
Coqlex: Generating Formally Verified Lexers

Wendlasida Ouedraogoa, b, c, Gabriel Schererb, c, and Lutz Straßburgerb, c
a Siemens Mobility, Ile-de-France, France
b INRIA Saclay, Ile-de-France, France
c Laboratoire d’Informatique de l’École polytechnique, Ile-de-France, France

Abstract
Context A compiler consists of a sequence of phases going from lexical analysis to code generation. Ideally,
the formal verification of a compiler should include the formal verification of each component of the tool-
chain. An example is the CompCert project, a formally verified C compiler, that comes with associated tools
and proofs that allow to formally verify most of those components.
Inquiry However, some components, in particular the lexer, remain unverified. In fact, the lexer of Compcert
is generated using OCamllex, a lex-like OCaml lexer generator that produces lexers from a set of regular
expressions with associated semantic actions. Even though there exist various approaches, like CakeML or
Verbatim++, to write verified lexers, they all have only limited practical applicability.
Approach In order to contribute to the end-to-end verification of compilers, we implemented a generator of
verified lexers whose usage is similar to OCamllex. Our software, called Coqlex, reads a lexer specification and
generates a lexer equipped with a Coq proof of its correctness. It provides a formally verified implementation
of most features of standard, unverified lexer generators.
Knowledge The conclusions of our work are two-fold:
1. Verified lexers gain to follow a user experience similar to lex/flex or OCamllex, with a domain-specific

syntax to write lexers comfortably. This introduces a small gap between the written artifact and the verified
lexer, but our design minimizes this gap and makes it practical to review the generated lexer. The user
remains able to prove further properties of their lexer.

2. It is possible to combine simplicity and decent performance. Our implementation approach that uses
Brzozowski derivatives is noticeably simpler than the previous work in Verbatim++ that tries to generate
a deterministic finite automaton (DFA) ahead of time, and it is also noticeably faster thanks to careful
design choices.

Grounding We wrote several example lexers that suggest that the convenience of using Coqlex is close to that
of standard verified generators, in particular, OCamllex. We used Coqlex in an industrial project to implement
a verified lexer of Ada. This lexer is part of a tool to optimize safety-critical programs, some of which are very
large. This experience confirmed that Coqlex is usable in practice, and in particular that its performance
is good enough. Finally, we performed detailed performance comparisons between Coqlex, OCamllex, and
Verbatim++. Verbatim++ is the state-of-the-art tool for verified lexers in Coq, and the performance of its
lexer was carefully optimized in previous work by Egolf and al. (2022). Our results suggest that Coqlex is two
orders of magnitude slower than OCamllex, but two orders of magnitude faster than Verbatim++.
Importance Verified compilers and other language-processing tools are becoming important tools for safety-
critical or security-critical applications. They provide trust and replace more costly approaches to certification,
such as manually reading the generated code. Verified lexers are a missing piece in several Coq-based verified
compilers today. Coqlex comes with safety guarantees, and thus shows that it is possible to build formally
verified front-ends.

ACM CCS 2012
Software and its engineering → Formal software verification; Compilers;

Keywords Lexer, Tokenizer, Regexp, Coq, Formal verification, OCamllex, Verbatim++, Compilers, lexical
analyzers

The Art, Science, and Engineering of Programming

Submitted February 1, 2023

Published June 15, 2023

doi 10.22152/programming-journal.org/2024/8/3
© Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 8, no. 1, 2024, article 3; 30 pages.

https://doi.org/10.22152/programming-journal.org/2024/8/3
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Coqlex: Generating Formally Verified Lexers

1 Introduction

A lexer is a tool that is in charge of the lexical analysis, one of the first phases of
compilers and interpreters. Lexers take a sequence of characters (such as source code
or command) as input and produce a sequence of tokens (parts of that input sequence
of characters associated with meaning) that can be easily processed by parsers. During
that process, lexers can ignore comments or white spaces, and also equip tokens with
source position information (such as line numbers) to enable useful debug messages
during lexical analysis (lexing), parsing, or later compilation stages.
Implementing a lexer from scratch can be difficult and time-consuming. This has led

researchers to build tools, libraries, and generators to help to implement optimized
lexers. Most of the existing implementations of those libraries and generators, such as
OCamllex [20], do not come with formal proof of correctness.
This is the starting point for our work on Coqlex,1 a generator of formally verified

lexers. Our goal was to provide a tool that is as versatile as OCamllex and that at
the same time is formally verified, so that it can be integrated into formally verified
compiler tool-chains, such as CompCert [14].
The main issues with the formal verification of tools such as lexers are related to (i)

the execution time, (ii) the integration with existing parsers, and (iii) the usability. This
document presents techniques we used to tackle those challenges. Our contributions
are as follows:
1. The verification of lexical rule selection. Most lexer generators produce lexers

from lexer specification files. Those specifications define a lexer using lexing rules
that are pairs of input patterns, defined via regular expressions [10, 22] (regexp),
and semantic actions that are in charge of production tokens. Depending on the
selection policy and the text to analyse, the lexer selects a pair by analysing its reg-
exps. When a pair is selected, the token to produce is handled by its semantic action.
Coqlex implements two selection policies (the longest match and the shortest match
associated with the priority rules) and provides a Coq proof of their correctness.

2. The Coqlex generator. Coqlex also provides a small preprocessor (the Coqlex gen-
erator) that lets users specify lexers in user-friendly syntax, inspired by the one of
OCamllex. There is no simple specification for this input syntax itself. Instead, the
Coqlex generator translates it to a human-readable Coq file with (heavier notation
but) the same structure, and the correctness statement is given in terms of this
translated source. This is similar to the “Coq production” mode of the Menhir parser
generator [9].
In summary, a user of Coqlex writes a lexer in a familiar syntax close to standard

lexer generators, and gets a human-readable description of the lexing rules in Coq.
They should review the lexing rules in Coq syntax to ensure that it corresponds to their
intent. Coqlex then provides a function that takes those lexing rules and interprets
them into a lexing function, with a formal proof that this function is correct.2

1 the source code of Coqlex can be found on https://gitlab.inria.fr/wouedrao/coqlex
2 Our lexer functions are correct with respect to a standard specification discussed in Section 5.

3:2

https://gitlab.inria.fr/wouedrao/coqlex

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

After having finished this work, we discovered the independent research on the
Verbatim++ [6, 7] formally verified lexer. For this reason, we will here also include:

3. A Comparison with other lexer generators. More precisely, we compare Coqlex
to OCamllex and flex (because these are standard tools) and to Verbatim++ (the
state of the art for verified lexers in Coq), with respect to execution time and
usability.

In OCamllex, lexical rules are compiled into a non-deterministic automaton repre-
sented by a compact table of transitions, with backtracking and semantic actions.
The generated lexer code simply follows the automaton transition by repeated table
lookups. In contrast, Coqlex contains no such compilation, it interprets the user-
provided regular expressions against the input by using Brzozowski derivatives [4].
This allows to have a simpler formalization, and leads to surprisingly good perfor-
mance: roughly 100x slower than OCamllex, but 100x faster than Verbatim++. This
is reasonable for a pure program extracted directly from Coq, compared to an efficient
implementation, and is more than fast enough in practice. For example, the lexer of
the Coqlex generator is implemented in Coq, using the Coqlex data structures and
functions. That generator is used without any noticeable slowness.
The Verbatim++ lexer (also verified in Coq) implements regexps using Brzozowski

derivatives and then compiles those regexps into deterministic finite automata[3]
for fast regexp matching. Even though significant emphasis in the work [6, 7] is
put on optimization, Verbatim++ remains substantially slower than Coqlex in our
experiments (which used the benchmarks provided by Verbatim++).
Our work highlights the fact that a simple model and implementation can lead to

good enough performance. It also provides a complete lexer generator (an executable)
and library that allow to implement lexers easily in Coq and then extract them into
OCaml code. Those lexers, written in Coq, come with proven lemmas that allow devel-
opers to prove specific properties on them. In addition, associated with Menhir [19]
verified parsers, Coqlex verified lexers allow to write fully formally verified front-ends
for formally verified compilers such as CompCert [14].
This paper is organized as follows: In Section 2 we discuss the representation

of a lexer in Coq. In Section 3 we present the Coqlex generator and present our
industrial use-case for Coqlex in Section 4. We discuss its specification and correctness
in Section 5. Section 6 presents the implementation details of Coqlex. Section 7
compares the features and performance of Coqlex with OCamllex and Verbatim++.
Finally, we discuss future work and conclude in Section 9.

