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INRIA Saclay–Île-de-France, France

http://www.lix.polytechnique.fr/∼lutz

June 24, 2009

Abstract

This paper shows how derivations in the deep inference system SKS

for classical propositional logic can be translated into proof nets. Since
an SKS derivation contains more information about a proof than the cor-
responding proof net, we observe a loss of information which can be un-
derstood as “eliminating bureaucracy”. Technically this is achieved by
cut reduction on proof nets. As an intermediate step between the two
extremes, SKS derivations and proof nets, we will see proof graphs repre-
senting derivations in “Formalism A”.

1 Introduction

Through the development of the two concepts of deep inference [Gug07] and
proof nets [Gir87] the quest for the identity of proofs has been revived, and
new effort is being put on the fundamental question “When are two proofs the
same?”

Proof nets have been conceived by Girard [Gir87] in order to avoid bureau-
cracy: in formal systems like the sequent calculus two proofs that are “morally
the same” are distinguished by trivial rule permutations, and proof nets are able
to abstract away from these permutations.

Deep inference has been conceived by Guglielmi in order to obtain a deduc-
tive system for a non-commutative logic [Gug07]. In a formalism employing deep
inference, like the calculus of structures, one can apply inference rules anywhere
deep inside formulas as we know it from term rewriting, instead of decomposing
formulas along their main connectives as we know it from traditional formalisms,
like natural deduction and sequent calculus. From the “we-wish-to-eliminate-
bureaucracy” point of view, this is a disaster: The number of possible “trivial
rule permutations” explodes, compared to the sequent calculus. However, the
finer granularity of inference rules—one inference step in the sequent calculus
corresponds to many inference steps in the calculus of structures—allows a finer
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analysis of the inner structure of proofs, which in turn can lead to new notions
of proof nets (as happened in [SL04] and [LS05b]).

In this paper we will see how proof nets (or, more precisely, proof graphs) can
be extracted directly from deep inference systems. We will concentrate here only
on classical logic, more precisely on system SKS [BT01, Brü03b], a well-studied
system for classical logic in the calculus of structures (see also [BG09]). But it
should be clear that the exercise of this paper can be carried out in the same way
for any other system, in particular also for linear logic as it is presented in [Str02].
The reason is that proof graphs, as they are used in this paper, can be defined
accordingly for other systems. However, the relation between these proof graphs
and the known proof nets for the corresponding logic is not always evident. For
example, our proof graphs used in this paper are in close correspondence to the
proof nets introduced by Lamarche and Straßburger in [LS05b], but are very
different from the proof nets studied by Robinson in [Rob03]. On the other hand,
applying the methods of this paper to linear logic, as presented in [Str02], would
for the unit-free multiplicative fragment (MLL) yield exactly the proof nets of
Girard [Gir87], but would for the multiplicative additive fragment (MALL) yield
proof graphs that are very different from the proof nets studied by Girard [Gir87,
Gir96] and Hughes and van Glabbeek [HvG03].

To some extend, one can say that proof graphs make as many identifications
between proofs as possible (without ending up in a triviality), and derivations
in the calculus of structures make as few identifications as possible. These two
extremes span a whole universe of possible proof identifications. And going from
the extreme with few identifications to the extreme with many identification
means losing information, namely, the “bureaucratic” information that makes
the additional distinctions. We will argue, that this process of losing information
can be modeled by cut elimination. In each single cut reduction step some bit
of information is lost. Depending on the restrictions on cut elimination one can
choose which information to lose.

The paper is structured as follows. We will first introduce the concept of deep
inference, and show various kinds of bureaucracy that occur in a deep inference
system. We will also show how this is related to category theoretical concepts,
as it has been indicated in [Hug04]. Afterwards we introduce a notion of proof
graphs which is a variant of the proof nets introduced in [LS05b]. Finally, we
show how to translate deep inference derivations into proof graphs and how
cut elimination corresponds to eliminating bureaucracy. We also explain the
relation between our proof graphs and similar concepts as Buss’ logical flow-
graphs [Bus91] and Guglielmi’s and Gundersen’s atomic flows [GG08]. Finally
we discuss some properties of the induced proof graph categories.

This paper is written from the viewpoint that syntactic derivations, mor-
phisms in certain categories, and proof nets should not be seen as distinct
mathematical objects, but only as three different presentations of the same
kind of objects: proofs .

An early draft of this work is available as [Str05].
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2 Deep Inference for Classical Logic

In this section we will acquaint the reader with the basic notions of deep infer-
ence and prove a robustness theorem, as it is known for Frege-systems.

Deep inference is a paradigm for proof theoretical formalisms. The most
prominent example of a formalism employing deep inference is the calculus of
structures. It has successfully been employed to give new presentations for
many logics, including classical logic [BT01, Brü03b], minimal logic [Brü03c],
intuitionistic logic [Tiu06], modal logics [SS05, Sto07, Brü06a, BS09], linear logic
[Str03, Str02], and various non-commutative logics [DG04, Gug07, GS02].

The basic idea of deep inference is that inference rules can apply anywhere
deep inside a formula. This is very different from more traditional formalisms
like sequent calculus, natural deduction, or tableau systems, where inference
rules can attack formulas only at their root connective. A typical deep inference
rule has the shape

F{A}
r
F{B}

which says that the formula A can be rewritten as the formula B inside any pos-
itive formula context F{ }. This corresponds to the validity of the implication
A⊃B. A deep inference proof system (short: system) is as set of deep inference
rule schemes. A deep inference derivation can then be seen as a rewriting path.
It is denoted as

A

∆
‖
‖ S

B

where A is the premise, B is the conclusion, ∆ is the name of the derivation,
and S is the system in which it is carried out.

In principle, every valid implication can be transformed into a deep inference
rule. For example, the implication

(A ∧ B) ∨ (C ∧ D) ⊃ [A ∨ C] ∧ [B ∨ D]

can be transformed into the inference rule

F{(A ∧ B) ∨ (C ∧ D)}
m

F{[A ∨ C] ∧ [B ∨ D]}
(1)

which is called medial . More precisely, (1) is a rule scheme, because A, B, C,
and D, stand for arbitrary formulas, and F{ } stands for an arbitrary (positive)
formula context.

Consequently, any Frege-system can trivially be converted into a deep infer-
ence system. Conversely, every deep inference rule scheme can be converted into
an axiom of a Frege-system. The details for translating between deep inference
and Frege-systems can be found in [BG09], which also discusses the size of the
proof translations. It is not surprising that similarly to the robustness theorem
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for Frege-systems [CR79] there is also a robustness theorem for deep inference
systems, which we will discuss at the end of this section. A consequence of
robustness is that from the viewpoint of proof complexity it does not matter
which system one chooses. However, from the proof theoretic point of view
there can be large differences because of properties, like cut elimination and
decomposition, that some proof systems might have and others might not have.

In the following, we will discuss system SKS (in a slight variation of the
original presentation in [BT01]) and some of its properties. We consider formulas
to be generated from a countable set A = {a, b, c, . . .} of propositional variables,
their duals Ā = {ā, b̄, c̄, . . .}, and the units t (truth) and f (falsum), via the
binary connectives ∧ (and) and ∨ (or). The elements of the set A ∪ Ā ∪ {t, f}
will be called atoms , and the elements of the set A ∪ Ā will be called proper
atoms . For simplicity, we assume formulas to be in negation normal form, i.e.,
negation is only allowed over propositional variables. Formally, the set F of
formulas is generated by the grammar

F ::= A | Ā | t | f | [F ∨ F ] | (F ∧ F)

To ease the readability of long formulas, we use different kinds of parentheses
for ∧- and ∨-formulas, and we omit outermost parentheses.1 We use A, B, C, . . .

to denote formulas. The negation Ā of a formula A is defined via De Morgan
laws:2

¯̄a = a t̄ = f f̄ = t A ∧ B = B̄ ∨ Ā A ∨ B = B̄ ∧ Ā (2)

Here a ranges over the set A. However, from now on we will use a to denote
an arbitrary atom (i.e., a propositional variable or its negation or a unit). Note

that it follows that ¯̄A = A for every formula A.
Formula contexts are generated by the grammar

C ::={ } | [C ∨ F ] | [F ∨ C] | (C ∧ F) | (F ∧ C)

In other words, a context is a formula with a special place holder { }, the hole.
Formula contexts are denoted by F{ }, and F{A} means stands for the formula
which is obtained by substituting the hole in F{ } by A.

Figure 1 shows the inference rules that we use in this paper, and the system
containing these rules is called SKS. Figure 2 shows two examples of derivations
in system SKS.

2.1 Remark In the original presentation [BT01], the system SKS contained
only the rules ai↓, ai↑, s, m, ac↓, ac↑, aw↓, aw↑ (i.e., the first three lines in

1In early papers on deep inference the formula a ∧ [b ∨ (ā ∧ c)] would have been written
(a, [b, (ā, c)]), i.e, without the connectives, whereas without our convention, it would be written
as a ∧ (b ∨ (ā ∧ c)). We try here to take the best from both notations.

