure and let a1, . . . , am be an even number of
atoms. The structure R contains a

〈
a1, . . . , am

〉
-circuit , if R has a quasi-substructure R′,

which is a
〈
a1, . . . , am

〉
-circuit. Similarly, R contains a

〈
a1, . . . , am

〉
-cocircuit , if R has a

quasi-substructure R′, which is a
〈
a1, . . . , am

〉
-cocircuit. Further, the structure R contains

a negation circuit , if R has a quasi-substructure R′, which is a negation circuit, i.e. there
are atoms c1, . . . , cn for some n � 1, such that R contains a

〈
c1, c̄1, . . . , cn, c̄n

〉
-circuit.

6.2.12 Example The structure ([(a, b), (b̄, c̄), d], c) contains (among others) a〈
c̄, a, b, b̄

〉
-circuit because

([(a, b), (b̄, c̄), ◦], ◦) = [(a, b), (b̄, c̄)] ,

and a
〈
b, b̄

〉
-cocircuit because

([(◦, b), (b̄, ◦), ◦], ◦) = [b, b̄] .

It also contains the negation circuit (c̄, c).

6.2.13 Proposition Let P be a balanced S◦ structure. If P contains a negation circuit,
then P is not provable in S◦.

Proof: The proof of this statement is very similar to the proof of Lemma 4.3.25. But
because of the collapsing of the units, there is a greater applicability of the switch rule,
which has to be taken into account. Let

Q = [(ā1, a2), (ā2, a3), . . . , (ān, a1)] ,

188 6. Mix and Switch

for some n > 0, be the negation circuit contained in P . By way of contradiction, assume
that P is provable in S◦. Since P is balanced, we must have that Q is also provable in S◦:
The proof of Q can be obtained from the proof of P by replacing everywhere all atoms not
occurring in Q by ◦. Now let me proceed by induction on n to show a contradiction.

Base case: For n = 1 there is no proof
−‖S◦

(ā1, a1)
.

Inductive case: For n > 1 consider the bottommost rule instance ρ in the proof of Q:
−

Π‖S◦
[(ā1, a2), (ā2, a3), . . . , (ān, a1)]

.

Since inside Q, there is no substructure [a, ā] for some a, we have that ρ = s. There

are three possibilities to apply
S([R,U], T)
s

S [(R,T), U]
to

Q = [(ā1, a2), (ā2, a3), . . . , (ān, a1)] .

For notational convenience, I will set Zj = (āj, aj+1) for every j ∈ {1, . . . , n} (with
the convention that j + 1 = 1 for j = n). This means that

Q = [Z1, Z2, . . . , Zn] .

(i) R = āj, T = aj+1 for some j = 1, . . . , n. Then, without loss of generality, we can
assume that j = 1. Further, U = [Zk1, . . . , Zku] for some u > 0 and k1, . . . , ku ∈
{2, . . . , n}. Without loss of generality, assume that k1 < k2 < . . . < ku. Let
{2, . . . , n} \ {k1, . . . , ku} = {h1, . . . , hs}, where s = n − u − 1. Then there is a
proof Π′ such that

−
Π′‖S◦

[([ā1, Zk1 , . . . , Zku], a2), Zh1, . . . , Zhs]
s .

[(ā1, a2), Z2, . . . , Zn]

The proof Π′ remains valid if we replace am and ām by ◦ for every m with m = 1
or m > k1. Then we get

−
Π′′‖S◦

[(āk1 , a2), (ā2, a3), . . . , (āk1−1, ak1)]
,

which is a contradiction to the induction hypothesis.

(ii) R = aj+1, T = āj for some j = 1, . . . , n. Then, without loss of generality, we can
assume that j = 1. Further, U = [Zk1, . . . , Zku] for some u > 0 and k1, . . . , ku ∈
{2, . . . , n}. Without loss of generality, assume that k1 < k2 < . . . < ku. Let
{2, . . . , n} \ {k1, . . . , ku} = {h1, . . . , hs}, where s = n − u − 1. Then there is a
proof Π′ such that

−
Π′‖S◦

[(ā1, [Zk1, . . . , Zku , a2]), Zh1, . . . , Zhs]
s .

[(ā1, a2), Z2, . . . , Zn]

6.2. The Switch Rule 189

The proof Π′ remains valid if we replace am and ām by ◦ for every m with
1 < m � ku. Then we get

−
Π′′‖S◦

[(ā1, aku+1), (āku+1, aku+2), . . . , (ān, a1)]
,

which is a contradiction to the induction hypothesis.

(iii) R = ◦, T = [Zk1 , . . . , Zkt] and U = [Zl1 , . . . , Zlu] for some t, u > 0 and
k1, . . . , kt, l1, . . . , lu ∈ {1, . . . , n}. Then there is a proof Π′ such that

−
Π′‖S◦

[([Zk1 , . . . , Zkt], [Zl1 , . . . , Zlu]), Zh1, . . . , Zhs]
s ,

[Z1, Z2, . . . , Zn]

where s = n−t−u and {h1, . . . , hs} = {1, . . . , n}\{k1, . . . , kt, l1, . . . , lu}. Without
loss of generality, we can assume that t = u = 1. Otherwise we could replace

[([Zk1, . . . , Zkt], [Zl1 , . . . , Zlu]), Zh1 , . . . , Zhs]
s by

[Z1, Z2, . . . , Zn]

[([Zk1, . . . , Zkt], [Zl1 , . . . , Zlu]), Zh1 , . . . , Zhs]
s

[([Zk1, . . . , Zkt], Zl1), Zl2 , . . . , Zlu , Zh1, . . . , Zhs]
s

[(Zk1, Zl1), Zk2 , . . . , Zkt , Zl2 , . . . , Zlu , Zh1 , . . . , Zhs]
s .

[Z1, Z2, . . . , Zn]

Now let k = k1 and l = l1. Then we have

−
Π′‖S◦

[(Zk, Zl), Zh1 , . . . , Zhs]
s ,

[Z1, Z2, . . . , Zn]

where s = n − 2. Without loss of generality, we can assume that k < l. Now
replace inside Π′ for every m with m � k or l < m the atoms am and ām by ◦.
The proof Π′ then becomes

−
Π′′‖S◦

[(āl, ak+1), (āk+1, ak+2), . . . , (āl−1, al)]
,

which is a contradiction to the induction hypothesis. ��
6.2.14 Definition Let R be a balanced S◦ structure. Then the relation ∼R ⊆ occR ×
occR is defined as follows. For any atoms a, b ∈ occR (with a �= b), we have a ∼R b if and
only if there are atoms c1, . . . , cn ∈ occR (for some n � 0), such that both,

[a, (ā, c1), (c̄1, c2), . . . , (c̄n−1, cn), (c̄n, b̄)] and
[(ā, c1), (c̄1, c2), . . . , (c̄n−1, cn), (c̄n, b̄), b]

190 6. Mix and Switch

are quasi-substructures of R.

The reason for the definition of the relation ∼R is the following observation. For every
balanced S◦ structure R, we have that R contains a negation circuit if and only if there are
two atoms a, b ∈ occR such that a ∼R b and a ↑R b. This can be seen as follows. If R contains
a negation circuit [(ā1, a2), (ā2, a3), . . . , (ān, a1)] then we have ā1 ↑R a2 and ā1 ∼R a2.
Conversely, if there are two atoms a and b with a ∼R b and a ↑R b, then there are atoms
c1, . . . , cn ∈ occR (for some n � 0) such that [(b, a), (ā, c1), (c̄1, c2), . . . , (c̄n−1, cn), (c̄n, b̄)] is
a quasi-substructure of R. This observation is useful for the following lemma.

6.2.15 Lemma Let P = S [(R{a}, T), (U{ā}, V)] be a balanced structure that does not
contain a negation circuit. Then at least one of

P ′ = S([R{a}, (U{ā}, V)], T) and P ′′ = S([U{ā}, (R{a}, T)], V)

does not contain a negation circuit.

Proof: By way of contradiction, assume that both, P ′ and P ′′ contain a negation circuit,
and P does not contain a negation circuit. Consider now the two structures P and P ′. We
have that occP = occP ′, and for all atoms a, b ∈ occP with a /∈ occT or b /∈ occ(U{ā}, V),
that

a ↓P b iff a ↓P ′ b and a ↑P b iff a ↑P ′ b .

If a ∈ occT and b ∈ occ(U{ā}, V), then we have a ↓P b and a ↑P ′ b. In other words, only
the relation between the atoms in T and (U{ā}, V) is different in P and P ′. Since P ′

contains a negation circuit and P not, we must have and atom t1 ∈ occT and and atom
b ∈ occ(U{ā}, V), such that t1 ∼P ′ b. We then also have t1 ∼P b (by the definition of ∼P ,
and the construction of P ′). Observe that b cannot be ā because t1 ↑P a and t1 ↑P ′ a. We
have therefore two cases:

• there is a u1 ∈ occU{ } such that t1 ∼P u1, or

• there is a v1 ∈ occV such that t1 ∼P v1.

By the same argumentation about P ′′, we get a v2 ∈ occV such that either

• there is an r2 ∈ occR{ } such that v2 ∼P r2, or

• there is a t2 ∈ occT such that v2 ∼P t2.

All together there are four cases:

• t1 ∼P u1 and v2 ∼P r2. By definition of ∼P , we have atoms c1, . . . , cn ∈ occP and
d1, . . . , dm ∈ occP for some n,m � 0, such that the four structures

[t1, (t̄1, c1), (c̄1, c2), . . . , (c̄n−1, cn), (c̄n, ū1)] ,

[(t̄1, c1), (c̄1, c2), . . . , (c̄n−1, cn), (c̄n, ū1), u1] ,

[v2, (v̄2, d1), (d̄1, d2), . . . , (d̄m−1, dm), (d̄m, r̄2)] ,

[(v̄2, d1), (d̄1, d2), . . . , (d̄m−1, dm), (d̄m, r̄2), r2]

are quasi-substructures of P . This means that P contains a negation circuit:

[(r2, t1), (t̄1, c1), . . . , (c̄n, ū1), (u1, v2), (v̄2, d1), . . . , (d̄m, r̄2)] ,

which is a contradiction to the assumption.

6.2. The Switch Rule 191

• t1 ∼P u1 and v2 ∼P t2. In this case only v2 ∼P t2 is needed to show the negation
circuit inside P . We have d1, . . . , dm ∈ occP for some m � 0, such that

[v2, (v̄2, d1), (d̄1, d2), . . . , (d̄m−1, dm), (d̄m, t̄2)] and
[(v̄2, d1), (d̄1, d2), . . . , (d̄m−1, dm), (d̄m, t̄2), t2]

are quasi-substructures of P . Then P contains the negation circuit

[(ā, v2), (v̄2, d1), . . . , (d̄m, t̄2), (t2, a)] .

• t1 ∼P v1 and v2 ∼P r2. This case is similar to the previous case. (Use t1 ∼P v1).

• t1 ∼P v1 and v2 ∼P t2. As before.

Hence, one of P ′ and P ′′ must be negation circuit free. ��
6.2.16 Proposition Let P be a balanced structure such that for every atom a ∈ occP ,
its dual ā does also occur in P . If P does not contain a negation circuit, then P is provable
in S◦.

Proof: By induction on the cardinality
∣∣↓P ∣∣ of the relation ↓P ⊆ occP × occP , I will

show that there is a proof −
Π‖S◦
P

.

Base case: If
∣∣↓P ∣∣ = 0, then P = ◦, which is trivially provable. (If P �= ◦, then there is

an atom a ∈ occP , and therefore also ā ∈ occP . Since
∣∣↓P ∣∣ = 0, we have a ↑P ā and

therefore (a, ā) is a quasi-substructure of P).

Inductive case: Now let
∣∣↓P ∣∣ > 0. Hence P �= ◦. Pick inside P any atom a. Since P

contains no negation circuit, we have a ↓P ā. Hence, P = S [Sa{a}, Sā{ā}] for some
contexts S{ }, Sa{ } and Sā{ }. Without loss of generality, we can assume S{ } is
chosen such that neither Sa{ } nor Sā{ } is a par context. In other words, either
Sa{ } = { } or Sa{ } = (R{ }, T) for some context R{ } and T �= ◦, and similarly
for Sā{ }. There are four possibilities

• Sa{ } = { } and Sā{ } = { }. Then P = S [a, ā], and we can obtain

−
Π′‖S◦
S{◦}

ai↓ ,
S [a, ā]

where Π′ exists by induction hypothesis.

• Sa{ } = (R{ }, T) and Sā{ } = { }. Then P = S [(R{a}, T), ā]. Let Π be the
proof −

Π′‖S◦
S(R{◦}, T)

ai↓
S(R[a, ā], T)

∆‖{s}
S [(R{a}, T), ā]

,

where Π′ exists by induction hypothesis. and ∆ exists by Lemma 4.3.20.

192 6. Mix and Switch

• Sa{ } = { } and Sā{ } = (U{ }, V). Then P = S [a, (U{ā}, V)]. This is similar
to the previous case.

• Sa{ } = (R{ }, T) and Sā{ } = (U{ }, V). Then P = S [(R{a}, T), (U{ā}, V)].
Let Π be

−
Π′‖S◦

S([R{a}, (U{ā}, V)], T)
s or

S [(R{a}, T), (U{ā}, V)]

−
Π′′‖S◦

S([U{ā}, (R{a}, T)], V)
s ,
S [(R{a}, T), (U{ā}, V)]

where one of Π′ and Π′′ must exist by Lemma 6.2.15 and the induction hypoth-
esis. (Since T �= ◦ �= V , we have that

∣∣↓P ′
∣∣ <

∣∣↓P ∣∣ and
∣∣↓P ′′

∣∣ <
∣∣↓P ∣∣.) ��

This proof shows that proof search in the calculus of structures can be driven by atoms,
in the following sense: Let the distance between two atoms a and b in a structure R be the
number of atoms c in R such that

(a ↓P c ∧ b ↑P c) ∨ (a ↑P c ∧ b ↓P c) ,

i.e. the number of atoms c to which a and b are in different relation. Then in a proof
search the atoms a and ā move closer together until their distance is zero. Then [a, ā] is a
substructure of R, and the two atoms can kill each other in an instance of ai↓. Lemma 6.2.15
shows that for any pair of atoms a and ā it is always possible to move closer together.

This in fact could be the basis for an alternative approach to uniform provability
[MNPS91]. Instead of the main connective of the goal formula, a matching pair of atoms
determines the first rule to be applied in a proof. Although this idea is quite speculative, it
should be mentioned that it occurred already in a completely different context in W. Bibel’s
linear connection method [Bib86]. However, the further exploration of this idea and the
precise relation to W. Bibel’s work has to remain open for future research.

The following theorem puts the two previous results together and shows that the notion
of negation circuit can be used as a criterion for provability in system S◦.

6.2.17 Theorem Let R be a balanced S◦ structure. Then we have that R is provable
in S◦ if and only if R does not contain a negation circuit and for every atom a ∈ occR, its
dual ā does also occur in R.

Proof: Let R be provable. Then, by Proposition 6.2.13, R does not contain a negation
circuit. In a proof an atom a can only be removed in an instance of ai↓. Then, at the same
time its dual ā is removed. Hence, for every a ∈ occR, we have ā ∈ occR. For the other
direction apply Proposition 6.2.16. ��

The interested reader might now ask what can be said when R is not balanced. Then
the first condition to check is that each atom a occurs in R as often as its dual ā does.
Otherwise R is obviously not provable. Then we have to find a pairing between the atoms
in occR such that each atom a is paired up with ā. Then we can rename all atoms such that
the pairing is respected and the resulting structure R′ is balanced. If R′ does not contain
a negation circuit, then R′ and R are provable. In other word, for checking whether an
unbalanced structure is provable, all possible pairings have to be checked in the worst case.

6.2. The Switch Rule 193

For example, consider the structure [(a, ā), a, ā]. If we rename it as [(a1, ā1), a2, ā2],
then we get a negation circuit, but if we rename it as [(a1, ā2), a2, ā1], then we obtain a
provable structure.

So far, we were only considering provability. Let us now investigate derivability, which
means that we explore another time the top-down symmetry of the calculus of structures.

6.2.18 Lemma Let m > 0 be even and let a1, a2, . . . , am be m different atoms. Then
there is no derivation

([a1, a2], [a3, a4], . . . , [am−1, am])
∆‖{s}

[(a2, a3), (a4, a5), . . . , (am, a1)]
.

Proof: The proof could be carried out essentially the same way as it has been done for
the proofs of Lemma 4.3.25 and Proposition 6.2.13. However, since this lemma will not be
used in a cut elimination argument, we can employ cut elimination for proving it in a more
elegant way. By way of contradiction, assume there is a derivation

([a1, a2], [a3, a4], . . . , [am−1, am])
∆‖{s}

[(a2, a3), (a4, a5), . . . , (am, a1)]
.

Without loss of generality, we can assume that we do not have ai = āj for some i, j ∈
{1, . . . ,m} (otherwise rename one of them). By cut elimination (Corollary 6.1.8), there is
a proof −‖S◦

[(ā1, ā2), (ā3, ā4), . . . , (ām−1, ām), (a2, a3), (a4, a5), . . . , (am, a1)]
.

Since par structures are commutative, this is the same as

−‖S◦
[(ā1, ā2), (a2, a3), (ā3, ā4), (a4, a5), . . . , (ām−1, ām), (am, a1)]

,

which is a proof of a negation circuit and therefore a contradiction to Proposition 6.2.13. ��
Lemma 6.2.18 essentially says that there is no derivation from a cocircuit to a circuit.

This in fact was the motivation for introducing them. The following theorem says that
the converse is also true, i.e. whenever there is no attempt to transform a cocircuit into a
circuit, then there is indeed a derivation. This rather informal statement is made precise
as follows.

6.2.19 Definition On the set of balanced S◦ structures the relation � is defined as
follows. We have T � R if and only if

• occT = occR and

• for all m > 0, m even, and atoms a1, . . . , am ∈ occT , it is not the case that

– T contains an
〈
a1, . . . , am

〉
-cocircuit and

– R contains an
〈
a1, . . . , am

〉
-circuit.

194 6. Mix and Switch

6.2.20 Theorem Let R and T be two balanced structures with occR = occT , such that
for every atom a occurring in R, the atom ā does not occur in R. Then we have,

−‖S◦
[T̄ , R]

iff
T
‖SS◦
R

iff
T
‖{s}
R

iff T � R .

Proof: I will prove the equivalence of the four statements by proving

(1)⇒ (2)⇒ (3)⇒ (4)⇒ (1) .

• (1)⇒ (2): Immediate from Corollary 6.1.8.

• (2) ⇒ (3): Apply interpolation (Theorem 6.1.6). There cannot remain any instance
of ai↓ or ai↑ because there are no atom pairs a and ā inside R or T .

• (3)⇒ (4): By way of contradiction, assume that not T �R. This means that there are
atoms a1, . . . , am ∈ occR such that R contains an

〈
a1, . . . , am

〉
-circuit and T contains

an
〈
a1, . . . , am

〉
-cocircuit. The derivation

T
‖{s}
R

remains valid if all atoms b /∈ {a1, . . . , am} are replaced by ◦ everywhere. This yields
a derivation

([a1, a2], [a3, a4], . . . , [am−1, am])
∆‖{s}

[(a2, a3), (a4, a5), . . . , (am, a1)]
,

which is a contradiction to Lemma 6.2.18.

• (4) ⇒ (1): I will show that the structure [T̄ , R] cannot contain a negation circuit.
We can then apply Proposition 6.2.16 to obtain the proof

−‖S◦
[T̄ , R]

.

By way of contradiction, assume now that [T̄ , R] contains a negation circuit, say

Q = [(ā1, a2), (ā2, a3), . . . , (ān, a1)] ,

for some n > 0. As in the proof of Proposition 6.2.13, I will set Zj = (āj, aj+1) for
every j ∈ {1, . . . , n} (with the convention that j + 1 = 1 for j = n). This means that

Q = [Z1, Z2, . . . , Zn] .

Since neither R nor T contain a pair of dual atoms (i.e. a and ā), we have that n is
even (because the same number of “Z’s” has to come from T̄ and from R) and either

– T̄ has [Z1, Z3, . . . , Zn−1] as quasi-substructure and R has [Z2, Z4, . . . , Zn] as
quasi-substructure, or

6.3. Discussion 195

– R has [Z1, Z3, . . . , Zn−1] as quasi-substructure and T̄ has [Z2, Z4, . . . , Zn] as
quasi-substructure.

Without loss of generality, we can assume that [Z1, Z3, . . . , Zn−1] is contained in T̄
and [Z2, Z4, . . . , Zn] in R. This means that T has

(Z̄1, Z̄3, . . . , Z̄n−1) = ([a1, ā2], [a3, ā4], . . . , [an−1, ān])

as quasi-substructure. This is a
〈
a1, ā2, a3, ā4, . . . , an−1, ān

〉
-cocircuit. Since

[Z2, Z4, . . . , Zn] = [(ā2, a3), (ā4, a5), . . . , (ān, a1)]

is a
〈
a1, ā2, a3, ā4, . . . , an−1, ān

〉
-circuit, that is contained in R, we have a contradiction

to T � R. ��
As an immediate consequence from this theorem we get that the relation � is a partial

order, which is from Definition 6.2.19 not at all obvious.

6.2.21 Corollary The relation � is a partial order.

Proof: Reflexivity is obvious since there is always the trivial derivation from R to R.
Transitivity is also obvious because the derivability relation is transitive. Antisymmetry
is obtained from the fact that the switch rule is not invertible. This means, whenever we

have
T
s
R

with R �= T (i.e. the switch rule is applied in a nontrivial way), then there is no

derivation
R
‖{s}
T

.

This is the case because
∣∣↓T ∣∣ <

∣∣↓R∣∣ (see also the proof of Lemma 6.2.15). ��

6.3 Discussion

In Section 6.1, I have shown that the rules mix and nullary mix can be incorporated
naturally in the calculus of structures.

In Section 6.2, I have shown an algebraic characterisation of derivability using the switch
rule. The attentive reader might already have guessed that this result is a byproduct of the
investigation of the decomposition theorems in Section 4.3. The results of Section 6.2 can
be considered as preliminary results towards a general characterisation for the derivability
in systems, which are not restricted to multiplicative linear logic. In my opinion, the next
step should be to include also A. Guglielmi’s noncommutative connective seq [Gug02e] into
the two characterisations (Theorem 6.2.17 and Theorem 6.2.20). I will come back to this
topic in the next chapter, where the seq will be discussed in detail.

