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Abstract. This paper proposes an alternative approach to the standard
notion of rational (or regular) expression for tree languages. The main
difference is that in the new notion we have only one concatenation op-
eration and only one star-operation, instead of many different ones. This
is achieved by considering forests instead of trees over a ranked alpha-
bet, or, algebraicly speaking, by considering cartesian categories instead
of term-algebras. The main result is that in the free cartesian category
the rational languages and the recognizable languages coincide. For the
construction of the rational expression for a recognizable language it is
not necessary to extend the alphabet. We only use operations that can
be defined with the algebraic structure provided by cartesian categories.

1 Introduction

Kleene’s theorem on the coincidence of the rational and the recognizable lan-
guages in a free monoid [Kle56] is considered to be one of the cornerstones of
theoretical computer science. Although it does not hold in every monoid [Eil76],
it has been generalized in several directions, e.g., [Och85,Sch61,DG99]. Thatcher
and Wright presented in [TW68] a similar result for tree languages. In recent
years, recognizable tree languages have received increased attention because they
form a foundation for XML schemas for expressing semi-structured data (e.g.,
[Nev02,MN07,CDG+07]). In this paper I will only consider ranked trees and tu-
ples of ranked trees, which I call forests to distinguish them from hedges [Cou89]
which are sequences of unranked trees [CDG+07].

The recognizable tree languages are defined by means of finite-state tree au-
tomata (fsta), which are a generalization of ordinary finite state automata (fsa)
over words. While an fsa works on an alphabet A, an fsta works on a ranked
alphabet Σ, i.e., every symbol in Σ is equipped with a rank, which is a natural
number. The language recognized by an fsta is a subset of the set TΣ of all
finite trees over Σ. The running example for this paper is the ranked alphabet
Σ = {σ, γ, α}, where σ has rank 2, γ has rank 1, and α has rank 0. Let us
define an fsta A with two states p and f , where f is a final state. Observe that
(contrary to fsa on words) there are no initial states. Usually the behaviour of
an fsta is represented as set of rules of a term rewriting system [GS97]. In the
example, let the behaviour of A be described by the rules

α→ p , α→ f , γ(p)→ p , σ(p, f)→ f .
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Fig. 1. Left: The form of the trees in language L Right: Depicted as forests

The tree language L accepted by this automaton contains the tree α and all trees
of the shape σ(γ . . . γα, σ(γ . . . γα, σ(. . . , σ(γ . . . γα, α) . . .))), which is more vivid
if drawn as a tree as on the left of Fig. 1, where the number of γ’s in each chain
and the number of σ’s can be any natural number (including zero).

In order to find for this recognizable tree language a rational expression in the
same sense as for recognizable word languages, we encounter the problem that
there is no straightforward concatenation operation for trees. The concatenation
of two words is simply their juxtaposition. But what is the concatenation of two
trees? The approach taken in [TW68] is to paste one tree into some leaves of the
other tree. In order to decide into which leaves of the first tree the second tree
has to be plugged in, we have to name those leaves. In a tree over Σ, the leaves
are labeled by the 0-ary symbols of Σ. Hence, for every 0-ary symbol of Σ, there
is another concatenation operation. In order to obtain a rational expression for
every recognizable tree language, it is necessary to extend Σ by additional 0-ary
symbols. The rational expression for the language in our example is

L = {α} ∪ ({σ(p, f)} ·p {γ(p)}∗p ·p {α})∗f ·f {α} . (1)

Observe that there are two additional symbols p and f with rank 0 that are not
elements of Σ. This means that although the language L is a subset of TΣ , the
sets {σ(p, f)} and {σ(p, f)} ·p {γ(p)}∗p, that occur in in (1), are not subsets of
TΣ but subsets of TΣ∪{p,f}. We see two different concatenation operations, ·p
and ·f , in (1), because there are two states in the corresponding automaton.

