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Abstract: In this short paper I will exhibit several mistakes in the recent attempt by Bimbó [1]
to prove the decidability of the multiplicative exponential fragment of linear logic (MELL). In fact,
the main mistake is so serious that there is no obvious fix, and therefore the decidability of MELL
remains to be an open problem. As a side effect, this paper contains a complete (syntactic) proof
of the decidability of the relevant version of MELL (called RMELL in this paper), that is the logic
obtained from MELL by replacing the linear logic contraction rule by a general unrestricted version
of the contraction rule. This proof can also be found (with a small error) in [1], and a semantic
proof can be found in [33].
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Sur le problème de la décision pour MELL

Résumé : Dans cet article, je présenterai plusieurs erreurs dans l’article récent de Bimbó [1] sur la décidabilité
de la fragment multiplicatif exponentiel de la logique linéaire (MELL). En fait, l’erreur principale est si grave
qu’il n’y a pas une solution évidente, et par conséquent, la décidabilité de MELL reste un problème ouvert. En
plus, cet article contient un complet preuve (syntaxique) de la décidabilité de la version pertinente de MELL
(appelé RMELL dans cet article), c’est la logique obtenue à partir de MELL en remplaçant la régle de contraction
de la logique linéaire par un version générale sans restriction. Cette preuve peut également être trouvé (avec
une petite erreur) dans [1], et une preuve sémantique peut être trouvée dans [33].

Mots-clés : logique linéaire, MELL, décidabilité



On the Decision Problem for MELL 3

1 Introduction

Since the beginning of linear logic [7], the complexity of the decision problem of its various fragments has
been studied by many researchers. For example, its multiplicative fragment (MLL) is NP-complete [16], and its
multiplicative-additive fragment (MALL) is PSPACE-complete [25]. But the complexity of its multiplicative-
exponential fragment (MELL) is still unknown. In fact, it is an open problem whether that logic is decidable.
Finally, the multiplicative-additive-exponential fragment, i.e., full propositional linear logic (LL) is undecid-
able [25]. However, if we add second-order propositional quantifiers, already the multiplicative fragment (MLL2)
is undecidable [20]. On the other hand, if we add a self-dual non-commutative multiplicative connective, the
multiplicative fragment stays NP-complete [15] (this logic is called pomset logic [36] or BV [11, 8]), but the
multiplicative exponential fragment is undecidable [41] (this logic is called NEL [12, 42, 13]).

It was observed early on that the reachability problem for Petri nets [35] can be encoded into MELL [30].
That problem has been shown to be decidable [27, 18, 28], but its precise complexity is still unknown. It is
EXPSPACE-hard [26] and the known algorithms have runtimes that are not primitive recursive [24]. It has been
known for a long time that the reachability problem for Petri nets is equivalent to the reachability problem of
vector addition systems with states (VASS) [37]. Furthermore, it has been shown recently that the decidability
problem of MELL is equivalent to the reachability problem for branching VASS [6], for which very recently a
non-elementary lower bound has been found [22]. More precisely, if MELL turns out to be decidable it will be
at least TOWER-hard [22, Corollary 22].

Since all known proofs [27, 18, 28, 37, 23] of the decidability of the reachability for Petri nets and VASS
are very involved—in fact, the complete proof fills a textbook [37]—there is interest in the community in an
alternative proof, which could be provided by a proof-theoretical proof of the decidability of MELL. The recent
proposal by Bimbó [1] gives such a proof which is surprisingly simple. All the details could be given in less than
ten pages.1

However, an inspection of the proof by Bimbó [1] shows immediately that the same argument also works for
the subexponential variant of MELL, denoted by MSELL, that is obtained by allowing not one but several pairs
of the modalities ? and !, which are subject to a partial order relation. But that logic has recently been shown
to be undecidable for the case of three pairs of ? and ! by Chaudhuri in [4]. Furthermore, a minor variation of
the argument in [1] (using results from [33]) would also allow to prove decidability of LL, which also known to
be undecidable [25], as mentioned above.