Section 6.2 can also be seen as starting point for further research in the direction sug-
gested in [Gug02b], where a certain notion of implicational and structural completeness is
suggested. Since this is quite speculative, I do not want to go into further details here. I
only want to mention that the implication (1) ⇒ (3) of Theorem 6.2.20 says that system

196 6. Mix and Switch

S◦ has this completeness, as conjectured by A. Guglielmi in [Gug02b], where S◦ is called
system FBV .

The switch rule does also play an important role in the presentation of classical logic in
the calculus of structures [BT01, Brü03b, Brü02a]. This means that also for classical logic
the results of Section 6.2 could be of interest.

7
A Noncommutative Extension of the
Multiplicative Exponential Fragment
of Linear Logic

In this chapter, I will discuss an extension of multiplicative exponential linear logic by a
noncommutative connective which is self-dual with respect to linear negation. More pre-
cisely, I will investigate the properties of a logical system, called system NEL, which is a
conservative extension MELL+mix+mix0, or system ELS◦, as discussed in Section 6.1. The
self-dual noncommutative connective is the same as it has been introduced by A. Guglielmi
in [Gug99, Gug02e] for system BV . Consequently, system NEL is also a conservative exten-
sion of system BV .

By bringing together the two multiplicative connectives of linear logic, the exponentials,
and a self-dual noncommutative connective, system NEL can be seen from two perspectives:
first, as an extension of BV by the ability of reusing information, and second, as an extension
of MELL by the ability of modelling sequentiality.

In Section 7.1, I will define the structures and the rules for system NEL. In Section 7.2,
I will show that the two decomposition theorems, which have been shown for system SELS
in Section 4.3, do also hold for system NEL. For this, I will refine the permutation results
of Section 4.2 and extend some of the results of Section 6.2.

Then, in Section 7.3, I will prove the cut elimination result for system NEL by using
the techniques of decomposition and splitting, which has first been used by A. Guglielmi
in [Gug02e]. The second decomposition theorem will be employed in the same way as in
Chapter 4 for system ELS. Then splitting is used to eliminate the core up fragment. I
will first explain the general idea of splitting, and then show the complete proof of the
splitting lemma (Lemma 7.3.5) and show how it is used to get cut elimination. This will
be a refinement of the cut elimination proof for system BV in [Gug02e].

Finally, in Section 7.4, I will show that system NEL is undecidable by simulating the
computations of a two counter machine. The encoding and its proof of correctness will be
direct, natural and simple. However, the proof of the soundness of the encoding is a little
intricate because there is no sequent calculus and no phase semantics available for NEL.

197

198 7. A Noncommutative Extension of MELL

Associativity

[R, [T,U]] = [[R,T], U]
(R, (T,U)) = ((R,T), U)
〈R; 〈T ; U〉〉 = 〈〈R; T 〉; U〉

Commutativity

[R,T] = [T,R]
(R,T) = (T,R)

Exponentials

??R = ?R
!!R = !R

Unit

[◦, R] = R

(◦, R) = R

〈◦; R〉 = R

〈R; ◦〉 = R

?◦ = ◦
!◦ = ◦

Negation

◦ = ◦
[R,T] = (R̄, T̄)

(R,T) = [R̄, T̄]

〈R,T 〉 = 〈R̄, T̄ 〉
?R = !R̄
!R = ?R̄
¯̄R = R

Figure 7.1: Basic equations for the syntactic congruence of NEL structures

7.1 Structures and Rules

7.1.1 Definition As before, the countable set A of atoms, which are denoted by a, b,
c, . . . , is equipped with a bijective function ·̄ : A → A, such that ¯̄a = a and ā �= a for every
a ∈ A. Let R be the set of expressions generated by the following syntax:

R ::= ◦ | a | [R,R] | (R,R) | 〈R; R〉 | !R | ?R | R̄ ,

where a stands for any atom, and ◦, the unit , is not an atom. On the set R, the relation
= is defined to be the smallest congruence relation induced by the equations shown in
Figure 7.1. The NEL structures (denoted with P , Q, R, S, . . .) are the elements of R/=,
i.e. equivalence classes of expressions.

As before, I will omit superfluous parentheses. NEL structures can be seen as extensions
of ELS◦ structures (defined in Section 6.1) by structures of the shape 〈R1; . . . ; Rh〉, which
are called seq structures [Gug99]. Let me now define the new rules, which deal with seq.

7.1.2 Definition The two structural rules

S〈[R,U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉] and
S(〈R; U〉, 〈T ; V 〉)

q↑
S〈(R,T); (U, V)〉

are called seq and coseq , respectively.

Observe, that rules become more flexible in the presence of the unit ◦, which is common
to par, times and seq. For example, the following derivation is valid:

(a, b)
q↑ 〈a; b〉
q↓

[a, b]

=

(〈a; ◦〉, 〈◦; b〉)
q↑ 〈[a, ◦]; [◦, b]〉
q↓

[〈a; ◦〉, 〈◦; b〉]
=

(〈a; ◦〉, 〈◦; b〉)
q↑ 〈(a, ◦); (◦, b)〉
q↓

[〈a; ◦〉, 〈◦; b〉]
.

7.1. Structures and Rules 199

S{◦}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{◦}

}
Interaction

S([R,U], T)
s

S [(R,T), U]

S〈[R,U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]
S(〈R; U〉, 〈T ; V 〉)

q↑
S〈(R,T); (U, V)〉

Core

S{![R,T]}
p↓

S [!R, ?T]

S(?R, !T)
p↑

S{?(R,T)}

S{◦}
w↓

S{?R}
S{!R}

w↑
S{◦}

Noncore
S [?R,R]

b↓
S{?R}

S{!R}
b↑

S(!R,R)

Figure 7.2: System SNEL

Further, observe that the interaction rules are in the presence of seq still reducible to
their atomic form (Proposition 3.2.16). The following derivation shows the corresponding
inductive case for i↑:

S(〈P ; Q〉, 〈P̄ ; Q̄〉)
q↑

S〈(P, P̄); (Q, Q̄)〉
i↑

S〈◦; (Q, Q̄)〉
=

S(Q, Q̄)
i↑ .

S{◦}

7.1.3 Definition System SNEL (symmetric noncommutative exponential linear logic),
which is shown in Figure 7.2, is obtained from system SELS◦ by adding the rules q↓
and q↑. The down fragment of SNEL is {ai↓, s,q↓,p↓,w↓,b↓}, and the up fragment is
{ai↑, s,q↑,p↑,w↑,b↑}. The core of system SNEL is SNELc = {s,q↓,q↑,p↓,p↑}, and the
noncore is {w↓,w↑,b↓,b↑}.

As axiom we use the same rule as in Section 6.1. The rule

◦↓ ◦

is called unit .

200 7. A Noncommutative Extension of MELL

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R,U], T)
s
S [(R,T), U]

S〈[R,U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

S{![R,T]}
p↓

S [!R, ?T]

S{◦}
w↓

S{?R}
S [?R,R]

b↓
S{?R}

Figure 7.3: System NEL

7.1.4 Definition System NEL is obtained from the down fragment of system SNEL
together with the axiom. It is shown in Figure 7.3.

As for all other systems discussed in this thesis, we have the following:

7.1.5 Theorem The systems SNEL∪ {◦↓} and NEL∪ {i↑} are strongly equivalent.

Of course, there is also a cut elimination result for system NEL.

7.1.6 Theorem (Cut Elimination) System NEL is equivalent to every subsystem of
the system SNEL∪ {◦↓} containing NEL.

At this point we cannot use the sequent calculus for obtaining a proof of cut elimination.
The reason is that there is no sequent system for NEL, which could be used. We have to rely
on the methods developed for the calculus of structures. For NEL, I will use decomposition
and splitting. The detailed proof of Theorem 7.1.6 will be carried out in Section 7.3.

7.1.7 Corollary The rule i↑ is admissible for system NEL.

7.1.8 Corollary Let R and T be two NEL structures. Then we have

T
‖SNEL
R

if and only if −‖NEL
[T̄ , R]

.

Let me now define system BV , which is the multiplicative fragment of NEL. It was the
first system to be presented in the calculus of structures [Gug99]. I will need it for proving
some of the results in this chapter.

7.1.9 Definition A BV structure is a NEL structure that does not contain any expo-
nentials, i.e. that does not have any substructure !R or ?R for some R.

7.1.10 Remark The equations defining the syntactic congruence for BV structures are
the same as for NEL structures, except that the equations concerning the exponentials are
removed.

7.1.11 Definition System SBV , which shown in Figure 7.4, containes the rules ai↓, ai↑,
s, q↓, and q↑ (i.e. the multiplicative part or SNEL).

The core of system SBV is SBVc = {s,q↓,q↑}. This means that there are no noncore
rules in system SBV .

7.1. Structures and Rules 201

S{◦}
ai↓

S [a, ā]

S(a, ā)
ai↑

S{◦}

}
Interaction

S([R,U], T)
s

S [(R,T), U]

Core
S〈[R,U]; [T, V]〉

q↓
S [〈R; T 〉, 〈U ; V 〉]

S(〈R; U〉, 〈T ; V 〉)
q↑

S〈(R,T); (U, V)〉

Figure 7.4: System SBV

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R,U], T)
s
S [(R,T), U]

S〈[R,U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

Figure 7.5: System BV

7.1.12 Definition The system {◦↓, ai↓, s,q↓} which is obtained from the down fragment
of system SBV together with the axiom is called system BV (or basic system V). It is shown
in Figure 7.5.

7.1.13 Theorem System NEL is a conservative extension of both, system ELS◦ and
system BV .

Proof: Let me first show, that NEL is a conservative extension of ELS◦. Let R be an ELS◦

structure. Now assume, we have a proof −
Π‖NEL
R

. Let Π′ be the proof obtained from Π in

the following way: Each seq context, occurring inside a structure S inside Π is replaced by
a par context. By this each rule application remains valid, except for the seq rule, which
becomes trivial:

S〈[R,U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉] �
S [[R,U], [T, V]]

q↓′
S [[R,T], [U, V]]

,

and can therefore be omitted. This means that Π′ is a valid proof of R in system ELS◦.
For showing that NEL is a conservative extension of BV , let R be a BV structure and

assume, that there is a proof −
Π‖NEL
R

. Observe that no rule in system NEL can introduce

a ? while going up in a proof. Since there are no ?-structures present in R, there are no
applications of w↓ or b↓ inside Π. This also means that all applications of the promotion

202 7. A Noncommutative Extension of MELL

rule must be trivial (because there are also no !-structures in R):

S{![◦, ◦]}
p↓

S [!◦, ?◦] =
S{◦}

p↓
S{◦} ,

and can therefore be omitted. ��
The above theorem ensures, that the cut elimination result for NEL does also hold for

the systems ELS◦ and BV . This can be seen as follows: Let −
Π‖ELS◦∪{i↑}
R

be given, where

R is an ELS◦ structure. Then we can apply Corollary 7.1.7 to Π to get a proof −
Π′‖NEL

R
.

Since NEL is a conservative extension of ELS◦, we can obtain a proof −
Π′′‖ELS◦

R
. Similarly

we can proceed for BV . In particular, we have:

7.1.14 Corollary Let R and T be two BV structures. Then we have

T
‖SBV
R

if and only if −‖BV
[T̄ , R]

.

As shown by A. Tiu in [Tiu01], it is not possible to present system BV in the sequent
calculus. Another consequence of Theorem 7.1.13 is that A. Tiu’s result does also hold for
NEL: there is no sequent calculus system that is equivalent to system NEL.

7.2 Decomposition

In this section, I will show that the first and the second decomposition theorem for SELS
(see Section 4.3) do also hold for system SNEL.

7.2.1 Theorem (First Decomposition) For every derivation
T

∆‖SNEL
R

there are struc-

tures T1, T2, T3, R3, R2 and R1, and derivations ∆1, . . . , ∆7, such that

T
∆1‖{b↑}

T1

∆2‖{w↓}
T2

∆3‖{ai↓}
T3

∆4‖SNELc
R3

∆5‖{ai↑}
R2

∆6‖{w↑}
R1

∆7‖{b↓}
R

.

7.2. Decomposition 203

7.2.2 Theorem (Second Decomposition) For every derivation
T

∆‖SNEL
R

there are

structures T1, T2, T3, R3, R2 and R1, and derivations ∆1, . . . , ∆7, such that

T
∆1‖{b↑}

T1

∆2‖{w↑}
T2

∆3‖{ai↓}
T3

∆4‖SNELc
R3

∆5‖{ai↑}
R2

∆6‖{w↓}
R1

∆7‖{b↓}
R

.

The proof of those two theorems will be very similar (in fact, almost literally the same)
to the proofs of Theorems 4.3.1 and 4.3.2. There are only two points, which are different,
and which deserve attention.

• First, the collapsing of the units for the par and the times allows a more flexible
application of rules. This has consequences for the permutation results. For this
reason, I will in Section 7.2.1 redo all the necessary permutation proofs for separating
weakening and interaction in the first decomposition.

• Second, the presence of seq has also an impact on the proof for the nonexistence of
promotion cycles (for the separation of absorption): Lemma 4.3.20 (which is crucial
for Proposition 4.3.22) has to be generalised. This is rather trivial and will be done
below (in Lemma 7.2.3). Another consequence of the presence of seq is that instead
of proving that there is no derivation

([!R1, ?T1], [!R2, ?T2], . . . [!Rn, ?Tn])
∆
∥∥{s}

[(!R2, ?T1), (!R3, ?T2), . . . (!R1, ?Tn)]
,

for some n � 1 and structures R1, . . . , Rn, T1, . . . , Tn (see Lemma 4.3.25), we have
to show that there is no derivation

([!R1, ?T1], [!R2, ?T2], . . . [!Rn, ?Tn])
∆
∥∥{s,q↓,q↑}

[(!R2, ?T1), (!R3, ?T2), . . . (!R1, ?Tn)]
,

for some n � 1 and structures R1, . . . , Rn, T1, . . . , Tn. This is considerably more
difficult and will be done in Section 7.2.2. Fortunately, that is all that has to be done.
Everything else of the proofs for the decomposition theorems is exactly the same as
for system SELS.

204 7. A Noncommutative Extension of MELL

The following lemma will be an easy extension of Lemma 4.3.20. Observe that, in
order to be formally precise, it is also necessary to redefine the notion of basic context (see
Definition 4.3.18) and include the seq: In the proof for the decomposition theorems for
system SNEL, a basic context is a context S{ }, where the hole does not occur inside the
scope of an exponential.

7.2.3 Lemma Let S{ } be a basic context and R and T be any structures. Then there
is a derivation

S [R,T]
∆‖{s,q↓}

[S{R}, T]
.

Proof: By structural induction on S{ }. The cases for S = { }, S = [S′, S′′{ }] and
S = (S′, S′′{ }) have been shown in the proof of Lemma 4.3.20 on page 108. Let me now
show the remaining case:

• S = 〈S′; S′′{ }; S′′′〉 for some context S′′{ } and structures S′ and S′′′. Then let ∆
be

〈S′; S′′ [R,T]; S′′′〉
∆′

∥∥{s,q↓}
〈S′; [S′′{R}, T]; S′′′〉

q↓ 〈S′; [〈S′′{R}; S′′′〉, T]〉
q↓ ,

[〈S′; S′′{R}; S′′′〉, T]

where ∆′ exists by induction hypothesis. ��

7.2.1 Permutation of Rules

In the proof of Proposition 4.3.22 (needed for the proofs of the decomposition theorems
for SELS in Chapter 4), I introduced the rules p̂↓, p̂↑, ŵ↓, and ŵ↑. In the proof of the
decomposition theorems for SNEL, they will also be needed:

S{![R,T]}
p̂↓

S [!R,U]
,

S(?R,U)
p̂↑

S{?(R,T)} ,
S{◦}

ŵ↓
S{R} ,

S{R}
ŵ↑

S{◦} .

They have to be considered in the permutation results in this section.

7.2.4 Lemma Every rule ρ ∈ {ai↓,w↓, ŵ↓} permutes over every rule π ∈ (SNEL ∪
{p̂↓, p̂↑, ŵ↓, ŵ↑}) \ {b↓,b↑} by the system SBVc.

Proof: Consider a derivation
Q

π
S{◦}

ρ ,
S{Z}

where ρ ∈ {ai↓,w↓, ŵ↓} and π ∈ (SNEL∪{p̂↓, p̂↑, ŵ↓, ŵ↑})\{b↓,b↑} is nontrivial. According
to 4.2.3, there are the following cases to consider:

7.2. Decomposition 205

(4) The redex of π is inside an active structure of the contractum ◦ of ρ. This case is
impossible because no structure can be inside ◦.

(5) The contractum ◦ of ρ is inside an active structure of the redex of π but not inside a
passive one. As in the permutation proofs of Chapter 5, this case is the problematic
one. Since ◦ is the unit for par, seq, and times, we have for each rule π more cases to
consider.

(i) π = w↓. Then S{◦} = S′{?R{◦}} for some contexts S′{ } and R{ }. We have

S′{◦}
w↓

S′{?R{◦}}
ρ yields

S′{?R{Z}}
S′{◦}

w↓ .
S′{?R{Z}}

(ii) π = ŵ↓. Similar to (i).

(iii) π = q↑. Then we have the following subcases:

(a) S{◦} = S′〈(R, [(R′, T), ◦], T ′); (U, V)〉 for some context S′{ } and structures
R,R′, T, T ′, U and V . Then we have

S′(〈(R,R′); U〉, 〈(T, T ′); V 〉)
q↑

S′〈(R,R′, T, T ′); (U, V)〉
ρ ,

S′〈(R, [(R′, T), Z], T ′); (U, V)〉
which yields

S′(〈(R,R′); U〉, 〈(T, T ′); V 〉)
ρ

S′(〈(R, [R′, Z]); U〉, 〈(T, T ′); V 〉)
q↑

S′〈(R, [R′, Z], T, T ′); (U, V)〉
s .
S′〈(R, [(R′, T), Z] , T ′); (U, V)〉

(b) S{◦} = S′〈(R,T); (U, [(U ′, V), ◦], V ′)〉 for some context S′{ } and structures
R,T,U,U ′, V and V ′. Similar to (a).

(c) S{◦} = S′〈(R, 〈(R′, T); ◦〉, T ′); (U, V)〉 for some context S′{ } and structures
R,R′, T, T ′, U and V . Then we have

S′(〈(R,R′); U〉, 〈(T, T ′); V 〉)
q↑

S′〈(R,R′, T, T ′); (U, V)〉
ρ ,

S′〈(R, 〈(R′, T); Z 〉, T ′); (U, V)〉
which yields

S′(〈(R,R′); U〉, 〈(T, T ′); V 〉)
ρ

S′(〈(R, 〈R′; Z 〉); U〉, 〈(T, T ′); V 〉)
q↑

S′〈(R, 〈R′; Z〉, T, T ′); (U, V)〉
q↑ .

S′〈(R, 〈(R′, T); Z〉, T ′); (U, V)〉
(d) S{◦} = S′〈(R, 〈◦; (R′, T)〉, T ′); (U, V)〉 for some context S′{ } and structures

R,R′, T, T ′, U and V . Similar to (c).

206 7. A Noncommutative Extension of MELL

(e) S{◦} = S′〈(R,T); (U, 〈(U ′, V); ◦〉, V ′)〉 for some context S′{ } and structures
R,T,U,U ′, V and V ′. Similar to (c).

(f) S{◦} = S′〈(R,T); (U, 〈◦; (U ′, V)〉, V ′)〉 for some context S′{ } and structures
R,T,U,U ′, V and V ′. Similar to (c).

(g) S{◦} = S′〈(R,T); ◦; (U, V)〉 for some context S′{ } and structures R,T,U
and V . Then

S′(〈R; U〉, 〈T ; V 〉)
q↑

S′〈(R,T); (U, V)〉
ρ yields

S′〈(R,T); Z ; (U, V)〉

S′(〈R; U〉, 〈T ; V 〉)
π

S′(〈R; Z ; U〉, 〈T ; V 〉)
q↑

S′〈(〈R; Z〉, T); (U, V)〉
q↑ .

S′〈(R,T); Z ; (U, V)〉
(iv) π = s. Then we have the following subcases:

(a) S{◦} = S′ [(R, [(R′, T), ◦], T ′), U] for some context S′{ } and structures
R,R′, T, T ′ and U . This is similar to case (iii.a): We have

S′([(R,R′), U], T, T ′)
s

S′ [(R,R′, T, T ′), U]
ρ ,

S′ [(R, [(R′, T), Z], T ′), U]

which yields
S′([(R,R′), U], T, T ′)

ρ
S′([(R, [R′, Z]), U], T, T ′)
s

S′〈(R, [R′, Z], T, T ′), U〉
s .
S′ [(R, [(R′, T), Z] , T ′), U]

(b) S{◦} = S′ [(R, 〈(R′, T); ◦〉, T ′), U] for some context S′{ } and structures
R,R′, T, T ′ and U . Similar to case (iii.c).

(c) S{◦} = S′ [(R, 〈◦; (R′, T)〉, T ′), U] for some context S′{ } and structures
R,R′, T, T ′ and U . Similar to case (iii.d).

(d) S{◦} = S′ [([(R,T), U], ◦), U ′] for some context S′{ } and structures R,T,U
and U ′. Then we have

S′([R,U,U ′], T)
s

S′ [(R,T), U, U ′]
ρ yields

S′ [([(R,T), U], Z), U ′]

S′([R,U,U ′], T)
ρ

S′([R,U,U ′], T, Z)
s
S′([(R,T), U, U ′] , Z)

s .
S′ [([(R,T), U], Z), U ′]

(e) S{◦} = S′ [〈[(R,T), U]; ◦〉, U ′] for some context S′{ } and structures R,T,U
and U ′. Then we have

S′([R,U,U ′], T)
s
S′ [(R,T), U, U ′]

ρ yields
S′ [〈[(R,T), U]; Z 〉, U ′]

S′([R,U,U ′], T)
ρ

S′〈([R,U,U ′], T); Z 〉
s
S′〈 [(R,T), U, U ′] ; Z〉

q↓ .
S′ [〈[(R,T), U]; Z〉, U ′]

7.2. Decomposition 207

(f) S{◦} = S′ [(〈◦; (R,T), U〉), U ′] for some context S′{ } and structures R,T,U
and U ′. Similar to (e).