It has been shown in [TW68], that for every recognizable tree language there
exists such a rational expression, and that every tree language that can be rep-
resented by a rational expression is indeed recognizable. There are three points
that one might find disturbing:
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Fig. 2. The three forests s, t and r

(i) The language for formalizing the rational expressions is not predefined by
Σ. For a given recognizable tree language L ⊆ TΣ , the number of different
concatenation operations that occur in the rational expression for L is de-
termined by the automaton that recognizes L. (In rational expressions for
word languages we have only one concatenation operation.)

(ii) The tree languages that are obtained by evaluating a subexpression of a
rational expression for a language L ⊆ TΣ are usually not subsets of TΣ . (In
the case of word languages, a subexpression of a rational expression for a
language L ⊆ A∗ always represents a subset of A∗.)

(iii) The set TΣ of all trees over Σ forms the free Σ-algebra generated by the
empty set. The tree concatenation operations have no correspondence in the
Σ-algebra structure. (The set A∗ of all words over A forms the free monoid
generated by A, and the word concatenation operation is the multiplication
in the monoid.) As a consequence, the notion of rational (tree) language
cannot easily be generalized to any Σ-algebra, as it has been done very
successfully for rational languages in any monoid [Eil76,Och85,Sch61,DG99].

These three problems can be entirely avoided by a remarkable simple generaliza-
tion: instead of concatenating trees, we concatenate tuples of trees, i.e., forests.
The set of all forests over a ranked alphabet Σ will be denoted by Σ~. Alge-
braicly speaking, we generalize the notion of monoid not to a Σ-algebra but to
a cartesian category, and Σ~ is the free cartesian category generated by Σ. The
usual free monoid of words can be seen as the special case in which all symbols
in Σ have rank 1. One can visualize a forest as a box with holes on one side and
plugs on the other. As example, Figure 2 shows three forests (for the same Σ as
above). If we call them s, t and r, respectively, then s contains two trees and t
and r contain each one tree. The leaves either contain a symbol of Σ with rank
0 or are connected to a hole of the box. The concatenation operation, which is
the composition of arrows in the category, becomes now a plugging together of
two forests with a matching number of plugs and holes. In our example, s and t
can be plugged together and the result is r. With this approach, the many tree
concatenation operations are reduced to a single forest concatenation operation.

Note that this category has been around since the work by Lawvere on al-
gebraic theories [Law63]. It has also been extensively studied in the context of
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iteration theories [BÉ93], in which the regular forests have been characterized
in various ways [Ési81]. But the structure is different from preclones [ÉW05],
which have another concatenation operation (see also Remark 2.2 in [ÉW05]).
Our category is also a special case of a magmoid [AD82]. However, it seems that
the structure of cartesian category has not yet been used to define the notion
of rational expression in order to provide a Kleene-theorem (but see [Boj07] for
related work on unranked trees).

The notion of recognizability presented in this paper is the same as the one
by Thatcher and Wright [TW68] or the one by Ésik and Weil [ÉW05] (modulo
the cosmetic difference that we consider forests instead of trees). The novelty is
the new notion of rational expression, whose definition is closer to the rational
languages in a monoid [Eil76]. The only operations that are allowed are the
componentwise union ], the cartesian product ×, the concatenation ·, and the
concatenation closure ?, which is the generalization of the Kleene star ∗ for words.
Although it is straightforward to translate the many concatenation and star-
operations of [TW68] for trees into the corresponding forest operations presented
in this paper, the converse translation is not so immediate. Nonetheless, it follows
from [TW68] and our work, that the two notions coincide for tree languages.
Thus, this paper provides yet another characterization of the recognizable (or
regular) tree languages.

For giving an example, the right-hand side of Fig. 1 shows how the language
L can be depicted as forest language. The new rational expression is depicted
in Fig. 3. Observe that there is only one concatenation operation and that ev-
ery subexpression represents a subset of Σ~. Note that the operations used in
a rational expression are available in any cartesian category (a category with
a terminal object and all finite products). This means that the notions of rec-
ognizability and rationality defined in this paper are available in all cartesian
categories, where the two notions do in general not coincide.