This, of course, is enough to dismiss [1] as being erroneous. However, that is not helpful, neither for the
author of [1], nor anyone else who would like to understand what is going on. For this reason, I will in Section 4
of this paper explain in more detail the technical mistakes of [1]. After all, the main gap in the proof is a rather
subtle mistake that could easily be repeated in other contexts.

Before coming to that, let me finish this introduction with the observation that the decision problem for MELL
is—no matter how it will turn out—very close to the border between the decidable and the undecidable: adding
just a little bit, i.e., a third self-dual (non-commutative) multiplicative connective or the additive connectives
or subexponentials, renders the problem undecidable, and removing just a little bit, i.e., stepping down from
branching VASS to non-branching VASS, puts the problem in the realm of the decidable.

This might be one of the reasons why the problem receives so much attention and is, after more than 3
decades, still open.

2 MELL and RMELL

To make this paper self-contained, I give the sequent calculus for MELL (called CLLint in [1]) and its relevant
version RMELL (called RLLint in [1]) below. Formulas (denoted by capital Roman letters A,B,C, . . .) are
generated from propositional variables {a, b, c, . . .} and their duals {a⊥, b⊥, c⊥, . . .} via the grammar:

A,B ::= a | a⊥ | AOB | A�B | ?A | !A
As in [1], I work here in the unit-free fragment. Sequents (denoted by capital Greek letters Γ,∆, . . .) are
(possibly empty) finite multisets of formulas, written as list separated by commas, with a preceding turnstile:
` A1, A2, . . . , An . The inference rules for MELL are the following2:

id −−−−−−−−−
` a, a⊥

` Γ, A,B
O −−−−−−−−−−−−−−
` Γ, AOB

` Γ, A ` B,∆
� −−−−−−−−−−−−−−−−−−−−−
` Γ, A�B,∆

` A, ?∆
! −−−−−−−−−−−
` !A, ?∆

` Γ, A
?d −−−−−−−−−−
` Γ, ?A

` Γ
?w −−−−−−−−−−
` Γ, ?A

` Γ, ?A, ?A
?c −−−−−−−−−−−−−−

` Γ, ?A

(1)

1Bimbó [1] does not speak about complexity, but previous work by Urquhart [43, 44] gives an EXPSPACE lower bound, and
more recently Weiermann and Bunder [45] have shown an ACKERMANN lower bound.

2I am using here the standard names from the linear logic literature.

RR n° 9203



4 Lutz Straßburger

where ?∆ stands for a sequent in which every formula is of shape ?B for some B.

The relevant version RMELL, is obtained from MELL by adding a general contraction rule

` Γ, A,A
c −−−−−−−−−−−−
` Γ, A

(2)

Of course, the standard linear logic contraction rule ?c is a special case of this and can therefore be omitted
from the system.

Note that in order to save paper, ink, and the patience of the reader, I use here the one-sided presentation
of the sequent calculus, whereas [1] uses a two-sided presentation. Everything I present here also works in the
two-sided systems, we only have to replace the one-sided axiom by a negation rule and a two-sided identity
axiom:

id −−−−−−−−−
` a, a⊥

→
id −−−−−−−

a ` a
(·)⊥ −−−−−−−−−

` a, a⊥

3 MSELL and RMSELL

For making some arguments in this paper clearer, I will also introduce the subexponential version of MELL, also
called multiplicative subexponential linear logic [31, 32], or MSELL. However, for the main points of this paper,
subexponentials are not needed, and the reader can safely skip over this section on first reading. Formulas of
MSELL are are generated from propositional variables and their duals (see previous section) via the grammar:

A,B ::= a | a⊥ | AOB | A�B | ?vA | !vA

where (as before) we omit the units, and where exponentials are indexed by elements from a (countable) set V
of labels which comes equipped with a partial order ≤ ⊆ V × V and a subset U ⊆ V of unbounded labels. The
inference rules for MSELL are the ones in the first line of (1) above together with

` !vA, ?w1B1, . . . ?
wnBn

!v −−−−−−−−−−−−−−−−−−−−−−−−−−−−− v ≤ wi for all i ∈ {1, . . . , n}
` !vA, ?w1B1, . . . ?

wnBn

` Γ, A
?vd −−−−−−−−−−−

` Γ, ?vA

` Γ
?uw −−−−−−−−−−− u ∈ U

` Γ, ?uA

` Γ, ?uA, ?uA
?uc −−−−−−−−−−−−−−−−− u ∈ U

` Γ, ?uA

(3)

Note that contraction and weakening are only allowed if the label of the ? is among the unbounded labels, and
promotion on a ! is only allowed if its label is smaller or equal than all the labels of the ? in the context. Only
the dereliction rule ?vd can be applied without restriction.