(v) π = p↑. Then we have the following subcases:

(a) S{◦} = S′{?(R, [(R′, T), ◦], T ′)}. for some context S′{ } and structures
R,R′, T and T ′. Then we have

S′(?(R,R′), !(T, T ′))
p↑

S′{?(R,R′, T, T ′)}
ρ ,

S′{?(R, [(R′, T), Z], T ′)}
which is is similar to (iii.a):

S′(?(R,R′), !(T, T ′))
ρ

S′(?(R, [R′, Z]), !(T, T ′))
p↑

S′{?(R, [R′, Z], T, T ′)}
s .
S′{?(R, [(R′, T), Z] , T ′)}

(b) S{◦} = S′{?(R, 〈(R′, T); ◦〉, T ′)}. for some context S′{ } and structures
R,R′, T and T ′. Similar to (iii.c).

(c) S{◦} = S′{?(R, 〈◦; (R′, T)〉, T ′)}. for some context S′{ } and structures
R,R′, T and T ′. Similar to (iii.d).

(vi) π = p̂↑. Similar to (v).

(vii) π = p↓. Then we have the following subcases:

(a) S{◦} = S′ [(!R, ◦), ?T] for some S′{ } and R and T . Then the situation is
similar as in (iv.d):

S′{![R,T]}
p↓

S′ [!R, ?T]
ρ yields

S′ [(!R, Z), ?T]

S′{![R,T]}
ρ

S′(![R,T], Z)
p↓

S′([!R, ?T] , Z)
s .
S′ [(!R,Z), ?T]

(b) S{◦} = S′ [!R, (?T, ◦)]. Similar to (a).

(c) S{◦} = S′ [〈!R; ◦〉, ?T] for some S′{ } and R and T . Then the situation is
similar as in (iv.e):

S′{![R,T]}
p↓

S′ [!R, ?T]
ρ yields

S′ [〈!R; Z 〉, ?T]

S′{![R,T]}
ρ

S′〈![R,T]; Z 〉
p↓

S′〈 [!R, ?T] ; Z〉
q↓ .

S′ [〈!R; Z〉, ?T]

(d) S{◦} = S′ [〈◦; !R〉, ?T]. Similar to (c).

(e) S{◦} = S′ [!R, 〈?T ; ◦〉]. Similar to (c).

208 7. A Noncommutative Extension of MELL

(f) S{◦} = S′ [!R, 〈◦; ?T 〉]. Similar to (c).

(viii) π = p̂↓. Similar to (vi).

(ix) π = ai↓. Similar to (vi).

(x) π = q↓. Then we have the following subcases:

(a) S{◦} = S′ [〈R; [〈R′; T 〉, ◦]; T ′〉, 〈U ; V 〉] for some context S′{ } and structures
R,R′, T, T ′, U and V . Then we have

S′〈[〈R; R′〉, U]; [〈T ; T ′〉, V]〉
q↓

S′ [〈R; R′; T ; T ′〉, 〈U ; V 〉]
ρ ,

S′ [〈R; [〈R′; T 〉, Z]; T ′〉, 〈U ; V 〉]

which yields
S′〈[〈R; R′〉, U]; [〈T ; T ′〉, V]〉

ρ
S′〈[〈R; [R′, Z]〉, U]; [〈T ; T ′〉, V]〉

q↓
S′ [〈R; [R′, Z]; T ; T ′〉, 〈U ; V 〉]

q↓ .
S′ [〈R; [〈R′; T 〉, Z] ; T ′〉, 〈U ; V 〉]

(b) S{◦} = S′ [〈R; T 〉, 〈U ; [〈U ′; V 〉, ◦]; V ′〉] for some context S′{ } and struc-
tures R,T,U,U ′, V and V ′. Similar to (a).

(c) S{◦} = S′ [〈R; (〈R′; T 〉, ◦); T ′〉, 〈U ; V 〉] for some context S′{ } and structures
R,R′, T, T ′, U and V . Then we have

S′〈[〈R; R′〉, U]; [〈T ; T ′〉, V]〉
q↓

S′ [〈R; R′; T ; T ′〉, 〈U ; V 〉]
ρ .

S′ [〈R; (〈R′; T 〉, Z); T ′〉, 〈U ; V 〉]

In this case we need to employ q↑ together wit s:

S′〈[〈R; R′〉, U]; [〈T ; T ′〉, V]〉
ρ

S′(〈[〈R; R′〉, U]; [〈T ; T ′〉, V]〉, Z)
q↓

S′([〈R; R′; T ; T ′〉, 〈U ; V 〉] , Z)
s

S′ [(〈R; R′; T ; T ′〉, Z), 〈U ; V 〉]
q↑

S′ [〈R; (〈R′; T ; T ′〉, Z)〉, 〈U ; V 〉]
q↑ .

S′ [〈R; (〈R′; T 〉, Z); T ′〉, 〈U ; V 〉]

(d) S{◦} = S′ [〈R; T 〉, 〈U ; (〈U ′; V 〉, ◦); V ′〉] for some context S′{ } and struc-
tures R,T,U,U ′, V and V ′. Similar to (c).

(xi) If π ∈ {ai↓,w↑, ŵ↑}, then there is no problem because the redex of π is ◦.
(6) The contractum ◦ of ρ and the redex of π (properly) overlap. This is impossible

because ◦ cannot overlap with any other structure. ��

7.2. Decomposition 209

7.2.5 Lemma Every rule ρ ∈ {ai↑,w↑, ŵ↑} permutes under every rule π ∈ (SNEL ∪
{p̂↓, p̂↑, ŵ↓, ŵ↑}) \ {b↓,b↑} by the system {s,q↓,q↑}.

Proof: Dual to Lemma 7.2.4. ��

7.2.2 Cycles in Derivations

In this section, I will show that there is no derivation

([!R1, ?T1], [!R2, ?T2], . . . , [!Rn, ?Tn])
∆
∥∥{s,q↓,q↑}

[(!R2, ?T1), (!R3, ?T2), . . . , (!R1, ?Tn)]
,

for some n � 1 and any structures R1, . . . , Rn, T1, . . . , Tn. This is important for showing
that there is no nonforked cycle (see Section 4.3.1) in a derivation, which in turn is crucial
for the decomposition theorems. For showing this, I will show a stronger result about the
core of system SBV , which will in fact be a generalisation of Lemma 6.2.18. However, this
time I cannot use cut elimination for proving it because it will be used in a cut elimination
argument.

7.2.6 Lemma Let n > 0 and let a1, a2, . . . , an, b1, b2, . . . , bn be 2n different atoms. Fur-
ther, let W1, . . . ,Wn, Z1, . . . , Zn be structures, such that

• Wi = [ai, bi] or Wi = 〈ai; bi〉, for every i = 1, . . . , n,

• Zj = (aj+1, bj) or Zj = 〈aj+1; bj〉, for every j = 1, . . . , n− 1, and

• Zn = (a1, bn) or Zn = 〈a1; bn〉.
Then there is no derivation

(W1,W2, . . . ,Wn)
∆
∥∥SBVc

[Z1, Z2, . . . , Zn]
.

Proof: (In this proof, I will use the convention that j + 1 = 1 in the case that j = n.) Let
m be the number of structures Zj (for j = 1, . . . , n) which are seq-structures, i.e.

m =
∣∣{ j | Zj = 〈aj+1; bj〉 }

∣∣ .

Proceed by induction on the pair
〈
n,m

〉
by using lexicographic ordering, i.e. for another

pair
〈
n′,m′〉, we have〈

n′,m′〉 <
〈
n,m

〉 ⇐⇒ n′ < n or n′ = n and m′ < m .

Base Case: If n = 1, then obviously, there is no derivation

[a1, b1]
∆‖SBVc

(a1, b1)
or

[a1, b1]
∆‖SBVc
〈a1; b1〉

or
〈a1; b1〉

∆‖SBVc
(a1, b1)

.

210 7. A Noncommutative Extension of MELL

Inductive Case: Suppose there is no derivation ∆ for all
〈
n′,m′〉 <

〈
n,m

〉
, and, by way

of contradiction assume there is a derivation

(W1,W2, . . . ,Wn)
∆
∥∥{s,q↓,q↑}

[Z1, Z2, . . . , Zn]
,

where Zj = (aj+1, bj) or Zj = 〈aj+1; bj〉 for every j = 1, . . . , n and Wi = [ai, bi] or Wi =
〈ai; bi〉, for every i = 1, . . . , n. Now consider the bottommost rule instance ρ of ∆. Without
loss of generality, we can assume that ρ is nontrivial.

(1) ρ = q↑. There are two possibilities to apply
S(〈R; U〉, 〈T ; V 〉)

q↑
S〈(R,T); (U, V)〉 .

(i) R = aj+1, T = ◦, U = ◦ and V = bj for some j = 1, . . . , n. Then there must be
some ∆′, such that

(W1,W2, . . . ,Wn)
∆′

∥∥{s,q↓,q↑}
[Z1, . . . , Zj−1, (aj+1, bj), Zj+1, . . . , Zn]

q↑ ,
[Z1, . . . , Zj−1, 〈aj+1; bj〉, Zj+1, . . . , Zn]

which is a contradiction to the induction hypothesis.

(ii) R = ◦, T = aj+1, U = bj, V = ◦ for some j = 1, . . . , n. Similar to (i).

(2) ρ = q↓. There are the following possibilities to apply
S〈[R,U]; [T, V]〉

q↓
S [〈R; T 〉, 〈U ; V 〉] .

(i) R = aj+1, T = bj for some j = 1, . . . , n. Then, without loss of generality, we can
assume that j = 1. We have the following subcases:

(a) U = ai+1 and V = bi for some i = 2, . . . , n. Then we have a derivation ∆′

such that

(W1,W2, . . . ,Wn)
∆′

∥∥{s,q↓,q↑}
[〈[a2, ai+1]; [b1, bi]〉, Z2, . . . , Zi−1, Zi+1, . . . , Zn]

q↓ .
[〈a2; b1〉, Z2, . . . , Zi−1, 〈ai+1; bi〉, Zi+1, . . . , Zn]

The derivation ∆′ remains valid if we replace am and bm by ◦ for every m
with 2 � m � i. Then we get

(W1,Wi+1, . . . ,Wn)
∆′′

∥∥{s,q↓,q↑}
[〈ai+1; b1〉, Zi+1, . . . , Zn]

,

which is a contradiction to the induction hypothesis.

7.2. Decomposition 211

(b) U = ◦ and V = [Zk1, . . . , Zkv] for some v > 0 and k1, . . . , kv ∈ {2, . . . , n}.
Without loss of generality, assume that k1 < k2 < . . . < kv. Let {2, . . . , n} \
{k1, . . . , kv} = {h1, . . . , hs}, where s = n− v− 1. Then there is a derivation
∆′ such that

(W1,W2, . . . ,Wn)
∆′

∥∥{s,q↓,q↑}
[〈a2; [b1, Zk1 , . . . , Zkv]〉, Zh1 , . . . , Zhs]

q↓ .
[〈a2; b1〉, Z2, . . . , Zn]

The derivation ∆′ remains valid if we replace am and bm by ◦ for every m
with m > k1 and for m = 1. Then we get

(W2, . . . ,Wk1)
∆′′

∥∥{s,q↓,q↑}
[〈a2; bk1〉, Z2, . . . , Zk1−1]

which is a contradiction to the induction hypothesis.

(c) U = [Zk1, . . . , Zku] and V = ◦ for some u > 0 and k1, . . . , ku ∈ {2, . . . , n}.
Without loss of generality, assume that k1 < k2 < . . . < ku. Let {2, . . . , n} \
{k1, . . . , ku} = {h1, . . . , hs}, where s = n−u− 1. Then there is a derivation
∆′ such that

(W1,W2, . . . ,Wn)
∆′

∥∥{s,q↓,q↑}
[〈[a2, Zk1 , . . . , Zku]; b1〉, Zh1 , . . . , Zhs]

q↓ .
[〈a2; b1〉, Z2, . . . , Zn]

The derivation ∆′ remains valid if we replace am and bm by ◦ for every m
with 1 < m � ku. Then we get

(W1,Wku+1, . . . ,Wn)
∆′′

∥∥{s,q↓,q↑}
[〈aku+1; b1〉, Zku+1, . . . , Zn]

,

which is a contradiction to the induction hypothesis.

(ii) U = aj+1 and V = bj for some j = 1, . . . , n. Similar to (i).

(iii) R = [Zk1 , . . . , Zkr], T = ◦, U = ◦ and V = [Zl1 , . . . , Zlv] for some r, v > 0 and
k1, . . . , kr, l1, . . . , lv ∈ {1, . . . , n}. Then there is a derivation ∆′ such that

(W1,W2, . . . ,Wn)
∆′

∥∥{s,q↓,q↑}
[〈[Zk1, . . . , Zkr]; [Zl1 , . . . , Zlv]〉, Zh1 , . . . , Zhs]

q↓ ,
[Z1, Z2, . . . , Zn]

where s = n− r− v and {h1, . . . , hs} = {1, . . . , n}\{k1, . . . , kr, l1, . . . , lv}. With-
out loss of generality, we can assume that r = v = 1. Otherwise we could

212 7. A Noncommutative Extension of MELL

replace

[〈[Zk1, . . . , Zkr]; [Zl1 , . . . , Zlv]〉, Zh1 , . . . , Zhs]
q↓ by

[Z1, Z2, . . . , Zn]

[〈[Zk1, . . . , Zkr]; [Zl1 , . . . , Zlv]〉, Zh1 , . . . , Zhs]
q↓

[〈[Zk1 , . . . , Zkr]; Zl1〉, Zl2 , . . . , Zlv , Zh1 , . . . , Zhs]
q↓

[〈Zk1 ; Zl1〉, Zk2 , . . . , Zkr , Zl2 , . . . , Zlv , Zh1, . . . , Zhs]
q↓ .

[Z1, Z2, . . . , Zn]

Now let k = k1 and l = l1. Then we have

(W1,W2, . . . ,Wn)
∆′

∥∥{s,q↓,q↑}
[〈Zk; Zl〉, Zh1 , . . . , Zhs]

q↓ ,
[Z1, Z2, . . . , Zn]

where s = n− 2. There are two subcases.

(a) k < l. Then replace inside ∆′ all atoms am and bm by ◦ for every m with
m � k or l < m. The derivation ∆′ then becomes

(Wk+1, . . . ,Wl)
∆′′

∥∥{s,q↓,q↑}
[〈ak+1; bl〉, Zk+1, . . . , Zl−1]

which is a contradiction to the induction hypothesis.

(b) k > l. Then replace inside ∆′ all atoms am and bm by ◦ for every m with
k � m > l. The derivation ∆′ then becomes

(W1, . . . ,Wl,Wk+1, . . . ,Wn)
∆′′

∥∥{s,q↓,q↑}
[Z1, . . . , Zl−1, 〈ak+1; bl〉, Zk+1, . . . , Zn]

,

which is a contradiction to the induction hypothesis.

(iv) R = ◦, T = [Zk1, . . . , Zkt], U = [Zl1 , . . . , Zlu] and V = ◦ for some t, u > 0 and
k1, . . . , kt, l1, . . . , lu ∈ {1, . . . , n}. Similar to (iii).

(3) ρ = s. There are three possibilities to apply
S([R,U], T)
s
S [(R,T), U]

.

(i) R = aj+1, T = bj for some j = 1, . . . , n. Then, without loss of generality, we can
assume that j = 1. Further, U = [Zk1, . . . , Zku] for some u > 0 and k1, . . . , ku ∈
{2, . . . , n}. Without loss of generality, assume that k1 < k2 < . . . < ku. Let

7.2. Decomposition 213

{2, . . . , n} \ {k1, . . . , ku} = {h1, . . . , hs}, where s = n − u − 1. Then there is a
derivation ∆′ such that

(W1,W2, . . . ,Wn)
∆′

∥∥{s,q↓,q↑}
[([a2, Zk1 , . . . , Zku], b1), Zh1 , . . . , Zhs]
s .

[(a2, b1), Z2, . . . , Zn]

The derivation ∆′ remains valid if we replace am and bm by ◦ for every m with
1 < m � ku. Then we get

(W1,Wku+1, . . . ,Wn)
∆′′

∥∥{s,q↓,q↑}
[(aku+1, b1), Zku+1, . . . , Zn]

,

which is a contradiction to the induction hypothesis.

(ii) R = bj , T = aj+1 for some j = 1, . . . , n. Similar to (i).

(iii) R = ◦, T = [Zk1 , . . . , Zkt] and U = [Zl1 , . . . , Zlu] for some t, u > 0 and
k1, . . . , kt, l1, . . . , lu ∈ {1, . . . , n}. Similar to (2.iii). (See also case (iii) in the
proof of Proposition 6.2.13 on page 187.) ��

I believe that this property is already sufficient to completely characterise derivations
in the core of SBV . In other words, I conjecture that Theorem 6.2.20 can be generalised to
the case when seq is present.

In order to state this conjecture precisely, I need to generalise the definitions of Sec-
tion 6.2. The Definitions 6.2.1, 6.2.2, and 6.2.5 for occurrences, balanced structures, and
quasi-substructures, respectively, are easily extended to the case of BV structures.

7.2.7 Example Let R = [(a, [b, c], d), d̄, 〈[c̄, c]; b; a; ā〉]. Then

occR = {a, a, ā, b, b, c, c, c̄, d, d̄} .

This means that R is not balanced, because a, b and c occur more than once. The structure
[(a, b), 〈c̄; ā〉] is a quasi-substructure (but not a substructure) of R because

[(a, [b, ◦], ◦), ◦, 〈[c̄, ◦]; ◦; ◦; ā〉] = [(a, b), 〈c̄; ā〉] .

The structure [(a, b), 〈c̄; ā〉] is balanced.

On the other hand, the definition of circuits and cocircuits needs more attention in the
presence of seq. The following definition generalises Definition 6.2.9 (page 187).

7.2.8 Definition Let n > 0, let m = 2n, and let a1, a2, . . . , am be m different atoms.
Then the structure [Z1, . . . , Zn] is called a

〈
a1, a2, . . . , am

〉
-circuit , if

• Zj = (a2j, a2j+1) or Zj = 〈a2j ; a2j+1〉, for every j = 1, . . . , n − 1, and

• Zn = (am, a1) or Zn = 〈am; a1〉.
The structure (W1, . . . ,Wn) is called a

〈
a1, a2, . . . , am

〉
-cocircuit , if

• Wi = [a2i−1, a2i] or Wi = 〈a2i−1; a2i〉, for every i = 1, . . . , n.

A circuit is called a negation circuit if we have that a2 = ā1, a4 = ā3, . . . , am = ām−1.

214 7. A Noncommutative Extension of MELL

7.2.9 Example The structure [(a, c), 〈b̄; ā〉] is a
〈
ā, a, c, b̄

〉
-circuit and ([ā, a], [c, b̄]) is

a
〈
ā, a, c, b̄

〉
-cocircuit.

The following definition is a repetition of Definition 6.2.11 for BV structures.

7.2.10 Definition Let R be a BV structure and let a1, . . . , am be an even number of
atoms. The structure R contains a

〈
a1, . . . , am

〉
-circuit , if R has a quasi-substructure R′,

which is a
〈
a1, . . . , am

〉
-circuit. Similarly, R contains a

〈
a1, . . . , am

〉
-cocircuit , if R has

a quasi-substructure R′, which is a
〈
a1, . . . , am

〉
-cocircuit. The structure R contains a

negation circuit , if R has a quasi-substructure R′, which is a negation circuit.

7.2.11 Example The BV structure R = ([(a, b), 〈b̄; c̄〉, d], c) contains (among others) a〈
c̄, a, b, b̄

〉
-circuit because

([(a, b), 〈b̄; c̄〉, ◦], ◦) = [(a, b), 〈b̄; c̄〉] ,

and a
〈
b, b̄

〉
-cocircuit because

([(◦, b), 〈b̄; ◦〉, ◦], ◦) = [b, b̄] .

The definition of the relation � for BV structures is literally the same as for S◦ struc-
tures. But observe that the notion of circuit has changed.

Now we are able to state the conjecture mentioned before:

7.2.12 Conjecture Let R and T be two balanced structures with occR = occT . Then
we have,

T
‖SBVc
R

iff
T
‖SBV
R

iff T � R .

The implication from the first to the third statement of Conjecture 7.2.12 is an imme-
diate consequence of Lemma 7.2.6. The implication from the second to the first statement
is a triviality (because SBVc is a subset of SBV). There is also the possibility of showing
implication from the second to the third statement by using Proposition 7.4.30 (to be shown
later in this chapter) and Corollary 7.1.14.

The difficulty of proving the other direction of Conjecture 7.2.12 consists in constructing
a derivation from the given structures R and T . The method used in [BdGR97] cannot
be used because of shape of the switch rule (which ensures cut elimination, see [Ret99b,
Gug02e]), and the method that I used in Proposition 6.2.16 can not be used because of the
behaviour of the seq (see also [Tiu01]).

Proving Conjecture 7.2.12 would not only give a good understanding of derivability in
system SBV [Gug02b], but would also establish the equivalence of system BV and pomset
logic [Ret93, Ret97, Ret99b].

Let me now come to the main purpose of Lemma 7.2.6 in this section.

7.2.13 Corollary Let n � 1 and !R1, . . . , !Rn, ?T1, . . . , ?Tn be any NEL structures. Then
there is no derivation

([!R1, ?T1], [!R2, ?T2], . . . , [!Rn, ?Tn])
∆
∥∥{s,q↓,q↑}

[(!R2, ?T1), (!R3, ?T2), . . . , (!R1, ?Tn)]
.

7.3. Cut Elimination 215

Proof: By way of contradiction, assume there is such a derivation ∆. The rules s, q↓ and
q↑ have no access to the exponentials. Hence, we can replace inside ∆, the substructures
!R1, . . . , !Rn, ?T1, . . . , ?Tn by new atoms a1, . . . , an, b1, . . . , bn, respectively. This gives us a
valid derivation

([a1, b1], [a2, b2], . . . , [an, bn])
∆′

∥∥{s,q↓,q↑}
[(a2, b1), (a3, b2), . . . , (a1, bn)]

,

which is a contradiction to Lemma 7.2.6. ��

7.3 Cut Elimination

In this section I will prove cut elimination for system NEL (Theorem 7.1.6). For this, I will
use the second decomposition theorem in the same way as it has been done for system ELS
in Section 4.4. To eliminate the core up rules, I will then use the technique of splitting
combined with context reduction (as it has been done for system LS in Section 3.4). The
proof of the splitting lemma presented here is much simpler than the one in Section 3.4
because the noncore rules do not need to be considered and there are no additives present.