Related to this work is the general notion of substitution (e.g., [Ede85]). How-
ever, the set of substitutions forms a monoid and the composition of substitutions
is the multiplication in that monoid. Imposing the notions of recognizability and
rationality on substitutions would mean to use the well-known notions of recog-
nizability and rationality in a monoid [Eil76], whereas the purpose of this paper
is to capture the notion of recognizability for trees. For this it is necessary to
add to each substitution also the information about which variables occur in the
domain and in the codomain; and this in turn leads to the notion of forest.
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All the technical details of this paper are available in [Str00].

2 Forests

Forests are tuples of trees (or terms) over a ranked alphabet. In other words,
they are the arrows in the free cartesian category generated by the alphabet,
and the forest concatenation is the usual term substitution, which is the arrow
composition in that category [Law63]. In order to make the paper self-contained,
the definitions are given if full (without using category theory).
2.1 Definition A ranked alphabet Σ is a finite set of symbols together with
a function rank : Σ → IN, which assigns to every symbol σ ∈ Σ its rank. For a
given k ∈ IN, let Σk = {σ ∈ Σ | rank(σ) = k}.
2.2 Example For the example from the introduction we have Σ = Σ0∪Σ1∪
Σ2 with Σ0 = {α}, Σ1 = {γ} and Σ2 = {σ}.
2.3 Definition Let Σ be a ranked alphabet. For every n,m ≥ 0, the set
Σ~[n,m] of all (n,m)-forests over Σ is the smallest set such that

(i) the set Σ~[n, 0] = {〈〉n} is a singleton,
(ii) for every i ∈ {1, . . . , n} (with n ≥ 1), there is a forest πni ∈ Σ~[n, 1],
(iii) for every k ≥ 0 and t ∈ Σ~[n, k] and σ ∈ Σk, there is a forest tσ ∈ Σ~[n, 1],
(iv) if m ≥ 2 and t1, . . . , tm ∈ Σ~[n, 1], then 〈t1, . . . , tm〉 ∈ Σ~[n,m].

The elements of the set Σ~ =
⋃
n,m∈INΣ

~[n,m] are called forests over Σ.

2.4 Example Let Σ be as above. Then s = 〈〈π3
1 , 〈〉3α〉σ, π3

2〉 is a (3, 2)-forest
and t = 〈〈π2

2 , π
2
2〉σ, π2

1〉σ is a (2, 1)-forest. Both are depicted in Fig. 2.
2.5 Notation By some abuse of notation, we can seeΣk as subset ofΣ~[k, 1],
by identifying σ ∈ Σk with 〈πk1 , . . . , πkk〉σ ∈ Σ~[k, 1].
2.6 Definition For a given ranked alphabet Σ, the forest concatenation ; is
inductively defined as follows.

(i) For every n,m ∈ IN and t ∈ Σ~[n,m], let t; 〈〉m = 〈〉n,
(ii) for every n,m ∈ IN (with m ≥ 1), every t1, . . . , tm ∈ Σ~[n, 1], and every

i ∈ {1, . . . ,m}, let 〈t1, . . . , tm〉;πmi = ti,
(iii) for every n,m, k ∈ IN, every s ∈ Σ~[n,m], every t ∈ Σ~[m, k], and every

σ ∈ Σk, let s; (tσ) = (s; t)σ,
(iv) for every n,m, k ∈ IN (with k ≥ 2), every s ∈ Σ~[n,m], and every t1, . . . , tk ∈

Σ~[m, 1], let s; 〈t1, . . . , tk〉 = 〈s; t1, . . . , s; tk〉.
2.7 Example The concatenation of s and t above is
s; t = 〈〈π3