In [4] it has been shown that provability in MSELL is undecidable for the case V = {α, β, γ} with ≤ being
the reflexive closure of ≤0 with α ≤0 γ and β ≤0 γ and U = {γ}, by a straightforward encoding of two-counter
machines [29, 21].

Clearly, we can also define a relevant version of MSELL, that I call here RMSELL, and that is obtained from
MSELL by adding the general contraction rule c in (2). As before in that case, the restricted contraction rule
?uc can be omitted.

4 Technical flaws in Bimbó’s decidability proof

There are three main step in Bimbó’s proof [1] of the decidability of MELL:

1. Cut admissibility for MELL and RMELL and modified systems that restrict the application of contraction.

2. Decidability for RMELL by showing that proof search in the modified system terminates.

3. Decidability of MELL by deriving an upper bound for the proof search trees from the decision procedure
for RMELL.

In the paper [1] all three steps have technical flaws. For the first and the second, these are easily fixable, but
for the third this is not the case, and therefore the decision problem for MELL remains open. Below I explain
the mistakes in each of the three steps.

Inria



On the Decision Problem for MELL 5

4.1 Cut admissibility

The cut rule for all logical systems presented so far can be given as follows:

` Γ, A ` A⊥,∆
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−

` Γ,∆
(4)

where A⊥ is the De Morgan dual of A. The cut admissibility result for a logical system S says that if a formula
or sequent can be derived in S+cut then it can also be derived in S without the cut-rule. All four logical systems
presented here have this property. For MELL and MSELL this has been proved in [7] and [31], respectively. For
their relevant version, it can be shown by similar methods. But since we defined the logics without cut, the cut
admissibility theorem is technically not needed for the decidability proof (for RMELL and RMSELL).

Nonetheless, [1] provides a cut admissibility proof for MELL and claims that this is a new proof. However,
the proof method in [1] is standard: permute the cut upwards, start with the topmost one, and make sure that
some measure decreases at each step. The measure used in [1] consists of the tuple 〈ρ, µ, δ〉 where ρ is the the
number of rule instances above the cut having the cut formula in the conclusion, µ is the number of ?c-instances
that are applied to ancestors of the cut formula, and δ is the size of the cut formula, and where the order is
lexicographic.3 But one case in [1] is problematic, namely when

` ?∆, A
! −−−−−−−−−−−
` ?∆, !A

` ?A⊥, ?A⊥,Γ
?c −−−−−−−−−−−−−−−−−−

` ?A⊥,Γ
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

` ?∆,Γ

is reduced to

` ?∆, A
! −−−−−−−−−−−
` ?∆, !A

` ?∆, A
! −−−−−−−−−−−
` ?∆, !A ` ?A⊥, ?A⊥,Γ

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` ?∆, ?A⊥,Γ

cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` ?∆, ?∆,Γ

?c ..........................
` ?∆,Γ

where the dotted line stands for several instances of the ?c-rule. On first sight one might be tempted to agree
with the argument that the two new cuts have a lower µ than the original one, and therefore the induction
hypothesis can be applied to both cuts. However, the elimination process for the first cut can increase the
µ-value for the second cut, and thus, the induction hypothesis cannot be applied. In order to make this kind
of argument work, it is not enough to just count how often the cut formula is duplicated in a contraction. One
also has to find a way to take into account the instances of ?c that are newly created in the cut elimination
process. This is best achieved through a notion “flow graph”, as done for classical logic in [3] using Buss’ logical
flowgraphs or in [9, 10] using atomic flows. For MELL, these flow graphs are studied in [40] and [42] in the
setting of the calculus of structures. Then, for ensuring termination, it has to be shown that there no cycle in
the flow graph, or that the cycles can be eliminated.