2 Representing a lexer in Coq

From a functional point of view, lexers are in charge of producing tokens (user-defined
type that we will note T) from a text (string). A natural type would be

lexer(T) := string -> list T

Lexers like those generated by most lexer generators, in particular OCamllex[20],
produce tokens one by one and are called by parsers on demand. A function that

3:3

Coqlex: Generating Formally Verified Lexers

performs one step of lexical analysis (lexing) consumes a string and returns a token
and the remaining string. The type of such a function is

lex1(T) := string -> T * string

Lexing can fail for various reasons. In case of failure, lexers should provide useful
error messages. For that reason, we defined a position data type and an error data
type to encapsulate the lexing result (Result). A function that performs one step of
lexing becomes a function that takes an input string, a start position, and in case of
success, returns a token, the remaining string, and the end position. Consequently,
the type of one step of lexing becomes

lex1(T) := string ->
position ->
Result(T * string * position)

Most lexer generators generate lexers using a set of lexical rules that are regular
expressions[10, 22] (regexp) associated with semantic actions that are in charge of
producing the lexing result. The semantic action that will produce the returned lexing
result is the first one associated with the regexp that matches the longest prefix
of the input string (the lexeme): this is the longest match and the priority rules.
Semantic actions have access to the lexing buffer (lexbuf), a data structure containing
the lexeme, the start position (the position of the first letter of the lexeme), the end
position (the position of the letter after the last letter of the lexeme) and the remaining
string (the input string without the lexeme). The semantic action also specifies how
the internal state of the lexer should be updated. So, a natural type for semantic
actions would be:

action(T) := lexbuf ->
Result(T * string * position)

Those semantic actions can perform various operations, including recursive calls to
the lexer that calls them. This could then lead to an infinite loop.3 As Coq forbids the
implementation of functions that loop[5], Coqlex had to find a solution to deal with
those kinds of situations. We explored three possibilities:
1. Making restrictions on semantic actions that ensure termination. For example, we

could require that each semantic action discards at least one character from the
input string.

2. Letting developers write their own termination proofs for all the lexer they generate.
3. Using the fuel technique: this technique consists of ensuring the termination of

lexers using a natural number (nat) that decreases at every recursive call.
Requiring that each semantic action discards at least one input character is too strict

in practice. Studying lexers in the wild, we have found many cases of lexers designed
to “skip” an optional part of the input, that accept the empty string if nothing needs
to be skipped. For example, the lexer of the OCaml compiler contains the following:

3 Section 7.3 provides a typical OCamllex example of a lexer that can loop due to recursive
calls.

3:4

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

1 rule skip_hash_bang = parse
2 | "#!" [^ '\n']* '\n' { new_line lexbuf }
3 | "" { () } (* accepts the empty string *)

Forcing users to write termination proofs for potentially non-terminating lexers
would force users to review and complete the generated Coq code and so alter the
user experience.
We thus chose to express general, potentially non-terminating lexers using fuel.

Consequently, the type of one step of lexing becomes

lex1(T) := nat ->
lexbuf ->
Result(T * string * position)

To make it simple to call a lexer from a semantic action, we replace the separate
arguments string and position by the more informative lexbuf type already used with
semantic actions.

lex1(T) := nat ->
action(T)

action(T) := lexbuf ->
Result(T * lexbuf)

3 Coqlex in practice

Coqlex comes with a Coq library that allows to write lexers using sets of lexical rules.
It also provides a text processor that will convert a markup language (.vl syntax),
which is similar to the OCamllex[20] specification language (.mll syntax), into its
equivalent Coq code (.v file). Figure 1 presents the .vl version of the mini-cal (a micro
language for arithmetic expressions: numbers, idents, + * - / and parentheses) lexer
and its equivalent in .mll. This .vl definition has four parts:
1. The header section: The header section is arbitrary Coq text enclosed in curly

braces. If present, the header text is copied as it is at the beginning of the output
file. Typically, the header section contains the Coq Require Import directives, possibly
some auxiliary functions, and token definitions used for lexer definitions.

2. The regexp definition section: This section allows to give names to frequently-
occurring regular expressions. This is done using the syntax let ident = re to
associate the name ident to the regexp re. The syntax of regexp is defined in
Figure 2.

3. The lexer definition section: This section allows to define lexers using sets of rules.
A rule is defined using the syntax | p {a} (the ‘|‘ symbol is not mandatory for the first
rule) to associate the pattern p to the Coq text representing a semantic action a.
This pattern is either a regexp or a string -> bool function (defined using the syntax
$(f) where f is the Coq code of this function). Typically, this kind of pattern is

3:5

Coqlex: Generating Formally Verified Lexers

Listing 1 mini-cal.vl
1 (* header section *)
2 {
3 Require Import TokenDefinition.
4

5 }
6

7 (* regexp definitions *)
8 let ident = ['a'-'z']+
9 let numb = ['0'-'9']+
10

11 (* lexer definitions*)
12 rule minlexer = parse
13 | '\n' { sequence [new_line; minlexer] }
14 | ident {ret_l ID}
15 | numb { ret_l Number }
16 | '+' { ret PLUS }
17 | '-' { ret MINUS }
18 | '*' { ret TIMES }
19 | '(' { ret LPAREN }
20 | ')' { ret RPAREN }
21 | eof { ret Eof }
22 | _ { raise_l "unknown token :"}
23

24 (* trailer section *)
25 {}

Listing 2 mini-cal.mll
1 (* header section *)
2 {
3 open Lexing
4 open TokenDefinition
5 }
6

7 (* regexp definitions *)
8 let ident = ['a'-'z']+
9 let numb = ['0'-'9']+
10

11 (* lexer definitions*)
12 rule minlexer = parse
13 | '\n' { new_line lexbuf; minlexer lexbuf }
14 | ident {ID (Lexing.lexeme lexbuf)}
15 | numb { Number (Lexing.lexeme lexbuf)}
16 | '+' { PLUS }
17 | '-' { MINUS }
18 | '*' { TIMES }
19 | '(' { LPAREN }
20 | ')' { RPAREN }
21 | eof { Eof }
22 | _ { failwith ("unknown token : " ^ (Lexing.lexeme lexbuf))}
23

24 (* trailer section *)
25 {}

Figure 1 Comparing Coqlex mini-cal vs. OCamllex mini-cal

used to detect situations in which the lexing must stop (e.g when the input string is
empty). When the pattern is a regexp, the semantic rule is said to be regexp based.
Otherwise, the semantic rule is said to be function based.

4. The trailer section: This section is similar to the header section, except that its text
is copied as it is at the end of the output file. Typically, this section contains Coq
extraction directives.

Remarks:
A .vl file allows to define multiple lexers. Those lexers are gathered in groups
(made of mutually recursive lexers) using the keyword and. To define non-mutually
recursive lexers, the user should use the keyword then instead.
Coqlex generator users do not need to worry about the management of fuel when
writing .vl files: for a given input fuel n, the fuel of the lexers that are called in
semantic actions are either n− 1 (for recursive calls) and n otherwise.
The default starting fuel constant we use is 1000 000. This arbitrary large value
was enough for our tests. This bounds the depth of recursive calls inside semantic
actions for one token, rather than the number of calls for the whole input.
Developers can change the value of the starting fuel using the –fuel switch.

3:6

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

re ::=
’c’ Character constant
| ”st r ing” String constant
| _ Char wildcard
| [s1s2...sn] Union of character sets
| [ˆs1s2...sn] Negation of union of character sets
| re1|re2 Alternative
| re1 re2 Concatenation
| re1 − re2 Difference of regexps.

It accepts a string that is accepted by re1 and rejected by re2

| re∗ Kleene star
| re+ Strict repetition
| re? Option

s ::=
’c’ Character constant
| ’c1’ - ’c2’ Character range

Figure 2 Syntax of Coqlex regexps

When a lexer loops for a given input string, it will always run out of fuel for that
input string, regardless of the input fuel. However, a lexer running out of fuel for a
given input does not necessary mean that this lexer loops.

In Figure 3, we compare the description mini-cal lexer in Coqlex syntax to the
code it generates. Typically, the generator translates the regexp written in .vl syntax
into the Coqlex regexp data type. The generated lexing function also calls Coqlex
functions such as generalizing_elector, longest_match_elector, and exec_sem_action.
It also recurses over the fuel explicitly; we could instead generate a call to a fixpoint
combinator, but this would be difficult to scale to mutually-recursive lexers.
Similarly to OCamllex, Coqlex also allows to choose the semantic action by matching

the shortest prefix. In that case, the user should use the keyword shortest instead of
parse in the .vl file. In the generated file, the function longest_match_elector is then
replaced by the function shortest_match_elector.