2 , π
3
2〉σ, 〈π3

1 , 〈〉3α〉σ〉σ ∈ Σ~[3, 1], which is the forest r shown in Fig. 2.
One can easily show that the forest concatenation is associative and that

for every n,m ∈ IN and s ∈ Σ~[n,m] we have that 〈πn1 , . . . , πnn〉; s = s =
s; 〈πm1 , . . . , πmm〉. Hence, we have a category (that we also denote by Σ~) whose
objects are the non-negative integers, the terminal object is 0, the cartesian
product is given by the usual addition, and the πni are the projections. I will
write εn for 〈πn1 , . . . , πnn〉 ∈ Σ~[n, n] if n ≥ 1 (resembling the empty word ε in
the free monoid) and ε0 for 〈〉0 ∈ Σ~[0, 0].
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3 Recognizable Forest Languages

One can define recognizability either via automata or via the inverse image
of a morphism into a finite structure. In our case this would be a cartesian
category with countably many objects but with finite hom-sets. Usually there is a
straightforward translation between such a morphism and a deterministic finite-
state automaton. Our case is no different in that respect. But many costructions
on automata, for example concatenation, require the non-deterministic model.
Thus, we define the recognizable forest languages via (non-deterministic) finite-
state forest automata (fsfa) which accept those languages. Morally, an fsfa is
the same as a finite-state tree automaton (fsta), see e.g. [GS97], but technically,
there is a subtle difference: fsfa have initial as well as final states, whereas fsta do
only have final states. On the other hand, usual finite-state automata (fsa) over
words do also have initial as well as final states. Thus, forest automata regain
a symmetry which was lost for tree automata. In the definitions that follow, we
will stay as close as possible to the theory of fsa for word languages [Per90]. The
main difference is that there is no longer a single state transition relation (or
state transition function), but a family of such relations (or functions), one for
each rank that occurs in the ranked alphabet Σ.

3.1 Definition Let n,m ∈ IN. A (nondeterministic) finite-state (n,m) forest
automaton ((n,m)-fsfa) is a tuple A = 〈Q,Σ, I, F,E〉, where Q is a finite set of
states, Σ is a ranked alphabet, I = I1 × . . .× In (with I1, . . . , In ⊆ Q) is the set
of initial state tuples, F = F1 × . . . × Fm (with F1, . . . , Fm ⊆ Q) is the set of
final state tuples, and

E = {Ek | k ≥ 0}, where Ek ⊆ Qk ×Σk ×Q (for every k ≥ 0)

is the set of state transition relations. Since Σ is finite, the relation Ek is empty
for almost all k ∈ IN.

In order to define the language accepted by an fsfa A, it is necessary to ex-
tend the relations Ek from symbols in Σ to forests in Σ~. For this let us define
for every k, l ≥ 0 a relation EA

k,l ⊆ (P(Q))k×Σ~[k, l]×Ql (where P(Q) denotes
the powerset of Q). Informally speaking, we have (〈Q1, . . . , Qk〉, t, 〈p1, . . . , pl〉) ∈
EA
k,l iff the forest t ∈ Σ~[k, l] can cause a transformation from the states in
〈Q1, . . . , Qk〉 to the state tuple 〈p1, . . . , pl〉. The formal definition is given induc-
tively on the structure of the elements of Σ~[k, l].

(i) For every k ≥ 0 and Q1, . . . , Qk ⊆ Q, we have (〈Q1, . . . , Qk〉, 〈〉k, 〈〉) ∈ EA
k,0,

where 〈〉k ∈ Σ~[k, 0] is the unique (k, 0)-forest (cf. Def. 2.3) and 〈〉 ∈ Q0 is
the empty tuple of states,

(ii) for all k ≥ 0 and Q1, . . . , Qk ⊆ Q and i ∈ {1, . . . , k} and q ∈ Qi, we have
(〈Q1, . . . , Qk〉, πki , q) ∈ EA

k,1,

(iii) for all k, k′ ≥ 0 and t ∈ Σ~[k, k′] and σ ∈ Σk′ and Q1, . . . , Qk ⊆ Q and
p1, . . . , pk′ , q ∈ Q, if (〈Q1, . . . , Qk〉, t, 〈p1, . . . , pk′〉) ∈ EA

k,k′ and
(〈p1, . . . , pk′〉, σ, q) ∈ Ek′ , then (〈Q1, . . . , Qk〉, tσ, q) ∈ EA

k,1,
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(iv) for all k ≥ 0 and l ≥ 2 and Q1, . . . , Qk ⊆ Q and p1, . . . , pl ∈ Q and
t1, . . . , tl ∈ Σ~[k, 1], if (〈Q1, . . . , Qk〉, ti, pi) ∈ EA

k,1, for every i ∈ {1, . . . , l},
then (〈Q1, . . . , Qk〉, 〈t1, . . . , tl〉, 〈p1, . . . , pl〉) ∈ EA

k,l .