In any case, cut elimination for MELL is a well-established result with several different published proofs, so
that there is no need to go into further details here.

4.2 Decidability of RMELL

Okada and Terui have shown in [33] via a semantic argument that the relevant version of full propositional
linear logic, denoted by RLL4, is decidable. Therefore, RMELL is also decidable.5

On the other hand, for a reader familiar with the syntactic proof of the the decidability of various fragments
of relevant logic, attributed to Kripke [19] and first written up in all detail by by Belnap and Wallace in [14] for
the logic of entailment with negation6, it should be clear that the decidability of RMELL can also be shown by
almost literally the same proof. This proof is presented in [1], but contains a mistake.

More precisely, Kripke’s theorem (Theorem 18) is stated wrongly in [1]. That theorem is needed for cognate
sequents in general, and not just modally cognate sequents. I will explain this in further detail now, because for
understanding the problem with the decidability proof for MELL, one needs to understand how the decidability
proof for RMELL works. So, in order to make this paper self-contained, I will give this proof.

For this, we need some definitions: Two sequents Γ and ∆ are cognate if they contain the same formulas,
i.e., they only differ in the number of occurrences of the formulas in the sequent. They are modally cognate, if
additionally every formula that is not of the shape ?A has the same number of occurrences in both sequents.

3In [1], the value ρ is called the rank of the cut, whereas usually in the literature the value δ is called the rank of the cut.
4That is LL extended with the general contraction rule (2). This logic is called CLL in [33], but the C is more often used for

“classical”. For this reason I use the R for “relevant” throughout this paper.
5More recently, it has been shown that RLL is ACKERMANN-complete [22, Corollary 25], and that RMELL is in 2EXP [39,

Theorem 6.1].
6This logic is equivalent to the one obtained from MLL (the three rules in the first line of (1)) together with the contraction

rule (2).

RR n° 9203



6 Lutz Straßburger

A set of sequents that are cognate to each other are called a cognation class. In the example below, all four
sequents are in the same cognation class, but only the first two are modally cognate:

` a, b, b, ?a ` a, b, b, ?a, ?a, ?a ` a, a, a, b, ?a, ?a ` a, a, a, a, a, b, b, b, ?a, ?a, ?a (5)

In the following, we use the notation Γ1 � Γ2 if there is a derivation with premise ` Γ1 and conclusion
` Γ2 , using only the c-rule, and we write Γ1 < Γ2 (or equivalently Γ2 4 Γ1) iff Γ1 � Γ2 or Γ1 = Γ2 (where =
stands for multiset equality).

A (finite or infinite) sequence Γ1,Γ2, . . . of sequents is irredundant if for all i < j, we have Γi 64 Γj . We can
now state Kripke’s lemma:

Theorem 4.1 (Kripke [19]). If a sequence of cognate sequents is irredundant, then it is finite.

A proof can be found in [14, p.289]. Note that for this theorem it is irrelevant what the inference rules are
and what the language of the formulas is.7

We can now use Theorem 4.1 to exhibit a terminating complete proof search procedure for RMELL, from
which decidability follows. This is done by using the following variant of the proof system, called LRMELLM:8

id −−−−−−−−−
` a, a⊥

` Γ, A,B
LOM −−−−−−−−−−−−−−−−

` LΓ, AOBM
` Γ, A ` B,∆

L�M −−−−−−−−−−−−−−−−−−−−−
` LΓ, A�B,∆M

` A, ?∆
! −−−−−−−−−−−
` !A, ?∆

` Γ, A
L?dM −−−−−−−−−−−−

` LΓ, ?AM
` Γ

?w −−−−−−−−−−
` Γ, ?A

(6)

where the rules LOM, L�M, and L?dM are variants of the rules O, �, and ?d, respectively, which have the contraction
rule built in, i.e., a sequent ` LΣM is obtained from ` Σ by application of the c-rule in (2), such that the
following additional conditions are satisfied:9

LOM: If the formula AOB occurs n times in Γ, then it occurs at least max(n, 1) times in LΓ, AOBM. Any other
formula occurs as often in Γ as in LΓ, AOBM.