7.3.1 Splitting

The technique of splitting has been introduced by A. Guglielmi in [Gug02e] for proving cut
elimination for system BV . For explaining the idea behind splitting let me consider a purely
multiplicative sequent system, for example, multiplicative linear logic. If we have a proof
of a sequent � F{A � B}, Γ , where F{A � B} is a formula that contains the subformula
A�B, then we know that somewhere in the proof there is one and only one instance of the
� rule, which splits A and B along with their context (under the assumption that identity
is reduced to atomic form). In other words, the proof of � F{A � B}, Γ must be composed
of three pieces, ∆, Π1, and Π2, as follows:

��
��

������Π1

� A,Φ
��

��
������Π2

� B,Ψ
� � A � B,Φ, Ψ

															

∆

� F{A � B}, Γ

.

In the calculus of structures, many different proofs correspond to the sequent calculus one.
They differ because of the different possible sequencing of rules, and because rules in the
calculus of structures have smaller granularity and larger applicability. But, among all

216 7. A Noncommutative Extension of MELL

these proofs, there must also be one that fits the following scheme:

−
Π′

1

∥∥
[A,Φ]
Π′

2

∥∥
([A,Φ], [B,Ψ])
s

[([A,Φ], B), Ψ]
s ,

[(A,B), Φ, Ψ]
∆′

∥∥
[F (A,B), Γ]

which illustrates the idea behind the splitting technique. More precisely, the derivation
∆′ above implements a context reduction and a proper splitting . These principles can be
stated in general as follows:

(1) Context reduction: If S{R} is provable, then S{ } can be reduced to the structure
[{ }, PR], such that [R,PR] is provable. In the example above, [F{ }, Γ] is reduced
to [{ }, Γ ′], for some Γ ′, which is not explicitly shown in the derivation above.

(2) Splitting: If [(R,T), P] is provable, then P can be reduced to [PR, PT], such that
[R,PR] and [T, PT] are provable. In the example above, the structure Γ ′, that was
obtained by context reduction, is reduced to [Φ,Ψ].

Context reduction is proved by splitting, which is then at the core of the matter. The
biggest difficulty resides in proving splitting, and this mainly requires to find the right
induction measure. This particularly problematic if noncore rules like contraction need
to be considered or several different units are present, as it is the case in system LS (see
Section 3.4).

In the case of NEL, the induction measure will be based on the size of a structure, which
is a natural number and which is, informally speaking, the number of atoms occuring in
the structure. It is formally defined as follows.

7.3.1 Definition The size of a NEL structure R, denoted by size
(
R

)
, is inductively

defined as follows:
size

(◦) = 0 ,
size

(
a
)

= 1 ,
size

(
[R,T]

)
= size

(
(R,T)

)
= size

(〈R; T 〉) = size
(
R

)
+ size

(
T

)
,

size
(
!R

)
= size

(
?R

)
= size

(
R

)
.

7.3.2 Example The structure R = [!(a, c̄, 〈?ā; b〉), c] has size
(
R

)
= 5.

7.3.3 Definition The size of a proof −
Π‖NEL
R

is the pair

size
(
Π

)
=

〈
size

(
R

)
, length(Π)

〉
.

7.3. Cut Elimination 217

Given two proofs −
Π‖NEL
R

and −
Π′‖NEL
R′

, then define

size
(
Π

)
< size

(
Π′) ⇐⇒ size

(
R

)
< size

(
R′) or

size
(
R

)
= size

(
R′) and length(Π) < length(Π′) .

7.3.4 Definition For notational convenience, let me define system NELm to be the
system obtained from NEL by removing the noncore rules:

NELm = NEL \ {w↓,b↓} = {◦↓, ai↓, s,q↓,p↓} .

7.3.5 Lemma (Splitting) Let R, T , P be any NEL structures.

(a) If [(R,T), P] is provable in NELm, then there are structures PR and PT , such that

[PR, PT]
‖NELm
P

and −‖NELm
[R,PR]

and −‖NELm
[T, PT]

.

(b) If [〈R; T 〉, P] is provable in NELm, then there are structures PR and PT , such that

〈PR; PT 〉
‖NELm
P

and −‖NELm
[R,PR]

and −‖NELm
[T, PT]

.

Proof: If R = ◦ or T = ◦, then the two statements are trivially true. Let us now consider
the case R �= ◦ �= T . Both statements are proved simultaneously by induction on the size of
the proof of [(R,T), P] or [〈R; T 〉, P], respectively. What follows is a case analysis which
is conceptually similar to the cut elimination proof in the sequent calculus.

(a) Consider the bottommost rule instance ρ in the proof −
Π‖NELm

[(R,T), P]
. We can assume

that the application of ρ is nontrivial. We can distinguish between three conceptually
different cases:

(1) The redex of ρ is inside R, T or P .

(2) The substructure (R,T) is inside a passive structure of the redex of ρ.

(3) The substructure (R,T) is inside an active structure of the redex of ρ.

Compared with a cut elimination proof in the sequent calculus (see Section 2.3),
case (2) is similar to a commutative case and case (3) is similar to a key case. There
is no counterpart to case (1) in the sequent calculus because there is no possibility of
deep inference.

(1) The redex of ρ is inside R, T or P . There are three subcases.

(i) The redex of ρ is inside R. Then the proof Π has the shape

−
Π′

∥∥NELm
[(R′, T), P]

ρ .
[(R,T), P]

218 7. A Noncommutative Extension of MELL

By applying the induction hypothesis to Π′, we get

[PR′ , PT]
∆P‖NELm

P
and −

Π′
R‖NELm

[R′, PR′]
and −

ΠT‖NELm
[T, PT]

.

Let PR = PR′ . From Π′
R, we can get

−
Π′

R

∥∥NELm
[R′, PR′]

ρ .
[R,PR′]

(ii) The redex of ρ is inside T . Analogous to the previous case.

(iii) The redex of ρ is inside P . Then the proof Π has the shape

−
Π′

∥∥NELm
[(R,T), P ′]

ρ .
[(R,T), P]

By applying the induction hypothesis to Π′, we get

[PR, PT]
∆′

P‖NELm
P ′

and −
ΠR‖NELm
[R,PR]

and −
ΠT‖NELm
[T, PT]

.

From ∆′
P , we can get

[PR, PT]
∆′

P

∥∥NELm
P ′

ρ .
P

(2) The substructure (R,T) is inside a passive structure of the redex of ρ. This is
only possible if ρ = s or ρ = q↓. There are again three subcases (there are more
than two because seq is noncommutative):

(i) ρ = s and P = [(P1, P2), P3, P4] and Π is

−
Π′

∥∥NELm
[([(R,T), P1, P3], P2), P4]
s .

[(R,T), (P1, P2), P3 , P4]

By applying the induction hypothesis to Π′, we get

[Q1, Q2]
∆1‖NELm

P4

and −
Π1‖NELm

[(R,T), P1, P3, Q1]
and −

Π2‖NELm
[P2, Q2]

.

We have that size
(
[(R,T), P1, P3, Q1]

)
< size

(
[(R,T), (P1, P2), P3, P4]

)
be-

cause size
(
P2

)
> 0 (because the instance of s is nontrivial) and size

(
Q1

)
�

7.3. Cut Elimination 219

size
(
P4

)
. Therefore, we can apply the induction hypothesis again to Π1. We

get
[PR, PT]

∆2‖NELm
[P1, P3, Q1]

and −
ΠR‖NELm
[R,PR]

and −
ΠT‖NELm
[T, PT]

.

We can now build
[PR, PT]
∆2

∥∥NELm
[P1, P3, Q1]

Π2

∥∥NELm
[(P1, [P2, Q2]), P3, Q1]
s .

[(P1, P2), P3, Q1, Q2]
∆1

∥∥NELm
[(P1, P2), P3, P4]

(ii) ρ = q↓ and P = [〈P1; P2〉, P3, P4] and Π is
−

Π′
∥∥NELm

[〈[(R,T), P1, P3]; P2〉, P4]
q↓ .

[(R,T), 〈P1; P2〉, P3 , P4]

By applying the induction hypothesis to Π′, we get

〈Q1; Q2〉
∆1‖NELm

P4

and −
Π1‖NELm

[(R,T), P1, P3, Q1]
and −

Π2‖NELm
[P2, Q2]

.

As before, we can apply the induction hypothesis again to Π1 (because the
instance of q↓ is nontrivial, which means that size

(
P2

)
> 0). We get

[PR, PT]
∆2‖NELm

[P1, P3, Q1]
and −

ΠR‖NELm
[R,PR]

and −
ΠT‖NELm
[T, PT]

.

We can now build
[PR, PT]
∆2

∥∥NELm
[P1, P3, Q1]

Π2

∥∥NELm
[〈[P1, Q1]; [P2, Q2]〉, P3]

q↓ .
[〈P1; P2〉, P3, 〈Q1; Q2〉]

∆1

∥∥NELm
[〈P1; P2〉, P3, P4]

(iii) ρ = q↓ and P = [〈P1; P2〉, P3, P4] and Π is
−

Π′
∥∥NELm

[〈P1; [(R,T), P2, P3]〉, P4]
q↓ .

[(R,T), 〈P1; P2〉, P3 , P4]

220 7. A Noncommutative Extension of MELL

Analogous to the previous case.

(3) The substructure (R,T) is inside an active structure of the redex of ρ. In this
case we have only one possibility:

(i) ρ = s, R = (R1, R2), T = (T1, T2), P = [P1, P2] and Π is
−

Π′
∥∥NELm

[([(R1, T1), P1], R2, T2), P2]
s .

[(R1, R2, T1, T2), P1 , P2]

By applying the induction hypothesis to Π′, we get

[Q1, Q2]
∆1‖NELm

P2

and −
Π1‖NELm

[(R1, T1), P1, Q1]
and −

Π2‖NELm
[(R2, T2), Q2]

.

Since the instance of s is nontrivial, we have that at least one of R2 and T2 is
not ◦. Hence, size

(
[(R1, T1), P1, Q1]

)
< size

(
[(R1, R2, T1, T2), P1, P2]

)
. We

also have P1 �= ◦ and size
(
[(R2, T2), Q2]

)
< size

(
[(R1, R2, T1, T2), P1, P2]

)
.

This means, we can apply the induction hypothesis to Π1 and Π2 and get

[PR1 , PT1]
∆3‖NELm

[P1, Q1]
and −

ΠR1
‖NELm

[R1, PR1]
and −

ΠT1
‖NELm

[T1, PT1]
and

[PR2 , PT2]
∆4‖NELm

Q2

and −
ΠR2
‖NELm

[R2, PR2]
and −

ΠT2
‖NELm

[T2, PT2]
.

Now let PR = [PR1 , PR2] and PT = [PT1 , PT2]. We can build

[PR1 , PR2 , PT1 , PT2]
∆4

∥∥NELm
[PR1 , PT1 , Q2]

∆3

∥∥NELm
[P1, Q1, Q2]

∆1

∥∥NELm
[P1, P2]

and

−
ΠR1

∥∥NELm
[R1, PR1]
ΠR2

∥∥NELm
[(R1, [R2, PR2]), PR1]
s and

[(R1, R2), PR1 , PR2]

−
ΠT1

∥∥NELm
[T1, PT1]
ΠT2

∥∥NELm
[(T1, [T2, PT2]), PT1]
s .

[(T1, T2), PT1 , PT2]

(b) This is very similar to (a). Consider the bottommost rule instance ρ in the proof
−

Π‖NELm
[〈R; T 〉, P]

. We can assume that the application of ρ is nontrivial. Again, we

distinguish between three cases:

7.3. Cut Elimination 221

(1) The redex of ρ is inside R, T or P . Analogous to (a.1).

(2) The substructure 〈R; T 〉 is inside a passive structure of the redex of ρ. This case
is the same as (a.2), with the only difference that the derivation

[PR, PT]
∆2‖NELm

[P1, P3, Q1]
is replaced by

〈PR; PT 〉
∆2‖NELm

[P1, P3, Q1]
.

(3) The substructure 〈R; T 〉 is inside an active structure of the redex of ρ. This
case is also similar to (a.3). But here we have that ρ = q↓ and there are two
possibilities:

(i) R = 〈R1; R2〉, P = [〈P1; P2〉, P3] and Π is

−
Π′

∥∥NELm
[〈[R1, P1]; [〈R2; T 〉, P2]〉, P3]

q↓ .
[〈R1; R2; T 〉, 〈P1; P2〉, P3]

By applying the induction hypothesis to Π′, we get

〈Q1; Q2〉
∆1‖NELm

P3

and −
Π1‖NELm

[R1, P1, Q1]
and −

Π2‖NELm
[〈R2; T 〉, P2, Q2]

.

Since the instance of q↓ is nontrivial (and therefore at least one of R1 and
P1 is not ◦), we can apply the induction hypothesis again to Π2 and get

〈PR2 ; PT 〉
∆2‖NELm

[P2, Q2]
and −

ΠR2
‖NELm

[R2, PR2]
and −

ΠT‖NELm
[T, PT]

.

Now let PR = 〈[P1, Q1]; PR2〉. We can build

〈[P1, Q1]; PR2 ; PT 〉
∆2

∥∥NELm
〈[P1, Q1]; [P2, Q2]〉

q↓
[〈P1; P2〉, 〈Q1; Q2〉]

∆1

∥∥NELm
[〈P1; P2〉, P3]

−
Π1

∥∥NELm
[R1, P1, Q1]

ΠR2

∥∥NELm
〈[R1, P1, Q1]; [R2, PR2]〉

and q↓ .
[〈R1; R2〉, 〈[P1, Q1]; PR2〉]

(ii) T = 〈T1; T2〉, P = [〈P1; P2〉, P3] and Π is

−
Π′

∥∥NELm
[〈[〈R; T1〉, P1]; [T2, P2]〉, P3]

q↓ .
[〈R; T1; T2〉, 〈P1; P2〉, P3]

Similar to (i). ��

222 7. A Noncommutative Extension of MELL

7.3.6 Lemma (Splitting for Exponentials) Let R and P be any NEL structures.

(a) If [!R,P] is provable in NELm, then there are structures PR1, . . . , PRh for some h � 0,
such that

[?PR1, . . . , ?PRh]
‖NELm
P

and −‖NELm
[R,PR1, . . . , PRh]

.

(b) If [?R,P] is provable in NELm, then there is a structure PR, such that

!PR

‖NELm
P

and −‖NELm
[R,PR]

.

Proof: In the case that R = ◦, both statements are trivially true. Let us now assume that
R �= ◦. I will proceed by induction on the same measure as in the previous proof.

(a) Consider the bottommost rule instance ρ in the proof −
Π‖NELm

[!R,P]
. We can assume

that the application of ρ is nontrivial. There are again the same three cases:

(1) The redex of ρ is inside R or P . Analogous to (a.1) in the previous proof.

(2) The substructure !R is inside a passive structure of the redex of ρ. This case is
the same as (a.2) in the previous proof, but this time we have

[?PR1, . . . , ?PRh]
∆2‖NELm

[P1, P3, Q1]
instead of

[PR, PT]
∆2‖NELm

[P1, P3, Q1]
.

(3) The substructure !R is inside an active structure of the redex of ρ. There is only
one possibility

(i) ρ = p↓, P = [?P1, P2] and Π is

−
Π′

∥∥NELm
[![R,P1], P2]

p↓ .
[!R, ?P1 , P2]

By applying the induction hypothesis to Π′, we get structures ?PR2, . . . , ?PRh

such that
[?PR2, . . . , ?PRh]

‖NELm
P2

and −‖NELm
[R,P1, PR2, . . . , PRh]

.

Now let PR1 = P1. We immediately get

[?P1, ?PR2, . . . , ?PRh]
‖NELm

[?P1, P2]
.

7.3. Cut Elimination 223

(b) Consider the bottommost rule instance ρ in the proof −
Π‖NELm

[?R,P]
. We can assume

that the application of ρ is nontrivial. There are again the same three cases:

(1) The redex of ρ is inside R or P . Analogous to (a.1) in the previous proof.

(2) The substructure ?R is inside a passive structure of the redex of ρ. This case is
the same as (a.2) in the previous proof, but this time we have

!PR

∆2‖NELm
[P1, P3, Q1]

instead of
[PR, PT]

∆2‖NELm
[P1, P3, Q1]

.

(3) The substructure ?R is inside an active structure of the redex of ρ. There is only
one possibility

(i) ρ = p↓, P = [!P1, P2] and Π is

−
Π′

∥∥NELm
[![R,P1], P2]

p↓ .
[?R, !P1 , P2]

By applying part (a) to Π′, we get

[?Q1, . . . , ?Qh]
‖NELm
P2

and −‖NELm
[R,P1, Q1, . . . , Qh]

.

Now let PR = [P1, Q1, . . . , Qh]. We can build:

![P1, Q1, . . . , Qh]∥∥{p↓}
[!P1, ?Q1, . . . , ?Qh] .∥∥NELm

[!P1, P2] ��

7.3.7 Lemma (Splitting for Atoms) Let a be any atom and P be any NEL structure.

If there is a proof −‖NELm
[a, P]

then there is a derivation
ā
‖NELm
P

.

Proof: This is very similar to the previous two proofs. Consider the bottommost rule
instance ρ in the proof −

Π‖NELm
[a, P]

, where the application of ρ is nontrivial. There are again

the same three cases:

(1) The redex of ρ is inside P . As before.

224 7. A Noncommutative Extension of MELL

(2) The atom a is inside a passive structure of the redex of ρ. As before, but this time
we have

ā
∆2‖NELm

[P1, P3, Q1]
instead of

[PR, PT]
∆2‖NELm

[P1, P3, Q1]
.

(3) The atom a is inside an active structure of the redex of ρ. There is only one possibility:
ρ = ai↓, P = [ā, P1] and Π is −

Π′
∥∥NELm
P1

ai↓ .
[a, ā, P1]

Then, we immediately get
ā
‖NELm

[ā, P1]
. ��

7.3.2 Context Reduction

The idea of context reduction is to reduce a problem that concerns an arbitrary (deep)
context S{ } to a problem that concerns only a shallow context [{ }, P]. In the case of
cut elimination, for example, we will then be able to apply splitting.

7.3.8 Lemma (Context Reduction) Let R be a NEL structure and S{ } be a context.
If S{R} is provable in NELm, then there is a structure PR, such that [R,PR] is provable in
NELm and such that for every structure X, we have

[X,PR]
‖NELm

S{X}
or

![X,PR]
‖NELm

S{X}
.

Proof: This proof will be carried out by induction on the context S{ }.
(1) S{ } = { }. Then the lemma is trivially true for PR = ◦.
(2) S{ } = [S′{ }, P] for some P , such that S{R} is not a proper par.

(i) S′{ } = { }. Then the lemma is trivially true for PR = P .

(ii) S′{ } = (S′′{ }, T) for some context S′′{ } and structure T �= ◦. Then we can
apply splitting (Lemma 7.3.5) to the proof of [(S′′{R}, T), P] and get:

[PS , PT]
∆P‖NELm

P
and −

ΠS‖NELm
[S′′{R}, PS]

and −
ΠT‖NELm
[T, PT]

.

By applying the induction hypothesis we get PR such that −‖NELm
[R,PR]

and for

every X
[X,PR]
‖NELm

[S′′{X}, PS]
or

![X,PR]
‖NELm

[S′′{X}, PS]
.

7.3. Cut Elimination 225

From this we can build:

[X,PR]∥∥NELm
[S′′{X}, PS]

ΠT

∥∥NELm
[(S′′{X}, [T, PT]), PS]
s or

[(S′′{X}, T), PS , PT]
∆P

∥∥NELm
[(S′′{X}, T), P]

![X,PR]∥∥NELm
[S′′{X}, PS]

ΠT

∥∥NELm
[(S′′{X}, [T, PT]), PS]
s .

[(S′′{X}, T), PS , PT]
∆P

∥∥NELm
[(S′′{X}, T), P]

(iii) S′{ } = 〈S′′{ }; T 〉 for some context S′′{ } and structure T �= ◦. Then we can
apply splitting (Lemma 7.3.5) to the proof of [〈S′′{R}; T 〉, P] and get:

〈PS ; PT 〉
∆P‖NELm

P
and −

ΠS‖NELm
[S′′{R}, PS]

and −
ΠT‖NELm
[T, PT]

.

By applying the induction hypothesis we get PR such that −‖NELm
[R,PR]

and for

every X
[X,PR]
‖NELm

[S′′{X}, PS]
or

![X,PR]
‖NELm

[S′′{X}, PS]
.

From this we can build:

[X,PR]∥∥NELm
[S′′{X}, PS]

ΠT

∥∥NELm
〈[S′′{X}, PS]; [T, PT]〉

q↓ or
[〈S′′{X}; T 〉, 〈PS ; PT 〉]

∆P

∥∥NELm
[〈S′′{X}; T 〉, P]

![X,PR]∥∥NELm
[S′′{X}, PS]

ΠT

∥∥NELm
〈[S′′{X}, PS]; [T, PT]〉

q↓ .
[〈S′′{X}; T 〉, 〈PS ; PT 〉]

∆P

∥∥NELm
[〈S′′{X}; T 〉, P]

(iv) S′{ } = !S′′{ } for some context S′′{ }. Then we can apply splitting for the
exponentials (Lemma 7.3.6) to the proof of [!S′′{R}, P] and get:

[?P1, . . . , ?Ph]
∆P‖NELm

P
and −

ΠS‖NELm
[S′′{R}, P1, . . . , Ph]

.

By applying the induction hypothesis to ΠS we get PR such that −‖NELm
[R,PR]

and

for every X

[X,PR]
‖NELm

[S′′{X}, P1, . . . , Ph]
or

![X,PR]
‖NELm

[S′′{X}, P1, . . . , Ph]
.

226 7. A Noncommutative Extension of MELL

From this we can build:

![X,PR]∥∥NELm
![S′′{X}, P1, . . . , Ph]∥∥{p↓}

[!S′′{X}, ?P1, . . . , ?Ph] .
∆P

∥∥NELm
[!S′′{X}, P]

(v) S′{ } = ?S′′{ } for some context S′′{ }. Then we can apply splitting for the
exponentials (Lemma 7.3.6) to the proof of [?S′′{R}, P] and get:

!PS

∆P‖NELm
P

and −
ΠS‖NELm

[S′′{R}, PS]
.

By applying the induction hypothesis to ΠS we get PR such that −‖NELm
[R,PR]

and

for every X
[X,PR]
‖NELm

[S′′{X}, PS]
or

![X,PR]
‖NELm

[S′′{X}, PS]
.