3.2 Definition Let n,m ∈ IN and A = 〈Q,Σ, I, F,E〉 be an (n,m)-fsfa.
Then L(A) = { t ∈ Σ~[n,m] | ∃〈p1, . . . , pm〉 ∈ F . (〈I1, . . . , In〉, t, 〈p1, . . . , pm〉) ∈
EA
n,m } is the language accepted (or recognized) by A.

3.3 Example Let Σ be as before. Define the (0, 1)-fsfa A = 〈Q,Σ, I, F,E〉
by Q = {p, f} and I = ∅ and F = {f} and

E0 = {(〈〉, α, p), (〈〉, α, f)} , E1 = {(〈p〉, γ, p)} , E2 = {(〈p, f〉, σ, f)} .

Then L(A) is the set of all forests with the shape shown on the right of Fig. 1.

3.4 Definition A (n,m)-forest language L ⊆ Σ~[n,m] is called recognizable
if there is an (n,m)-fsfa A = 〈Q,Σ, I, F,E〉 with L(A) = L. The set of all rec-
ognizable (n,m)-forest languages over Σ is denoted by Rec(Σ~)[n,m]. Further,

Rec(Σ~) =
⋃

n,m∈IN

Rec(Σ~)[n,m]

is the set of all recognizable forest languages over Σ.

The concept of fsta is usually introduced by means of term rewriting systems
[GS97,Eng75]. It should be obvious that such an fsta is the same as a (0, 1)-
fsfa (Def. 3.1): a (0, 1)-fsfa has no initial states, the set of final state tuples is
reduced to a set of final states and the relations Ek contain exactly the same
information as the rules of the term rewriting system of a tree automaton, since
there is not much difference between the tuple (〈q1, . . . , qk〉, σ, q) ∈ Ek and the
rewrite rule σ(q1, . . . , qk)→ q (with σ ∈ Σk). This means that for a given Σ, the
set Rec(Σ~)[0, 1] is isomorphic to the set of recognizable tree languages over Σ.
Sometimes the discussion is casted in terms of tree languages over a ranked
alphabet Σ and a finite set of variables X. In [GS97], the set of recognizable tree
languages over Σ and X is denoted by Rec(Σ,X). If n = |X| is the number of
symbols in X, then Rec(Σ,X) is isomorphic to Rec(Σ~)[n, 1].

3.5 Definition An (n,m)-fsfa A = 〈Q,Σ, I, F,E〉 is called deterministic if
|I| = 1 (i.e., there is only one input state tuple), and for every k ≥ 0, ev-
ery σ ∈ Σk and every q1, . . . , qk, p1, p2 ∈ Q, if (〈q1, . . . , qk〉, σ, p1) ∈ Ek and
(〈q1, . . . , qk〉, σ, p2) ∈ Ek, then p1 = p2 (i.e., the next state is uniquely deter-
mined). An (n,m)-fsfa A = 〈Q,Σ, I, F,E〉 is called totally defined if for ev-
ery k ≥ 0, every σ ∈ Σk and q1, . . . , qk ∈ Q, there is a p ∈ Q such that
(〈q1, . . . , qk〉, σ, p) ∈ Ek.