4 Coqlex industrial use-case

The development of Coqlex finds its origin in an industrial project that aims at
optimizing programs that are executed on a DIGISAFE® XME vital computer[13].
Those programs are safety-critical, follow strict certification processes (SIL-4), and are
built by a long chain of transformations from high-level models to executable code.
One part of the transformation pipeline is a source-to-source optimizer, at a level
where programs are represented in Ada (generated by model-driven engineering tools

3:7

Coqlex: Generating Formally Verified Lexers

Listing 3 Coqlex generator in-
put for mini-cal lan-
guage

1 { Require Import TokenDefinition. }
2

3 let ident = ['a'-'z']+
4

5

6

7 let numb = ['0'-'9']+
8

9

10

11

12 rule minlexer = parse
13 | '\n' { sequence [new_line; minlexer] }
14 | ident {ret_l ID}
15 | numb { ret_l Number }
16 | '+' { ret PLUS }
17 | '-' { ret MINUS }
18 | '*' { ret TIMES }
19 | '(' { ret LPAREN }
20 | ')' { ret RPAREN }
21 | eof { ret Eof }
22 | _ { raise_l "unknown token :"}

Listing 4 Coqlex generator output for mini-cal lan-
guage

1 Require Import TokenDefinition.
2

3 Definition ident := RegexpSimpl.simp_cat
4 ((RValues.const_CharRange "a"%char "z"%char))
5 (RegexpSimpl.simp_star
6 ((RValues.const_CharRange "a"%char "z"%char))).
7 Definition numb := RegexpSimpl.simp_cat
8 ((RValues.const_CharRange "0"%char "9"%char))
9 (RegexpSimpl.simp_star
10 ((RValues.const_CharRange "0"%char "9"%char))).
11

12 Fixpoint minlexer fuel lexbuf {struct fuel} := match fuel with
13 | 0 => (AnalysisNoFuel lexbuf)
14 | S n => (match LexerDefinition.generalizing_elector
15 LexerDefinition.longest_match_elector ([
16 (Char "010"%char , sequence [new_line; (minlexer n)]);
17 (ident, ret_l ID);
18 (numb, ret_l Number);
19 (Char "+"%char , ret PLUS);
20 (Char "-"%char , ret MINUS);
21 (Char "*"%char , ret TIMES);
22 (Char "("%char , ret LPAREN);
23 (Char ")"%char , ret RPAREN);
24 (RValues.regex_any, raise_l "unknown token : ")],
25 [(CoqLexUtils.EOF, ret Eof)]
26) (remaining_str lexbuf) with
27 | Some elt => LexerDefinition.exec_sem_action elt lexbuf
28 | None => (AnalysisFailedEmptyToken lexbuf)
29 end)
30 end.

Figure 3 Comparing generator input and output for mini-cal language

in the VCP Ada subset). We worked on verifying this source-to-source optimizer, with
verified optimizations but also a verified frontend using Coqlex (lexer) and Menhir
with Coq back-end (parser).
Our Coqlex lexer for Ada is written in 200 lines of code. The source-to-source

compiler was tested on projects of various sizes; the largest project we compiled has
2380 files totalling 25MB of VCP Ada (a subset of Ada) code – the VCP Ada code is not
written by humans as-is but generated by other tools in the pipeline, so it can grow
very large.
This use-case motivated several changes to Coqlex. The first version of Coqlex

imposed termination proofs but any change in the lexer could require rewriting those
proofs. Another version imposed restrictions on semantic actions and defined lexers
as records that contain the lexer function and properties that ensures termination,
making lexer description non-trivial, and mutual recursion impossible. Another version
imposed an additional input and output parameter that allows lexers to communicate
during mutually recursive calls, typically for saving comments content.

3:8

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

5 Coqlex generator specification

Given a set of regexp-based rules lr , a set of function-based rules l f , and a matching
policy e, the generated Coq code implements a lexer — a function that takes a fuel
n f , lexbuf b, a storage s and returns a lexing result — that works as follows:
1. If n f is equal to 0, then the result is an error. This error is a direct consequence of

the fuel technique.
2. Otherwise, from the input string, lr , l f and e, the lexer chooses a rule whose

semantic action will be in charge of returning the lexing result.
a. if the selected rule is a function-based one, made up with a function f associated

with a semantic action a, then there is no consumption. Consequently, the lexing
result is the result of a called with b and s.

b. if the selected rule is a regexp-based rule c – made up with a regexp r associated
with a semantic action a – and if the length of the prefix matched by r using the
policy e is a natural number n, then the lexing result is the result of a applied
with the updated lexbuf bu and the input storage s. The updated lexbuf is defined
as follows:

the lexeme of bu is the n first characters of the input string.
the remaining string of bu is the input string without the lexeme.
the end position of bu is the end position of b where the column number is
incremented by n.
the start position of bu is the end position of b.

c. if no rule is selected, the lexer must return an error meaning that the input string
contains elements that cannot be analysed by the lexer.

Except for the use of fuel, the functioning of the generated lexer defined above is
standard.
A .vl file provides the description of lexers using lexical rules. That description is

processed by the Coqlex lexer generator whose architecture is detailed in Figure 4. It
has three components:
1. The lexer, that is in charge of generating a set of tokens from the text of the .vl file,

is written in Coq using the Coqlex library and is formally verified.
2. The parser, that is in charge of generating an abstract representation from the set of

tokens produced by the lexer, is implemented using Menhir [19] with –coq switch
to generate verified parsers.

3. The code printer, that is in charge of generating the .v file from the abstract
representation produced by the parser, is written in OCaml and is not formally
verified.

The code printer does not include formal semantics equivalence between the repre-
sentation of the .vl code and the generated .v code. This means that, a priori, a critical
user should review the generated .v code. This does not take great efforts because the
transformation does not include a complex compilation process: the .vl and .v files
have similar structures and are human readable.

3:9

Coqlex: Generating Formally Verified Lexers

Figure 4 General structure of the Coqlex lexer generator.

By comparison, Verbatim++ does not provide such a generation tool, and OCamllex
generates an OCaml code in which the patterns of the lexical rules are compiled into a
non deterministic automaton[3] represented by a compact table of transitions, making
the generated code non human readable. Figure 18 in Appendix C compares the
OCamllex code with its generated lexer for mini-cal.

In our case, the regexps, rule selection, and associated policies used in the generated
file are implemented and proved correct in Coq. Consequently, the attention of the
critical user who wants to check the generated .v file must be focused on the following
elements:

The translation of regexps: The user must be assured of the correspondence between
the regexps written in the input .vl files and those generated in the output.v files.
This requires to read and understand the regexps constructors that will be defined
in Section 6.
The matching policy: The user has to make sure that the matching policy corre-
sponds to the one that is described in the .vl file. The keyword parse must correspond
to longest_match_elector and shortest must correspond to shortest_match_elector.
For every lexer, the user must be assured that the right regexps are associated with
the right semantic actions and in the same order. In the Coq code, a difference is
made between lexical rules made up with regexps associated with semantic actions
(regexp-based rules) and those made up with string -> bool functions associated
with semantic actions (function-based rules).
In a nutshell, a potential user has to (i) review the Coq implementation and verifi-

cation of regexps, the rule selection together with the associated policies and helpers,
that are written and proved in Coq, once; and (ii) either review the code printer of
the Coqlex generator once, or review the elements listed above at every generation.

6 Coqlex implementation details

Most lexer generators such as OCamllex speed up lexical analysis by compiling lexical
rules into finite automata during lexer generation. In Coqlex, lexical rules are inter-
preted on the fly, using Brzozowski derivatives[4] for regexps and simple functions
for matching policies.

3:10

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

regex ::=
∅r The empty regexp

L(∅r) =∅
| εr The empty string regexp

L(εr) = {ε}
| [[a]] The one-symbol regexp (a ∈ A)

L([[a]]) = {a}
| e1 + e2 The alternative

L(e1 + e2) = L(e1)∪ L(e1)
| e1 · e2 The concatenation

L(e1 · e2) = L(e1) ++ L(e2)
| e∗ The Kleene star

L(e∗) =
⋃

n∈N L(e)n

Figure 5 Definition of regular expressions associated with the language they describe.
Variables e, e1 and e2 are regular expression. The symbol {a} denotes the set
containing a unique string that is made up with a unique symbol which is a.

nullable ∅r = false nullable εr = true
nullable [[a]] = false nullable (e1 + e2) = nullable e1 ∨ nullable e2

nullable (e1 · e2) = nullable e1 ∧ nullable e2 nullable e∗ = true

Figure 6 Definition of the nullable function. The variable a stands for a symbol and vari-
ables e, e1 and e2 for regular expressions.

6.1 Brzozowski derivatives for regexps matching

Given an alphabet (set of symbols or characters) A, we use the symbol ε to denote
the empty string, and we use the operator ++ for string concatenation. This operation
can be extended to languages via L1 ++ L2 = {s1 ++ s2 | s1 ∈ L1 ∧ s2 ∈ L2}. Then we
define L0 = {ε} and Ln+1 = L ++ Ln (for n ∈ N). Finally, we use the notation L(r) to
denote the language of the regexp r, which is inductively defined in Figure 5.
Using all the notations above, we say that a regular expression r matches a string s

if s ∈ L(r). Similarly, when s /∈ L(r) we say that r does not match s.
Coqlex uses regexp constructions and matching algorithms based on the concept of

Brzozowski derivatives. This concept introduces two functions: the nullable function
and the derivative of a regexp.
The nullable function takes a regexp r and returns the boolean true if r matches ε

(the empty string) and false otherwise. Its inductive definition is given in Figure 6.
The derivative of a regexp does match the derivative of the corresponding language.