2For reasons that will become clear later, we invert the order of the arguments, when taking
the negation.
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F{t}
ai↓

F{a ∨ ā}

F{a ∧ ā}
ai↑

F{f}F{A ∧ [B ∨ C]}
s

F{(A ∧ B) ∨ C}F{f}
aw↓

F{a}

F{a}
aw↑

F{t}F{(A ∧ B) ∨ (C ∧ D)}
m

F{[A ∨ C] ∧ [B ∨ D]}F{a ∨ a}
ac↓

F{a}

F{a}
ac↑

F{a ∧ a}

F{A ∨ [B ∨ C]}
α↓

F{[A ∨ B] ∨ C}

F{A ∨ B}
σ↓

F{B ∨ A}

F{A ∧ B}
σ↑

F{B ∧ A}

F{A ∧ (B ∧ C)}
α↑

F{(A ∧ B) ∧ C}

F{A}
f↓

F{A ∨ f}

F{A}
t↓

F{A ∧ t}

F{f ∨ A}
t↑

F{A}

F{t ∧ A}
f↑

F{A}

Figure 1: The inference rules of system SKS

Figure 1). The other rules where replaced by an equational theory generated
by the equations:

A ∧ (B ∧ C) = (A ∧ B) ∧ C A ∧ B = B ∧ A A ∧ t = A f ∧ f = f
A ∨ [B ∨ C] = [A ∨ B] ∨ C A ∨ B = B ∨ A A ∨ f = A t ∨ t = t

(3)

Let us call SKS′ the system {ai↓, ai↑, s, m, ac↓, ac↑, aw↓, aw↑} extended by the
rule

A
=

B
(4)

where A = B according to (3). Then we have that SKS and SKS′ are strongly
equivalent in the following sense:

A
‖
‖ SKS

B

iff

A
‖
‖ SKS

′

B

(5)

For proving this, observe that whenever there is a derivation

A
‖
‖ {α↓,α↑,σ↓,σ↑,f↓,f↑,t↓,t↑}

B
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b̄ ∨ a
t↓

b̄ ∨ (a ∧ t)
ai↓

b̄ ∨ (a ∧ [b ∨ b̄])
s

b̄ ∨ [(a ∧ b) ∨ b̄]
σ↑

b̄ ∨ [(b ∧ a) ∨ b̄]
σ↓

b̄ ∨ [̄b ∨ (b ∧ a)]
α↓

[̄b ∨ b̄] ∨ (b ∧ a)
ac↓

b̄ ∨ (b ∧ a)
ac↑

(b̄ ∧ b̄) ∨ (b ∧ a)
t↓

(b̄ ∧ (b̄ ∧ t)) ∨ (b ∧ a)
ai↓

(b̄ ∧ (b̄ ∧ [a ∨ ā])) ∨ (b ∧ a)
s
(b̄ ∧ [(b̄ ∧ ā) ∨ a]) ∨ (b ∧ a)

σ↑
(b̄ ∧ [(ā ∧ b̄) ∨ a]) ∨ (b ∧ a)

σ↓
(b̄ ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

s
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

and

b̄ ∨ a
t↓

b̄ ∨ (a ∧ t)
ai↓

b̄ ∨ (a ∧ [b ∨ b̄])
t↓

b̄ ∨ (a ∧ [b ∨ (b̄ ∧ t)])
ai↓

b̄ ∨ (a ∧ [b ∨ (b̄ ∧ [̄b ∨ b])])
s

b̄ ∨ (a ∧ [b ∨ [(b̄ ∧ b̄) ∨ b]])
σ↓

b̄ ∨ (a ∧ [b ∨ [b ∨ (b̄ ∧ b̄)]])
α↓

b̄ ∨ (a ∧ [[b ∨ b] ∨ (b̄ ∧ b̄)])
s

b̄ ∨ [(a ∧ [b ∨ b]) ∨ (b̄ ∧ b̄)]
σ↓

b̄ ∨ [(b̄ ∧ b̄) ∨ (a ∧ [b ∨ b])]
σ↑

b̄ ∨ [(b̄ ∧ b̄) ∨ ([b ∨ b] ∧ a)]
α↓

[̄b ∨ (b̄ ∧ b̄)] ∨ ([b ∨ b] ∧ a)
ac↑

[(b̄ ∧ b̄) ∨ (b̄ ∧ b̄)] ∨ ([b ∨ b] ∧ a)
ac↓

[(b̄ ∧ b̄) ∨ (b̄ ∧ b̄)] ∨ (b ∧ a)
m

([̄b ∨ b̄] ∧ [̄b ∨ b̄]) ∨ (b ∧ a)
ac↓

(b̄ ∧ [̄b ∨ b̄]) ∨ (b ∧ a)
ac↓

(b̄ ∧ b̄) ∨ (b ∧ a)
t↓

(b̄ ∧ (b̄ ∧ t)) ∨ (b ∧ a)
ai↓

(b̄ ∧ (b̄ ∧ [a ∨ ā])) ∨ (b ∧ a)
s
(b̄ ∧ [(b̄ ∧ ā) ∨ a]) ∨ (b ∧ a)

σ↑
(b̄ ∧ [(ā ∧ b̄) ∨ a]) ∨ (b ∧ a)

σ↓
(b̄ ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

s
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

Figure 2: Two examples of derivations

then A = B according to (3). Conversely, if we have A = B, then we can
provide a derivation

A
‖
‖ {aw↓,aw↑,ac↓,ac↑,α↓,α↑,σ↓,σ↑,f↓,f↑,t↓,t↑}

B

(6)

To see this, note that the equations in the last column of (3) can be simulated
by the following derivations:

f
ac↑

f ∧ f

f ∧ f
aw↑

t ∧ f
f↑

f

t
f↓

t ∨ f
aw↓

t ∨ t

t
ac↓

t ∨ f

(Recall that the rules aw↓, aw↑, ac↓, ac↑ can also be applied to units.)

Note that system SKS is self-dual, i.e., for every rule r in SKS there is a
dual rule r′ which is obtained from r by negating and exchanging premise and
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conclusion. For example, the rules ac↓ and ac↑ are dual to each other, and
the rule s (switch) is dual to itself. The rules with an ↓ in the name are called
down-rules , and the rules with an ↑ in the name are called up-rules. The system
consisting of switch, medial, and all down-rules is called SKS↓, and the system
consisting of switch, medial, and all up-rules is called SKS↑. The system SKS↓
is also called KS.

2.2 Remark Following Remark 2.1, we can define KS′ to be the system
{ai↓, aw↓, ac↓, s, m} extended by the equality rule in (4). This is the way as
KS has been presented in [BT01]. However, KS′ and our KS are not strongly
equivalent as in (5). We only have that

A
‖
‖ KS

B

implies

A
‖
‖ KS

′

B

(7)

The other direction does not hold. For example the two derivations

f
‖
‖ KS

′

f ∧ f

and

A ∧ (B ∧ C)
‖
‖ KS

′

(A ∧ B) ∧ C

(8)

cannot be obtained in our version of KS. However, we have

t
‖
‖ KS

A

iff

t
‖
‖ KS

′

A

(9)

This follows from the completeness of KS, which is proved below in Theorem 2.6.

2.3 Remark The rules aw↓ (atomic weakening), ac↓ (atomic contraction),
ai↓ (atomic interaction) and their duals aw↑ (atomic coweakening), ac↑ (atomic
cocontraction), ai↑ (atomic cointeraction or atomic cut) have special status be-
cause they are applicable only to atoms. However, their general versions

F{f}
w↓

F{A}
,

F{A ∨ A}
c↓

F{A}
,

F{t}
i↓

F{A ∨ Ā}
(10)

and
F{A}

w↑
F{t}

,
F{A}

c↑
F{A ∧ A}

,
F{A ∧ Ā}

i↑
F{f}

(11)

are derivable in SKS, as Proposition 2.4 below shows.

We use the following conventions. The size of a formula A is the number of
symbols in A. The length of a derivation ∆, denoted by length(∆), is the number
of lines in it, and its width, denoted by width(∆) is the maximal formula size
appearing in ∆.
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2.4 Proposition For every formula A, there are derivations

f

∆w↓
‖
‖ SKS

A

,

A ∨ A

∆c↓
‖
‖ SKS

A

,

t

∆i↓
‖
‖ SKS

A ∨ Ā

(12)

whose lengths and widths are linear in the size of A.

Proof: The proof is a straightforward induction on A, and has already been
presented in [BT01]. However, since we are here more restrictive with respect
to the equational theory (3), we show here again the inductive cases:

for w↓:

f
f↓

f ∨ f
w↓

A1 ∨ f
w↓

A1 ∨ A2

f
ac↑

f ∧ f
w↓

A1 ∧ f
w↓

A1 ∧ A2

for c↓:

[A1 ∨ A2] ∨ [A1 ∨ A2]
5·σ↓, 3·α↓

[A1 ∨ A1] ∨ [A2 ∨ A2]
c↓

A1 ∨ [A2 ∨ A2]
c↓

A1 ∨ A2

(A1 ∧ A2) ∨ (A1 ∧ A2)
m

[A1 ∨ A1] ∧ [A2 ∨ A2]
c↓

A1 ∧ [A2 ∨ A2]
c↓

A1 ∧ A2

for i↓:

t
i↓

A2 ∨ Ā2
t↓

(Ā2 ∧ t) ∨ A2
i↓

(Ā2 ∧ [Ā1 ∨ A1]) ∨ A2
s

[(Ā2 ∧ Ā1) ∨ A1] ∨ A2
3·σ↓, 1·α↓

[A1 ∨ A2] ∨ (Ā2 ∧ Ā1)

t
i↓

A1 ∨ Ā1
t↓

(A1 ∧ t) ∨ Ā1
i↓

(A1 ∧ [A2 ∨ Ā2]) ∨ Ā1
s

[(A1 ∧ A2) ∨ Ā2] ∨ Ā1
4·σ↓, 1·α↓

(A1 ∧ A2) ∨ [Ā2 ∨ Ā1]

Here the notation n·σ↓, m·α↓ means that there is a derivation consisting of n

instances of σ↓ and m instances of α↓. It follows immediately that length and
width are linear in A. ⊓⊔

The system SKS \ {ai↓, ai↑, aw↓, aw↑, ac↓, ac↑, m} ∪ {i↓, i↑, w↓, w↑, c↓, c↑} is
called SKSg, and SKSg↓, SKSg↑, and KSg can be defined accordingly.