From this we can build:
![X,PR]∥∥NELm

[?S′′{X}, !PS]
p↓

![S′′{X}, PS]
∆P

∥∥NELm
[?S′′{X}, P]

.

(3) S{ } = (S′{ }, T) for some context S′{ } and T �= ◦. This is a special case of (2.ii)
for P = ◦.

(4) S{ } = 〈S′{ }; T 〉 for some context S′{ } and T �= ◦. This is a special case of (2.iii)
for P = ◦.

(5) S{ } = !S′{ } for some context S′{ }. This is a special case of (2.iv) for P = ◦.
(6) S{ } = ?S′{ } for some context S′{ }. This is a special case of (2.v) for P = ◦. ��

7.3.3 Elimination of the Up Fragment

In this section, I will first show three Lemmata, which are all easy consequences of splitting
and which say that the core up rules of system SNEL are admissible if they are applied in a
shallow context [{ }, P]. Then I will show how context reduction is used to extend these
Lemmata to any context. As a result we get a modular proof of cut elimination because
the three core up rules ai↑, q↑, and p↑ are shown to be admissible independently from each
other.

7.3. Cut Elimination 227

7.3.9 Lemma Let P be a structure and let a be an atom. If [(a, ā), P] is provable in
NELm, then P is also provable in NELm.

Proof: Apply splitting to the proof of [(a, ā), P]. This yields:

[Pa, Pā]
‖NELm
P

and −‖NELm
[a, Pa]

and −‖NELm
[ā, Pā]

.

By applying Lemma 7.3.7, we get

ā
‖NELm
Pa

and
a
‖NELm
Pā

.

From this we can build:

◦↓ ◦
ai↓

[ā, a]
‖NELm

[Pa, Pā] .
‖NELm
P ��

7.3.10 Lemma Let R,T,U, V and P be any NEL structures. If [(〈R; U〉, 〈T ; V 〉), P] is
provable in NELm, then [〈(R,T); (U, V)〉, P] is also provable in NELm.

Proof: By applying splitting to the proof of [(〈R; U〉, 〈T ; V 〉), P], we get two structures
P1 and P2 such that:

[P1, P2]
‖NELm
P

and −‖NELm
[〈R; U〉, P1]

and −‖NELm
[〈T ; V 〉, P2]

.

By applying splitting again, we get PR, PT , PU and PV such that

〈PR; PU 〉
‖NELm
P1

and −‖NELm
[R,PR]

and −‖NELm
[U,PU]

and

〈PT ; PV 〉
‖NELm
P2

and −‖NELm
[T, PT]

and −‖NELm
[V, PV]

.

228 7. A Noncommutative Extension of MELL

From this we can build:

−∥∥NELm
〈([R,PR], [T, PT]); ([U,PU], [V, PV])〉∥∥{s}
〈[(R,T), PR, PT]; [(U, V), PU , PV]〉∥∥{q↓}

[〈(R,T); (U, V)〉, 〈PR, PU 〉, 〈PT , PV 〉]∥∥NELm
[〈(R,T); (U, V)〉, P1, P2] .∥∥NELm

[〈(R,T); (U, V)〉, P] ��
7.3.11 Lemma Let R,T and P be any NEL structures. If [(?R, !T), P] is provable in
NELm, then [?(R,T), P] is also provable in NELm.

Proof: By applying splitting to the proof of [(?R, !T), P], we get two structures P1 and
P2 such that:

[P1, P2]
‖NELm
P

and −‖NELm
[?R,P1]

and −‖NELm
[!T, P2]

.

By applying splitting again, we get PR, PT1,. . . ,PTn, such that

!PR

‖NELm
P1

and −‖NELm
[R,PR]

and

[?PT1, . . . , ?PTn]
‖NELm
P2

and −‖NELm
[T, PT1, . . . , PTn]

.

From this we can build:

−∥∥NELm
!([R,PR], [T, PT1, . . . , PTn])∥∥{s}
![(R,T), PR, PT1, . . . , PTn]∥∥{p↓}

[?(R,T), !PR, ?PT1, . . . , ?PTn]∥∥NELm
[?(R,T), P1, P2] .∥∥NELm

[?(R,T), P] ��
By the use of context reduction, we can extent the statements of Lemmata 7.3.9–7.3.11

from shallow contexts [{ }, P] to arbitrary contexts S{ }.

7.3. Cut Elimination 229

7.3.12 Lemma Let R, T , U and V be any structures, let a be an atom and let S{ } be
any context. Then we have the following

• If −‖NELm
S(a, ā)

, then −‖NELm
S{◦}

.

• If −‖NELm
S(〈R; U〉, 〈T ; V 〉)

, then −‖NELm
S〈(R,T); (U, V)〉

.

• If −‖NELm
S(?R, !T)

, then −‖NELm
S{?(R,T)}

.

Proof: All three statements are proved similarly. I will here show only the third. To the
given proof of S(?R, !T) apply context reduction, to get a structure P , such that

−‖NELm
[(?R, !T), P]

and for all structures X, either

[X,P]
‖NELm

S{X}
or

![X,P]
‖NELm

S{X}
.

In particular, for X = ?(R,T), we have

[?(R,T), P]
‖NELm

S{?(R,T)}
or

![?(R,T), P]
‖NELm

S{?(R,T)}
.

By Lemma 7.3.11 there is a proof −‖NELm
[?(R,T), P]

, from which we get −‖NELm
S{?(R,T)}

. ��

Now we can very easily give a proof for the cut elimination theorem for system NEL.

Proof of Theorem 7.1.6: First, we apply to a given proof −‖SNEL∪{◦}
R

the second
decomposition theorem, which yields

◦↓ ◦
‖{ai↓}

R4

‖SNELc
R3

‖{ai↑}
R2

‖{w↓}
R1

‖{b↓}
R

230 7. A Noncommutative Extension of MELL

for some structures R1, R2, R3 and R4. The instances of b↑ and w↑ disappear because
their premise is the unit ◦ (compare Corollary 4.4.1). In other words, we have

−
Π‖NELm ∪ {ai↑,q↑,p↑}
R2

‖{w↓}
R1

‖{b↓}
R

.

All instances of ai↑, q↑ and p↑ are now eliminated from Π, starting with the topmost
instance: Let ρ ∈ {ai↑,q↓,p↑}. Then we can replace

−‖NELm
S{W}

ρ
S{Z}
‖NELm∪{ai↑,q↑,p↑}

R2

‖{w↓}
R1

‖{b↓}
R

by

−‖NELm
S{Z}
‖NELm∪{ai↑,q↑,p↑}

R2

‖{w↓}
R1

‖{b↓}
R

,

by applying Lemma 7.3.12. ��

Observe that we are not able to obtain a proof of the shape

◦↓ ◦
‖{ai↓}

R3

‖{s,q↓,p↓}
R2

‖{w↓}
R1

‖{b↓}
R

,

(compare Proposition 4.4.14), because the rule ai↓ cannot be permuted over q↓ without
introducing instances of q↑ (see case (x.c) in the proof of Lemma 7.2.4). This is also
the reason, why all attempts to prove cut elimination for BV and NEL via a permutation
argument (as done in Section 4.4 for ELS) failed.

However, we have the following:

7.4. The Undecidability of System NEL 231

7.3.13 Proposition For every proof −‖NEL
R

, there is a proof

−
Π‖NELm
R2

‖{w↓}
R1

‖{b↓}
R

,

for some structures R1 and R2.

7.4 The Undecidability of System NEL

Since the introduction of linear logic [Gir87a], the complexity of the provability problem of
its fragments has been studied. The multiplicative fragment (MLL) is NP-complete [Kan94],
the multiplicative additive fragment (MALL) is PSPACE-complete and full propositional
linear logic is undecidable [LMSS92]. The decidability of the multiplicative exponential
fragment (MELL) is still an open problem. But in a purely noncommutative setting, i.e.
in the presence of two mutually dual noncommutative connectives, the multiplicatives and
the exponentials are sufficient to get undecidability [LMSS92].

In this section I will show that the provability in system NEL is undecidable. This
means that in a mixed commutative and noncommutative system in which there is only one
single self-dual noncommutative connective, the multiplicatives and the exponentials alone
are sufficient to get undecidability. For showing this, A. Guglielmi proposes in [Gug02a] an
encoding of Post’s correspondence problem, which makes the noncommutativity correspond
to sequential composition of words. Since I was not able to find a complete proof along
these lines, I will here use an encoding of two counter machines (two tape nonwriting Turing
machines [Min61]), which also has the advantage of being simpler.

The undecidability of NEL shows that it is possible to have an undecidable propositional
multiplicative exponential system without relying on the additives of linear logic, two mu-
tually dual noncommutative connectives [LMSS92], or second order quantifiers [LS96].

This shows that the ability of copying information (i.e. reusing the program instructions)
was the only missing ingredient for making BV (which is obviously decidable) undecidable.
If it turns out that MELL is decidable (as many believe), then the border to undecidability
is crossed by the self-dual seq, because it allows to model the tapes of a nonwriting Turing
machine. In particular, the seq allows to test whether the head of the Turing machine is at
the end of a (semi-infinite) tape, i.e. the zero-test.

In the following, I will first (in Section 7.4.1) introduce two counter machines [Min61,
Lam61] and show in Section 7.4.2 how they are encoded in system NEL. The encoding is
pretty much inspired by [Kan00], and the proof of its completeness is an easy exercise (done
in Section 7.4.3).

However, the proof of the soundness of the encoding is quite different from what has
been done so far. There are two reasons for this: First, the simple way of extracting the
computation sequence of the machine from the proof of the encoding, as done in [LMSS92,
Kan95] for full linear logic, is not possible because the calculus of structures allows more

232 7. A Noncommutative Extension of MELL

freedom in applying and permuting rules than the sequent calculus does. And second, the
use of phase spaces [Gir87a], as it has been done in [Laf96, LS96, Kan00], is not possible
because (so far) there is no phase semantics available for NEL.

The method I will use instead (in Section 7.4.5) is the following. The given proof in sys-
tem NEL of an encoding of a two-counter machine is first transformed into a certain normal
form, which allows to remove the exponentials. The resulting proof in the multiplicative
fragment has as conclusion a structure which has the shape of what I call a weak encoding.
From this proof, I will extract the first computation step of the machine and another proof
(in the multiplicative fragment) which has as conclusion again a weak encoding. By an
inductive argument it is then possible to obtain the whole computation sequence.

In order to carry out the technical details, I need to prove some facts about system BV ,
which will be done in Section 7.4.4.

7.4.1 Two Counter Machines

Two counter machines have been introduced by M. Minsky in [Min61] as two tape nonwrit-
ing Turing machines. He showed that any (usual) Turing machine can be simulated on a
two counter machine. In [Lam61], J. Lambek showed that any recursive function can be
computed by an n counter machine, for some number n ∈ N.

7.4.1 Definition A two counter machine M is a tuple (Q, q0, n0,m0, qf , T), where Q
is a finite set of states, q0 ∈ Q is called the initial state, qf ∈ Q is called the final state,
n0,m0 ∈ N represent the initial positions of the heads on the two tapes, and T ⊆ Q×I×Q
is a finite set of transitions, where

I = {inc1,dec1, zero1, inc2,dec2, zero2}
is the set of possible instructions.

7.4.2 Example The running example in this section will be the following

M = ({q0, q1, q2}, q0, 1, 0, q1, T) , where
T = {(q0,dec2, q2), (q1,dec1, q1), (q0, zero2, q1)} .

7.4.3 Definition Let M = (Q, q0, n0,m0, qf , T) be a two counter machine. A configu-
ration of M is given by a tuple (q, n,m), where q ∈ Q is a state and n and m are natural
numbers. The configuration (q0, n0,m0) is called initial configuration. A configuration
(q′, n′,m′) is reachable in one step from a configuration (q, n,m), written as

(q, n,m)→ (q′, n′,m′) ,

if one of the following six cases holds:

(q, inc1, q′) ∈ T and n′ = n + 1 and m′ = m ,
(q,dec1, q′) ∈ T and n > 0, n′ = n− 1 and m′ = m ,

(q, zero1, q′) ∈ T and n′ = n = 0 and m′ = m ,
(q, inc2, q′) ∈ T and n′ = n and m′ = m + 1 ,
(q,dec2, q′) ∈ T and n′ = n and m > 0, m′ = m− 1 ,

(q, zero2, q′) ∈ T and n′ = n and m′ = m = 0 .

7.4. The Undecidability of System NEL 233

Further, a configuration (q′, n′,m′) is reachable in r steps from a configuration (q, n,m),
written as

(q, n,m)→r (q′, n′,m′) ,

if

• r = 0 and (q′, n′,m′) = (q, n,m) or

• r � 1 and there is a configuration (q′′, n′′,m′′) such that (q, n,m)→ (q′′, n′′,m′′) and
(q′′, n′′,m′′)→r−1 (q′, n′,m′).

A configuration (q′, n′,m′) is reachable from a configuration (q, n,m), written as

(q, n,m)→∗ (q′, n′,m′) ,

if there is an r ∈N such that (q, n,m)→r (q′, n′,m′).

In other words, the relation →∗ is the transitive closure of →.

7.4.4 Example For the machine in Example 7.4.2, we have for example

(q0, 5, 2)→ (q2, 5, 1) and (q1, 5, 2) →4 (q1, 1, 2) .

7.4.5 Definition A two counter machine M = (Q, q0, n0,m0, qf , T) accepts a configu-
ration (q, n,m), if

(q, n,m)→∗ (qf , 0, 0) .

7.4.6 Example The machine in Example 7.4.2 accepts for example the configuration
(q0, 8, 0), because (q0, 8, 0) → (q1, 8, 0) →8 (q1, 0, 0). More precisely, it accepts any configu-
ration (q0, n, 0) for n � 0. In particular it also accepts its initial configuration (q0, 1, 0).

7.4.7 Theorem In general, it is undecidable whether a two counter machine accepts its
initial configuration. [Min61, Lam61]

7.4.8 Remark In Definition 7.4.1, I defined two counter machines to have only one
final state, whereas in the standard textbook definition [Min61, HU79, Koz97], they might
have many final states. But this is not a problem, since any two counter machine M with
many final states qf1, . . . , qfn can be transformed into a two counter machine M′ that has
only one final state and that accepts the same configurations, by adding a new state qf

(which will be the new final state) and a transition (qfi, zero2, qf) for each i = 1, . . . , n.

7.4.2 Encoding Two Counter Machines in NEL Structures

Let a be an atom and n ∈ N. Then an denotes the structure 〈a; a; . . . ; a〉 with n copies of
a. More precisely,

a0 = ◦
an = 〈an−1; a〉 , for n � 1 .

234 7. A Noncommutative Extension of MELL

7.4.9 Encoding Let now a two counter machine M = (Q, q0, n0,m0, qf , T) be given.
For each state q ∈ Q, I will introduce a fresh atom, also denoted by q. Further, I will need
four atoms a, b, c and d. Without loss of generality, let Q = {q0, q1, . . . , qz} for some z � 0.
Then qf = qi for some i ∈ {0, . . . , z}. A configuration (q, n,m) will be encoded by the
following structure

〈b; an; q; cm; d〉 .

Since T is finite, we have T = {t1, t2, . . . , th} for some h ∈ N (if T = ∅, then h = 0). For
each k ∈ {1, . . . , h}, I will define the structure Tk, that encodes the transition tk, as follows.
For all i, j ∈ {0, . . . , z},

if tk = (qi, inc1, qj) , then Tk = (q̄i, 〈a; qj〉) ,

if tk = (qi,dec1, qj) , then Tk = (〈ā; q̄i〉, qj) ,

if tk = (qi, zero1, qj), then Tk = (〈b̄; q̄i〉, 〈b; qj〉) ,

if tk = (qi, inc2, qj) , then Tk = (q̄i, 〈qj; c〉) ,

if tk = (qi,dec2, qj) , then Tk = (〈q̄i; c̄〉, qj) ,

if tk = (qi, zero2, qj), then Tk = (〈q̄i; d̄〉, 〈qj; d〉) .

I will say that a structure T encodes a transition of M, if T = Tk for some k ∈ {1, . . . , h}.
The machine M is encoded by the structure

Menc = [?T1, . . . , ?Th, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉] .

The structure Menc is called the encoding of M.

7.4.10 Example The machine in Example 7.4.2 is encoded by the structure

Menc = [?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉] .

7.4.11 Theorem A two counter machineM accepts its initial configuration if and only
if its encoding Menc is provable in NEL.

From this we can obtain immediately the following:

7.4.12 Theorem Provability in system NEL is undecidable.

Proof: By way of contradiction, assume the existence of a decision procedure for probability
in NEL. Then we could decide whether for a given two counter machine M, its encoding
Menc is provable in NEL. By Theorem 7.4.11, we could therefore decide whetherM accepts
its initial configuration. This is a contradiction to Theorem 7.4.7. ��

The remaining sections are devoted to the proof of Theorem 7.4.11. As expected, one
direction is easy and the other is difficult. Let me start with the easy one.

7.4. The Undecidability of System NEL 235

7.4.3 Completeness of the Encoding

7.4.13 Lemma Given a two counter machine M = (Q, q0, n0,m0, qf , T).

If (qi, n,m)→ (qj, n
′,m′) then

[?T1, . . . , ?Th, 〈b; an′
; qj; cm′

; d〉, 〈b̄; q̄f ; d̄〉]∥∥NEL
[?T1, . . . , ?Th, 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]

.

Proof: There are six possible cases how the machineM can go from (qi, n,m) to (qj, n
′,m′):

• The first counter has been incremented: (qi, inc1, qj) ∈ T and n′ = n+1 and m′ = m.
Then we have Tk = (q̄i, 〈a; qj〉) for some k ∈ {1, . . . , h}. Now use

[?T1, . . . , ?Th, 〈b; an+1; qj; cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an; ([q̄i, qi] , 〈a; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
s

[?T1, . . . , ?Th, 〈b; an; [(q̄i, 〈a; qj〉), qi] ; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈 [(q̄i, 〈a; qj〉), 〈b; an; qi〉] ; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, (q̄i, 〈a; qj〉), 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
b↓ .

[?T1, . . . , ?Th, 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
• The first counter has been decremented: (qi,dec1, qj) ∈ T and n > 0 and n′ = n− 1

and m′ = m. Then we have Tk = (〈ā; q̄i〉, qj) for some k ∈ {1, . . . , h}. Now use

[?T1, . . . , ?Th, 〈b; an−1; qj; cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an−1; ([q̄i, qi] , qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈b; an−1; (〈 [ā, a] ; [q̄i, qi]〉, qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈b; an−1; ([〈ā; q̄i〉, 〈a; qi〉] , qj); cm; d〉, 〈b̄; q̄f ; d̄〉]
s

[?T1, . . . , ?Th, 〈b; an−1; [(〈ā; q̄i〉, qj), 〈a; qi〉] ; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈 [(〈ā; q̄i〉, qj), 〈b; an; qi〉] ; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, (〈ā; q̄i〉, qj), 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
b↓ .

[?T1, . . . , ?Th, 〈b; an; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
• The first counter has been tested for zero: (qi, zero1, qj) ∈ T and n = n′ = 0 and

m′ = m. Then we have Tk = (〈b̄; q̄i〉, 〈b; qj〉) for some k ∈ {1, . . . , h}. Now use

[?T1, . . . , ?Th, 〈b; qj; cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈([q̄i, qi] , 〈b; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
ai↓

[?T1, . . . , ?Th, 〈(〈 [b̄, b] ; [q̄i, qi]〉, 〈b; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, 〈([〈b̄; q̄i〉, 〈b; qi〉] , 〈b; qj〉); cm; d〉, 〈b̄; q̄f ; d̄〉]
s

[?T1, . . . , ?Th, 〈 [(〈b̄; q̄i〉, 〈b; qj〉), 〈b; qi〉] ; cm; d〉, 〈b̄; q̄f ; d̄〉]
q↓

[?T1, . . . , ?Th, (〈b̄; q̄i〉, 〈b; qj〉), 〈b; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
b↓ .

[?T1, . . . , ?Th, 〈b; qi; cm; d〉, 〈b̄; q̄f ; d̄〉]
The other three cases (where the second counter is concerned) are similar. ��

236 7. A Noncommutative Extension of MELL

7.4.14 Lemma Given a two counter machine M = (Q, q0, n0,m0, qf , T).

If (q, n,m)→∗ (q′, n′,m′) then
[?T1, . . . , ?Th, 〈b; an′

; q′; cm′
; d〉, 〈b̄; q̄f ; d̄〉]∥∥NEL

[?T1, . . . , ?Th, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉]
.

Proof: By definition there is a number r ∈ N such that (q, n,m) →r (q′, n′,m′). Apply
induction on r and Lemma 7.4.13 to get the result. ��

7.4.15 Lemma Given a two counter machine M = (Q, q0, n0,m0, qf , T). Then there
is a proof −∥∥NEL

[?T1, . . . , ?Th, 〈b; qf ; d〉, 〈b̄; q̄f ; d̄〉]
.

Proof: Use w↓ to eliminate the ?Ti, and q↓ and ai↓ for the remaining structure. ��

Now we can prove the first direction of Theorem 7.4.11.

7.4.16 Proposition Given a two counter machine M = (Q, q0, n0,m0, qf , T).

If (q0, n0,m0)→∗ (qf , 0, 0) then −‖NEL
Menc

.

Proof: Use −
Π
∥∥NEL

[?T1, . . . , ?Th, 〈b; qf ; d〉, 〈b̄; q̄f ; d̄〉]
∆
∥∥NEL

[?T1, . . . , ?Th, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉]

,

where Π exists by Lemma 7.4.15 and ∆ by Lemma 7.4.14. ��

7.4.17 Example The proof of the encoding in Example 7.4.10 has the following shape:

−∥∥NEL
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; q1; d〉, 〈b̄; q̄1; d̄〉]∥∥NEL

[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q1; d〉, 〈b̄; q̄1; d̄〉]∥∥NEL
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉]

7.4.4 Some Facts about System BV

Before I can show the soundness of the encoding, I need to establish some facts about
system BV . The first observation is that if in a provable structure R, some atoms are
renamed in such a way that dual atoms are mapped to dual atoms, then the result is still
provable. This is made precise as follows.