More precisely, if az denotes the string built from the symbol a as first element and
the string z, then the derivative of a regular expression r by a symbol a is the regexp

3:11

Coqlex: Generating Formally Verified Lexers

∅r/c =∅r

εr/c =∅r

[[a]] / c =

¨

ε if a = c

∅r otherwise
(e1 + e2)/c = (e1/c) + (e2/c)

(e1 · e2)/c =

¨

(e1/c · e2) + e2/c if nullable e1 = true
(e1/c · e2) otherwise

e∗/c = (e/c) · e∗

Figure 7 Definition of the derivative of a regexp. The variables a and c stand for symbols
and variables e, e1 and e2 for regular expression.

r‖ε = r
r‖az = (r/a)‖z

Figure 8 Extension of the derivative of a regexp to strings. Variables r, ε, a and z denote,
respectively, a regex, the empty string, a symbol and a string. The operator /
refers to the derivative operation described in Figure 7. The notation az denotes
the string composed of the symbol a as first element and the string z.

r/a that denotes the language {z | az ∈ L(r)}. The inductive definition is given in
Figure 7.
Brzozowski [4] extended the derivative operation to strings (denoted by ‖) as

described in Figure 8, and showed that for every regular expression r and every
string s

s ∈ L(r) ⇐⇒ nullable (r‖s) = true

Coqlex uses a modified version of an existing Coq implementation[16] of Brzozowski
derivatives for regexp matching. That implementation comes with safety guarantees
as it provides a Coq proof showing that this Brzozowski derivative implementation
is a Kleene algebra[11] and provides common proofs on regexps. It also provides
equivalence (≡) relation on regexps and additional regexp constructors such as the
conjunction and negation constructors that are not used in the regexp constructors
that are provided by the Coqlex generator (see Figure 2). On the other hand, some of
the constructions of regexps presented in Figure 2 are missing. For this reason, we
modified the existing Coq implementation [16] of Brzozowski derivatives as follows:
1. We removed the conjunction and negation regexp constructors
2. We added five regexp constructors:

3:12

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

the negation of a symbol: The notation [[a]] denotes a regexp that matches
any 1-length-string whose character is not equal to a. This regexp is defined by
the following two properties: nullable [[a]] = false and for all symbol s,

[[a]]/c =

¨

εr if c 6= a

∅r otherwise

the char wildcard: The notationωr denotes a regexp that matches any 1-length-
string. This regexp is defined by the following two properties: nullableωr = false
and for all symbol s, ωr/c = ε. Then, we proved that for all strings s, we have
s ∈ L(ωr) if and only if s consists of a single character.
the character set: The notationΣu

l (where l and u are symbols) denotes a regexp
whose language is L(Σu

l) = {c|l ≤ c ∧ c ≤ u∧ c ∈ A} (where ≤ is a reflexive, anti-
symmetric and transitive order relation on symbols). This constructor is defined
using the following two properties: nullable Σu

l = false and for all symbols c

Σu
l /c =

¨

εr if l ≤ c ∧ c ≤ u

∅r otherwise

We proved that if ¬(l ≤ u), then Σu
l ≡∅r and that for every string s, s ∈ L(Σu

l) if
and only if s consists of only one symbol c such that l ≤ c ∧ c ≤ u.
the negation of character set: The notation Σu

l (where l and u are symbols)
denotes a regexp whose language is L(Σu

l) = {c|¬(l ≤ c ∧ c ≤ u)∧ c ∈ A}. This
constructor is defined using the following two properties: nullable Σu

l = false
and for all symbols c

Σ
u
l /c =

¨

εr if ¬(l ≤ c ∧ c ≤ u)

∅r otherwise

We proved that if ¬(l ≤ u), then Σu
l ≡ωr and that for every string s, s ∈ L(Σu

l)
if and only if s consists of only one symbol c such that ¬(l ≤ c ∧ c ≤ u).
the difference: The notation e1 − e2 (where e1 and e2 are regexps) denotes a
regexp whose language is L(e1− e2) = {s|s ∈ L(e1)∧ s /∈ L(e2)}. This construction
is defined using the following two properties: nullable e1 − e2 = (nullable e1)
∧¬(nullable e2) and for all symbol c, (e1 − e2)/c = e1/c − e2/c. We proved that
for all strings s, we have s ∈ L(e1 − e2) ⇐⇒ s ∈ L(e1)∧ s /∈ L(e2).

These constructors have also been added for performance reasons. In fact, the regexp
Σ

cn+m
cn

could be written as [[cn]] + [[cn+1]] + ... + [[cn+m]]. However, using the first
representation (Σcn+m

cn
), the derivation function will perform 2 comparisons, while the

second one will perform m+ 1 comparisons (see Figure 7).

6.2 Matching policies

Coqlex defines two types of rules: function based and regexp based ones. During the
lexical analysis, the generated lexer has to select a rule. This selection starts with the

3:13

Coqlex: Generating Formally Verified Lexers

E f ([], s) =⊥
f s = true

E f ((f , a) :: t, s) = (f , a)

f s = false
E f ((f , a) :: t, s) = E f (t, s)

Figure 9 The formal description of the selection of a function based-rule. This description
uses the list notation: [] denotes the empty list and h :: t denotes a list whose first
element is h and whose tail is t. The symbol ⊥ means that no rule is selected.

nullable r = true
Sl(r,ε) = 0

nullable r = false
Sl(r,ε) = −∞

Sl(r/a, z) = n

Sl(r, az) = n+ 1

Sl(r/a, z) = −∞ nullable r = true
Sl(r, az) = 0

Sl(r/a, z) = −∞ nullable r = false
Sl(r, az) = −∞

Figure 10 The formal description of l-score computation.

choice of a function based rule (noted E f). This function based rule selection, whose
formal definition is given in Figure 9, consists of finding the first rule that is made of
a function whose application with the input string returns true.
If no such function based rule is found, then the lexer has to choose a regexp based

rule.
Most lexers perform regexp based rule selection using a longest match selection

policy based on the longest match and priority rules. That selection policy allows to
select the first lexical rule whose regexp matches the longest prefix of the input string.
The Coqlex definition of this policy uses two concepts:

prefix: A string p is said to be a prefix of a string s if and only if there exists a string s′

such that s = p++ s′. For examples ε is a prefix of any string.
l-score: Given a regexp r, a string s, and a natural number n, we say that the l-score of

r on s is n, written as Sl(r, s) = n, if and only if the length of the longest prefix of s
that r can match is n. For example, the l-score of [[a]]∗ in ‘aabaaaa‘ is 2 as the longest
prefix of ‘aabaaaa‘ that [[a]]∗ can match is ‘aa‘ whose length is 2. There exist cases
where there is no score (e.g: Sl([[a]], ‘bac‘)). In that case, we note Sl(r, s) = −∞.
The inductive definition of our implementation of l-score computation is given in

Figure 10.
To prove the correctness of Sl , we used the Coq substring function of the Coq string

module[21] to define the prefix. This function takes two natural numbers n and m and
a string s, and returns the substring of length m of s that starts at position n denoted
by δm

n (s). Here, the position of the first character is 0. If n is greater than the length |s|
of s then ε is returned. If m> (|s| − n), then δm

n (s) = δ
|s|−n
n (s). Consequently, if m≤ |s|,

then δm
0 (s) is the prefix of length m of s. For all strings s and regexps r, we provided

Coq proofs of the following theorems:

1. if there exists a natural number n such that Sl(r, s) = n, then n≤ |s|. This helps to
make sure that n can be used with δ to extract the prefix of length n.

3:14

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

El([], s) =⊥
Sl(r, s) = −∞

El((r, a) :: t, s) = El(t, s)

Sl(r, s) = n El(t, s) = (rt , at , nt) nt > n

El((r, a) :: t, s) = (rt , at , nt)

Sl(r, s) = n El(t, s) =⊥

El((r, a) :: t, s) = (r, a, n)

Sl(r, s) = n El(t, s) = (rt , at , nt) nt ≤ n

El((r, a) :: t, s) = (r, a, n)

Figure 11 The formal description of the longest match selection policy. The symbol ⊥
means that no rule is selected.

2. if there exists a natural number n such that Sl(r, s) = n, then δn
0(s) ∈ L(r). This

means that the input regexp matches the prefix of length n of s.
3. if there exists a natural number n such that Sl(r, s) = n, then for all m such that

n < m ≤ |s|, δm
0 (s) /∈ L(r). This means that l-score is maximal. Therefore, there

exists no prefix of length higher than n that r can match.
4. Sl(r, s) = −∞ if and only if for all natural number m, δm

0 (s) /∈ L(r).