2.5 Definition A proof of a formula A is a derivation

t
‖
‖ S

A

with truth as premise. A system is complete, if it can prove all tautologies.

In [BT01] it has been shown that KS′ (see Remark 2.2) is complete. Due to
the absence of the equations for commutativity and associativity of conjunction,
that proof does not apply for KS. Thus, we give a different proof below.
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2.6 Theorem System KS is complete.

Proof: Given a tautology A, we proceed by induction on the number of ∧-
nodes in the formula tree of A to show that there is a derivation

t
‖
‖ KS

A

(13)

If A contains no conjunction, then it is a disjunction of atoms, containing either
t or a pair of a propositional variable and its dual (because A is a tautology). In
the first case, we repeatedly apply α↓ and σ↓ to move the t to the first position,
and then apply repeatedly aw↓ and f↓ to remove everything else. In the second
case, we use α↓ and σ↓ to bring the pair together so that we can apply ai↓ to
it. Then we proceed as in the first case.

Let us now assume that A contains at least one occurrence of ∧. Then we
can use α↓ and σ↓ to bring A into the form (B1 ∧ B2) ∨ C. Since this formula
is a tautology, also the formulas B1 ∨ C and B2 ∨ C are tautologies. Hence, by
induction hypothesis we have derivations

t

∆1

‖
‖ KS

B1 ∨ C

and

t

∆2

‖
‖ KS

B2 ∨ C

Wen can now build:
t

∆1

‖
‖ KS

B1 ∨ C
t↓

(B1 ∧ t) ∨ C

∆2

‖
‖ KS

(B1 ∧ [B2 ∨ C]) ∨ C
s

[(B1 ∧ B2) ∨ C] ∨ C

∆3

‖
‖ {ac↓,m,α↓,σ↓}

(B1 ∧ B2) ∨ C

where the existence of ∆3 follows from the proof of Proposition 2.4. ⊓⊔

2.7 Definition A deep inference system S is implicationally complete if for
every valid implication A ⊃ B there is a derivation

A
‖
‖ S

B

The following two theorems and their corollaries have already been presented
in [BT01, Brü03b, Brü06b].
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2.8 Theorem System SKS is implicationally complete, and system KS is
not implicationally complete.

Proof: Let A ⊃ B be a valid implication. Since KS is complete, we have a
proof

t

∆
‖
‖ KS

Ā ∨ B

Since the rule i↑ is derivable in SKS (Proposition 2.4), we can construct the
derivation

A
t↓

A ∧ t

∆
‖
‖ KS

A ∧ [Ā ∨ B]
s

(A ∧ Ā) ∨ B
i↑

f ∨ B
t↑

B

Hence, SKS is implicationally complete. To see that this is not the case for
KS, observe that no rule in KS can introduce a new atom while going up in a
derivation. Hence, there can be no derivation

a ∧ ā
‖
‖ KS

f

⊓⊔

2.9 Corollary KS + i↑ is implicationally complete.

Proof: Every up-rule r↑ in SKS is derivable in the system {r↓, i↓, i↑, s, t↓, t↑}:

F
{

B̄
}

r↑
F

{

Ā
} ;

F
{

B̄
}

t↓
F{B̄ ∧ t}

i↓
F{B̄ ∧ [A ∨ Ā]}

r↓
F{B̄ ∧ [B ∨ Ā]}

s
F{(B̄ ∧ B) ∨ Ā}

i↑
F{f ∨ Ā}

t↑
F

{

Ā
}

(14)

Hence, the corollary follows immediately from the previous theorem (together
with the proof of Proposition 2.4). ⊓⊔

2.10 Theorem (Cut Elimination) The rule i↑ is admissible for KS.
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Proof: A semantic proof follows immediately from Theorem 2.6. However,
there is a syntactic proof of cut elimination for KS′ in [Brü03a]. That proof is
also applicable in our case even though associativity and commutativity of ∧

are not available. ⊓⊔

2.11 Corollary (Consistency) There is no formula A, such that SKS

proves both, A and Ā.

Proof: By way of contradiction, assume we have a formula A and two proofs

t

∆1

‖
‖ SKS

A

and

t

∆2

‖
‖ SKS

Ā

By the self-duality of SKS we can form the dual of ∆2 and plug it together
with ∆1:

t

∆1

‖
‖ SKS

A

∆̄2

‖
‖ SKS

f

By (14) and cut elimination, we get a proof of f in KS. By inspecting the rules,
one immediately observes that this is impossible. ⊓⊔

For further details on SKS, the reader is referred to [Brü03b]. Let us now
come back to robustness. Observe that in the deep inference setting one can
have rule schemes that apply to general subformulas, as well as rule schemes
that are restricted to atomic subformulas (cf. Remark 2.3). Such a distinction
does not exist for Frege-systems, where all axioms and rules are general. Hence,
in order to keep things simple, we consider the robustness theorem here only for
deep inference systems without atomic restrictions in the inference rules. Then
the proof is almost literally the same as for Frege-systems [CR79]. Recall that
a system S2 p-simulates a system S1 if there is a polynomial f such that for
every proof ∆1 in S1 there is a proof ∆2 of the same conclusion in S2 such that
s(∆2) ≤ f(s(∆1)), where s(∆) denotes the size of the proof ∆, i.e., the number
of symbols in ∆. Note that we have s(∆) ≤ length(∆) · width(∆).

2.12 Theorem (Robustness) Let S1 and S2 be two implicationally com-
plete deep inference systems (using the same set of connectives), such that S2

does not contain any rule with an atomic restriction. Then S2 p-simulates S1.

Proof: For every rule scheme in S1

F{A}
r
F{B}
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F{t}
i↓

F{A ∨ Ā}

F{A ∧ Ā}
i↑

F{f}

F{A ∧ [B ∨ C]}
s

F{(A ∧ B) ∨ C}

F{f}
w↓

F{A}

F{A ∨ A}
c↓

F{A}

F{A ∨ B}
σ↓

F{B ∨ A}

F{A ∨ [B ∨ C]}
α↓

F{[A ∨ B] ∨ C}

F{A}
f↓

F{A ∨ f}

F{A}
t↓

F{A ∧ t}

Figure 3: System KSg + i↑

we can provide a derivation scheme

F{A}

∆r

‖
‖ S2

F{B}

(15)

because S2 is implicationally complete. Let c1 be the maximal length of such a
derivation scheme, and let c2 be the maximal width:

c1 = max {length(∆r) | r ∈ S1} and c2 = max {width(∆r) | r ∈ S1}

When we replace an instance of r by an instance of ∆r, its length does not change,
and its width is smaller than or equal to the product of the width of ∆r and the
size of the conclusion of the rule instance. Hence, we can transform a derivation
∆1 in S1 into a derivation ∆2 in S2 such that length(∆2) ≤ c1 · length(∆1) and
width(∆2) ≤ c2 · width(∆1). ⊓⊔

If we allow rules with atomic restrictions in S2, as it is the case with SKS,
we can no longer “instantiate” the derivations ∆r in (15). Thus we have to
find another way to ensure that every derivation ∆r in S2 replacing a rule in-
stance r in S1 has only polynomial size. Fortunately, for SKS this is ensured by
Proposition 2.4.

2.13 Corollary SKS p-simulates any other implicationally complete deep
inference system.

12



([̄b ∨ b̄] ∧ [̄b ∨ b̄]) ∨ (b ∧ a)
ac↓

(b̄ ∧ [̄b ∨ b̄]) ∨ (b ∧ a)
ac↓

(b̄ ∧ b̄) ∨ (b ∧ a)
t↓

(b̄ ∧ (b̄ ∧ t)) ∨ (b ∧ a)
ai↓

(b̄ ∧ (b̄ ∧ [a ∨ ā])) ∨ (b ∧ a)
s
(b̄ ∧ [(b̄ ∧ ā) ∨ a]) ∨ (b ∧ a)

σ↑
(b̄ ∧ [(ā ∧ b̄) ∨ a]) ∨ (b ∧ a)

σ↓
(b̄ ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

s
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

!

([̄b ∨ b̄] ∧ [̄b ∨ b̄]) ∨ (b ∧ a)
ac↓

([̄b ∨ b̄] ∧ b̄) ∨ (b ∧ a)
t↓

([̄b ∨ b̄] ∧ (b̄ ∧ t)) ∨ (b ∧ a)
ai↓

([̄b ∨ b̄] ∧ (b̄ ∧ [a ∨ ā])) ∨ (b ∧ a)
s
([̄b ∨ b̄] ∧ [(b̄ ∧ ā) ∨ a]) ∨ (b ∧ a)

σ↑
([̄b ∨ b̄] ∧ [(ā ∧ b̄) ∨ a]) ∨ (b ∧ a)

σ↓
([̄b ∨ b̄] ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

ac↓
(b̄ ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

s
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

Figure 4: Example for type-A bureaucracy

Proof: From Proposition 2.4 we get immediately that SKS p-simulates the
system KSg + i↑, shown in Figure 3, which in turn p-simulates any other impli-
cationally complete deep inference system by Theorem 2.12. ⊓⊔

It is not obvious how to give a direct proof of Theorem 2.12 if atomic rules
are involved. Is there a general method, or do we have to prove an equivalent of
Proposition 2.4 for every system individually? We have to leave this question
open for future research.