For a deterministic and totally defined (n,m)-fsfa A, the relations Ek ⊆
Qk×Σk×Q are graphs of functions δk : Qk×Σk → Q. In this case the definitions
can be simplified by the use of functions δA

k,l : Qk × Σ~[k, l] → Ql instead of
the relations EA

k,l ⊆ (P(Q))k ×Σ~[k, l]×Ql. The functions δA
k,l define a functor

from the free cartesian category Σ~ to a cartesian category with finite hom-sets.
More explicitely, for a determinisic (0, 1)-fsfa, the function δA

0,1 : Σ~[0, 1]→ Q is
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a Σ-algebra homomorphism whose inverse image of F ⊆ Q is L(A) ⊆ Σ~[0, 1],
as it is in the definition of deterministic tree automata [GS97]. We have the
following proposition, whose proof uses the well-known power set construction.

3.6 Proposition Let n,m ∈ IN and A be an (n,m)-fsfa. Then there exists a
deterministic and totally defined (n,m)-fsfa A′ such that L(A′) = L(A).

In the view of this, the definition of EA
n,m could be replaced by the much

simpler construction in the deterministic automaton. However, as in the case
of automata over words, the construction in the proof of the Kleene theorem
requires non-deterministic automata and a properly defined state transition re-
lation, which is the reason for not using rewriting rules.

4 Closure Properties of Recognizable Forest Languages

As mentioned before, the set Rec(Σ~)[n, 1] ⊆ P(Σ~[n, 1]) of recognizable (n, 1)-
forest languages over Σ is isomorphic to the set Rec(Σ,X) ⊆ P(TΣ(X)), where
|X| = n, of recognizable tree languages [GS97]. Hence, Rec(Σ~)[n, 1] is closed
under the boolean operators intersection, union, and complement.

4.1 Proposition Let Σ be given and n ∈ IN. If L1, L2 ∈ Rec(Σ~)[n, 1], then
LC1 = Σ~[n, 1] \ L1 as well as L1 ∪ L2 and L1 \ L2 are recognizable.

4.2 Proposition Let Σ be a ranked alphabet and n,m ∈ IN. If L1, L2 ∈
Rec(Σ~)[n,m], then L1 ∩ L2 ∈ Rec(Σ~)[n,m].

It is important to notice, that the set Rec(Σ~)[n,m] is in general not closed
under union. However, the recognizable languages are closed under cartesian
product. With this as a base, we can define another operation ] which will take
the place of the union.

4.3 Definition If L1 ⊆ Σ~[n,m1] and L2 ⊆ Σ~[n,m2], then

L1 × L2 = { 〈t1, . . . , tm1+m2〉 ∈ Σ~[n,m1 +m2] | 〈t1, . . . , tm1〉 ∈ L1 and
〈tm1+1, . . . , tm1+m2〉 ∈ L2 }

is the cartesian product of L1 and L2.

4.4 Proposition Let Σ be a ranked alphabet and n,m ∈ IN. Further, let L ⊆
Σ~[n,m]. Then L ∈ Rec(Σ~)[n,m] iff there are L1, . . . , Lm ∈ Rec(Σ~)[n, 1],
such that L = L1 × . . .× Lm.

Note that this implies that Rec(Σ~)[n,m] = Rec(Σ~)[n, 1]m.

4.5 Definition Let Σ be a ranked alphabet, let n,m, k ∈ IN, and let L1 ⊆
Σ~[n,m] and L2 ⊆ Σ~[m, k]. Then L1;L2 = {t1; t2 | t1 ∈ L1, t2 ∈ L2} is the
naive concatenation of L1 and L2.

In the case that L2 is a singleton, say L2 = {ν}, I will write L1; ν instead of
L1; {ν}, for notational convenience. Similarly, ν;L2 stands for {ν};L2.

8



4.6 Definition Let L,L′ ⊆ Σ~[n,m]. Then

L ] L′ = (L;πm1 ∪ L′;πm1 )× . . .× (L;πmm ∪ L′;πmm)

is the componentwise union of L and L′. Similarly, for a family {Li | i ∈ I} of
languages with Li ⊆ Σ~[n,m] for all i ∈ I, define⊎

i∈I
Li =

(⋃
i∈I

Li;πm1

)
× . . .×

(⋃
i∈I

Li;πmm

)
.