Properties 1, 2, and 3 show that Sl is correct. This means that if a score is returned,
this score is the length of the longest prefix of the input string that the input regexp
can match. Property 4 shows the completeness and the soundness of Sl . This means
that if no score is found, then there is no score, and if there exists a score, Sl will
return it.
Using Sl , the longest match policy (noted El) consists in choosing the regexp based

rule whose regexp has the highest l-score. The Coqlex formal definition of that policy
is defined in Figure 11.
To prove the correctness of El , we proved with Coq that for every string s and list lr

of regexp based rules:
1. if El(lr , s) = ⊥ then for every regexp r and semantic action a such that (r, a) ∈ lr ,
Sl(r, s) = −∞

2. if there exists a regexp r, a semantic action a and a natural number n such that
El(lr , s) = (r, a, n) then for every regexp r ′, semantic action a′ and natural number
n′ such that (r ′, a′) ∈ lr and Sl(r ′, s) = n′, n′ ≤ n

3. for every regexps r and r ′, semantic actions a and a′ and natural number n, if
El(lr , s) = (r, a, n) and Sl(r ′, s) = n then El((r ′, a′) :: lr , s) = (r ′, a′, n)
Besides the longest match policy, Coqlex defines the shortest match policy that

allows to select the first regexp based rules whose regexp matches the shortest prefix
of the input string. The implementation technique of the shortest match policy is
similar to the longest match policy. This implementation starts by the definition of
the s-score (noted: Ss) that allows to compute the length of the shortest prefix that a
regexp can match. The formal definition of s-score is described in Figure 12.
Similarly to the Sl , we proved the correctness and completeness of Ss through Coq

proofs of the following theorems:

3:15

Coqlex: Generating Formally Verified Lexers

nullable r = true
Ss(r,ε) = 0

nullable r = false
Ss(r,ε) =∞

Ss(r/a, z) = n nullable r = false
Ss(r, az) = n+ 1

Ss(r/a, z) =∞ nullable r = false
Ss(r, az) =∞

Figure 12 The formal description of s-score computation.

Es([], s) =⊥
Ss(r, s) =∞

Es((r, a) :: t, s) = Es(t, s)

Ss(r, s) = n Es(t, s) = (rt , at , nt) nt < n

Es((r, a) :: t, s) = (rt , at , nt)

Ss(r, s) = n Es(t, s) =⊥

Es((r, a) :: t, s) = (r, a, n)

Ss(r, s) = n Es(t, s) = (rt , at , nt) nt ≥ n

Es((r, a) :: t, s) = (r, a, n)

Figure 13 The formal description of the shortest match selection policy.

1. if there exists a natural number n such that Ss(r, s) = n, then n≤ |s|. This helps to
make sure that n can be used with δ to extract the prefix of length n.

2. if there exists a natural number n such that Ss(r, s) = n, then δn
0 ∈ L(r). This means

that the input regexp matches the prefix of length n of s.
3. if there exists a natural number n such that Ss(r, s) = n, then for all m such that

m< n, δm
0 (s) /∈ L(r). This means that s-score is minimal. Therefore, there exists no

prefix of length lower than n that r can match.
4. Ss(r, s) =∞ if and only if for all natural number m, δm

0 (s) /∈ L(r).
Using Ss, the shortest match policy consists in choosing the regexp based rule whose

regexp has the lowest s-score. The Coqlex formal definition that policy is defined in
Figure 13.

6.3 Coqlex rule selection

Using E f , El and Es, the formal definition of the rule selection E can be defined as
follows:

E(E′, lr , l f , s) =

¨

E f (l f , s) if E f (l f , s) 6=⊥
E′(lr , s) otherwise

where E′ is either El or Es. In the Coq code presented in Figure 4, E is represented by
generalizing_elector, El is represented by longest_match_elector. The implementation
of Es in the Coqlex library is represented by shortest_match_elector.

3:16

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

6.4 Optimization

The naive implementation suggested by the formal definition of Sl and El has a
time complexity that is at least quadratic in the size of the input string. In fact, the
implementation of l-score requires reading all the characters of the input string for
every regexp based lexical rule and thus for every token. However, this is not necessary
in some cases (e.g for all string s with Sl(∅r , s) = −∞).
To increase the performance of Sl , Ss, El and Es, we implemented a regexp simplifi-

cation function which is based on the following properties:
The alternative: r +∅r ≡ r and ∅r + r ≡ r

The concatenation: r ·∅r ≡∅r , ∅r · r ≡∅r , r · εr ≡ r, εr · r ≡ r and r∗ · r∗ ≡ r∗

The Kleene star: ∅∗r ≡ εr , (r∗)∗ ≡ r∗ and ε∗r ≡ εr

The di�erence: r −∅r ≡ r and ∅r − r ≡∅r

These simplifications aim to detect when a given regexp is equivalent to a regexp
whose score is trivial (e.g ∅r or εr). We proved these properties in Coq and then
used the smart constructor technique[8] to write an optimized version of the regexp
derivative function. That function works similarly to the original one, except that it
returns a simplified version of the derivative. Then, we also rewrote the s-score and
l-score functions to use the optimized version of the regexp derivative function and
return the result for trivial cases. For example, we proved that for every r and s,

Ss(r∗, s) = Ss(εr , s) = Sl(εr , s) = 0 Ss(∅r , s) =∞ Sl(∅r , s) = −∞

We proved that the optimized s-score and l-score are equal to the original ones.
We propagated this optimization to El and Es and obtained performance in linear time
in the size of the input string (see Section 7 below). In fact, during lexical analysis,
the number of tokens is high, and the number of symbol reads required to produce
each of them can be low. Before those optimizations, the l-score computation required
reading the whole input string to produce a token, whereas in the optimized version
we stop reading when the score is trivial, typically when the input string is equivalent
to ∅r or εr . This allows to reduce drastically the number of character reads and so
the execution time.
For performance reasons, we modified the s-score and l-score functions to return

the lexeme and the remaining string during score computation. We also proved that
the modified function is correct.

7 Evaluation: Syntax and expressivity

We are now going to compare Coqlex with OCamllex (4.14.0), the OCaml standard
lexer generator, Flex (2.6.4), the C standard lexer generator, and Verbatim++ (github
Dec. 2021 (https://github.com/egolf-cs/Verbatim)), the current state of the art for
lexers verified in Coq. It is common for Coq users to implement unverified part of their
programs in OCaml, so we can expect that Coqlex would replace an existing OCamllex

3:17

Coqlex: Generating Formally Verified Lexers

lexer; we also compare with flex, which is very similar to OCamllex in practice, to
show that standard unverified lexer generators form a meaningful common baseline.
We compare the convenience of the user-facing syntax in which the lexer is described,

and the expressivity of its semantics – which lexing rules can or cannot be easily
expressed in the system.
Our broad claim is that using Coqlex is very similar to using traditional lexer

generators such as OCamllex, while Verbatim++ has a noticeably more verbose
syntax and is less expressive.

7.1 Surface syntax example

To evaluate the convenience of using each system, we display a fragment of the JSON
lexers in Figure 16 in the Appendix. (We wrote the flex, OCamllex and Coqlex versions;
the Verbatim++ lexer was written by the Verbatim++ authors.)
Without going into the details of all systems here, we claim that Coqlex is closer in

convenience to flex or OCamllex than to Verbatim++.
In regard to the syntax of the .vl files, the Coqlex generator is built to process a

language that is very close to flex or OCamllex. This means that there are only few
differences between .vl files and their equivalent .l or .mll files. For example, Listing 2
presents the OCamllex equivalent of the Coqlex lexer presented in Listing 1.

7.2 Labels

As seen in the Verbatim++ example in Figure 16, Verbatim++ lexers use a notion of
labels, a data-type returned after the selection. Semantic actions are functions that
take that label and lexeme to return a token. Therefore, semantic actions do not have
access to the remaining string and thus, cannot perform recursive calls. A consequence
of this is that Verbatim++ lexers cannot ignore parts of the input string (such as
comments and extra spaces): all input characters must be included in a lexeme.

7.3 Looping lexers

Coqlex lets the user express potentially-nonterminating lexers, using the “fuel” tech-
nique to express non-termination inside Coq. This is not as powerful as requiring
termination proofs, but we believe that it is more practical. It does at least let users
consume a variable number of input characters (not always strictly more than one)
and call a lexing rule recursively, which is a common occurrence in real-world lexers.
We originally required each rule to consume at least one character, but found out

that it several limits expressivity compared to OCamllex: in those situations, allowing
recursive calls is good for usability.
In this section, we discuss what happens in the bad case of a lexer with a termination

bug due to recursive calls.
Let us consider the Coqlex lexer and the OCamllex lexer specified in Figure 14.

Regarding those specifications, the lexers are supposed to work as follows:
If the remaining string is ε then 1 is returned.

3:18

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

Listing 5 looping.vl
1 rule my_lexer = parse
2 | 'b' 'a'* 'b' { ret 0 }
3 | 'a'* { my_lexer }
4 | EOF { ret 1 }

Listing 6 looping.mll
1 rule my_lexer = parse
2 'b' 'a'* 'b' { 0 }
3 | 'a'* { my_lexer lexbuf }
4 | EOF { 1 }

Figure 14 An example of a lexer whose execution can loop

Else if the longest prefix of the input string in lexbuf matches [[b]] · [[a]]∗ · [[b]] then
0 is returned
Else if it matches [[a]]∗ it performs a recursive call on the remaining string of lexbuf
(updated after the selection). This is a common technique used to ignore elements
such as comments during lexical analysis.
When such lexer is called with a string s that starts with a character that is different

from ‘a‘ and ‘b‘, the selection chooses the semantic action that is associated with the
regex [[a]]∗ and which score is 0. This means that the lexeme is ε and the remaining
string is s. As the semantic action associated with this regexp is a recursive call, it
leads to an infinite loop.
The behavior of each of the tools is as follows:
The lexer generated by OCamllex and flex from the code in Figure 6 loops when
the input string is ‘c‘.
The lexer generated by Coqlex from the code in Figure 5 runs out of fuel and
returns an error to the user (in finite time).
Verbatim++ does not handle this kind of problem because semantic actions do not
allow recursive calls.