3 The ABC of Bureaucracy

The term “bureaucracy” is used to describe the phenomenon that oftentimes
two formal proofs in a certain formalism denote “morally” the same proof but
differ due to trivial rule permutations or other syntactic phenomena. Of course,
the main problem here is to decide when two proofs should be “morally” the
same. I.e., when is a certain syntactic phenomenon an important information
about the proof and when is it just “bureaucracy”?

Consider now the right derivation in Figure 2. It is intuitively clear that we
would not change the essence of the derivation if we exchanged the two instances
of ac↓ marked highlighted between the m and the t↓ in the lower half of the
derivation. That the two instances of ac↓ are ordered one above the other can
be considered to be an act of “bureaucracy”. In fact, following this intuition, we
can permute the first ac↓ almost all the way down in the derivation, as shown
in Figure 4. This kind of “bureaucracy” has been called bureaucracy of type A
by Guglielmi [Gug04a]. More generally whenever there is a derivation ∆1 from
A to B and a derivation ∆2 from C to D, then

A ∧ C

∆1

‖
‖

B ∧ C

∆2

‖
‖

B ∧ D

and

A ∧ C

∆2

‖
‖

A ∧ D

∆1

‖
‖

B ∧ D

(16)
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([̄b ∨ b̄] ∧ [̄b ∨ b̄]) ∨ (b ∧ a)
ac↓

([̄b ∨ b̄] ∧ b̄) ∨ (b ∧ a)
t↓

([̄b ∨ b̄] ∧ (b̄ ∧ t)) ∨ (b ∧ a)
ai↓

([̄b ∨ b̄] ∧ (b̄ ∧ [a ∨ ā])) ∨ (b ∧ a)
s
([̄b ∨ b̄] ∧ [(b̄ ∧ ā) ∨ a]) ∨ (b ∧ a)

σ↑
([̄b ∨ b̄] ∧ [(ā ∧ b̄) ∨ a]) ∨ (b ∧ a)

σ↓
([̄b ∨ b̄] ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

ac↓
(b̄ ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

s
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

!

([̄b ∨ b̄] ∧ [̄b ∨ b̄]) ∨ (b ∧ a)
t↓

([̄b ∨ b̄] ∧ ([̄b ∨ b̄] ∧ t)) ∨ (b ∧ a)
ai↓

([̄b ∨ b̄] ∧ ([̄b ∨ b̄] ∧ [a ∨ ā])) ∨ (b ∧ a)
s
([̄b ∨ b̄] ∧ [([̄b ∨ b̄] ∧ ā) ∨ a]) ∨ (b ∧ a)

σ↑
([̄b ∨ b̄] ∧ [(ā ∧ [̄b ∨ b̄]) ∨ a]) ∨ (b ∧ a)

σ↓
([̄b ∨ b̄] ∧ [a ∨ (ā ∧ [̄b ∨ b̄])]) ∨ (b ∧ a)

ac↓
(b̄ ∧ [a ∨ (ā ∧ [̄b ∨ b̄])]) ∨ (b ∧ a)

s
[(b̄ ∧ a) ∨ (ā ∧ [̄b ∨ b̄])] ∨ (b ∧ a)

ac↓
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

Figure 5: Example for type-B bureaucracy

(b̄ ∧ b̄) ∨ (b ∧ a)
t↓

(b̄ ∧ (b̄ ∧ t)) ∨ (b ∧ a)
ai↓

(b̄ ∧ (b̄ ∧ [a ∨ ā])) ∨ (b ∧ a)
s
(b̄ ∧ [(b̄ ∧ ā) ∨ a]) ∨ (b ∧ a)

σ↑
(b̄ ∧ [(ā ∧ b̄) ∨ a]) ∨ (b ∧ a)

σ↓
(b̄ ∧ [a ∨ (ā ∧ b̄)]) ∨ (b ∧ a)

s
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

!

(b̄ ∧ b̄) ∨ (b ∧ a)
σ↑

(b̄ ∧ b̄) ∨ (b ∧ a)
t↓

(b̄ ∧ (b̄ ∧ t)) ∨ (b ∧ a)
ai↓

(b̄ ∧ (b̄ ∧ [a ∨ ā])) ∨ (b ∧ a)
s
(b̄ ∧ [(b̄ ∧ a) ∨ ā]) ∨ (b ∧ a)

σ↓
(b̄ ∧ [ā ∨ (b̄ ∧ a)]) ∨ (b ∧ a)

s
[(b̄ ∧ ā) ∨ (b̄ ∧ a)] ∨ (b ∧ a)

σ↑
[(ā ∧ b̄) ∨ (b̄ ∧ a)] ∨ (b ∧ a)

σ↓
[(b̄ ∧ a) ∨ (ā ∧ b̄)] ∨ (b ∧ a)

Figure 6: Example for type-C bureaucracy

as well as any other “merge” of ∆1 and ∆2 should be considered to be the same.
This suggest the more efficient notation

A ∧ C

∆1∧∆2

‖
‖

B ∧ D

(17)

and similarly for disjunction. Guglielmi calls a formalism which per se makes
these identifications Formalism A. However, Formalism A does not allow the
identification of the two derivations in Figure 5. where the ac↓ is not “next to”
another derivation but “inside” another derivation. This phenomenon has been
called bureaucracy of type B [Gug04b]. Then Formalism B is a formalism that
avoids this kind of bureaucracy. More generally, the following two derivations

14



deep inference ≃ working in a syntactic category

calculus of structures ≃ free syntactic category

Formalism A ≃ free syntactic category
+ bifunctoriality of − ∧ − and − ∨ −
+ naturality of α↓, α↑, σ↓, σ↑, t↓, t↑, f↓, f↑
+ coherence for associativity, commutativity, and units
+ equations for ∨-monoids and for ∧-comonoids
+ trivial rule identities

Formalism B ≃ Formalism A + naturality of s and m

Formalism C ≃ Formalism B + “full coherence”

Figure 7: The bureaucracy-ABC vs. categorical proof theory

should be identified:

F{A}

∆1

‖
‖

F{B}

∆3

‖
‖

F ′{B}

and

F{A}

∆3

‖
‖

F ′{A}

∆1

‖
‖

F ′{B}

(18)

where ∆1 is as above and ∆3 only works on the context.
Besides bureaucracy of type A and B, we can observe another kind of bureau-

cracy, which we will call here bureaucracy of type C . Consider the two derivations
in Figure 6. They can considered to be essentially the same, because in both
the same a and ā in the conclusion are “brought together” and disappear in an
identity. The difference is that the derivation on the right contains two more
applications of commutativity in which the two b̄ are exchanged. But neither
Formalism A nor Formalism B can identify the two. Let us call Formalism C a
formalism that is able to avoid this kind of bureaucracy.

In their original presentations [Gug04a, Gug04b], formalisms A and B where
presented modulo the equational theory (see Remark 2.1). When the equations
are explicit, we see that some more care is needed. For example, the following
two derivations should be identified:

A ∨ [B ∨ [D ∨ C]]
α↓

[A ∨ B] ∨ [D ∨ C]
σ↓

[A ∨ B] ∨ [C ∨ D]
α↓

[[A ∨ B] ∨ C] ∨ D

!

A ∨ [B ∨ [D ∨ C]]
σ↓

A ∨ [B ∨ [C ∨ D]]
α↓

A ∨ [[B ∨ C] ∨ D]
α↓

[A ∨ [B ∨ C]] ∨ D
α↓

[[A ∨ B] ∨ C] ∨ D

15



A ∨ [B ∨ C]
α↓

[A ∨ B] ∨ C
σ↓

C ∨ [A ∨ B]
σ↓

C ∨ [B ∨ A]
α↓

[C ∨ B] ∨ A
σ↓

[B ∨ C] ∨ A
σ↓

A ∨ [B ∨ C]

= A ∨ [B ∨ C]

[A ∨ B] ∨ C
σ↓

C ∨ [A ∨ B]
σ↓

C ∨ [B ∨ A]
α↓

[C ∨ B] ∨ A
σ↓

[B ∨ C] ∨ A
σ↓

A ∨ [B ∨ C]
α↓

[A ∨ B] ∨ C

= [A ∨ B] ∨ C

Figure 8: The equations that make α↓ an isomorphisms

but, on the other hand, the following two derivations should not be identified:

A ∨ A
σ↓

A ∨ A
σ↓

A ∨ A

!
A ∨ A

σ↓
A ∨ A

In the following, we will make the notions of formalisms A, B, and C precise. We
will see that the language of category theory contains all the needed vocabulary
for doing so.3

Every deep inference proof system defines a category in which the formu-
las are the objects and the derivations are the morphisms. Composition of
morphisms is obtained by plugging together derivations. In this setting, the in-
tuitions about bureaucracy given above, can easily be translated into category
theoretical terms, as it is shown in Figure 7 (see also [Hug04] and [McK05] for
work relating deep inference and categorical proof theory). The remainder of
this section is dedicated to explaining the terminology in Figure 7:

Bifunctoriality of − ∧ − means exactly the identification of the three deriva-
tions in (16) and (17), and bifunctoriality of − ∨ − is defined analogously. Nat-
urality of σ↓ means that the following two equations between derivations hold:

B ∨ A′

∆1

‖
‖

B ∨ A
σ↓

A ∨ B

=

B ∨ A′

σ↓
A′ ∨ B

∆1

‖
‖

A ∨ B

and

B′ ∨ A

∆2

‖
‖

B ∨ A
σ↓

A ∨ B

=

B′ ∨ A
σ↓

A ∨ B′

∆2

‖
‖

A ∨ B

(19)

where ∆1 is an arbitrary derivation from A′ to A, and ∆2 is an arbitrary deriva-
tion from B′ to B. Naturality of the other rules is defined analogously.