L�M: If the formula A�B occurs n times in Γ and m times in ∆, then it occurs at least max(n,m, 1) times in
LΓ, A�B,∆M. If another formula occurs n times in Γ and m times in ∆, then it occurs at least max(n,m)
times in LΓ, A�B,∆M.

L?dM: If the formula ?A occurs n times in Γ, then it occurs at least max(n, 1) times in LΓ, ?AM. Any other formula
occurs as often in Γ as in LΓ, ?AM.

We can now prove the following two theorems about LRMELLM. The first one states the height-preserving
admissibility of contraction, and is in the literature often (e.g. in [1]) attributed to Curry.

Theorem 4.2 (Curry). If ` Γ has a LRMELLM proof π with height h, and Γ � Γ′, then ` Γ′ has a LRMELLM
proof π′ with height h′ ≤ h.

Proof. This is proved by a straightforward induction on h.

Theorem 4.3. A sequent ` Γ is provable in LRMELLM if and only if it is provable in RMELL.

Proof. Any proof in LRMELLM can be expanded to a proof in RMELL by adding the necessary instances of the
c-rule. Conversely, every rule in RMELL, except for c, is an instance of a rule in LRMELLM. Hence, a proof in in
RMELL is already a proof in LRMELLM + c, and the result follows from Theorem 4.2.10

With these ingredients, we can give the full proof of decidability for RMELL.

Theorem 4.4. Provability in RMELL is decidable.

Proof. By Theorem 4.3 we can restrict proof search to LRMELLM. By Theorem 4.2, we can stop the search when
we reach a sequent Γ such that on the current branch of the proof search tree there is an ancestor Γ′ with
Γ′ 4 Γ.

Then, we observe that any formula that occurs in an LRMELLM is a subformula of the endsequent and there
are only finitely many such formulas. There are infinitely many sequents that can be formed from these formulas,

7In fact, it is equivalent to Dickson’s Lemma in number theory which states that every set of n-tuples of natural numbers has
finitely many minimal elements (see also [38]).

8The L·M notation is taken from [1].
9In [1], the formulation of these conditions is slightly ambiguous. For this reason, I took here the formulation of [14], adapted

to the case of RMELL.
10In [1] it is stated that also cut admissibility is necessary for obtaining this theorem, but as we have shown here, it is not needed.

Inria



On the Decision Problem for MELL 7

but there are only finitely many cognation classes. Furthermore, from the previous paragraph and Theorem 4.1
it follows that from each cognation class only finitely many sequents need to be visited in a single branch in the
proof search tree. Since the proof search tree is finitely branching (each inference rule has only finitely many
premises and at each step there are only finitely many choices for applying an inference rule), we can conclude
by König’s lemma that the proof search tree is finite.

It is important to observe that the whole argument breaks down if we assume that Theorem 4.1 only holds
for sequences of modally cognate sequents. In that case it is still true that in each branch only finitely many
sequents of the same cognation class are visited, but now there are infinitely many cognation classes (see example
in (5)), i.e., the sequents visited in a single branch of the proof search tree can become arbitrarily large. And
this is exactly the reason why the decidability proof for MELL in [1] is not correct, as we will see in the next
section.

Finally, it is easy to see that we can define a system LRMSELLM in the same way as LRMELLM, and that we
can prove the decidability of provability in RMSELL with almost literally the same proof as for RMELL.

Theorem 4.5. Provability in RMSELL is decidable.

4.3 Concerning the Decidability Proof for MELL

The proof of the decidability of MELL in [1] is based on the observation that every MELL-proof is also a RMELL-
proof of the same endsequent. Thus, given a sequent Γ, if the RMELL proof search for Γ comes back with a
failure, then we know that Γ is not provable in MELL. On the other hand, if there is an RMELL-proof of Γ,
then we can count for each subformula occurrence ?A of Γ, how often the contraction rule is applied to it in
any RMELL-proof of Γ.

