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Abstract. We investigate the question of what constitutes a proof whemti-

fiers and multiplicative units are both present. On the teahrevel this paper
provides two new aspects of the proof theory of MLL2 with anFirst, we give
a novel proof system in the framework of the calculus of stmes. The main
feature of the new system is the consequent use of deepriagrevhich allows
us to observe a decomposition which is a version of Herbsatiorem that is
not visible in the sequent calculus. Second, we show a neiwmof proof nets
which is independent from any deductive system. We haveutsatiplisation”

into the calculus of structures as well as into the sequéatikces. Since cut elim-
ination is terminating and confluent, we have a category oERlproof nets. The
treatment of the units is such that this category is stasraarhous.

1 Introduction

The question of when two proofs are the same is important foofptheory and its
applications. It comes down to the question of which infatioracontained in a proof
is essential, and which information is purely bureaucratiee to the chosen deductive
system. One of the first results in that direction is Herbistiteorem which allows a
separation between the quantifiers and the propositicagirfent of first order classical
predicate logic. The work on expansion trees by Miller [18pws how Herbrand’s
result can be generalized to higher order. In this paper wsent a similar result for
linear logic. Our work is motivated by the desire to find evatiy a general treatment
for the quantifiers, independent from the propositionagfnant of the logic (see the
related work by McKinley [18]).

The first contribution of this paper is a presentationMifL2 in the calculus of
structures, which is a new deductive formalism usilegp inferenceThat means that
inferences are allowed anywhere deep inside a formula, sienjar to what happens
in term rewriting. As a consequence of this freedom we cawshdecomposition the-
orem, which is not possible in the sequent calculus, andiwtan be seen as a version
of Herbrand’s Theorem foMLL2. Secondly, we give a combinatorial presentation of
MLL2 proofs that we call hereroof nets(following the tradition) and that quotient
away irrelevant rule permutations in the deductive systésagquent calculus and cal-
culus of structures). The identifications made by thesefpmets are consistent with
ones forMLL (with units) made by star-autonomous categories [1, 16, Li¢ main
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Fig. 1. Sequent calculus system for MLL2

motivation for these proof nets is to exhibit the precisatieh between deep inference
and the existing presentations MifLL2-proofs: sequent calculus, Girard’s proof nets
with boxes [9], and Girard’s proof nets with jumps [10]. Ouppf nets are the first to
accomodate the quantifiers and the multiplicative unitetiogr without boxes. Further-
more, the proof nets proposed here are independent fronethective system, i.e., we
do not have the strong connection between links in the pretdnd rule applications in
the sequent calculus. However, we have “sequentializaitiomthe sequent calculus as
well as into the calculus of structures. As expected, treeedonfluent and terminating
cut elimination procedure, and thus, the two conclusiompnets form a category.

2 MLL2 in the sequent calculus

Let us recall howMLL?2 is presented in the sequent calculus. k&t {a,b,c,...} be
a countable set giropositional variablesThen the set# of formulasis generated by
Fui=1|1|d|d|[FTF]|(FRF)|VIF | 3. F

Formulas are denoted by capital Latin letters B, C, . ..). Linear negatior(—)* is

defined for all formulas by the De Morgan lawdequentsire finite lists of formulas,

separated by comma, and are denoted by capital Greek leftefss . . .). The notions

of free andbound variableare defined in the usual way, and we can always rename

bound variables. In view of the later parts of the paper, amafder to avoid changing
syntax all the time, we use the following syntactic convems:
(i) We always put parentheses around binary connectivas.readability we use
[...]foreand(...) for ®.
(i) We omit parentheses if they are superfluous under thenagson thate and®
associate to the left, e.d4 ® B e C 2 D] abbreviate$|[[A® B]® C| e D).

(iii) The scope of a quantifier ends at the earliest possilalegp(and not at the latest
possible place as usual). This helps saving unnecessanthases. For example,
in [Va.(a ® b) ' Je.c 9 a], the scope ofa is (a ® b), and the scope dic is juste.