The terminology coherence for associativity, commutativity, and units refers
to the set of equations shown in Figures 8, 9, and 10 for disjunction and the

3We refer the reader to the standard texts [Mac71, BW99] for the basic notions of category
theory. However, for understanding this paper the reader does not need any knowledge of
category theory, since we will explain everything in proof theoretical terms.
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A ∨ B
σ↓

B ∨ A
σ↓

A ∨ B

= A ∨ B

A
f↓

A ∨ f
t↑

A

= A

A ∨ f
t↑

A
f↓

A ∨ f

= A ∨ f

Figure 9: The equations that make σ↓, f↓, and t↑ isomorphisms

A ∨ [B ∨ [C ∨ D]]
α↓

[A ∨ B] ∨ [C ∨ D]
α↓

[[A ∨ B] ∨ C] ∨ D

=

A ∨ [B ∨ [C ∨ D]]
α↓

A ∨ [[B ∨ C] ∨ D]
α↓

[A ∨ [B ∨ C]] ∨ D
α↓

[[A ∨ B] ∨ C] ∨ D

A ∨ [B ∨ C]
σ↓

A ∨ [C ∨ B]
α↓

[A ∨ C] ∨ B
σ↓

[C ∨ A] ∨ B

=

A ∨ [B ∨ C]
α↓

[A ∨ B] ∨ C
σ↓

C ∨ [A ∨ B]
α↓

[C ∨ A] ∨ B

A ∨ B
f↓

A ∨ [B ∨ f ]
α↓

[A ∨ B] ∨ f

=
A ∨ B

f↓
[A ∨ B] ∨ f

Figure 10: Mac Lane’s coherence equations for symmetric monoidal categories

corresponding equations for conjunction (which are not shown). In Figures
8 and 9, the single formula on the right-hand side of an equation stands for
a single-line derivation where premise and conclusion coincide. In category
theoretical terms this stands for the identity morphism on that formula. The
equations in Figures 8 and 9 then say that α↓, σ↓, f↓, and t↑ are treated as
isomorphisms in the category theoretical sense, where f↓ and t↑ are inverse
to each other, σ↓ is inverse to itself, and the inverse of α↓ is a derivations
consisting of four σ↓ and one α↓. The equations in Figure 10 are the coherence
equations for symmetric monoidal categories given by Mac Lane [Mac63] (see
also [Mac71, Kel64]). That these equations give indeed the proof identifications
desired for Formalism A is a consequence of Mac Lane’s coherence theorem
for symmetric monoidal categories [Mac63]. Translated into our setting, this
theorem is stated as follows.

3.1 Theorem Let two formulas A and B and two derivations

A

∆1

‖
‖ {α↓,α↑,σ↓,σ↑,t↓,t↑,f↓,f↑}

B

and

A

∆2

‖
‖ {α↓,α↑,σ↓,σ↑,t↓,t↑,f↓,f↑}

B

be given. If we assume bifunctoriality of − ∨ − and − ∧ −, naturality of α↓,
α↑, σ↓, σ↑, t↓, t↑, f↓, and f↑, and the equations in Figures 8, 9, and 10, then
∆1 = ∆2.

Proof: This immediately follows from Mac Lane’s coherence theorem for sym-
metric monoidal categories [Mac63] and the fact that the two monoidal struc-
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a ∨ [a ∨ a]
α↓

[a ∨ a] ∨ a
ac↓

a ∨ a
ac↓

a

=

a ∨ [a ∨ a]
ac↓

a ∨ a
ac↓

a

a ∨ a
σ↓

a ∨ a
ac↓

a

=
a ∨ a

ac↓
a

a ∨ f
aw↓

a ∨ a
ac↓

a

=
a ∨ f

t↑
a

Figure 11: Equations for ∨-monoids

t
ai↓

t ∨ f
=

t
f↓

t ∨ f

t
ac↑

t ∧ t
=

t
t↓

t ∧ t
t

aw↓
f

=
t

aw↑
f

t ∧ f
ai↑

f
=

t ∧ f
f↑

f

f ∨ f
ac↓

f
=

f ∨ f
t↑

f

Figure 12: Trivial rule identities

tures for ∧ and ∨ do not interact. ⊓⊔

Due to the presence of (atomic) contraction and weakening we should also
add the equations for ∨-monoids (shown in Figure 11) and for ∧-comonoids
(which are the up-down inverses of those in Figure 11). These equations say
that if we apply the contraction rule to many copies of the same atom then it
does not matter in which order we do that, and if we have a weakening followed
by a contraction on the same atom, then this is the same as doing nothing.

With trivial rule identities we mean the equations in Figure 12. For going
from t to t ∨ f , we could use the rule ai↓ as well as the rule f↓. The first equation
in Figure 12 says that we do not make a difference between the two. The other
equations in that figure are similar.

Unfortunately, the terminology full coherence in Figure 7 does not (yet)
have such a precise meaning as formulated in Theorem 3.1 for associativity
commutativity and units. In fact, it is an important research problem to unveil
the necessary equations for obtaining a coherence theorem. An example of a
desired equation is the following:

(A ∧ C) ∨ (B ∧ [D ∨ E])
s

(A ∧ C) ∨ [(B ∧ D) ∨ E]
α↓

[(A ∧ C) ∨ (B ∧ D)] ∨ E
m

([A ∨ B] ∧ [C ∨ D]) ∨ E

=

(A ∧ C) ∨ (B ∧ [D ∨ E])
m

[A ∨ B] ∧ [C ∨ [D ∨ E]]
α↓

[A ∨ B] ∧ [[C ∨ D] ∨ E]
s

([A ∨ B] ∧ [C ∨ D]) ∨ E

(20)

For further details, the reader is referred to [LS05a, Str07b, Lam07]. Even
though the algebra for making the intuition behind Formalism C is not yet
fully developed, we can use the notion of proof graphs to give a precise meaning
to Formalism C in a combinatorial sense. This will be done in the following
sections.

18



An alternative approach towards bureaucracy from a category theoretical
viewpoint is based on n-categories and n-dimensional rewriting [Gui06], where
proofs are three-dimensional objects, and bureaucracy is eliminated by isotopy.

4 Proof Nets and Proof Graphs for Classical

Logic

Proof nets are abstract (graphical) presentations of proofs such that all “trivial
rule permutations” are quotiented away. Ideally the notion of proof net should
be independent from any syntactic formalism. But due to the almost absolute
monopoly of the sequent calculus, most notions of proof nets proposed in the
past relate themselves to the sequent calculus. Consequently we could observe
features like “boxes” and explicit “contraction links”. The latter appeared not
only in linear logic [Gir96] but also in classical logic (as sketched in [Gir91] and
detailed out in [Rob03]). The slogan of the early proof nets was

Slogan 1: Every link in the proof net corresponds to a rule appli-
cation in the sequent calculus.

with the basic idea that if two rules “trivially permute” in the sequent calculus,
then the corresponding links in the proof net are independent. However, more
recent proposals for proof nets follow a different slogan:

Slogan 2: A proof net is a formula tree (or sequent forest) enriched
with additional graph structure.

This additional graph structure is supposed to capture the essence of the proof.
To our knowledge the first notion of proof net in this more modern setting were
[HvG03] for unit-free multiplicative additive linear logic (MALL) and [SL04,
Hug05] for multiplicative linear logic (MLL) with units.4 Then in [LS05b] proof
nets for classical logic obeying Slogan 2 followed.

The notion of proof net usually comes with a so called correctness criterion
which allows to decide whether a given “net” does indeed represent a proof. If
this criterion provides a polynomial decision procedure (polynomial in the size
of the proof net) then one can speak of a proof system in the sense of Cook and
Reckhow [CR79]. For the proof nets in [Rob03] for classical logic and the ones in
[Gir96] and [HvG03] for MALL we have such a polynomial criterion. But for the
proof nets for classical logic in [LS05b] there is only an exponential criterion. In
order to avoid confusion, we will in such a case speak of proof graphs , in order to
reserve the term proof net for objects with a polynomial correctness criterion.

4In fact, the first has been [Gir87] (or more precisely [KM71]) simply because for the special
case of unit-free MLL both slogans coincide: every connective in the formulas corresponds to
an application of a sequent rule, and the axiom links attached to the formulas capture exactly
the essence of a proof in unit-free MLL. This very fortunate coincidence is also the reason why
proof nets for unit-free MLL behave so remarkably well and were so successful from the very
beginning.
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In the remainder of this section we will recall the proof graphs for classical
logic presented in [LS05b]. More precisely, we will concentrate on the version of
proof graphs which have been called N-nets in [LS05b].

As before, the set of formulas is generated via the binary connectives ∧
(conjunction) and ∨ (disjunction) from the set A ∪ Ā ∪ {t, f}, whose elements
are called atoms . A finite list Γ = A1, A2, . . . , An of formulas is called a sequent .
We will consider formulas as binary trees (and sequents as forests), whose leaves
are decorated by atoms, and whose inner nodes are decorated by the connectives.