Even though there is no bound on the proof search for RMELL, we have that LRMELLM proof search is
bounded. The argument of [1] is now that it is enough to count for each occurrence of a subformula ?A of a
sequent Γ, how often the subformula occurrence A and its ancestors11 are contracted in any LRMELLM proof of
Γ. This is called the heap number of ?A [1, Def. 22], which is then used to restrict proof search in the system
[MELL] shown below:

id −−−−−−−−−
` a, a⊥

` Γ, A,B
O −−−−−−−−−−−−−−
` Γ, AOB

` Γ, A ` B,∆
[�] −−−−−−−−−−−−−−−−−−−−−

` [Γ, A�B,∆]

` A, ?∆
! −−−−−−−−−−−
` !A, ?∆

` Γ, A
[?d] −−−−−−−−−−−

` [Γ, ?A]

` Γ
?w −−−−−−−−−−
` Γ, ?A

(7)

where [�] and [?d] are variants of the rules � and ?d, respectively, which have the ?c-rule built in, i.e., a sequent
` [Σ] is obtained from ` Σ by application of the ?c-rule, such that the following additional conditions are
satisfied:

[�]: If a formula ?C occurs n times in Γ and m times in ∆, then it occurs at least max(n,m) times in
[Γ, A�B,∆].

[?d]: If the formula ?A occurs n times in Γ, then it occurs at least max(n, 1) times in [Γ, ?A]. Any other formula
occurs as often in Γ as in [Γ, ?A].

We have then for [MELL] analogous results as stated in Theorems 4.2 and 4.3 for LRMELLM, namely the ?c is
height-preserving admissible for [MELL], and a sequent is provable in [MELL] if and only if it is provable in
MELL.

The decidability proof for MELL in [1, Theorem 23] now simply bounds the number of application of the
[?d]-rule to (the ancestors of) an occurrence of a ?A-formula by its heap-number.

However, the same argument would apply to prove decidability of MSELL from the decidability of RMSELL,
by going via the system [MSELL] that is defined in the same way as [MELL]. But MSELL has been shown
undecidable in [4].

Therefore, something must be wrong with Bimbó’s argument in [1]. First, it is obvious that Bimbó’s decision
procedure terminates. This follows from the termination argument for LRMELLM. However, there is no argument
explaining why her decision procedure should be complete.

To understand the problem, consider for example the following MELL sequent:

` (a⊥� a⊥)�(a⊥� a⊥), a, ?(a⊥�(aO a)) (8)

11I.e., the ancestors of the auxiliary formulas of the instances of the L?dM-rule in which an ancestors of that ?A are principal.

RR n° 9203



8 Lutz Straßburger

The obvious proof in LRMELLM removes the ?-formula with a weakening, applies the L�M-rule three times, and
puts a copy of a into each branch:

id −−−−−
a⊥, a

id −−−−−
a⊥, a

L�M −−−−−−−−−−−−−−−−−
` a⊥� a⊥, a

id −−−−−
a⊥, a

id −−−−−
a⊥, a

L�M −−−−−−−−−−−−−−−−−
` a⊥� a⊥, a

L�M −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` (a⊥� a⊥)�(a⊥� a⊥), a

?w −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` (a⊥� a⊥)�(a⊥� a⊥), a, ?(a⊥�(aO a))

(9)

For proving the sequent (8) in [MELL] we need to apply the [?d]-rule three times in order to create the necessary
four copies of a:

id −−−−−
a, a⊥

id −−−−−
a, a⊥

id −−−−−
a⊥, a

id −−−−−
a⊥, a

[�] −−−−−−−−−−−−−−−−−−
` a⊥� a⊥, a, a

O −−−−−−−−−−−−−−−−−−−−
` a⊥� a⊥, aO a

[�] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` a⊥� a⊥, a, a⊥�(aO a)

[?d] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` a⊥� a⊥, a, ?(a⊥�(aO a))

id −−−−−
a, a⊥

id −−−−−
a⊥, a

id −−−−−
a⊥, a

[�] −−−−−−−−−−−−−−−−−−
` a⊥� a⊥, a, a

O −−−−−−−−−−−−−−−−−−−−
` a⊥� a⊥, aO a

[�] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` a⊥� a⊥, a, a⊥�(aO a)

[?d] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` a⊥� a⊥, a, ?(a⊥�(aO a))

[�] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` (a⊥� a⊥)�(a⊥� a⊥), a, a, ?(a⊥�(aO a)) ∗

O −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` (a⊥� a⊥)�(a⊥� a⊥), aO a, ?(a⊥�(aO a))

[�] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` (a⊥� a⊥)�(a⊥� a⊥), a, a⊥�(aO a), ?(a⊥�(aO a))

[?d] −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` (a⊥� a⊥)�(a⊥� a⊥), a, ?(a⊥�(aO a))

(10)

This proof is at the same time a correct LRMELLM proof, but it is not visited by the LRMELLM proof search
described in the proof of Theorem 4.4, because the sequent marked with a ∗ in (10) is in � relation with the
conclusion, and therefore the LRMELLM proof search is aborted at that point. For this reason, we cannot assume,
a priori, that the heap numbers determined by the LRMELLM decision procedure are high enough to ensure a
complete [MELL] proof search, which leaves a large gap in the decidability proof for MELL in [1].

However, if we consider again the derivation in (10), we can see that there is a rule permutation variant that
does not visit the sequent ∗: we can permute one instance of [?d] down below the [�] and the O-rule instance
and keep a copy of ?(a⊥�(aO a)). Unfortunately, it is not at all clear whether such a rule permutation always
exists. More generally, we can formulate the following conjecture:

Conjecture 4.6. Let π be a proof in [MELL] of a sequent Γ. Then there is a proof π′ in [MELL] with the same
endsequent Γ, such that for any two sequents Γ1 and Γ2 occurring in π′, such that Γ1 is an ancestor of Γ2 in
the tree of π′, we have Γ1 64 Γ2.

It follows immediately from [4] that Conjecture 4.6 does not hold if we replace [MELL] by [MSELL], but it
might well be that it holds for the special case where the label set V is a singleton. A proof of Conjecture 4.6
would indeed close the gap in Bimbó’s proof of the decidability of MELL, and would provide an alternative proof
for the decidability of the reachability problem for VASS and Petri nets.

Note that a counterexample to Conjecture 4.6 would not show that MELL is undecidable. But it would show
that the proof idea of [1] cannot work.

5 Conclusion

Whenever a paper is published whose main proof is faulty, it is always easy to blame the author or the editor
or the referee or some other victim. However, in this case this would be too short-sighted. I think that the
publication of [1] is the consequence of a systemic problem in the field of structural proof theory. Namely, that it
is studied by two different communities: one coming from a computer science background and the other coming
from a philosophical background. These two communities use different notation and terminology and do not
talk to each other. Furthermore, they also consider each other to be less skilled and take this as a justification
for not taking each other’s papers seriously.

On the one hand, the philosophers rightfully accuse the computer scientists of ignoring the vast amount of
literature on substructural logic that existed before linear logic, and the computer scientists rightfully accuse the
philosophers of considering linear logic as just another substructural logic, ignoring the semantic consideration
that gave rise to it and the vast amount of literature that came after linear logic, exhibiting its enormous
influence in many areas of theoretical computer science that makes linear logic very special among the zoo of
substructural logics.
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The decision problem for MELL is open for three decades now, and many people in the computer science
community worked on it, but nobody has observed its containment in RMELL, even though decision problems
for relevant logics have been studied since the 1960’s, and the relation between MELL and RMELL is obvious to
anyone with a background in philosophical logic. This observation leads naturally to Bimbó’s proof idea: Can
we bound the proof search for MELL by using information that we can extract from the RMELL proofs?

On the one hand, it is quite embarrassing for the computer science community that nobody has explored
this idea before Bimbó.12 On the other hand, the gap in Bimbó’s reasoning could be spotted immediately by
anybody familiar with the peculiarities of MELL. However, Bimbó’s error is very easy to overlook for someone
not familiar with linear logic, and this led to the unfortunate publication of [1].

Interestingly, there is a recent proof by Bimbó and Dunn (presented in [2]) of the decidability of the logic of
ticket entailment13, using similar methods as discussed here. In [5] Dawson and Goré tried to formally verify
that proof using the interactive theorem prover Isabelle/HOL. Their work uncovered a gap in the proof of [2]
which seems to be of similar nature as the gap uncovered here for MELL.

We should take this as a lesson to take each other more seriously in the future. It seems that with the
decidability of MELL we have a problem that needs for its solution both communities, philosophy and computer
science.
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