7.4 Proofs about the generated lexers

Finally, the simplicity of the Coqlex lexer specifications allows to write proofs on
Coqlex lexers. For example, we have proven that the looping lexer defined in Listing 5
always returns an error related to the fuel when the first character of the input string
is different from ‘a‘ and ‘b‘.

8 Evaluation: Performance

The implementation approach of Coqlex is very simple, we use Brzozowski derivatives,
with the derivation operations performed on the fly during lexing. In contrast, standard
lexer generators use a sophisticated compilation step to finite automata [3] for fast
regexps matching. Verbatim++ also advertises a DFA compilation step. As a result,
our initial expectation would be that Coqlex-generated lexers are noticeably slower
than standard lexers and Verbatim++-generated lexers.

3:19

Coqlex: Generating Formally Verified Lexers

Verbatim++ Coqlex OCamllex Flex
Tokens per sec. 1.3× 103 1.85× 105 3.1× 107 2.8× 107

Time to process 56ko. 13.04 s 9.5× 10−2 s 5.6× 10−4 s 6.1× 10−4 s

Figure 15 Comparison of execution time in seconds for Coqlex, OCamllex, flex and Verba-
tim++ lexers on Verbatim++ JSON benchmark.

Note that the typical goal for verified tools is not to match non-verified tools in
performance – this is rarely realistic – but rather to provide “good enough” performance
for the tool use-cases.
We evaluated the execution time of the generated lexical analysers in two phases.

For the first phase, we evaluated their performance on United States GDP data from
the past several decades[2], stored in JSON format, the same benchmark used to
evaluate the performances of Verbatim++.
We started with analysing a JSON lexer implemented by the Verbatim++ devel-

opers using Verbatim++ Coq source code, then we used Coqlex, flex and OCamllex
generators to generate lexers with very similar specifications. We compared the time
performance in Figure 15; we notice three groups separated by two order of mag-
nitudes each, ocamllex and flex which are the fastest, Coqlex in the middle, and
Verbatim++ as the slowest tool.

We can see from the results that Verbatim++ starts with a constant-time cost of 2s,
independently of the input size. This is due to the compilation phase to DFAs that is
performed on each run of the lexer. Even if we ignore this constant-time overhead,
Verbatim++ is about two orders of magnitude slower (130x) than Coqlex, which is
itself about two orders of magnitude slower than OCamllex (156x) or flex (75x).
We also evaluated the performance of an XML lexer across Verbatim++, Coqlex and

OCamllex, on the sample data from [15] and obtained similar performance results.

Is this too slow? Coqlex is two orders of magnitude slower than unverified lexer
generators. Is this usable in practice, or much too slow? In our experience, Coqlex
meets the “good enough” bar in terms of performance for use-cases we care about. In a
typical compiler, lexing and parsing combined take a small fraction of the compilation
time; slowing this part a lot has a noticeable but acceptable effect on compile times.
For example, in our industrial use-case for Coqlex presented in Section 4, we wrote

two variants of our compiler, one using a verified frontend (Coqlex + verified parser),
and one using an unverified frontend. On the largest compiled project (25MB of source
code), the compiler with unverified frontend takes around 2 minutes, and the compiler

3:20

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

with the verified front takes 6 minutes. It is unusual to spend such a large fraction
of compile time in the frontend, but “good enough”: the resulting compile times are
perfectly acceptable to our users.
Note that the target audience for Coqlex is not all language-processing tools, but

verified compilers. (There is little point in verifying only the frontend.) The typical
users of verified compilers are typically willing to sacrifice some performance in
exchange for safety guarantees, and they often already have heavy-weight code-
production processes due to verification or certification requirements. In our industrial
use-case, the tool running in 2 or 6 minutes is part of a much more complex industrial
toolchain that, on the 25MB project we mentioned, takes 5 hours in total.

Why is Verbatim++ so slow? Our work was not originally built on Verbatim or Ver-
batim++, but an independent project done at around the same time. When we
discovered Verbatim++ we expected its more elaborate implementation and focus on
optimization to get much better performance than Coqlex. We studied the Verbatim++
implementation and try to propose explanations for the performance difference. For
reasons of space, this discussion is moved to the Appendix B.

9 Conclusion

Coqlex proposes a Coq library that implements all the common features used in
lexical analysis and provides a Coq proof of their correctness. It also brings a Code
generator that reads a lex-like lexer description and outputs verified lexers written
in Coq using the Coqlex library. By design, Coqlex is built to be usable and simple.
The Coqlex library has been used to build the lexer of Coqlex generator. The Coqlex
generator and library have been used in the implementation of a formally verified
optimizing compiler. Despite its simplicity, lexers generated by the Coqlex generator
or implemented using the Coqlex library have good enough performance, noticeably
better than the existing tool Verbatim++.
Even if the execution time performance of Coqlex can be improved further, it lays

strong foundations for verified lexer generation.
As an alternative to unverified lexer generators, it allows to make one more step in

proving end-to-end correctness of compilers. It has already found applications in the
real world, with an industrial use-case for a verified lexer for a subset of Ada.

9.1 Related Work

The formal correctness of lexing does not seem to be extensively studied in the
literature. For instance, even for the formally proven compiler CompCert [14], lexing
is one of the phases which are not formally verified.
In existing approaches to verify lexers, like in CakeML [12], the lexer is implemented

by hand (without using a generator) and proven equal to a simple and deterministic
function. Most lexers are more complicated and it can be hard to find a simple and
deterministic function that is equal to the lexer. Nipkow[17] formally verifies a regex-to-

3:21

Coqlex: Generating Formally Verified Lexers

DFA translation, but to our knowledge, this work was not packaged as a user-oriented
executable tool.

9.2 Future Work

Some performance improvements could come from extraction to native OCaml strings
(or arrays), or the memoization of the derivation function using axiomatized imperative
data structures. To improve performance further, we could translate lexing rules to a
proper DFA representation. There are two independent questions:
How to do the computation. We should take inspiration from the excellent description

of DFA construction in [18]. They introduce the notion of “derivative classes” to
compute equivalence classes of characters for a given redex, and reduce the number
of transitions. They also introduce the notion of “regex vector” to derive all lexing
rules in parallel, instead of having a separate automata construction for each rule.
However, there is a real possibility that the size of the resulting automaton would be
too big for Coq to handle in practice. Unverified lexer generators use sophisticated
tricks to compress the description of the automata, which could be difficult to
verify, and may not even suffice to ensure practicality inside Coq. If the approach of
generating deterministic automata proved impractical, we could instead generate
a non-deterministic automata, for example using Antimirov derivatives [1], which
can be sensibly more compact at the cost of a reasonable performance overhead.

When to do the computation. Verbatim++ starts computing the lexing automata
whenever the user wants to get the lexing function from the lexing rules, which is
typically whenever the Coq-implemented user program is invoked. In our experi-
ment, the JSON benchmark for example needs two seconds of automata computa-
tion before they start accepting input.
A convenient lexer generator should avoid this constant overhead by generating
the automaton during a meta-programming phase ahead of the actual lexing, but
doing this in a verified setting is not obvious. We played with the Verbatim++
implementation and tried asking Coq to do the computation at type-checking time,
but the Coq virtual machine fails in practice as the computation requirements are
too large. It may be possible that a more efficient automata construction, using
derivative classes or an NFA construction, could be done at type-checking time in
this way. Another approach would be to do the automata construction at Coqlex
preprocessing time, and only have Coq validate the correspondence of the lexing
rules and the automata. This requires either producing a Coq proof script during
this metaprogramming step, or defining a Coq tactic that is flexible enough to
validate all such correspondences.
To improve the usability of Coqlex, we would like to allow users to conveniently

bind substrings matched by regexps. Coqlex users can prove explicitly that their
lexer is terminating, but it would be nice if Coqlex could generate a termination
argument in simple cases, or assist in the termination proof even in subtle cases.
Finally, implementing a .mll to .vl converter would ease adoption for frontends already
using OCamllex.