There is a special kind of auxiliary formula, called cut , which is of the shape
B♦B̄, where B is an arbitrary formula and where ♦ is called the cut connective.
It is important to note that ♦ is allowed only at the root of a formula tree. A
cut sequent is a finite list Σ = B1 ♦ B̄1, . . . , Bn ♦ B̄n of cuts.

4.1 Definition A proof graph P, Σ⊲Γ consists of a sequent Γ, a cut sequent
Σ, and an undirected multi-graph P whose set of vertices is the set of leaves of
Γ and Σ and whose set of edges obeys the following conditions:

1. whenever there is an edge between two leaves, then one is decorated by a
propositional variable a and the other by its dual ā,

2. whenever there is an edge connecting a leaf to itself, then this leaf is
decorated by t, and for each t there is exactly one such edge.

4.2 Remark There are two differences to the N-nets of [LS05b]: first, we
disallow here edges connecting f and t, and second, we disallow multiple edges
connecting a t to itself. This gives us a better algebraic behavior of proofs
with respect to the units. This is explained in more detail in [LS05a, Str07b].
However, we do allow multiple edges connecting a pair of a propositional variable
and its dual, in order to keep track of the size of the proof.

One can think of P also as an undirected graph whose edges are labeled by
natural numbers (hence the name N-net in [LS05b]), but in this paper we draw
it as multi-graph. Here are two examples:

ā a ā a

∧

........................... ..............................................................
...................................................

.......
...........
....................................... c f t c̄ c c̄

∨ ∧ ∨

♦

...................................
..........
.....................................

In the following, we will consider only proof graphs P, Σ ⊲ Γ where Γ contains
exactly two formulas (but there is no restriction on the number of cuts in Σ).
Here are two examples, one with and one without cuts:

bb̄ b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

∨

∨

♦

.............
................ .............

.....................................................
............
..................................

............................................................................................................................
................
....................

................................
..................................................................................................................................................

..........
...............

..................
...................................................

...............................................................................................................................................................................................................................................................

(21)
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b̄ a ā b̄ b a ā b

∧ ∧ ∧ ∧

∨

∨

..............
............... ..............

............... ..............
........................

..................
.......................................

..............................................................................................................
............
.............................

............................................................................................................................
.............
..............

..................
........................................

.......................................................................................................................................................................................................................

(22)

The two proof graphs in (21) and (22) can also be drawn as follows where the
two formulas in Γ are at the outer ends of the picture:

b̄ a ā b̄ b a

b

b̄

♦

āb

∧ ∧ ∧

∨

∨

∨

.............
................ ......

......
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.......
......
...

.................................................................
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(23)

This will be the preferred way from now on.

4.3 Cut Reduction The cut reduction procedure for proof graphs is defined
as follows. For cuts on compound formulas we have:

∧∧ ♦

; ♦
♦

(24)

For saving space, the picture is put on the side. Cuts on the units can simply
be removed:

t

f

♦

.........................
..........
......................

; (25)

Finally, atomic cuts are reduced as follows:

a

ā
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ā
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a
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·
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ā
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a
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·
·
·

·
·
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..............
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...................................................

(26)

This means that for every pair of edges, where one is connected to one side of
the atomic cut and the other is connected to the other side of the cut, there is
in the reduced proof graph an edge connecting the two outer ends of the pair.
If there happens to be an edge connecting the two leaves of the cut, then this
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ā

a

...................................................................
..............

....

vuqz+uvw+pqz+pw+uq

...................................................................
............

..................................................................
. ................................................. ................................................. ...............................

.................................... ..................
............................................................. ............
..................

.......................................................

ā
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Figure 13: Cut reduction is not confluent

edge disappears with the cut, as in the following example:
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a
a

a

...........................................

..................................
.........

....................................................

........................................... .......................
............

..........
..

.........
.............
..................................................................................................

;
ā
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(27)

If there is more than one edge between two dual atoms, the number of edges is
multiplied, as in the following example:

a

ā

♦

ā

a

.......................................
......

.......................
.........
...........................................................

.......................

.......................
; ā

a

...................................................................
..............

.... ...................................................................
............

..................................................................
. ................................................. ................................................. ...............................

.................................... ..................
............................................................. ............
...................

......................................................
(28)

This causes an exponential increase of the number of edges during the cut re-
duction process. In [LS05b] this cut reduction is defined formally by using the
semiring structure on the set of natural numbers.

4.4 Theorem The cut reduction on proof graphs is terminating.

Proof: Every reduction step reduced the size of the cut sequent Σ in the proof
graph. ⊓⊔

Note that the cut reduction is in general not confluent. A simple counterex-
ample is shown in Figure 13, where the labels of the edges indicate how the num-
ber of edges between two atoms is computed (for example u·v+p = 2·1+1 = 3).
It is interesting to observe that the reasons for this nonconfluence is different
from the nonconfluence of cut-elimination in the sequent calculus for classical
logic. An instructive example is the one in (21), (22), and (23). This example
has been used by Girard in the appendix of [Gir91] to exhibit the inherent non-
confluence of normalization in the sequent calculus (and because of Slogan 1
above he concluded that the same problem must occur with any kind of proof

22



A

Ā
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Figure 14: The shape of m-rule graphs and s-rule graphs

nets for classical logic). However, reducing the cut from (21) yields (22) in one
step, i.e., there is no room for nonconfluence.

We always have confluence if the number of edges between two atoms is
restricted to one, i.e, the multi-graph is just a graph. These objects where called
B-nets in [LS05b], and a correctness criterion was given for them. However, this
criterion is not adequate for the general case where P is a multi-graph.

4.5 Remark There are two very different notions of “cut” and the two
should not be mixed up, although both are direct translations of the cut in
sequent calculus. On the one side we have the cut as a rule, and cut elimina-
tion (Theorem 2.10) means that this rule is admissible, such that the remaining
system is analytic. For SKS it means that the whole up-fragment of the system
(i.e., all rules with the ↑ in the name) is admissible. On the other side we have
the cut ♦, and cut elimination means composition of derivations (or proofs, or
arrows in a category), and this will be a central point of interest in the remainder
of this paper. It is a particular feature of classical logic that these two notions
of cut elimination are so different. For MLL on the other hand, they do coincide.

5 From Derivations to Proof Graphs

In this section we will see how derivations are translated into proof graphs. This
is done by assigning to each inference rule a rule graph:

A
r

B
;

B

Ā

............................................................................................................
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Figure 15: The shape of α↓-rule graphs and σ↓-rule graphs
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Figure 16: The shape of f↓-rule graphs and t↓-rule graphs
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Figure 17: The shape of rule graphs for aw↓, aw↑, ai↓, and ai↑

where the linking is subject to certain side conditions which depend on the
rule r.

For the occurrences of t and f in the premise and conclusion of r there is
no choice: There can never be an edge coming out of an f , and there is always
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Figure 18: The shape of rule graphs for ac↓ and ac↑

exactly one edge connecting a t to itself. But we have to explain how to connect
propositional variables.

Figures 14, 15, 16, 17 and 18 show the rule graphs for the rules of system SKS,
as they are given in Figure 1. For the rules s, m, α↓, α↑, σ↓, and σ↑, it is
intuitively clear what should happen: every leaf in the premise tree is connected
to its counterpart in the conclusion via an edge in in the linking; and there are
no other edges. Note that the proof graphs for α↓ and α↑ are the same; one
written as the upside-down version of the other. The same holds for all other
pairs of dual rules. For α↓, σ↓, f↓, and t↓ only one picture is shown (Figures
15 and 16), but for the atomic rules down- and up-version are given (Figures 17
and 18) because it is instructive to see them next to each other. In Figure 18
we show the proof graphs for ac↓ applied to a propositional variable and to t,
and dually for ac↑.

We can use cuts to plug rule graphs together to get derivation graphs , as
it is shown in the upper left of Figure 19. Note that in derivation graphs the
“duality” between derivations

A

∆
‖
‖ S

B

and

B̄

∆̄
‖
‖ S

Ā

disappears because both are represented by the same graph. A derivation which
contains no rules, i.e., premise and conclusion coincide, is represented by the
identity proof graph:

A

Ā

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···
(29)
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Figure 19: Upper left: From derivations to derivation nets. Right: Exam-
ple of an A-reduced proof graph. Lower left: Result of applying level-C cut
elimination to it.

6 Cut Elimination is Losing Information

In this section we will see how cut elimination removes information, and that
this can be bureaucratic as well as non-bureaucratic information.
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We introduce three levels of cut reduction, that are called here level-A reduc-
tion, level-C reduction, and full reduction. The goal is to establish a connection
between level-A cut reduction and Formalism A, and between level-C cut reduc-
tion and Formalism C. With full cut reduction we mean the procedure defined
in Section 4. For defining level-A reduction, we need the distinction between
heavy and light connectives in the proof graph: An instance of a binary connec-
tive is called heavy if it is active in a medial, switch, or interaction rule. The
heavy instances of connectives are in boldface in Figures 14 and 17. All other
instances of connectives are called light , i.e., all connectives appearing in the
contexts and in rules for associativity, commutativity, contraction, and units
(Figures 15, 16 and 18).

6.1 Level-A Cut Reduction For level-A cut reduction we allow the fol-
lowing four reductions:

1. Cuts on binary connectives

∧∧ ♦

; ♦
♦

(30)

can only be reduced if both connectives are light. This means that the
following configurations cannot be reduced:

∧∧∧∧ ♦ ∧∧∧ ♦ ∧∧∧ ♦

2. We allow all reductions between f and t:

t

f

♦

.........................
..........
......................