7.4. The Undecidability of System NEL 237

7.4.18 Definition A set P of atoms is called clean if for all atoms a ∈ P, we have
ā /∈ P. Let e : P → Q be a mapping, where P and Q are two clean sets of atoms. If R is a
BV structure, then Re is the structure obtained from R by replacing every atom a by e(a).
More precisely, the mapping (·)e is defined inductively on BV structures as follows:

◦e = ◦

ae =

e(a) if a ∈ P
e(a) if ā ∈ P
a otherwise

[R,T]e = [Re, T e]
(R,T)e = (Re, T e)
〈R; T 〉e = 〈Re; T e〉

R̄e = Re

7.4.19 Example Let P = {ā, b} and Q = {c}, and let e(ā) = e(b) = c. Then

[〈a; b; c; d〉, 〈ā; d̄; b̄; ā〉]e = [〈c̄; c; c; d〉, 〈c; d̄; c̄; c〉] .

7.4.20 Lemma Let e : P → Q be a mapping, where P and Q are two clean sets of
atoms, and let R be a structure. If R is provable in BV , then Re is also provable in BV .

Proof: Let −
Π‖BV
R

be given. Now let Πe be the proof obtained from Π by replacing each

structure S occurring inside Π by Se. Each rule application remains valid. Therefore,
−

Πe‖BV
Re

is a valid proof. ��

7.4.21 Example Let P = {ā, b} and Q = {c}, and let e(ā) = e(b) = c as above. Let
R = [〈ā; b; d〉, 〈a; b̄; d̄〉], which is provable in BV . By Lemma 7.4.20, we have

◦↓ ◦
ai↓

[d, d̄]
ai↓ 〈 [b, b̄] ; [d, d̄]〉

ai↓ 〈 [ā, a] ; [b, b̄]; [d, d̄]〉
q↓ 〈[ā, a]; [〈b; d〉, 〈b̄; d̄〉]〉
q↓ �

[〈ā; b; d〉, 〈a; b̄; d̄〉]

◦↓ ◦
ai↓

[d, d̄]
ai↓ 〈 [c, c̄] ; [d, d̄]〉

ai↓ 〈 [c, c̄] ; [c, c̄]; [d, d̄]〉
q↓ 〈[c, c̄]; [〈c; d〉, 〈c̄; d̄〉]〉
q↓ .

[〈c; c; d〉, 〈c̄; c̄; d̄〉]
The converse of Lemma 7.4.20 does in general not hold. For example R = [ā, b̄] is not
provable, but Re = [c, c̄] is.

7.4.22 Observation If a structure R is provable in BV , then every atom a occurs as
often in R as ā. This is easy to see: The only possibility, where an atom a can disappear
is an instance of ai↓. But then at the same time an atom ā disappears.

For a given proof Π of a structure R, I will call the killer (in Π) of a given occurrence
atom a, that occurrence of ā, that vanishes together with it in an instance of ai↓. The

238 7. A Noncommutative Extension of MELL

situation is trivial, if in R every atom occurs exactly once. For example in the left-hand
side proof in Example 7.4.21, the killer of b̄ is b. In the right-hand side proof, more care is
necessary: The killer of the first occurrence of c̄ is the first c. The killer of the second c is
the second c̄.

7.4.23 Definition A BV structure R is called a nonpar structure if it it does not contain
a par structure as substructure, i.e. it is generated by the grammar

R ::= ◦ | a | (R,R) | 〈R; R〉 | R̄ .

7.4.24 Lemma Let V and P be BV structures, such that V̄ is a nonpar structure.

If −‖BV
[V̄ , P]

, then
V
‖BV
P

.

Proof: By structural induction on V̄ . The base case is either trivial (for V = ◦) or a case of
Lemma 7.3.7 (if V is an atom). For the inductive cases apply splitting (Lemma 7.3.5). ��

7.4.25 Definition Let R be a BV structure and let a be an atom occurring in R. The
atom a is unique in R if it occurs exactly once.

7.4.26 Example In [〈c̄; c; d〉, 〈c; c̄; d̄〉], the atoms d and d̄ are unique, but c and c̄ are
not.

7.4.27 Lemma Let V �= ◦ be a BV structure and S{ } and S′{ } be two contexts, such
that all atoms in V are unique in S{V }.

If
S′{V }
‖BV

S{V }
, then

S′{X}
‖BV

S{X}
for every structure X .

Proof: Pick any atom a inside V , and replace every other atom occurring in V everywhere
inside

S′{V }
∆‖BV

S{V }
by ◦. This yields a derivation

S′{a}
∆′‖BV
S{a}

,

in which the atom a can everywhere be replaced by the structure X. ��

The following lemma will play a crucial role in the proof of the soundness of the encoding
of two counter machines.

7.4. The Undecidability of System NEL 239

7.4.28 Lemma Let R = [Z, (V̄ , T), 〈U ; V ; W 〉] be a BV structure, such that V̄ is a
nonpar structure and all atoms occurring in V are unique in R. If R is provable in BV ,
then R′ = [Z, 〈U ; T ; W 〉] is also provable in BV .

Proof: Let −
Π‖BV

[Z, (V̄ , T), 〈U ; V ; W 〉]
be given. By splitting (Lemma 7.3.5), there are structures P and Q such that

[P,Q]
∆‖BV

[Z, 〈U ; V ; W 〉]
and −

Π1‖BV
[V̄ , P]

and −
Π2‖BV
[T,Q]

.

By applying Lemma 7.4.24 to Π1, we get

V
∆1‖BV

P
,

from which we can get the following derivation:

[V,Q]
∆1‖BV
[P,Q]
∆‖BV

[Z, 〈U ; V ; W 〉]

.

Now, we can apply Lemma 7.4.27, which gives us

[T,Q]
∆3‖BV

[Z, 〈U ; T ; W 〉]
,

Composing Π2 and ∆3 yields the desired proof of R′. ��
In the following, I will generalise Proposition 6.2.13 (page 187). The notion of negation

circuit has already been generalised in Definition 7.2.8. In Section 6.2, I was mainly con-
cerned with balanced structures, i.e. structures in which each atom occurs at most once. But
an inspection of the proof of Proposition 6.2.13 shows that this property is only needed for
the atoms that participate in the negation circuit. This motivates the following definition.

7.4.29 Definition A BV structure R contains a (balanced) negation circuit if R has a
quasi-substructure R′ which is a negation circuit and every atom that occurs in R′ is unique
in R.

7.4.30 Proposition Let R be a BV structure. If R contains a balanced negation circuit,
then R is not provable in BV .

Proof: Since R contains a balanced negation circuit, we have atoms a1, ā1, a2, ā2, . . . ,
an, ān which are unique in R such that R contains a

〈
a1, ā1, a2, ā2, . . . , an, ān

〉
-circuit. By

240 7. A Noncommutative Extension of MELL

way of contradiction, assume that there is a proof of R. This proof remains valid, if all
atoms other that a1, ā1, a2, ā2, . . . , an, ān are replaced by ◦ everywhere (some rule instances
become trivial and can be removed). This yields a proof

−
Π‖BV

[Z1, Z2, . . . , Zn]
,

for some n � 1, where

• Zj = (āj, aj+1) or Zj = 〈āj; aj+1〉 for every j = 1, . . . , n− 1, and

• Zn = (ān, a1) or Zn = 〈ān; a1〉.
Now, I will proceed by induction on n to show a contradiction. This will be very similar
to the proof of Lemma 7.2.6. The induction measure is simpler because the rule q↑ cannot
occur. (I will again use the convention that j + 1 = 1 in the case of j = n.)

Base Case: If n = 1, then obviously, there is no proof

−
Π‖BV

(ā1, a1)
or −

Π‖BV
〈ā1; a1〉

.

Inductive Case: Suppose there is no proof Π for all n′ < n. Now consider the bottommost
rule instance ρ in

−
Π‖BV

[Z1, Z2, . . . , Zn]
,

where Zj = (āj , aj+1) or Zj = 〈āj ; aj+1〉 for every j = 1, . . . , n. Without loss of
generality, we can assume that ρ is nontrivial.

(1) ρ = ◦↓ or ρ = ai↓. This is impossible.

(2) ρ = q↓ or ρ = s. This case is exactly the same as in the proof of Lemma 7.2.6.
The only difference is that we are now talking about proofs instead of derivations
with premise (W1, . . . ,Wn). ��

This proposition is related to provability in BV , as Lemma 7.2.6 is related to derivability.
More precisely, I believe, that the converse of Proposition 7.4.30, i.e. a generalisation of
Proposition 6.2.16 does also hold.

7.4.31 Conjecture Let R be a balanced BV structure (i.e. every atom in R is unique)
such that for every atom a occurring in R, its dual ā does also occur. Then R is provable
in BV if and only if R does not contain a negation circuit.

Obviously, there is a close relationship between Conjecture 7.2.12 and Conjecture 7.4.31.
In fact, both statements are equivalent, which means that it suffices to prove one of them.
I will not go into further details here. I only want to mention that from Conjecture 7.4.31
the equivalence to Ch. Retoré’s pomset logic follows more obviously because the definition
of a negation circuit corresponds exactly to Ch. Retoré’s cordless Æ-circuits [Ret99b].

7.4. The Undecidability of System NEL 241

7.4.5 Soundness of the Encoding

Before I now prove the second (more difficult) direction of Theorem 7.4.11, let me explain
where the difficulties arise. The main problem is the freedom of applying rules in the
calculus of structures. If a structure is provable in NEL then there is usually not only one
way of doing so. In our situation this has the following consequence. The encoding Menc

of a given machine M has a certain shape (namely a big par structure containing several
why-not structures and two seq structures), which has been preserved while simulating the
computation of the machine in the proof of Proposition 7.4.16 (see Example 7.4.17). But
this shape does not at all have to be preserved in an arbitrary proof of Menc.

7.4.32 Example The encoding in Example 7.4.10 could also be proved as follows:

−∥∥NEL
[〈a; q0; d〉, 〈ā; q̄0; d̄〉]∥∥NEL

[〈[a; q0; d], 〈ā; [?(〈q̄0; d̄〉, 〈q1; d〉), 〈q̄0; d̄〉]〉〉]
w↓

[〈[a, !?(〈q̄0; c̄〉, q2)]; q0; d〉, 〈ā; [?(〈q̄0; d̄〉, 〈q1; d〉), 〈q̄0; d̄〉]〉]
q↓

[?(〈q̄0; d̄〉, 〈q1; d〉), 〈[a, !?(〈q̄0; c̄〉, q2)]; q0; d〉, 〈ā; q̄0; d̄〉]∥∥NEL
[?(〈q̄0; d̄〉, 〈q1; d〉), 〈[a, !?(〈q̄0; c̄〉, q2)]; q0; d〉, 〈[q̄1, ?(〈ā; q̄1〉, q1)]; d̄〉]

q↓
[?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈[a, !?(〈q̄0; c̄〉, q2)]; q0; d〉, 〈q̄1; d̄〉]

p↓
[?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈[a, ?(〈q̄0; c̄〉, q2)]; q0; d〉, 〈q̄1; d̄〉]

q↓
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈a; q0; d〉, 〈q̄1; d̄〉]

ai↓
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈 [b, b̄] ; [〈a; q0; d〉, 〈q̄1; d̄〉]〉]

q↓ ,
[?(〈q̄0; c̄〉, q2), ?(〈ā; q̄1〉, q1), ?(〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉]

in which the computation steps of the corresponding two counter machine are not obvious.

The basic idea of what follows is: if there is a proof

−
Π‖NEL
Menc

,

then there is also a proof
−

Π′‖NEL
Menc

,

that preserves (to some extend) the shape of the encoding and from which we can extract
the computation of the machine. For this, the notion of weak encoding is introduced.

7.4.33 Definition Let M = (Q, q0, n0,m0, qf , T) a two counter machine. Then a BV
structure W is called a weak encoding of M, if

W = [U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] ,

242 7. A Noncommutative Extension of MELL

for some r, n,m � 0 and q ∈ Q, where the structures U1, . . . , Ur encode transitions of M,
i.e. for every l ∈ {1, . . . , r}, we have that Ul = Tk for some k ∈ {1, . . . , h}.

Observe that in a weak encoding W of a machine M, some transitions Tk might occur
many times and some might not occur at all.

7.4.34 Lemma Given a two counter machine M = (Q, q0, n0,m0, qf , T).

If −‖NEL
Menc

, then there is a weak encoding W of M, such that

−‖BV
W
‖{w↓,b↓}
Menc

.

Proof: By Proposition 7.3.13, we have a proof

−
Π‖NELm
M′

enc

∆‖{w↓,b↓}
Menc

.

Let W be the structure, which is obtained from M′
enc by removing all exponentials, and

let Π′ be the proof obtained from Π by removing the exponentials from each structure
occurring inside Π. By this manipulation, all rule instances remain valid, except for the
promotion rule, which becomes trivial:

S{![R,T]}
p↓

S [!R, ?T]
�

S [R,T]
p↓′

S [R,T]
,

and can therefore be omitted. This means that Π′ is valid proof of W in system BV . Further,
M′

enc does not contain any ! because Menc is !-free. Therefore, there is a derivation

W
‖{w↓,b↓}
M′

enc

because of

S{R}
w↓

[?R,R]
b↓ .

S{?R}

Hence, we have
W
‖{w↓,b↓}
Menc

. ��

7.4.35 Example In our example, we get

W = [(〈ā; q̄1〉, q1), (〈q̄0; d̄〉, 〈q1; d〉), 〈b; a; q0; d〉, 〈b̄; q̄1; d̄〉] .

The following lemma is nothing but an act of bureaucracy. The idea is to rename the
atoms q0, . . . , qz that encode the states of the machine in such a way that each new atom
occurs only once. This will then simplify the extraction of the computation sequence from
the proof.

7.4. The Undecidability of System NEL 243

7.4.36 Lemma Let M = (Q, q0, n0,m0, qf , T) be a two counter machine, let W =
[U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] be a weak encoding of M, and let P = {p0, . . . , pr} be
a clean set of r+1 fresh atoms. If W is provable in BV , then there is a mapping e : P → Q
and a structure

W̃ = [Ũ1, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] ,

such that

(1) W̃ is provable in BV ,

(2) all atoms p0, p̄0, . . . , pr, p̄r occur exactly once in W̃ ,

(3) for every l ∈ {1, . . . , r}, the atoms p̄l−1 and pl occur inside Ũl,

(4) W̃ e = W , and

(5) for every l ∈ {1, . . . , r}, we have Ũ e
l = Ul′ for some l′ ∈ {1, . . . , r},

Proof: Let O = {o0, . . . , or} be another clean set of r + 1 fresh atoms. The structure W
contains r + 1 occurrences of atoms q ∈ Q and r + 1 occurrences of atoms q′ with q̄′ ∈ Q
(because each Ul for l = 1, . . . , r contains exactly one q ∈ Q and one q′ with q̄′ ∈ Q).
Since W is provable, each such q and q′ must have its killer inside W . Now let W ′ be
obtained from W by replacing each such q and its killer by ol and ōl, respectively, for
some l = 0, . . . , r, such that each o ∈ O is used exactly once. Then W ′ is also provable
because the replacement can be continued to the proof Π of W . This also yields a mapping
f : O → Q with f(o) = q if an occurrence of q has been replaced by o. We now have

W ′ = [U ′
1, . . . , U

′
r, 〈b; an; ol; cm; d〉, 〈b̄; ōl′ ; d̄〉]

for some l, l′ ∈ {0, . . . , r}. Further, all atoms o0, ō0, . . . , or, ōr occur exactly once in W ′. The
atom ōl must occur inside a U ′

s1
for some s1 ∈ {1, . . . , r} (i.e. l �= l′). Otherwise the atoms

o0, ō0, . . . , ol−1, ōl−1, ol+1, ōl+1, . . . , or, ōr would form a negation circuit inside [U ′
1, . . . , U

′
r],

which is by Proposition 7.4.30 a contradiction to the provability of W ′. Now let W ′
0 be

obtained from W ′ by replacing ol and ōl by p0 and p̄0, respectively. Let ol1 be the atom
from O that occurs inside U ′

s1
. Again, we have that ōl1 must occur inside U ′

s2
for some

s2 ∈ {1, . . . , r} (i.e. l1 �= l′), because otherwise there would be a negation circuit inside
[U ′

1, . . . , U
′
r]. Let W ′

1 be obtained from W ′
0 by replacing ol1 and ōl1 by p1 and p̄1, respectively.

Repeat this to get the structures W ′
2, . . . ,W

′
r. This also defines a bijective mapping g :

O → P with g(o) = p if o has been replaced by p. Now let W̃ = W ′
r and e(p) = f(g−1(p)).

Further let Ũ1 = U ′
s1

g, Ũ2 = U ′
s2

g, and so on. Then W̃ is provable in BV , because W ′ is
provable in BV . Further, all atoms p0, p̄0, . . . , pr, p̄r occur exactly once in W̃ because all
atoms o0, ō0, . . . , or, ōr occur exactly once in W ′. The replacement of atoms is done in such
a way that for every l ∈ {1, . . . , r}, the atoms p̄l−1 and pl occur inside Ũl and W̃ e = W . ��
7.4.37 Example For the weak encoding in Example 7.4.35, we get

W̃ = [(〈p̄0; d̄〉, 〈p1; d〉)︸ ︷︷ ︸
Ũ1

, (〈ā; p̄1〉, p2)︸ ︷︷ ︸
Ũ2

, 〈b; a; p0; d〉 , 〈b̄; p̄2; d̄〉] ,

with e(p0) = q0 and e(p1) = e(p2) = q1.

The following lemma is the core of the proof of the soundness of the encoding.

244 7. A Noncommutative Extension of MELL

7.4.38 Lemma Let M = (Q, q0, n0,m0, qf , T) a two counter machine and let W =
[U1, . . . , Ur, 〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉] be a weak encoding of M.

If −‖BV
W

then (q, n,m)→r (qf , 0, 0) .

Proof: By induction on r:

Base case: If r = 0 then W = [〈b; an; q; cm; d〉, 〈b̄; q̄f ; d̄〉]. This is only provable if n = m =
0 and q = qf , i.e. if W = [〈b; qf ; d〉, 〈b̄; q̄f ; d̄〉]. We certainly have that (qf , 0, 0) →0

(qf , 0, 0).

Inductive case: By Lemma 7.4.36, there is a set P = {p0, . . . , pr} of r + 1 fresh atoms, a
mapping e : P → Q and a provable structure

W̃ = [Ũ1, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] ,

with W̃ e = W , and such that the killer p̄0 of p0 is inside Ũ1. Now we have six cases:

(1) Ũ1 = (p̄0, 〈a; p1〉). Then

W̃ = [Ũ2, . . . , Ũr, (p̄0, 〈a; p1〉)︸ ︷︷ ︸
Ũ1

, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

Since W̃ is provable in BV , we have (by Lemma 7.4.28) that

W̃ ′ = [Ũ2, . . . , Ũr, 〈b; an; a; p1; cm; d〉, 〈b̄; p̄r; d̄〉]

is also provable. Let now W ′ = W̃ ′e and assume e(p1) = q′. Then

W ′ = [U1, . . . , Ul−1, Ul+1, . . . , Ur, 〈b; an+1; q′; cm; d〉, 〈b̄; q̄f ; d̄〉] ,

for some l ∈ {1, . . . , r}. We have that W ′ is a weak encoding of M because W
is a weak encoding of M. By Lemma 7.4.20, W ′ is provable in BV . Hence, we
can apply the induction hypothesis and get

(q′, n + 1,m)→r−1 (qf , 0, 0) .

Further, we have that
Ul = Ũ e

1 = (q̄, 〈a; q′〉) .

Therefore (q, inc1, q′) ∈ T . Hence

(q, n,m)→ (q′, n + 1,m) ,

which gives us
(q, n,m)→r (qf , 0, 0) .

7.4. The Undecidability of System NEL 245

(2) Ũ1 = (〈ā; p̄0〉, p1). Then

W̃ = [(〈ā; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

Mark inside W̃ the atom ā inside Ũ1 by ā• and its killer by a•. By way of
contradiction, assume now that a• occurs inside Ũl = (p̄l−1, 〈a•; pl〉) for some
l ∈ {2, . . . , r}. This means that

W̃ = [(〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũl−1, (p̄l−1, 〈a•; pl〉)︸ ︷︷ ︸
Ũl

, Ũl+1, . . . , Ũr,

〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

But then W̃ contains a negation circuit:

[(ā•, p1), (p̄1, p2), . . . , (p̄l−1, a
•)] ,

which is (by Proposition 7.4.30) a contradiction to the provability of W̃ . Hence,
the atom a• must occur inside the encoding of the configuration, which means
that n > 0. Further, we have that

W̃ = [(〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b; an′
; a•; an′′

; p0; cm; d〉, 〈b̄; p̄r; d̄〉] ,

for some n′, n′′ with n = n′ + 1 + n′′. I will now show that n′′ = 0. For this,
assume by way of contradiction, that n′′ > 0. Mark the first atom a in an′′

by
a◦ and its killer by ā◦. Then ā◦ must occur inside Ũk = (〈ā◦; p̄k−1〉, pk) for some
k ∈ {2, . . . , r}. Then we have that

W̃ = [(〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũk−1, (〈ā◦; p̄k−1〉, pk)︸ ︷︷ ︸
Ũk

, Ũk+1, . . . , Ũr,

〈b; an′
; a•; a◦; an′′−1; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

But then W̃ contains a negation circuit:

[〈a•; a◦〉, 〈ā◦; p̄k−1〉, (pk−1, p̄k−2), . . . , (p2, p̄1), (p1, ā
•)] ,

which is (by Proposition 7.4.30) a contradiction to the provability of W̃ . Hence,
the atom a◦ cannot exist, which means that n′′ = 0 and n′ = n− 1. This means
that

W̃ = [Ũ2, . . . , Ũr, (〈ā•; p̄0〉, p1)︸ ︷︷ ︸
Ũ1

, 〈b; an−1; a•; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

Since this is provable in BV , we have (by Lemma 7.4.28) that

W̃ ′ = [Ũ2, . . . , Ũr, 〈b; an−1; p1; cm; d〉, 〈b̄; p̄r; d̄〉]

246 7. A Noncommutative Extension of MELL

is also provable. Let now W ′ = W̃ ′e and e(p1) = q′. Then

W ′ = [U1, . . . , Ul−1, Ul+1, . . . , Ur, 〈b; an−1; q′; cm; d〉, 〈b̄; q̄f ; d̄〉] ,

for some l ∈ {1, . . . , r}. As before, W ′ is a weak encoding of M and (by
Lemma 7.4.20) provable in BV . Hence, we can apply the induction hypothe-
sis and get

(q′, n− 1,m)→r−1 (qf , 0, 0) .