4.7 Proposition Let Σ be a ranked alphabet, and n,m ∈ IN. If L,L′ ∈
Rec(Σ~)[n,m], then L ] L′ ∈ Rec(Σ~)[n,m].
4.8 Definition Let Σ be a ranked alphabet and n,m, k ∈ IN. Further, let
L ⊆ Σ~[n,m] and t ∈ Σ~[m, k]. Define the concatenation L · t of L and t by
induction on t as follows:

L · 〈〉m = {〈〉n} ,

L · πmi = L;πmi (for every i = 1, . . . ,m),
L · (t′σ) = (L · t′); εk′σ (for every k′ ≥ 0, t′ ∈ Σ~[m, k′], and σ ∈ Σk′),

L · 〈t1, . . . , tk〉 = L · t1 × . . .× L · tk (for every t1, . . . , tk ∈ Σ~[m, 1]).

If L′ ⊆ Σ~[m, k], then L · L′ =
⊎
t∈L′ L · t is the concatenation of L and L′.

The construction of the forest concatenation might seem unnatural, but the
usual tree concatenation [TW68,GS97] is defined in a similar way: Different
occurrences of the same 0-ary symbol can be replaced by different trees. Although
the recognizable forest languages are not closed under the naive concatenation,
they are closed under concatenation. This means that also Rec(Σ~) forms a
cartesian category (see also [BÉ93]).
4.9 Proposition Let Σ be a ranked alphabet, and n,m, k ∈ IN.
If L1 ∈ Rec(Σ~)[n,m] and L2 ∈ Rec(Σ~)[m, k], then L1 · L2 ∈ Rec(Σ~)[n, k].

For the proof we need the concept of normalized fsfa, where there is only one
input state tuple and only one output state tuple and there are no transitions
from a final state or into an initial state. Then, the two normalized fsfa for L1

and L2 are connected.
Now we can define a generalization of Kleene’s star operation as a closure

operation for the concatenation. For the concatenation operation of a free monoid
this does not bring any problems. Note that this makes sense only for languages
L ⊆ Σ~[n, n], and we do not take the union of all Lz for 0 ≤ z < ω (as it is
done for word languages) but use the operation

⊎
instead.

4.10 Definition For L ⊆ Σ~[n, n] define

L0 = {εn} = {〈πn1 , . . . , πnn〉} ,

Lz+1 = Lz · L for every z ≥ 0 ,

L? =
⊎
z≥0

Lz .

This star operation is a generalization of both, Kleene’s star operation for
word languages and the star operations for trees defined in [TW68].
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4.11 Proposition If L ∈ Rec(Σ~)[n, n], then L? ∈ Rec(Σ~)[n, n].
The basic idea of the proof is to construct the normalized fsfa A′ for L and

identify initial and final states. However, note that the situation is not entirely
trivial because in general L(A′) 6= L. The reason for this is that the forests
containing πni are removed in L(A′) because otherwise A′ would not be normal.
We have to construct another automaton A′′, which reintroduces these forests.

5 Rational Forest Languages

The set of rational forest languages is the smallest set that contains the finite
languages and that is closed under componentwise union, cartesian product,
concatenation, and the star operation.
5.1 Definition Let Σ be a ranked alphabet. For every n,m ∈ IN, the set
Rat(Σ~)[n,m] is the smallest set such that

– ∅ ∈ Rat(Σ~)[n,m], and if t ∈ Σ~[n,m], then {t} ∈ Rat(Σ~)[n,m],
– if L1, L2 ∈ Rat(Σ~)[n,m], then L1 ] L2 ∈ Rat(Σ~)[n,m],
– if L1 ∈ Rat(Σ~)[n,m1] and L2 ∈ Rat(Σ~)[n,m2], then
L1 × L2 ∈ Rat(Σ~)[n,m1 +m2],

– if L1 ∈ Rat(Σ~)[n, k] and L2 ∈ Rat(Σ~)[k,m], then L1 ·L2 ∈ Rat(Σ~)[n,m],
– if L ∈ Rat(Σ~)[n, n], then L? ∈ Rat(Σ~)[n, n].