;

3. An atomic cut can only be reduced if at least one of the two cut-atoms
has exactly one adjacent egde in the linking by which it is connected to
another atom (its dual). I.e, we have:

a

ā

a ♦ ·
·
·

·
·
·

·
·
·

..................
.......................

................
.......

........................................................

.........
..........
............
................

.........

;

a ·
·
·.......................

................
.......

·
·
·

·
·
·

........................................................

.........
..........
............
................

.........

(31)

4. Finally, we allow to eliminate the identity proof graph in a situation as
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follows:

B
............................................................................................................

Ā

♦

A
. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···

Ā

;

B
............................................................................................................

Ā

(32)

We will call a proof graph A-reduced if no further level-A cut reduction step is
possible.

To give an example, consider the proof graph on the right of Figure 19, which
represents the two derivations in Figure 4. It is easy to see that this proof graph
cannot be obtained from the right derivation in Figure 5. This means that A-
reduced proof graphs are not able to identify the derivations that are identified
by Formalism B.

6.2 Remark The reduction (32) in 6.1 is needed because Formalism A re-
quires the identification of the two proof graphs in (32), but the heavy connec-
tives can block ordinary cut reduction (30).

6.3 Theorem Level-A reduction is terminating and confluent.

Proof: Termination of level-A cut reduction follows for the same reason as
in the proof of Theorem 4.4. Thus, for confluence, it suffices to show local
confluence. For this, note that there are 2 critical pairs. The first involves
two atomic cuts and is the reason for nonconfluence in the general case (see
Figure 13). But due to the restriction (31), this can be resolved immediately, as
indicated in Figure 20. The second critical pair does not occur in the general case
because it involves a reduction according to (32) against a reduction according
to (30). But this can also easily be resolved because the decomposition of an
identity proof graph yields two smaller identity proof graphs. ⊓⊔

6.4 Theorem Two SKS-derivations yield the same A-reduced proof graph if
and only if they are identified by Formalism A.

Proof: First note that all equations that generate the identifications of For-
malism A, as given in Section 3, yield identical A-reduced proof graphs for the
left-hand side and for the right-hand side. Thus, the if-direction of the statement
follows from confluence of level-A reduction.

For the only-if-direction we will construct an SKS-derivation from an A-
reduced proof graph and show that it is unique up to Formalism A equivalence.

28



·
·
·

a♦

ā
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Figure 20: Critical pair for level-A cut reduction

We proceed in two steps. First we “unfold” the proof graph by introducing
cuts, and then we extract the SKS-derivation. We begin by “unfolding” the
contractions, i.e., whenever an atom is incident to more than one edge, we add
new cuts and ac↓-rule graphs (or ac↑-rule graphs, see Figure 18) as follows:

a

ā
ā

..

.

ā

..............................................

..........................................
.........
..........
............

................

99K a

ā
ā

..........................................

.......................
...................

∧ ♦

∨

a
a

ā
ā

..

.

ā

..........................................

..........................................

.................
.....................

....

Because of the equations for ∨-monoids (see Figure 11) and ∧-comonoids, the
order in which we proceed does not matter. We also need to unfold the following
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situation:

C̄

............................................................................................................

............................................................................................................

C1 C2

∧

♦

∧

C1 C2

............................................................................................................

............................................................................................................

A B

♦ ♦

L99

A B

C̄

............................................................................................................................................................................................................

............................................................................................................................................................................................................

♦ ♦

99K

C̄

............................................................................................................

............................................................................................................

C1 C2

∨

♦

∨

C1 C2

............................................................................................................

............................................................................................................

A B

♦ ♦

where the proof graph in the middle is expanded to either the proof graph on
the left or the one on the right, depending on the root connective of C. The
formula tree C1 (resp. C2) is obtained from C by removing all subtrees that are
not connected to a leaf in A (resp. B).

Now we can proceed by induction on the size of the proof graph to construct
a corresponding derivation. The base cases are:

a

ā

.........

..........
..........
..........
........

ā ā

a

∨

.........................................

.........................................
a a

ā

∧

.........
.........
.........
.........
.....

.........
.........
.........
.........
.....

A

Ā

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···

C

B̄

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

···

···. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···

B

C̄

D

D̄

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···

∧∧

∨∨

∧∧

∨∨

∨∨

∧∧

A

Ā

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···

B

B̄

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···

C

C̄

. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .
···

···

∧∧

∨∨

∨∨

∧∧

with the corresponding derivations:

a
a ∨ a

ac↓
a

a
ac↑

a ∧ a

(A ∧ B) ∨ (C ∧ D)
m

[A ∨ C] ∧ [B ∨ D]

A ∧ [B ∨ C]
s

(A ∧ B) ∨ C

We have the following inductive cases:

1. If the proof graph is the composition of two proof graphs via a cut, we can
simply compose the two derivations that we have by induction hypothesis.

2. If the proof graph is a composition of smaller proof graphs via (light)
connectives ∧, ∨, and via the units f and t (with a loop attached to it, see
Figure 16), then we can construct our derivation by composing the smaller
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derivations (which exist by induction hypothesis) via the rules α↓, α↑, σ↓,
σ↑, f↓, f↑, t↓, and t↑. This is unique up to Formalism A equivalence
because of Theorem 3.1.

3. If the proof graph is obtained from a smaller proof graph by attaching
a formula tree without incident edges in the linking (except for edges
connecting t to itself), we obtain our derivation as follows

B
............................................................................................................

Ā

C

∨

;

A

∆
‖
‖ SKS

B

∆w↓
‖
‖ {aw↓,f↓,ac↑}

B ∨ C

or dually

B
............................................................................................................

ĀC̄

∧

;

C ∧ A

∆w↑
‖
‖ {aw↑,f↑,ac↓}

A

∆
‖
‖ SKS

B

where ∆ exists by induction hypothesis. The uniqueness of ∆w↓ (respec-
tively, ∆w↑) is ensured by the comonoid laws for ac↑ (respectively, the
monoid laws for ac↓).

4. Finally, if the proof graph is obtained from a smaller proof graph by
attaching a pair of linked atoms, the situation is similar:

B
............................................................................................................

Ā

a ā

∨∨

∧

.................
;

A

∆
‖
‖ SKS

B
f↓

B ∧ t
ai↓

B ∧ [a ∨ ā]

(We do not show the dual case.) Note that for uniqueness in the last
two cases, we make crucial use of the equations for the units in Figures 9
and 10.

If none of the cases above applies, then the proof graph cannot be the result of
translating an SKS-derivation into a proof graph. ⊓⊔

Note that this proof gives a polynomial algorithm for deciding whether an
A-reduced proof graph is obtained from an SKS derivation.
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6.5 Remark Unfortunately, there is no local rule replacing (32) for reducing
the identity proof graph. The rule

∨

Ā C̄

............................................................................................................

............................................................................................................

B D

∨

♦

∨∨

;

∨∨

Ā C̄

............................................................................................................

............................................................................................................

B D

♦ ♦

(33)

would reduce too much. In fact, one can consider it as level B-reduction. But
unfortunately, with (33) we would lose confluence again. This is the reason
why there is no canonical representant for a “B-reduced” proof graph (see
also [BL05]).

6.6 Level-C Cut Reduction For level-C cut elimination we allow the re-
duction of all cuts on binary connectives, i.e., we forget the distinction between
heavy and light instances of connectives, and thus there is no more need for (32).
The restriction on atomic cuts is slightly relaxed. We additionally allow the re-
ductions:

a

ā

♦

a a· · ·

.................................
.................................

;
a a· · · and

a

ā

♦ ; (34)

A proof graph is called C-reduced if no further cut reduction steps according to
these restrictions are possible.

6.7 Theorem Level-C reduction is terminating and confluent.

Proof: Termination follows for the same reason as before. For showing con-
fluence, it suffices to note that Figure 20 shows the only critical pair. ⊓⊔

Examples for C-reduced proof graphs are the two proof graphs in (23). As
the reader might verify, they are obtained from the two derivations in Figure 2,
which is the reason why these two SKS-derivations are explicitly given. Another
example is in the lower left of Figure 19 (which is obtained from the proof graph
on the right of that figure).

Finally, we speak of full cut elimination, when we have cut reduction without
any restrictions. A proof graph is fully reduced if it contains no cuts. Hence,
the fully reduced proof graphs are exactly the cut-free N-prenets of [LS05b].
For example, the right proof graph in (23) can be obtained by reducing the cut
from the left one. This means that fully reduced proof graphs would identify the
two derivations in Figure 2. We can safely assume that this goes beyond mere

32



“bureaucracy elimination”. With full cut elimination we not only eliminate
“essential” information, we also leave the realm of confluence, as explained in
Section 4.

Let us finish this section by stating two open problems related to C-reduced
proof graphs. First, we can now make precise we mean by full coherence in
Figure 7:

6.8 Open Problem Find a (possibly finite) set of equations between deriva-
tions for defining Formalism C such that two derivations are identified if and
only if they yield the same C-reduced proof graph.

In other words, we are looking for a minimal set of equations to be enforced
on derivations such that the equivalence classes are in bijection with the C-
reduced proof graphs. These would be the axioms that freely generate the
category of C-reduced proof graphs. The work in [Str07b, Lam07] gives a list
of equations which must hold but which do not suffice.

The second open problem is the question whether the C-reduced proof nets
form a proof system:

6.9 Open Problem Let π be a given C-reduced proof graph. Can we decide
in polynomial time (polynomial in the size of π) whether π is the translation of
an SKS-derivation?