Further, we have that
Ul = Ũ e

1 = (〈ā; q̄〉, q′) .

Therefore (q,dec1, q′) ∈ T . Since we also have n > 0, we have

(q, n,m)→ (q′, n− 1,m) ,

which gives us
(q, n,m)→r (qf , 0, 0) .

(3) Ũ1 = (〈b̄; p̄0〉, 〈b; p1〉). Then

W̃ = [(〈b̄; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

Mark inside W̃ the atom b̄ inside Ũ1 by b̄• and its killer by b•. By way of
contradiction, assume now that b• occurs inside Ũl = (〈b̄; p̄l−1〉, 〈b•; pl〉) for some
l ∈ {2, . . . , r} (it can certainly not be inside Ũ1). Then we have that

W̃ = [(〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũl−1, (〈b̄; p̄l−1〉, 〈b•; pl〉)︸ ︷︷ ︸
Ũl

, Ũl+1, . . . , Ũr,

〈b; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

But then we have a negation circuit inside W̃ :

[(b̄•, p1), (p̄1, p2), . . . , (p̄l−1, b
•)] ,

which is (by Proposition 7.4.30) a contradiction to the provability of W̃ . Hence,
the atom b• must occur inside the encoding of the configuration. This means
that

W̃ = [(〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũr, 〈b•; an; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

I will now show that n = 0. For this, assume by way of contradiction, that n > 0.
Mark the first atom a in an by a◦ and its killer by ā◦. Then ā◦ must occur inside
Ũk = (〈ā◦; p̄k−1〉, pk) for some k ∈ {2, . . . , r}. This means that

W̃ = [(〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, Ũ2, . . . , Ũk−1, (〈ā◦; p̄k−1〉, pk)︸ ︷︷ ︸
Ũk

, Ũk+1, . . . , Ũr,

〈b•; a◦; an−1; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

7.4. The Undecidability of System NEL 247

But then W̃ contains a negation circuit:

[〈b•; a◦〉, 〈ā◦; p̄k−1〉, (pk−1, p̄k−2), . . . , (p2, p̄1), (p1, b̄
•)] ,

which is (by Proposition 7.4.30) a contradiction to the provability of W̃ . Hence,
the atom a◦ cannot exist, which means that n = 0. This means that

W̃ = [Ũ2, . . . , Ũr, (〈b̄•; p̄0〉, 〈b; p1〉)︸ ︷︷ ︸
Ũ1

, 〈b•; p0; cm; d〉, 〈b̄; p̄r; d̄〉] .

Since this is provable in BV , we have (by Lemma 7.4.28) that

W̃ ′ = [Ũ2, . . . , Ũr, 〈b; p1; cm; d〉, 〈b̄; p̄r; d̄〉]

is also provable. Let now W ′ = W̃ ′e and e(p1) = q′. Then

W ′ = [U1, . . . , Ul−1, Ul+1, . . . , Ur, 〈b; q′; cm; d〉, 〈b̄; q̄f ; d̄〉] ,

for some l ∈ {1, . . . , r}. As before, W ′ is a weak encoding of M and (by
Lemma 7.4.20) provable in BV . Hence, we can apply the induction hypothe-
sis and get

(q′, 0,m)→r−1 (qf , 0, 0) .

Further, we have that
Ul = Ũ e

1 = (〈b̄; q̄〉, 〈b; q′〉) .

Therefore (q, zero1, q′) ∈ T . Since we also have n = 0, we have

(q, 0,m)→ (q′, 0,m) ,

which gives us
(q, n,m)→r (qf , 0, 0) .

(4) Ũ1 = (p̄0, 〈p1; c〉). Similar to (1).

(5) Ũ1 = (〈p̄0; c̄〉, p1). Similar to (2).

(6) Ũ1 = (〈p̄0; d̄〉, 〈p1; d〉). Similar to (3). ��
7.4.39 Proposition Given a two counter machine M = (Q, q0, n0,m0, qf , T).

If −‖NEL
Menc

then (q0, n0,m0)→∗ (qf , 0, 0) .

Proof: First apply Lemma 7.4.34 to get
−‖BV
W
‖{w↓,b↓}
Menc

,

where W is a weak encoding ofM. Since the rules w↓ and b↓ cannot modify the substruc-
ture 〈b; an0 ; q0; cm0 ; d〉 of Menc, this substructure must still be present in W . Hence, we
have that

W = [U1, . . . , Ur, 〈b; an0 ; q0; cm0 ; d〉, 〈b̄; q̄f ; d̄〉] ,

for some r � 0. By Lemma 7.4.38, we have that (q0, n0,m0)→∗ (qf , 0, 0). ��
Proof of Theorem 7.4.11: For the first direction use Proposition 7.4.16 and for the
second direction use Proposition 7.4.39. ��

248 7. A Noncommutative Extension of MELL

7.5 Discussion

The results presented in this chapter were the original motivation for this work, namely, to
extend A. Guglielmi’s system BV by the exponentials of linear logic, prove cut elimination
for the new system, and show that it is undecidable. Proving cut elimination turned out
to be more difficult than expected in the beginning. The techniques of decomposition and
splitting had to be developed for that. The impact of decomposition on cut elimination
has already been discussed before. The technique of splitting is the most general technique
for proving cut elimination in the calculus of structures that has been developed so far.
The technique of permuting rules, as it has been used in Chapter 4, seems to fail when
more than two binary connectives are present, as it is the case in full linear logic and in
NEL. Using semantical arguments, as done in [BT01], cannot be applied if no (truth value)
semantics is available, as in the case of BV and NEL. The traditional method of the sequent
calculus, as done in the first proof of Theorem 3.4.1 on page 42, cannot be applied if no
sequent calculus system is available, as in the case of BV and NEL.

Also the proof of the undecidability of system NEL offered some unexpected difficulties
because the known techniques of using phase semantics [Laf96, LS96, Kan00] or extracting
the computation sequence from a sequent calculus proof [LMSS92, Kan95] could not be
applied. In fact, finding a proof of the undecidability of NEL was the original motivation
for inventing the notion of negation circuit. Only afterwards I realised the equivalence to
Ch. Retoré’s cordless Æ-circuits [Ret99b].

There is another interesting observation to make about the undecidability result. In the
case of propositional linear logic, the additives are added to MELL in order to get undecid-
ability. If the additives are added to MLL, which is NP-complete, then the complexity of
the provability problem jumps to PSPACE. In the case of NEL, the seq is added to MELL
to get undecidability. But if we add seq to MLL, then the complexity class is not increased.
Provability of BV is still in NP. This means that seq is in some sense weaker than the ad-
ditives. This observation is also justified by the fact that the two decomposition theorems
for SELS (Section 4.3) could be generalised to the case where seq is added, but (so far) not
to the case where the additives are added.

8
Open Problems

In this chapter I have collected observations, conjectures, and vague sketched research prob-
lems, that are related to the results presented in this thesis and that I consider important.
I believe that they deserve further investigation but I did not have the time to go deeper
into the matter. (The order in which they are listed here is randomly chosen and does not
imply any preference order.)

8.1 Quantifiers

The calculus of structures is also able to deal with quantifiers. The rules for classical first
order predicate logic have already been shown in [BT01, Brü03b]. The rules for the first
order quantifiers in linear logic are very similar:

S{∀x.[R,T]}
u1↓

S [∀x.R,∃x.T]
and

S{R{x← t}}
n1↓

S{∃x.R} ,

where the De Morgan laws and the equations

∀x.R = R = ∃x.R if x is not free in R

are added to the equational theory. The two advantages over the sequent calculus rules that
already occur in the classical case are also present in linear logic: First, both rules are sound
in the sense that the premise implies the conclusion, without any further quantifications,
and second, there is no need for a proviso saying that the variable x is not free in the
conclusion of the rule (the proviso has moved to the equational theory).

This pattern can also be continued to the second order propositional quantifiers, where
the rules are similar. If we add the quantifiers to the language in the obvious way, together
with the equations for the De Morgan laws and

∀a.R = R = ∃a.R , if a is not free in R,

249

250 8. Open Problems

we can extend system SLS by the following rules:

S{∀a.[R,T]}
u2↓

S [∀a.R,∃a.T]
,

S(∃a.R,∀a.T)
u2↑

S{∃a.(R,T)} ,

S{R{T ← a}}
n2↓

S{∃a.R} ,
S{∀a.R}

n2↑
S{R{T ← a}} .

Again, observe that there is no proviso saying that the propositional variable a is not allowed
to be free in the context, as it is the case in the sequent calculus.

As already observed in [BT01, Brü03b], it is possible even under the presence of the
quantifiers to reduce contraction to its atomic version, by adding the rules

S [•∀a.R,∀a.T]•
l3↓

S{∀a.[•R,T]•} ,
S{∃a.(•R,T)•}

l3↑
S(•∃a.R,∃a.T)•

,

S [•∃a.R,∃a.T]•
l4↓

S{∃a.[•R,T]•} ,
S{∀a.(•R,T)•}

l4↑
S(•∀a.R,∀a.T)•

.

However, even if contraction is atomic, the new system can no longer be called local because
in the rule n2↓ a structure of arbitrary size is introduced.

The question that arises now is whether the various properties of proofs and derivations
that I presented in this thesis are still valid. In particular, what happens with splitting,
context reduction and decomposition?

8.2 A General Recipe for Designing Rules

The core part of each system in the calculus of structures can be given by a very simple
recipe [Gug02c].

Consider the core rules of the systems shown in this work. Let us start with the rules
for the binary connectives.

S(• [R,U], [T, V])•
d↓

S [(•R,T)•, [•U, V]•]
,

S([•R,U]•, (•T, V)•)
d↑

S [•(R,T), (U, V)]•
,

S〈[R,U]; [T, V]〉
q↓

S [〈R; T 〉, 〈U ; V 〉] ,
S(〈R; U〉, 〈T ; V 〉)

q↑
S〈(R,T); (U, V)〉 .

They follow a certain scheme, which can (by a little abuse of notation) be written as:

S{[R,U] • [T, V]}
x↓

S [R • T,U ◦ V]
and

S(R ◦ U, T • V)
x↑

S{(R,T) ◦ (U, V)} ,

where • and ◦ are two binary connectives that are (by De Morgan) dual to each other.
For example conjunction and disjunction. It has to be postulated which one is • (usually

8.3. The Relation between Decomposition and Cut Elimination 251

conjunction) and remains in the premise of the rule. Observe that also the switch follows
this scheme because it is a special case of the two rules

S([R,U], [T, V])
s↓

S [(R,T), U, V]
and

S([R,U], T, V)
s↑

S [(R,T), (U, V)]
,

and can mimic both of them.
The rules for the exponentials and the quantifiers (see previous section) follow the same

scheme:
S{![R,T]}

p↓
S [!R, ?T]

,
S(?R, !T)

p↑
S{?(R,T)} ,

S{∀a.[R,T]}
u2↓

S [∀a.R,∃a.T]
,

S(∃a.R,∀a.T)
u2↑

S{∃a.(R,T)} .

Furthermore, this pattern does also work for modal logics [SS03]. We get the following
rules:

S{�[R,T]}
p↓

S [�R,�T]
,

S(�R,�T)
p↑

S{�(R,T)} ,

which are valid in all normal modal logics. This has already been observed in [Dun95].
This scheme is responsible for the possible reduction of the interaction rules to their

atomic version. It plays also a crucial role in the cut elimination argument because splitting
and context reduction is always possible (and the proof becomes very simple) if only the
core fragment is considered.

The rules that are problematic are the noncore rules. Since the interaction fragment
is fixed in every system, and the core fragment is determined by the recipe described
above, it is only the noncore fragment that determines the behaviour of the connectives
and modalities.

A closer inspection of system SLLS shows that also the noncore rules follow a certain
pattern. In particular, all the medial rules have the same shape. However, there are
also rules which do not have the “medial shape”, for example the atomic thinning and
contraction rules. The desire to have a single rule scheme which governs all fragments—
interaction, core and noncore—led to the discovery of subatomic logic in [Gug02d]. (The
reader should be warned that the research on subatomic logic is still at a very experimental
stage.)

8.3 The Relation between Decomposition and Cut Elimination

There is a close relationship between the second decomposition theorem and cut elimination,
in the sense that they imply each other, provided the system is “well-designed”. The
question is, of course, to find the right definition of “well-designed”. In order to state the
second decomposition theorem, we must be able to distinguish between the following six
fragments:

interaction down interaction up
core down core up

noncore down noncore up

252 8. Open Problems

Let me now call the noncore of a system “well-designed” if every proof −‖noncore up

R
is

trivial and every proof −‖down fragment

R
can be decomposed into
−‖interaction down∪ core down

R′

‖noncore down

R

.

Then we have the following:

8.3.1 Observation A system with a “well-designed” noncore admits a cut elimination
result if and only if the second decomposition theorem holds for it.

Proof: I will only sketch the proof here. For the first direction proceed exactly as in the
proofs of Theorems 5.3.2 and 5.3.25. The separation of interaction from the core is always
possible. (Observe that both fragments of the core are needed. It is in general not possible
to separate interaction down from core down.) For the other direction proceed similar as
in the case of system SNEL. As mentioned before, splitting and context reduction (and
therefore also cut elimination) do always hold if there is no noncore to consider. ��

The definition of “well-designed” that I gave is is certainly not a good definition. First,
for pragmatic reasons “well-designed” should imply cut elimination and second, the two
conditions are too sophisticated for a basic definition. Anyway, what I want to show
here is that cut elimination and the second decomposition theorem are based on the same
underlying principles. The question is, what exactly those principles are. It might well be
that subatomic logic [Gug02d] can help to unveil them.

8.4 Controlling the Nondeterminism

The systems presented in this thesis are not very well suited for proof search. The reason is
the huge amount of nondeterminism intrinsically connected to the calculus of structures. It
should therefore be a topic of future research to find ways of controlling this nondeterminism.
This might be possible by means of the permutability of rules, as it already happened in the
sequent calculus [And92, Mil96], but it might also be possible by totally different methods.
A. Guglielmi suggested to use the technique of splitting.

8.5 The Equivalence between System BV and Pomset Logic

I have already discussed this problem in Chapter 7. Let me summarise here, what has
already been achieved and where the difficulty lies.

There is a one-to-one correspondence between A. Guglielmi’s BV structures and Ch. Re-
toré’s series-parallel R&B proof structures, which I explained in Chapter 6. For more
detailed information consult [Gug02e], where the correspondence between BV structures
and relation webs is explained. From a graph theoretical viewpoint, relation webs and
series-parallel R&B proof structures are the same objects.

In Proposition 7.4.30, I have shown that a given BV structure is not provable if it
contains a (balanced) negation circuit. In other words, it is not provable if the corresponding

8.6. The Decidability of MELL 253

series-parallel R&B proof structure is not a proof net according to Ch. Retoré’s correctness
criterion.

It therefore only remains to show the other direction, namely, for every series-parallel
R&B proof structure that is a proof net, the corresponding BV structure is provable. The
problem lies in actually constructing the proof. The method that I employed in Section 6.2
cannot be used because in the presence of seq it is no longer true that an arbitrary pair of
atoms can be picked and “moved closer together”. The method used in [BdGR97] cannot
be employed because the times does not behave the same way as the seq with respect to
the par. More precisely, the rule

S([R,U], [T, V])
ws

S [(R,T), (U, V)]

is unsound (see also [Gug02e] and [Ret99b]).

8.6 The Decidability of MELL

The question whether the provability in MELL is decidable or not is probably the best-
known open problem in the area of linear logic. Apart from the fact that I believe that it is
decidable, I cannot contribute much to this problem. However, I think it should be added it
to this list because it is related to this thesis in two ways. First, I devoted a whole chapter
(in fact, the longest chapter of this thesis) to multiplicative exponential linear logic, and
second, the undecidability of NEL increases the significance of that problem.

8.7 The Equivalence of Proofs in the Calculus of Structures

In the calculus of structures, rules can be applied with more freedom than in the sequent
calculus. They have a smaller granularity and a larger applicability. Consequently, there
are many proofs in the calculus of structures that correspond to the same sequent calculus
proof, because of the different possible sequencing of rules, and because rules in the calculus
of structures have smaller granularity and larger applicability. This means that the general
problem of the sequent calculus, where proofs exhibit a lot of redundancy in the sense
that inactive formulae are copied many times and that two sequent proofs can represent
“essentially” the same proof up to the order of rule applications, is also present in the
calculus of structures (even in a more drastic form).

For the sequent calculus of linear logic, proof nets have been developed [Gir87a], which
identify proofs that vary only in some irrelevant permutation of rules. This works particu-
larly well for multiplicative linear logic. The questions that arises now is whether the theory
of proof nets can also be used to identify proofs in the calculus of structures, or whether
we can find other methods for identifying proofs in the calculus of structures that can then
be used also for other logics (like classical logic) for which a theory proof nets has not yet
been developed.

254 8. Open Problems

Bibliography

[Abr91] Vito Michele Abrusci. Phase semantics and sequent calculus for pure non-
commutative classical linear logic. Journal of Symbolic Logic, 56(4):1403–1451,
December 1991.

[AJ94] Samson Abramsky and Radha Jagadeesan. Games and full completeness for
multiplicative linear logic. Journal of Symbolic Logic, 59(2):543–574, 1994.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347, 1992.

[And01] Jean-Marc Andreoli. Focussing and proof construction. Annals of Pure and
Applied Logic, 107:131–163, 2001.

[AR00] Vito Michele Abrusci and Paul Ruet. Non-commutative logic I: The multi-
plicative fragment. Annals of Pure and Applied Logic, 101:29–64, 2000.

[Bar91] Michael Barr. *-autonomous categories and linear logic. Mathematical Struc-
tures in Computer Science, 1:159–178, 1991.

[BC03] Yves Bertot and Pierre Casteréran. Le Coq’ Art. Draft of book available at
http://www-sop.inria.fr/lemme/Yves.Bertot/coqart.html, 2003.

[BdGR97] Denis Bechet, Philippe de Groote, and Christian Retoré. A complete axioma-
tisation of the inclusion of series-parallel partial orders. In H. Common, editor,
Rewriting Techniques and Applications, RTA 1997, Lecture Notes in Computer
Science, pages 230–240. Springer-Verlag, 1997.

[Bel82] Nuel D. Belnap, Jr. Display logic. Journal of Philosophical Logic, 11:375–417,
1982.

[BG03] Kai Brünnler and Alessio Guglielmi. A finitary system for first order logic.
Technical Report WV-03-09, Technische Universität Dresden, 2003. Submit-
ted.

[BGLM94] Annalisa Bossi, Maurizio Gabbrielli, Giorgio Levi, and Maurizio Martelli. The
s-semantics approach: Theory and applications. Journal of Logic Program-
ming, 19/20:149–197, 1994.

[Bib86] Wolfgang Bibel. A deductive solution for plan generation. New Generation
Computing, 4:115–132, 1986.

[Bla92] Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied
Logic, 56:183–220, 1992.

255

256 Bibliography

[Bla96] Andreas Blass. Some semantical aspects of linear logic. Journal of the IGPL,
5(4):487–503, 1996.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[Bra96] Torben Braüner. Introduction to linear logic, 1996. BRICS Lecture Series,
Number LS-96-6.

[Bro24] Luitzen Egbertus Jan Brouwer. Über die Bedeutung des Satzes vom aus-
geschlossenen Dritten in der Mathematik, insbesondere in der Funktionenthe-
orie. Journal für die reine und angewandte Mathematik, 154(1):1–7, 1924.

[Brü02a] Kai Brünnler. Atomic cut elimination for classical logic. Technical Report
WV-02-11, Technische Universität Dresden, 2002.

[Brü02b] Kai Brünnler. Two restrictions on contraction. Technical Report WV-02-04,
Technische Universität Dresden, 2002.

[Bru02c] Paola Bruscoli. A purely logical account of sequentiality in proof search. In Pe-
ter J. Stuckey, editor, Logic Programming, 18th International Conference, vol-
ume 2401 of Lecture Notes in Artificial Intelligence, pages 302–316. Springer-
Verlag, 2002.

[Brü03a] Kai Brünnler. Deep Inference and Symmetry for Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003. In preparation.

[Brü03b] Kai Brünnler. Locality for classical logic. Technical Report WV-03-04, Tech-
nische Universität Dresden, 2003. Submitted.

[Brü03c] Kai Brünnler. Minimal logic in the calculus of structures, 2003. Note. On the
web at: http://www.ki.inf.tu-dresden.de/˜kai/minimal.html.

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of Lecture
Notes in Artificial Intelligence, pages 347–361. Springer-Verlag, 2001.

[Bus98] Samuel R. Buss. An introduction to proof theory. In Samuel R. Buss, editor,
Handbook of Proof Theory. Elsevier, 1998.

[BW96] Nick Benton and Philip Wadler. Linear logic, monads, and the lambda calculus.
In 11’th IEEE Symposium on Logic in Computer Science, 1996.

[CAB+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden,
J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the NuPrl
Development System. Prentice Hall, 1986.

[CF58] Haskell B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland
Publishing Co., 1958.

[Chi95] Jawahar Lal Chirimar. Proof Theoretic Approach to Specification Languages.
PhD thesis, University of Pennsylvania, 1995.

[Chu40] Alonso Church. A formalism of the simple theory of types. The Journal of
Symbolic Logic, 5:56–68, 1940.

Bibliography 257

[Cra57] W. Craig. Linear reasoning: A new form of the Herbrand-Gentzen theorem.
The Journal of Symbolic Logic, 22:250–268, 1957.

[CS97] J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of
Pure and Applied Algebra, 114:133–173, 1997.

[Cur52] Haskell B. Curry. The permutability of rules in the classical inferential calculus.
The Journal of Symbolic Logic, 17(4):245–248, 1952.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Annals
of Mathematical Logic, 28:181–203, 1989.

[Dun95] J. Michael Dunn. Positive modal logic. Studia Logica, 55:301–317, 1995.

[FR94] Arnaud Fleury and Christian Retoré. The mix rule. Mathematical Structures
in Computer Science, 4(2):273–285, 1994.

[Gen34] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathema-
tische Zeitschrift, 39:176–210, 1934.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Mathema-
tische Zeitschrift, 39:405–431, 1935.

[GHS96] Gert Große, Steffen Hölldobler, and Josef Schneeberger. Linear deductive plan-
ning. Journal of Logic and Computation, 6(2):233–262, 1996.

[Gia03] Pietro Di Gianantonio. Structures in cyclic linear logic. Technical report,
Università di Udine, 2003.