The set of all rational forest languages over Σ is defined as

Rat(Σ~) =
⋃

n,m∈IN

Rat(Σ~)[n,m] .

From the propositions in the previous section it follows that for every ranked
alphabet Σ and n,m ∈ IN we have that Rec(Σ~)[n,m] ⊆ Rat(Σ~)[n,m]. The
following theorem says that the converse is also true.
5.2 Theorem Rat(Σ~)[n,m] = Rec(Σ~)[n,m].

In the proof of this theorem, the rational expression is constructed induc-
tively on the size of the fsfa. The construction is inspired by Kleene’s original
construction [Kle56], but it is quite different from the one used by Thatcher and
Wright [TW68]. In particular, note that a priori there is no relation between
Rat(Σ~)[n, 1] and the rational languages of [TW68]. Hence, Theorem 5.2 is not
a consequence of the result in [TW68]. But from Theorem 5.2 and [TW68] it
follows that Rat(Σ~)[n, 1] coincides with the rational languages of [TW68].
5.3 Example For the forest language recognized by the automaton in Ex-
ample 3.3 we can obtain the rational expression depicted in Fig. 3:

L = {〈〉0α} ]
(
{〈〉0α} · {π1

1γ}? × {〈〉0α}
)
· {〈π2

1 , 〈π2
1 , π

2
2〉σ〉}? · {〈π2

1 , π
2
2〉σ} .

By using Notation 2.5, we can write this more concisely as

L = {α} ] ({α} · {γ}? × {α}) · {〈π2
1 , σ〉}? · {σ} .

Now we can immediately derive the main theorem of this paper.

5.4 Theorem Let Σ be a ranked alphabet. Then Rat(Σ~) = Rec(Σ~).
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6 Conclusions and Future Work

The algebraic concepts used in this paper have been studied for a long time (e.g.,
[Law63,Ési81,AD82,BÉ93]), but the construction of rational expression for the
Kleene theorem (Theorem 5.4) in this paper has (up to my knowledge) not yet
appeared in the literature. Apart from the independent interest of the result,
the work is motivated by the following issues of future research.
– The original motivation for proposing this new approach comes from the

desire to give algebraic characterizations for certain classes of tree transduc-
ers (e.g., [Eng75,FV98]). Their counterparts for word languages, e.g., gen-
eral seqential machines [GR66], have been algebraicly characterized by using
Kleene’s original theorem (see e.g. [Ber79]). For tree transductions it is more
difficult to find such characterizations because of the insufficient behaviour
of the tree concatenation operation (see also [AD82]). The here proposed
notion of rational expression allows to give an algebraic characterization of
the transductions realized by sequential forest transducers [Str00], which are
a generalization of a certain class of bottom-up tree transducers. In [AD82],
Arnold and Dauchet encountered the same problem when studying bimor-
phisms for trees. Their solution uses magmoides. The structures Σ~ and
Rec(Σ~) discussed in this paper are magmoides (see also [ÉW05]).

– In [DPV05], the result of [TW68] is generalized to trees over arbitrary semir-
ings (as done in [Sch61] for word automata). This raises the question whether
also Theorem 5.4 can be proved for forests over arbitrary semirings.

– Another important problem is whether the result can be extended to un-
ranked trees and hedges [Cou89,CDG+07] which are important for practical
applications [Nev02,MN07]. The notion of cartesian category already pro-
vides the right algebraic structure. We only have to add additional objects
(infinite ordinals) to the category of forests.

– More generally, it is now possible to generalize the notion of recognizable and
rational languages from the free cartesian category to any cartesian category,
in the same sense as it had been generalized from the free monoid to any
monoid [Eil76,Ber79]. The question is in which cases Theorem 5.4 holds.

– The same question can be raised for the definability in monadic second order
logic [TW68,Tho97,Nev02,CDG+07].
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