3:22

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

A Example: JSON lexers in Flex, OCamllex, Coqlex, and Verbatim++

Listing 7 Flex
1 int_re "-"?("0"|([1-9][0-9]*))
2 %%
3 {ws_carr_re} { return WS; }
4 {int_re} { yylval.i = atoi(yytext); return INT; }
5 {float_re} { yylval.f = atof(yytext); return FLOAT; }
6 "true" { return TRUE; }
7 "false" { return FALSE; }
8 "null" { return NULL; }
9 %%

Listing 8 OCamllex
1 let int_re = '-'? ('0' | (['1'-'9'] ['0'-'9']*))
2 rule read =
3 parse
4 | ws_carr_re { WS }
5 | int_re
6 { INT (int_of_string(Lexing.lexeme lexbuf)) }
7 | float_re
8 { FLOAT (float_of_string(Lexing.lexeme lexbuf)) }
9 | "true" { TRUE } | "false" { FALSE }
10 | "null" { NULL }

Listing 9 Coqlex
1 let int_re = '-'? ('0' | (['1'-'9'] ['0'-'9']*))
2 rule read =
3 parse
4 | ws_carr_re { ret WS }
5 | int_re
6 { ret_l (fun str => INT (mint_of_string str)) }
7 | float_re
8 { ret_l (fun str => FLOAT (mfloat_of_string str)) }
9 | "true" { ret TRUE } | "false" { ret FALSE }
10 | "null" { ret NULL }

Listing 10 Verbatim++
1 (* semantic actions *)
2 Definition apply_sem (pr : Label * String) :=
3 match pr with
4 | (INT, z) => match (String2int z) with
5 | Some i => Some (existT sem_ty INT i)
6 | None => None
7 end
8 | (FLOAT, z) => match (String2int z) with
9 | Some i => Some (existT sem_ty FLOAT i)
10 | None => None
11 end
12 | (STRING, z) =>
13 Some (existT _ STRING (string_of_list_ascii z))
14 | (L, _) => Some (existT _ L tt)
15 end.
16

17 [...]
18

19 (* regex *)
20 Definition digit_re := stringUnion "0123456789".
21 Definition nz_digit_re := stringUnion "123456789".
22 Definition pos_re := App nz_digit_re (Star digit_re).
23 Definition zero_re := stringApp "0".
24 Definition nat_re := Union zero_re pos_re.
25 Definition int_re :=
26 App (Optional (stringApp "-")) nat_re.
27

28 Definition read := lex_sem [
29 (WS, ws_carr_re); (INT, int_re);
30 (FLOAT, float_re);
31 (TRUE, stringApp "true");
32 (FALSE, stringApp "false");
33 (NULL, stringApp "null")].

Figure 16 Comparing JSON lexer for OCamllex, Flex, Coqlex and Verbatim++

3:23

Coqlex: Generating Formally Verified Lexers

B Why is Verbatim++ so slow?

In a regexp matcher based on Brzozowski’s derivatives, we compute a derivative of
the “current” regexp each time we read a character from the input. This derivation
function dominates the running time of the matcher. Optimizations to derivate-based
lexers typically try to optimize the derivation function or cache its computation.
A naively-written lexer using derivatives is quadratic, for two different reasons:

1. The size of the “current” regexp may grow on each successive derivation. This
occurs when using the naive/texbook definition of derivation, typically on the
kleene star. (In the worst case, the size increase due to derivation may even lead to
an exponential blowup, but this worst case is typically not encountered in real-world
regexps.)
The standard approach to avoid this size increase, and the ensuing quadratic
behavior, is the use of smart constructors, which perform simplifications on the fly
during derivation and keep the regexp size constant in common cases.

2. It is important to stop regexp matching as early as possible, when the derived
regexp becomes empty. A naive implementation may keep deriving the empty
regexp until the end of the input string is reached. If each call to the lexer traverses
the whole input to produce one token, we get quadratic behavior.
In Coqlex, being careful of these two issues sufficed to produce a reasonably efficient

regexp matcher. (We experimented with memoizing the derivation function, which
gives a further 2x speedup, but is hard to do in a fully-verified way as it typically
involves unverified imperative data structures.)
Our hypothesis is that Verbatim made more complex implementation choices to

avoid the quadratic blowup that do result in linear lexing performance but with very
large book-keeping overhead:

1. In a precomputation phase, they compute a very large set of possible repeated
derivatives, stored in an associative data structure that Verbatim++ calls a DFA: the
states of the automaton are regexps. (This corresponds to the constant 2s overhead
observed on the JSON grammar.)

2. The precomputed table of derivates is represented by a trie. Looking up a derivative
requires navigating the trie, running comparison functions between current regexp
and the regexps in the trie.

3. On top of this caching layer, Verbatim++ memoizes the score for each pair (current
regexp, input position). This removes the second source of quadratic behavior
(stopping early on failure) in an indirect way: the very first score computation will
traverse the whole input with an empty (failed) regexp, in linear time, but any
further call that reaches the empty regexp will find the (empty regexp, current
position) pair in the table and stop early.

The composition of these two layers (DFA represented as a trie + score memoization)
runs in linear time, but with considerable constant-factor overheads.
We wondered if the simpler optimization approach that we used in Coqlex would

suffice to give good performance to Verbatim++— is it “just” missing smart construc-
tors or stop-early logic? So we modified the Verbatim++ derivation function to use

3:24

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

Figure 17 Comparison of execution time in seconds for Verbatim++, VerbatimSC and
VerbatimSt on Verbatim++ JSON benchmark.

smart constructors as we presented in Section 6.4; we call this variant VerbatimSC.
We also modified the Verbatim++ score computation function to stop early when
the input regexp is ∅r (there is no match) or εr (score is 0); we call this variant
VerbatimSt.
The performance of these two variants are compared to Verbatim++ in Figure 17.

VerbatimSC is slower than Verbatim++: Verbatim++ already performs simplifications
during the DFA computation, and our smart constructors only add additional overhead.
On the other hand, (VerbatimSt and its simple stop-early logic does provide a significant
improvement to Verbatim++. Unfortunately, it still remains sensibly slower than
Coqlex.
Comparing the design of Coqlex and Verbatim++, we also notice some smaller

design choices that have a performance impact:
1. Better regexp language. Coqlex extended its regex definition (see Section 6.1) to

reduce the execution in usual cases; for example, the interval [a-z] can be represented
and checked as a single construct, while Verbatim++ uses a large sum requiring
26 tests in the worst case.

2. Better data representation after extraction. Coqlex uses OCaml native ascii charac-
ters while Verbatim++ uses the default Coq representation of ASCII characters as
8-uplets of booleans, which is at least 8x slower, probably more.

3. The Coqlex score computation function has been designed to return the score,
the lexeme and the remaining string at the same time, while Verbatim++ first
computes the lexeme and remaining string and then computes the score (the length
of the lexeme) to chose the longest.

3:25

Coqlex: Generating Formally Verified Lexers

C The generated code of OCamllex for mini-cal

Listing 11 OCamllex minical.mll
1 {
2 open Lexing
3 open TokenDefinition
4 }
5 let ident = ['a'-'z']+
6 let numb = ['0'-'9']+
7

8 rule minlexer = parse
9 | '\n' { new_line lexbuf; minlexer lexbuf }
10 | ident {ID (Lexing.lexeme lexbuf)}
11 | numb { Number (Lexing.lexeme lexbuf)}
12 | '+' { PLUS }
13 | '-' { MINUS }
14 | '*' { TIMES }
15 | '(' { LPAREN }
16 | ')' { RPAREN }
17 | eof { Eof }
18 | _ { failwith ("unknown token : " ^ (

,→ Lexing.lexeme lexbuf))}
19

20 (* trailer section *)
21 {}

Listing 12 Generated mini-cal.ml
1

2 open Lexing
3 open TokenDefinition
4

5 let __ocaml_lex_tables = {
6 Lexing.lex_base = "\000\000\246 ...";
7 Lexing.lex_backtrk = "\255\255...";
8 Lexing.lex_default = "\001\000...";
9 Lexing.lex_trans = "\000\000...";
10 Lexing.lex_check = "\255\255...";
11 Lexing.lex_base_code = "";
12 Lexing.lex_backtrk_code = "";
13 Lexing.lex_default_code = "";
14 Lexing.lex_trans_code = "";
15 Lexing.lex_check_code = "";
16 Lexing.lex_code = "";
17 }
18

19 let rec minlexer lexbuf =
20 __ocaml_lex_minlexer_rec lexbuf 0
21 and __ocaml_lex_minlexer_rec lexbuf __ocaml_lex_state =
22 match Lexing.engine __ocaml_lex_tables __ocaml_lex_state

,→ lexbuf with
23 | 0 -> (new_line lexbuf; minlexer lexbuf)
24 | 1 -> (ID (Lexing.lexeme lexbuf))
25 | 2 -> (Number (Lexing.lexeme lexbuf))
26 | 3 -> (PLUS)
27 | 4 -> (MINUS)
28 | 5 -> (TIMES)
29 | 6 -> (LPAREN)
30 | 7 -> (RPAREN)
31 | 8 -> (Eof)
32 | 9 -> (failwith ("unknown token : " ^ (Lexing.lexeme lexbuf)))
33 | __ocaml_lex_state -> lexbuf.Lexing.refill_bu� lexbuf;
34 __ocaml_lex_minlexer_rec lexbuf __ocaml_lex_state;;

Figure 18 Comparing generated mini-cal vs. OCamllex mini-cal

3:26

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

D Source code organization

The Coqlex source code is organized as follows:
The directory regexp_opt: contains the implementation of Coqlex extended version of

regular expression based on Brzozowski derivatives.
RValues.v: contains the definition of usual regex (string, character, identifiers, num-

bers...)
RegexpSimpl.v contains the implementation of regexp simplification described in

Section 6.4.
MachLen.v: contains the implementation of the score used to perform the longest

match rule. Similarly, ShortestLen.v contains the score function of the shortest
match rule.

MachLenSimpl.v: contains the optimized version of the longest match rule score com-
putation. Similarly, ShortestLenSimpl.v contains the optimized score function of
the shortest match rule.