[Gir72] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[Gir87a] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir87b] Jean-Yves Girard. Proof Theory and Logical Complexity, Volume I, volume 1
of Studies in Proof Theory. Bibliopolis, edizioni di filosofia e scienze, 1987.

[Gir95] Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-Yves Girard,
Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, pages
1–42. Cambridge University Press, 1995.

[Gir96] Jean-Yves Girard. Coherent banach spaces: a continuous denotational se-
mantics. In Jean-Yves Girard, Mitsuhiro Okada, and Andre Scedrov, editors,
Electronic Notes in Theoretical Computer Science, volume 3. Elsevier Science
Publishers, 1996.

[Gir01] Jean-Yves Girard. Locus solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science, 11(3):301–506, 2001.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In Laurent Fribourg, editor, Computer Science Logic,
CSL 2001, volume 2142 of LNCS, pages 54–68. Springer-Verlag, 2001.

258 Bibliography

[GS02a] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
MELL. In Matthias Baaz and Andrei Voronkov, editors, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning, LPAR 2002, volume 2514
of LNAI, pages 231–246. Springer-Verlag, 2002.

[GS02b] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of
multiplicative exponential linear logic. Technical Report WV-2002-03, Tech-
nische Universität Dresden, 2002. On the web at: http://www.ki.inf.tu-
dresden.de/˜lutz/NELbig.pdf.

[Gug99] Alessio Guglielmi. A calculus of order and interaction. Technical Report WV-
99-04, Technische Universität Dresden, 1999. Now obsolete and replaced by
[Gug02e].

[Gug02a] Alessio Guglielmi. Butterflies, 2002. On the web at: http://www.ki.inf.tu-
dresden.de/˜guglielm/Research/Notes/AG7.pdf.

[Gug02b] Alessio Guglielmi. Goodness, perfection and miracles, 2002. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/Notes/AG1.pdf.

[Gug02c] Alessio Guglielmi. Recipe, 2002. On the web at: http://www.ki.inf.tu-
dresden.de/˜guglielm/Research/Notes/AG2.pdf.

[Gug02d] Alessio Guglielmi. Subatomic logic, 2002. On the web at: http://www.ki.inf.tu-
dresden.de/˜guglielm/Research/Notes/AG8.pdf.

[Gug02e] Alessio Guglielmi. A system of interaction and structure. Technical Report
WV-02-10, Technische Universität Dresden, 2002. Submitted. On the web at:
http://www.ki.inf.tu-dresden.de/˜guglielm/Research/Gug/Gug.pdf.

[HA28] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik,
volume XXVII of Die Grundlehren der Mathematischen Wissenschaften. Ver-
lag von Julius Springer, 1928.

[Hey34] Arend Heyting. Mathematische Grundlagenforschung. Intuitionismus. Beweis-
theorie. Springer-Verlag, 1934.

[Hil22] David Hilbert. Die logischen Grundlagen der Mathematik. Mathematische
Annalen, 88:151–165, 1922.

[Hil26] David Hilbert. Über das Unendliche. Mathematische Annalen, 95:161–190,
1926.

[HM94] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of in-
tuitionistic linear logic. Information and Computation, 110(2):327–365, May
1994.

[HO93] J. Martin E. Hyland and Chih-Hao Luke Ong. Fair games and full completeness
for multiplicative linear logic without the mix-rule, 1993.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus and Formalism, pages 479–490. Academic Press, 1980.

Bibliography 259

[HP96] Joshua S. Hodas and Jeffrey Polakow. Forum as a logic programming language.
In Mitsuhiro Okada Jean-Yves Girard and Andre Scedrov, editors, Electronic
Notes in Theoretical Computer Science, volume 3. Elsevier Science Publishers,
1996.

[HS90] Steffen Hölldobler and Josef Schneeberger. A new deductive approach to plan-
ning. New Generation Computing, 8:225–244, 1990.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory,
languages and computation. Addison-Wesley, 1979.

[Kan94] Max I. Kanovich. The complexity of Horn fragments of linear logic. Annals of
Pure and Applied Logic, 69(2–3):195–241, 1994.

[Kan95] Max I. Kanovich. The direct simulation of Minsky machines in linear logic.
In Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in
Linear Logic, pages 123–145. Cambridge University Press, 1995.

[Kan00] Max I. Kanovich. Simulating computations in second order non-commutative
linear logic. In Jean-Yves Girard, Mitsuhiro Okada, and Andre Scedrov, ed-
itors, Electronic Notes in Theoretical Computer Science, volume 3. Elsevier
Science Publishers, 2000.

[Kol32] Andrei Nikolaevich Kolmogorov. Zur Deutung der intuitionistischen Logik.
Mathematische Zeitschrift, 35:58–65, 1932.

[Koz97] Dexter C. Kozen. Automata and Computability. Springer-Verlag, 1997.

[Kre68] Georg Kreisel. A survey of proof theory. The Journal of Symbolic Logic,
33(3):321–388, 1968.

[KV01] Max I. Kanovich and Jacqueline Vauzeilles. The classical AI planning prob-
lems in the mirror of Horn linear logic: semantics, expressibility, complexity.
Mathematical Structures in Computer Science, 11:689–716, 2001.

[Laf96] Yves Lafont. The undecidability of second order linear logic without exponen-
tials. The Journal of Symbolic Logic, 61(2):541–548, 1996.

[Laf97] Yves Lafont. The finite model property for various fragments of linear logic.
The Journal of Symbolic Logic, 62(4):1202–1208, 1997.

[Lam58] Joachim Lambek. The mathematics of sentence structure. American Mathe-
matical Monthly, 65:154–169, 1958.

[Lam61] Joachim Lambek. How to program an infinite abacus. Canad. Math. Bull.,
4(3):295–302, 1961.

[Lam95] François Lamarche. Games semantics for full propositional linear logic. In
Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science
(LICS 95), pages 464–473, 1995.

[Lam96] François Lamarche. From proof nets to games. In Mitsuhiro Okada Jean-
Yves Girard and Andre Scedrov, editors, Electronic Notes in Theoretical Com-
puter Science, volume 3. Elsevier Science Publishers, 1996.

260 Bibliography

[LMSS92] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for
propositional linear logic. Annals of Pure and Applied Logic, 56(1–3):239–311,
1992.

[Lor61] Paul Lorenzen. Ein dialogisches Konstruktivitätskriterium. In Infinitis-
tic Methods. Proceedings of the Symposium on Foundations of Mathematics
(Warszawa 1959), pages 193–200. Pergamon Press, Oxford, 1961.

[Lor68] K. Lorenz. Dialogspiele als semantische Grundlage von Logikkalkülen. Archiv
für Mathematische Logic und Grundlagenforschung, 11:32–55; 73–100, 1968.

[LS91] Y. Lafont and T. Streicher. Game semantics for linear logic. In Proceedings
of the 6th Annual IEEE Symposium on Logic in Computer Science (LICS 91),
pages 43–50, 1991.

[LS96] Yves Lafont and Andre Scedrov. The undecidability of second order multi-
plicative linear logic. Information and Computation, 125:46–51, 1996.

[Mil89] Robin Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

[Mil92] Dale Miller. The π-calculus as a theory in linear logic: preliminary results. In
E. Lamma and P. Mello, editors, Workshop on Extensions to Logic Program-
ming, LNCS, 1992.

[Mil94] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth
Annual IEEE Symp. on Logic in Computer Science, pages 272–281, Paris, July
1994.

[Mil95] Dale Miller. lambda Prolog: An Introduction to the Language and its Logic.
Draft of book, 1995.

[Mil96] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical
Computer Science, 165:201–232, 1996.

[Mil01] Robin Milner. Communicating and Mobile Systems: The π-Calculus. Cam-
bridge University Press, 2001.

[Min61] Marvin L. Minsky. Recursive unsolvability of Post’s problem of ”tag” and other
topics in theory of Turing machines. The Annals of Mathematics, 74(3):437–
455, 1961.

[MN88] Dale Miller and Gopalan Nadathur. An overview of λProlog. In Kenneth A.
Bowen and Robert A. Kowalski, editors, Fifth International Logic Program-
ming Conference, pages 810–827. MIT Press, 1988.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform
proofs as a foundation for logic programming. Annals of Pure and Applied
Logic, 51:125–157, 1991.

[MOTW95] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-
name, call-by-value, call-by-need, and the linear lambda calculus. Electronic
Notes in Theoretical Computer Science, 1, 1995.

Bibliography 261

[Pra65] Dag Prawitz. Natural Deduction, A Proof-Theoretical Study. Almquist and
Wiksell, 1965.

[Res00] Greg Restall. An Introduction to Substructural Logics. Routledge, 2000.

[Ret93] Christian Retoré. Réseaux et Séquents Ordonnés. Thèse de Doctorat, spécialité
mathématiques, Université Paris 7, February 1993.

[Ret97] Christian Retoré. Pomset logic: A non-commutative extension of classical
linear logic. In Ph. de Groote and J. R. Hindley, editors, Typed Lambda Cal-
culus and Applications, TLCA’97, volume 1210 of Lecture Notes in Computer
Science, pages 300–318, 1997.

[Ret99a] Christian Retoré. Handsome proof-nets: R&B-graphs, perfect matchings and
series-parallel graphs. Rapport de recherche 3652, INRIA, 1999. Appeared as
[Ret03].

[Ret99b] Christian Retoré. Pomset logic as a calculus of directed cographs. In V. M.
Abrusci and C. Casadio, editors, Dynamic Perspectives in Logic and Linguis-
tics, pages 221–247. Bulzoni, Roma, 1999. Also available as INRIA Rapport
de Recherche RR-3714.

[Ret03] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. The-
oretical Computer Science, 294(3):473–488, 2003.

[Rue00] Paul Ruet. Non-commutative logic II: Sequent calculus and phase semantics.
Mathematical Structures in Computer Science, 10:277–312, 2000.

[Sch50] Kurt Schütte. Schlußweisen-Kalküle der Prädikatenlogik. Mathematische An-
nalen, 122:47–65, 1950.

[Sch60] Kurt Schütte. Beweistheorie. Springer-Verlag, 1960.

[See89] R.A.G. Seely. Linear logic, *-autonomous categories and cofree coalgebras.
Contemporary Mathematics, 92, 1989.

[Sin99] David Sinclair. Specifying and verifying TCP/IP with linear logic, 1999. On
the web at: http://www.computing.dcu.ie/˜davids/tcpip ll.ps.

[SS03] Charles Stewart and Phiniki Stouppa. A systematic proof theory for several
modal logics. Technical Report WV-03-08, Technische Universität Dresden,
2003. Submitted.

[Ste01] Charles Stewart. On the formulae-as-types correspondence for classical
logic. PhD thesis, Oxford University, 2001. On the web at: http://
www.linearity.org/cas/thesis/.

[Str01] Lutz Straßburger. MELL in the Calculus of Structures. Technical Report
WV-01-03, Technische Universität Dresden, 2001. Accepted for publica-
tion in Theoretical Computer Science. On the web at: http://www.ki.inf.tu-
dresden.de/˜lutz/els.pdf.

[Str02] Lutz Straßburger. A local system for linear logic. In Matthias Baaz and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning, LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer-Verlag,
2002.

262 Bibliography

[Str03a] Lutz Straßburger. System NEL is undecidable. Accepted at WoLLIC’03. To
appear in Electronic Notes in Theoretical Computer Science, Vol. 84, 2003.

[Str03b] Lutz Straßburger. The undecidability of system NEL. Technical Re-
port WV-03-05, Technische Universität Dresden, 2003. On the web at:
http://www.ki.inf.tu-dresden.de/˜lutz/NELundeci.pdf.

[SU99] Morten Heine B. Sørensen and Pawe�l Urzyczyn. Lecture notes on the Curry-
Howard isomorphism, 1999. Lecture Notes of the 11th European Summer
School in Logic, Language and Information (ESSLLI 99).

[Tai68] W. W. Tait. Normal derivability in classical logic. In Jon Barwise, editor, The
syntax and Semantics of Infinitary Languages, pages 204–236. Springer-Verlag,
1968.

[Tiu01] Alwen Fernanto Tiu. Properties of a logical system in the calculus of structures.
Technical Report WV-01-06, Technische Universität Dresden, 2001. On the
web at: http://www.cse.psu.edu/˜tiu/thesisc.pdf.

[Tro92] Anne Sjerp Troelstra. Lectures on Linear Logic. Number 29 in Center for
the Study of Language and Information (CSLI) Lecture Notes. University of
Chicago Press, 1992.

[TS00] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, second edition, 2000.

[Wad91] Philip Wadler. Is there a use for linear logic? In Partial Evaluation and
Semantics-Based Program Manipulation (PEPM). ACM Press, 1991.

[Wad92] Philip Wadler. There’s no substitute for linear logic. In 8’th International
Workshop on the Mathematical Foundations of Programming Semantics, Ox-
ford, 1992.

[Wad00] Philip Wadler. 19’th century logic and 21’st century programming languages.
Dr Dobbs, December 2000.

[Yet90] David N. Yetter. Quantales and (noncommutative) linear logic. Journal of
Symbolic Logic, 55(1):41–64, 1990.

[Zuc74] J. Zucker. The correspondence between cut-elimination and normalization.
Annals of Mathematical Logic, 7:1–112, 1974.

Index

absorption, 32
accepts, 233
active, 87
additive, 5, 32
additive group, 19, 32
additives, 18
admissible, 30
Æ-circuit, 185, 187, 240
atom, 17, 25, 180, 198
atomic cocontraction, 147
atomic cointeraction, 33
atomic contraction, 147, 152
atomic cothinning, 149
atomic cut, 33
atomic interaction, 33, 160
atomic thinning, 149, 173
axiom, 18, 28

balanced, 186, 213
balanced negation circuit, 239
basic context, 108, 204
bottom, 17, 19, 26
Brouwer-Heyting-Kolmogorov interpreta-

tion, 4

calculus of structures, 9
CCS, 6
chain, 105

!-chain, 101, 104
?-chain, 101, 104

characteristic number, 106
circuit, 213
classical logic, 4, 148, 149, 154, 167
clean, 237
coabsorption, 32
coadditive, 32
cocircuit, 213
cocontraction, 32
cointeraction, 30
commutative case, 22

conclusion, 18, 19, 28, 29
configuration, 232
connected, 102
connectives

�, 17
�, 17
�, 17
�, 17

conservative extension, 201
constants, 17, 26
⊥, 17, 26
1, 17, 26
0, 17, 26
�, 17, 26

contains
a balanced negation circuit, 239
a circuit, 187, 214
a cocircuit, 187, 214
a negation circuit, 187, 214

context, 27
n-ary, 101
LS, 27

context reduction, 44, 68, 215, 216, 224,
251

for LLS, 151
for LS, 69
for NELm, 224

contraction, 20, 32, 144, 152
contractum, 87
copromotion, 32
core, 34, 199, 250
coseq, 198
cothinning, 32
coweakening, 32
creation, 96
croissant, 5

infinite supply, 6
Curry-Howard-isomorphism, 1
cut, 19, 30

263

264 Index

cut elimination, 3, 22, 41, 129, 251
for BV , 202
for ELS, 85, 138
for ELS◦, 202
for LL, 22
for LLS, 151
for LS, 42, 80
for MELL, 84
for NEL, 200, 215, 229
for S◦, 185

cut rule, 3, 4
cycle, 106

decomposition, 96, 151, 177, 202, 251
first

for SELS, 96
for SNEL, 202

for SS◦, 183
second, 251

for SELS, 97
for SNEL, 203

deep inference, 10
deep switch, 131
dereliction, 20
derivable, 30
derivation, 19, 29
destruction, 96
display logic, 10
down fragment, 34, 199
down rule, 11
dual, 30

encodes, 234
encoding, 234
equivalence of proofs, 253
equivalent, 30
�, 5
exponential group, 20, 32
exponentials, 18

final state, 232
forked, 107
formal proof, 143
formula
LL, 17
MELL, 84

Forum, 7, 86

functional programming, 1

games semantics, 5

head, 104
higher-order hereditary Harrop formulae,

3
Hilbert’s formalism, 9

identity, 19
identity group, 19
inference rule, 18, 28, 143
initial configuration, 232
initial state, 232
instructions, 232
interaction, 30, 160
interaction rules, 30
interpolant, 139
interpolation, 139

for SELS, 140
for SS◦, 184

intuitionistic logic, 4

key case, 23
killer, 237

Lambek calculus, 8
length, 105

of a derivation, 30
of a proof, 30

linear implication, 18
linear logic, 5, 17
linear negation, 5, 18
link

!-link, 101
?-link, 104
lower link, 105
upper link, 105

link copromotion, 106
link promotion, 106
loaf of bread, 5
local, 143, 144, 147
logic programming, 1
logical group, 19
logical rules, 19
ludics, 87

medial, 147, 251

Index 265

merging, 96
modalities

!, 18
?, 18

multiplicative, 5
multiplicative additive fragment, 34, 177
multiplicative exponential fragment, 34,

83, 197
multiplicative fragment, 34
multiplicative group, 19, 32
multiplicative linear logic, 183
multiplicatives, 18

natural deduction, 9
negation, 26
negation circuit, 187, 213
noncommutative, 197
noncommutative logic, 9
noncore, 34, 199
nondeep switch, 131
nondeterminism, 252
nonforked, 107
nonlocal, 144
nonpar structure, 238
nontrivial, 88

occurrence, 186, 213
of-course, 18
of-course structure, 27
one, 17, 19, 26, 34
order varieties, 9

par, 17, 19, 144
par structure, 27
par-relation, 117
passive, 87
permutability, 145
permutability of rules, 86, 87
permutation of rules, 86
permutes

over, 87
by a rule, 92
by a system, 155
weakly, 161

under, 87
by a rule, 93

phase spaces, 5

π-calculus, 7
plus, 17
plus left, 20
plus right, 20
plus structure, 27
pomset logic, 8, 214, 240, 252
premise, 18, 19, 28, 29
promotion, 20, 32, 144
promotion cycle, 106
proof, 19, 30
proof construction, 1
proof nets, 9, 185, 253
proof normalisation, 1, 2
proof reduction, 1
proof search, 1, 2
proof theory, 1
proper par, 131
proper times, 131
provable, 19
pseudo key case, 24
pure, 108

quantifiers, 249
quasi-substructure, 187, 213

reachable, 233
in one step, 232
in r steps, 233

recipe, 250
redex, 87
relation webs, 178, 185, 186
rule, 18, 28

�, 19, 144
�, 19, 144
⊥, 19
1, 19
�, 19, 144
�1, 19
�2, 19
�, 19
?c, 20, 144
?d, 20
?w, 20
!, 20, 144
◦↓, 181, 199
1↓, 34

266 Index

ac↓, 147
ac↑, 147
ai↓, 33, 181
ai↑, 33, 181
at↓, 149
at↑, 149
b↓, 32
b↑, 32
c↓, 32
c↑, 32
cb↓, 45
cd↓, 45
cd′↓, 45
cr↓, 45
cut, 19
cut, 4
d↓, 32, 250
d↑, 32, 250
ds↓, 131
i↓, 30, 181
i↑, 30, 181
id, 19
l1↓, 147
l1↑, 147
l2↓, 147
l2↑, 147
l3↓, 250
l3↑, 250
l4↓, 250
l4↑, 250
m, 147
m1↓, 147
m1↑, 147
m2↓, 147
m2↑, 147
mix, 179
mix0, 179
n1↓, 249
n2↓, 250
n2↑, 250
nl1↓, 149
nl1↑, 149
nl2↓, 149
nl2↑, 149
nm↓, 149
nm↑, 149

nm1↓, 149
nm1↑, 149
nm2↓, 149
nm2↑, 149
ns↑, 131
nx, 179
nz↓, 150
nz↑, 150
p↓, 32, 251
p↑, 32, 251
p̂↓, 204
p̂↑, 204
q↓, 198, 250
q↑, 198, 250
r↓, 130
r↑, 130
s, 31
s↓, 251
s′, 45
s↑, 251
sai↑, 131
sp↑, 131
sr↑, 131
t↓, 32
t↑, 32
t′↓, 45
t′′↓, 45
�↓, 46
u1↓, 249
u2↓, 250, 251
u2↑, 250, 251
w↓, 32, 181
w↑, 32, 181
ŵ↓, 204
ŵ↑, 204
x, 179
x′, 180
z↓, 150
z↑, 150

semishallow, 79
seq, 195, 198
seq structure, 198
sequent, 18
sequent calculus, 3, 9, 17, 167

Index 267

series-parallel R&B proof structures, 185,
186

series-parallel R&B-graphs, 185
size

of a NEL structure, 216
of a proof, 52, 216
of an LS structure, 51

splitting, 13, 44, 215, 216, 251
for LLS, 151
for LS, 44
for LS′ \ {cb↓}, 53
for NELm, 217

states, 232
strongly equivalent, 30
structural rules, 20, 30
structure, 25
LS, 26
BV , 200
ELS, 84
ELS◦, 181
NEL, 198
S◦, 183

subatomic logic, 251, 252
subchain, 104
subformula property, 3, 20
substructural logics, 10
substructure, 27
switch, 31, 145, 251
system, 18, 29
ALS, 35
BV , 8, 197, 201, 236, 252
dELS, 131
dELSr, 132
ELS, 35, 84
ELS′, 180
ELS◦, 181
ELSr, 131
FBV , 196
LJ, 22
LK, 22
LL, 20
LLS, 151
LS, 35
LS′, 46
MELL, 84
MELL′, 180

MLL, 183
NEL, 197, 200
NELm, 217
S, 35
S◦, 183
SALS, 34
SBV , 200
SBVc, 200
SELS, 34, 84
SELS′, 180
SELS◦, 181
SELSc, 84
SLLS, 147, 251
SLLS↓, 155
SLLS↑, 155
SLLSm↓, 162
SLLSm↑, 162
SLLSt↓, 149
SLLSt↑, 149
SLS, 34
SNEL, 199
SNELc, 199
SS, 34
SS◦, 183

tail, 104
term rewriting, 28
thinning, 32, 167
times, 17, 19, 144
times structure, 27
times-relation, 117
top, 17, 20, 26
top-down symmetry, 10, 87
transitions, 232
trivial, 88
two counter machine, 232

uniform proof, 86
uniform provability, 3, 192
unique, 238
unit, 180, 181, 198, 199
up fragment, 34, 199
up rule, 11

weak encoding, 241
weakening, 20, 32
weakly equivalent, 30

268 Index

why-not, 18
why-not structure, 27
with, 18, 20, 144
with structure, 27
woo structure, 69

zero, 17, 20, 26