In other words, we are asking for a polynomial correctness criterion that
would distinguish the C-reduced proof nets from the “nonproof graphs”. It is
easy to see that Problem 6.9 can be reduced to Problem 6.4 of [Str07a] which
concerns only the switch and medial rules. This simplification is possible because
of the decomposition theorems in [Brü03b].

Note that the proof of Theorem 6.4 gives a positive answer to Problem 6.9
for A-reduced proof graphs. Thus, A-reduced proof graphs can be called a
proof system in the sense of Cook and Reckhow [CR79]. Furthermore, note that
for fully reduced proof graphs there is no such polynomial decision procedure
(unless P=NP) because the problem can be reduced to the tautology problem,
which is CoNP-complete (see also [LS05b]). This is another indication that full
cut reduction removes too much information from the proof.

A positive answer to the question of Problem 6.9 could also have some impact
in the area of proof complexity. One possible way to tackle the problem is to
study combinatorial properties of derivations consisting of the rules s and m, as
it has been done in [Str07a].

7 Relation to Logical Flow Graphs and Atomic

Flows

We discussed the fully reduced proof graphs here because they are essentially
the same as Buss’ logical flow graphs [Bus91, Car97]. The notion of logical flow
graph has recently been improved to atomic flow by Guglielmi and Gundersen
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in [GG08] for studying streamlining of derivations. Atomic flows carry more
information with respect to the contraction of atoms than logical flow graphs.

To be precise, atomic flows contain almost exactly the same information
as C-reduced proof graphs. There are only two differences: First atomic flows
do not keep the information about premise and conclusion of the derivation,
and second, they do keep the information about the order of the applications of
contraction. We can simulate this with our proof graphs by introducing another
form of restricted cut reduction. Let us define level-G reduction by allowing the
reduction of all ∧-∨-cuts as in (24) and all cuts on units as in (25) and atomic
cuts only in the situation

a♦

ā

a♦

ā .......................

................
.......

..................
.......................

................
.......

;

a♦

ā .......................

................
.......

.......................

................
.......

(35)

provided that the disappearing linking edge in the middle is not a bend edge
coming from a ai↓-rule or ai↑-rule (see Figure 17). Let us call a proof graph
G-reduced if no further reductions according to these restrictions are possible.
Note that in G-reduced proof graphs it can never happen that more than two
linking edges are coming out of one atom.

We can now define an atomic flow to be a G-reduced proof graph in which
premise and conclusion are not shown. The notation in [GG08] is mildly different
from the one presented here. Here we show the example on the left in (23)
written in both ways:

b̄ a ā b̄ b a

b

b̄

♦

āb

..........
................... ......

......
......
......
......
......
......
......
..........
...........
...........
......
......
......
......
......
......
......
......
...

...............................................

...............................................

.........
...................................................................................................................................................................

........
..........
...........
..........
........

vs.

a ā

b̄ a

b̄ b̄ b a

In other words, atomic flows are a special kind of proof graphs with a slightly
poorer structure because they do not keep the information about what has
been proved. However, the chosen level of abstraction in [GG08] allows to
give a simple syntactic proof of streamlining, which is an up-down symmetric
generalization of Theorem 2.10, independently of the proof system.

We can formulate the Open Problem 6.9 also for atomic flows: Can we decide
in polynomial time whether for a given flow graph, a given premise, and a given
conclusion there is a matching derivation?5

8 Some remarks on the induced categories

We can define the following categories: Let PreA (resp. PreC, PreG) be
the category whose objects are the formulas and whose arrows A → B be-
tween formulas A and B are the A-reduced (resp. C-reduced, G-reduced) proof

5In [GG08] it has only been shown that for any atomic flow there is such a derivation if
premise and conclusion are not fixed.
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graphs with Γ = Ā, B. The categories DeriA, DeriC, and DeriG are the wide
subcategories of PreA, PreC, and PreG, respectively, in which the Hom-sets
contain only those proof graphs that are obtained from an SKS-derivation as de-
scribed above. The fully reduced proof graphs do not form a category, because
composition cannot be defined via cut elimination which it is not confluent.

The categories DeriA, DeriC, and DeriG can be called “Boolean” in the
sense of [LS05a]. The forgetful functor from the category of (small) categories
to the category of posets maps them to Boolean algebras. For the categories
PreA, PreC, and PreG this is not the case because they contain morphisms
that do not correspond to implications in Boolean logic.

Theorem 6.4 implies that DeriA is the free category generated by the set
A∪Ā∪{f , t}, the bifunctors −∨− and −∧−, and the basic morphisms induced
by the rules in SKS, obeying all the equations demanded by Formalism A in
Section 3.

It is out of scope of this paper to give a full characterization of the other
categories mentioned above. In fact, for DeriC (and also for DeriG) this is an
open problem, as indicated in Problem 6.8. Nonetheless, we can compare our
proof graph categories to the different axiomatisations given in [FP04], [DP04],
[LS05a], and [Str07b]. All of them have in common that the Hom-sets are
equipped with a semigroup structure, which is idempotent in [FP04], [DP04],
and [LS05a]. This semigroup structure is also present for PreC and DeriC, but
it is not idempotent (see [Str07b]). In the case of PreC the sum of two proof
graphs is given by their union. This is best understood by seeing an example.
Let f be the proof graph on the left in (23) and g the one on the right. Then
we can form f + f , f + g, and g + g as follows:

b̄ a ā b̄ b a

b

b̄

♦

b

b̄

♦

āb

∧ ∧ ∧

∨
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...........................................................................
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..................................................................................................................................................................
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..................................................................................................................................
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In the case of DeriC we can also form the “sum” of two derivations by using
contraction, i.e., the two rules

F{A ∨ A}
c↓

F{A}
and

F{A}
c↑

F{A ∧ A}
,

which are both derivable in SKS (see Proposition 2.4), and the rule

F{A ∧ B}
mix ,

F{A ∨ B}

35



which is also derivable in SKS, for example via

F{A ∧ B}
f↓

F{[A ∨ f ] ∧ B}
aw↓

F{[A ∨ t] ∧ B}
s
F{A ∨ (t ∧ B)}

f↑ .
F{A ∨ B}

For any two derivations ∆1, ∆2 from A to B we can now form their sum by
taking

A
c↑

A ∧ A

∆1∧∆2

‖
‖ SKS

B ∧ B
mix

B ∨ B
c↓

B

,

where ∆1, ∆2 is some “merge” of ∆1 and ∆2; compare (16). Note, that this
sum of derivations could also be obtained in a different way, for example by first
mixing A ∧ A and then taking ∆1 ∨ ∆2, or by using a different derivation for
mix. But no matter which one we choose, the translation into a C-reduced proof
graph yields the same result for all of them; and we obtain the same result if we
first translate the derivations ∆1 and ∆2 into C-reduced proof graphs, and then
taking their sum as proof graphs (as described above). Hence, the semigroup
structure on the Hom-sets is the same for PreC and DeriC. Note that PreG
and DeriG do not carry this semigroup structure because the addition is not
associative. The reason is that in G-reduced proof graphs the associativity
equations for ∨-monoids and ∧-comonoids (see Figure 11) do not hold.

Furthermore, we can equip the Hom-sets of our categories with a partial
order, defined by cut elimination: We say f ≤ g if g is obtained from f by
eliminating some of the remaining cuts6, as it is the case in our example above
for f and g. Then we also have f + f ≤ f + g ≤ g + g. The important obser-
vation about the semigroup structure and this partial order structure is, that
they are independent . Although this seems to be natural from the viewpoint of
our proof graphs, it is not the case in the classical categories of [FP04] (called
LK-categories in [Str07b]) which are based on the proof nets in [Rob03] and the
sequent calculus LK [Gen34]. In an LK-category the sum-of-proofs-semigroup
structure and the cut-elimination-partial-order structure on the Hom-sets de-
termine each other uniquely via f ≤ g iff f +g = g. In [DP04] and [LS05a] there
is also a partial order structure on the Hom-sets, simply because the semigroup
structure is idempotent. But this partial order structure has nothing to do with
cut elimination, simply because everything is a priory cut-free.

The category PreC follows the axiomatisation given in [LS05a, Str07b]: it
is *-autonomous, it has monoids and comonoids, and it is “graphical”. But it

6Even if this process is not confluent, we stay in the realm of C-reduced proof graphs.
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does not obey the equation

A ∨ A

∇A

∆A∨A

(A ∨ A) ∧ (A ∨ A)

∇A∧∇A

A
∆A

A ∧ A

(36)

However, the two maps A ∨ A → A ∧ A in (36) are ordered according to the
cut-elimination-partial-order defined above, as it is the case in [FP04].

For the category DeriC the situation is similar. But DeriC is not *-
autonomous, because we do in the general case not have a natural bijection
between the proofs from A ∧ B to C and the proofs from B to A ⊃ C. To see
this consider again the example on the right in (23), which corresponds to the
derivation on the right in Figure 2. By applying the rules for associativity and
commutativity, we can provide a derivation that corresponds to the proof graph
on the left below.
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(37)

The proof graph on the right above is the corresponding proof graph provided
by the *-autonomous structure of PreC. But there is no SKS-derivation that
correspond to this proof graph. On the other hand, if we reintroduce the cut as
in the example on the left in (23), we can do the same transformation as above,
without leaving the category DeriC:
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(38)

Both proof graphs in (38) are direct translations of SKS-derivations, as the
reader can easily verify. This raises the question whether we can find a deep in-
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ference proof system S such that its C-reduced proof graphs form a *-autonomous
subcategory of PreC.
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