LexerDefinition.v: contains the Coqlex selection system and data-type definition.
SubLexeme.v: contains the Coqlex sub-lexeme functions and proofs.
CoqlexUtils.v: contains the definition of usual semantic action.
CoqlexLexer.v: contains definition of the lexer of the Coqlex generator.
Extraction.v: contains the extraction directives of the .v files above.
Parser.vy: contains definition of the parser of the Coqlex generator.
coqlex.ml: contains Coqlex generator main function.
ParserUtils.ml and LexerUtils.ml: contains OCaml function that facilitates the use of

the OCaml extracted code of Coqlex lexers.
The directory example: contains examples of Coqlex lexer specified by .vl files, their

OCamllex equivalent and benchmark data.
The directory Comparison: contains JSON and XML benchmark data, Verbatim++,

OCamllex and Coqlex lexers and a python code that allowed to plot the Figure 15.

3:27

Coqlex: Generating Formally Verified Lexers

References

[1] Valentin Antimirov. “Partial derivatives of regular expressions and finite automa-
ton constructions”. In: Theoretical Computer Science 155.2 (1996), pages 291–319.
issn: 0304-3975. doi: 10.1016/0304-3975(95)00182-4.

[2] World Bank. United States annual GDP data [data file]. 2020. url: http://api.
worldbank.org/v2/countries/USA/indicators/NY.GDP.MKTP.CD?per_page=5000&
format=json.

[3] Michela Becchi and Patrick Crowley. “A-DFA: A Time- and Space-Efficient DFA
Compression Algorithm for Fast Regular Expression Evaluation”. In: ACM Trans.
Archit. Code Optim. 10.1 (Apr. 2013). issn: 1544-3566. doi: 10.1145/2445572.
2445576.

[4] Janusz A Brzozowski. “Derivatives of regular expressions”. In: Journal of the
ACM (JACM) 11.4 (1964), pages 481–494. doi: 10.1145/321239.321249.

[5] Adam Chlipala. Certified programming with dependent types: a pragmatic intro-
duction to the Coq proof assistant. MIT Press, 2013. isbn: 0262026651.

[6] Derek Egolf, Sam Lasser, and Kathleen Fisher. “Verbatim: A Verified Lexer
Generator”. In: 2021 IEEE Security and Privacy Workshops (SPW). 2021, pages 92–
100. doi: 10.1109/SPW53761.2021.00022.

[7] Derek Egolf, Sam Lasser, and Kathleen Fisher. “Verbatim++: verified, opti-
mized, and semantically rich lexing with derivatives”. In: Proceedings of the
11th ACM SIGPLAN International Conference on Certified Programs and Proofs.
2022, pages 27–39. doi: 10.1145/3497775.3503694.

[8] HaskellWiki. Smart constructors — HaskellWiki. https://wiki.haskell.org/index.
php?title=Smart_constructors&oldid=63322. Accessed: 2020-10-14. 2020.

[9] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. “Validating LR(1)
parsers”. In: ESOP 2012: Programming Languages and Systems, 21st European
Symposium on Programming. LNCS 7211. Springer, 2012, pages 397–416. doi:
10.1007/978-3-642-28869-2_20.

[10] Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schille.
“Regular expressions for language engineering”. In: Natural Language Engineer-
ing 2.4 (1996), pages 305–328. doi: 10.1017/S1351324997001563.

[11] Dexter Kozen. “Kleene algebra with tests”. In: ACMTransactions on Programming
Languages and Systems (TOPLAS) 19.3 (1997), pages 427–443. doi: 10.1145/
256167.256195.

[12] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
“CakeML: A Verified Implementation of ML”. In: SIGPLAN Not. 49.1 (Jan. 2014),
179–191. issn: 0362-1340. doi: 10.1145/2578855.2535841.

[13] Pascal Lejeune, Françoise Dufour, and Eric Chenu. “DIGISAFE® XME: High
Availability Vital Computer”. In: 2nd Embedded Real Time Software Congress
(ERTS’04). Toulouse, France, 2004. url: https://hal.science/hal-02271067.

3:28

https://doi.org/10.1016/0304-3975(95)00182-4
http://api.worldbank.org/v2/countries/USA/indicators/NY.GDP.MKTP.CD?per_page=5000&format=json
http://api.worldbank.org/v2/countries/USA/indicators/NY.GDP.MKTP.CD?per_page=5000&format=json
http://api.worldbank.org/v2/countries/USA/indicators/NY.GDP.MKTP.CD?per_page=5000&format=json
https://doi.org/10.1145/2445572.2445576
https://doi.org/10.1145/2445572.2445576
https://doi.org/10.1145/321239.321249
https://doi.org/10.1109/SPW53761.2021.00022
https://doi.org/10.1145/3497775.3503694
https://wiki.haskell.org/index.php?title=Smart_constructors&oldid=63322
https://wiki.haskell.org/index.php?title=Smart_constructors&oldid=63322
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1017/S1351324997001563
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/2578855.2535841
https://hal.science/hal-02271067

Wendlasida Ouedraogo, Gabriel Scherer, and Lutz Straßburger

[14] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus
Pister, and Christian Ferdinand. “CompCert-a formally verified optimizing com-
piler”. In: ERTS 2016: Embedded Real Time Software and Systems, 8th European
Congress. 2016. url: https://xavierleroy.org/publi/erts2016_compcert.pdf.

[15] Microsoft. Sample XML documents. 2023. url: https://learn.microsoft.com/fr-
fr/dotnet/standard/linq/sample-xml-file-typical-purchase-order.

[16] Takashi Miyamoto. Coq Regular Expression Git Page. https://github.com/coq-
contribs/regexp. Accessed: 2020-10-14. 2011.

[17] Tobias Nipkow. “Verified lexical analysis”. In: International Conference on
Theorem Proving in Higher Order Logics. Springer. 1998, pages 1–15. isbn:
3540649875.

[18] Scott Owens, John Reppy, and Aaron Turon. “Regular-expression derivatives
re-examined”. In: Journal of Functional Programming 19.2 (2009), 173–190. doi:
10.1017/S0956796808007090.

[19] François Pottier and Yann Régis-Gianas. The Menhir parser generator. http:
//gallium.inria.fr/fpottier/menhir. 2016. url: http://gallium.inria.fr/~fpottier/
menhir/manual.pdf.

[20] Joshua B Smith. “Ocamllex and Ocamlyacc”. In: Practical OCaml (2007),
pages 193–211. doi: 10.1007/978-1-4302-0244-8_16.

[21] Laurent Thery. Coq String Module Documentation. https://coq.inria.fr/library/
Coq.Strings.String.html. Accessed: 2020-10-14. 2020.

[22] Ken Thompson. “Programming techniques: Regular expression search algo-
rithm”. In: Communications of the ACM 11.6 (1968), pages 419–422. doi: 10.
1145/363347.363387.

3:29

https://xavierleroy.org/publi/erts2016_compcert.pdf
https://learn.microsoft.com/fr-fr/dotnet/standard/linq/sample-xml-file-typical-purchase-order
https://learn.microsoft.com/fr-fr/dotnet/standard/linq/sample-xml-file-typical-purchase-order
https://github.com/coq-contribs/regexp
https://github.com/coq-contribs/regexp
https://doi.org/10.1017/S0956796808007090
http://gallium.inria.fr/fpottier/menhir
http://gallium.inria.fr/fpottier/menhir
http://gallium.inria.fr/~fpottier/menhir/manual.pdf
http://gallium.inria.fr/~fpottier/menhir/manual.pdf
https://doi.org/10.1007/978-1-4302-0244-8_16
https://coq.inria.fr/library/Coq.Strings.String.html
https://coq.inria.fr/library/Coq.Strings.String.html
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387

Coqlex: Generating Formally Verified Lexers

About the authors

Wendlasida Ouedraogo PhD student.
wendlasida.ouedraogo@lix.polytechnique.fr

Gabriel Scherer Research scientist.
https://gallium.inria.fr/~scherer/

Lutz Straßburger Senior research scientist.
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/

3:30

mailto:wendlasida.ouedraogo@lix.polytechnique.fr
https://gallium.inria.fr/~scherer/
http://www.lix.polytechnique.fr/Labo/Lutz.Strassburger/

	1 Introduction
	2 Representing a lexer in Coq
	3 Coqlex in practice
	4 Coqlex industrial use-case
	5 Coqlex generator specification
	6 Coqlex implementation details
	6.1 Brzozowski derivatives for regexps matching
	6.2 Matching policies
	6.3 Coqlex rule selection
	6.4 Optimization

	7 Evaluation: Syntax and expressivity
	7.1 Surface syntax example
	7.2 Labels
	7.3 Looping lexers
	7.4 Proofs about the generated lexers

	8 Evaluation: Performance
	9 Conclusion
	9.1 Related Work
	9.2 Future Work

	A Example: JSON lexers in Flex, OCamllex, Coqlex, and Verbatim++
	B Why is Verbatim++ so slow?
	C The generated code of OCamllex for mini-cal
	D Source code organization
	References
	About the authors