In particular, the: at the end is free.
The inference rules faviLL2 are shown in Figure 1. In the following, we will call this
systemMLL2s.q. As shown in [9], it has the cut elimination property:

DA FALA
1A

2.1 Theorem The cutrule cut is admissible foMLL2sq.
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Fig. 2. Deep inference system for MLL2
3 MLL2 in the calculus of structures

We now present a deductive systemlfidkL2 based on deep inference. We use the cal-
culus of structures, in which the distinction between folaswand sequents disappears.
This is the reason for the syntactic conventions introd adzaye’

The inference rules work directly (as rewriting rules) oa fbrmulas. The system
for MLL2 is shown in Figure 2. There5{ } stands for an arbitrary (positive) formula
context. We omit the braces if the structural parenthedeldihole. E.g.S[A 2 B] ab-
breviatesS{[A® B]}. The system in Figure 2 is callédLL2p,,. We consider here only
the so-calleddown fragmentf the system, which corresponds to the cut-free system
in the sequent calculifsNote that they-rule of MLL2seq is in MLL2p,; decomposed
into three pieces, namely|, u], andf|. We also need an explicit rule for associativity
which is “built in” the sequent calculus. The relation beéneghe®-rule and the rules
Is andrs (calledleft switchandright switch) has already in detail been investigated by
several authors [20, 3, 8, 11]. The following theorem enstinatMLL2p,; is indeed a
deductive system faviLL2.

3.1 Theorem For every proof of - Ay,..., A, in MLL2s, there is a proof of
[A179 -9 A,] in MLL2p, |, and vice versa.

As for MLL2s.q, We also have foMLL2p,; the cut elimination property, which can
be stated as follows:
S(A® A1)

S{L}

! In the literature on deep inference, e.g., [5, 11], the fdeniu ®[b 2 (a™ ® c)]) would be writ-
ten ag(a, [b, (a™, ¢)]), while without our convention it would be written as(b’9(a* ® ¢)).
Our convention can therefore be seen as an attempt to pleisedmmunities. In particular,
note that the motivation for the syntactic convention @idove is the collapse of the on the
formula level and the comma on the sequent level, &g.(a ® b) 2 Jc.c’® a] is the same as
Va.(a,b),3e.c, al.

2 Theup fragmen{which corresponds to the cut in the sequent calculus) &iéd by dualizing
the rules in the down fragment, i.e., by negating and exdngngremise and conclusion. See,
e.g., [21, 4,5, 13] for details.

3.2 Theorem The cutrulei? is admissible foMLL2p,.
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Fig. 3. Towards a local system for MLL2

A
We write MLL2p,,

2 for denoting a derivatiorZ in MLL2p,; with premiseA

B
and conclusiorB. The following decomposition theorem ftLL2p,; can be seen as a
version of Herbrand’s theorem fMLL2 and has no counterpartin the sequent calculus.

3.3 Theorem 1
{ail, LI, 1],el} | 21
1 A
Every derivationMLL2p, || 2 can be transformed intqal,o|,ls,rs,ul} || 22 .
C B
(nLf1} || 24
C

This decomposition is obtained by permuting all instancesip, 1],1],e] up
and permuting all instances of , f| down. There are two versions of the “switch” in
MLL2p,;, theleft switchls, and theright switchrs. For Thm. 3.1, thés-rule would be
sufficient, but for obtaining the decomposition in Thm. 3.8 also need thes-rule.

If a derivationZ uses only the rules|, o], s, rs, u], then premise and conclusion
of & (and every formula in between the two) must contain the sdoma accurrences.
Hence, thatomic flow-graplj6, 12] of the derivatior? defines a bijection between the
atom occurrences of premise and conclusiowoHere is an example of a derivation
together with its flow-graph. (We left some some applicatiofry] ando | implicit.)

. Va.ve([ot 9 ¢l @l B ¢])
. Va.ve. 4" (4 [ ' 4))]
ol Va.ve [p p(d@ &) 9 Y]]
ul Va.[ﬂc.ﬁl ® Vc.[(}z ®>J‘) ’QM]
" Va.[Fe. gt 93 (4® &) 8 Vel
[Va.3c.d' 9 3a.[Fe. (b @ 1) 2 Ve.b]]

@)

In the sequent calculus therule has a non-local behavior, in the sense that for apglyin
the rule we need some global knowledge about the coiitemamely, that the variable
a does not appear freely in it. This is the reason for the borgSJiand the jumps
in [10]. In the calculus of structures this “checking” whetla variable appears freely is
doneintherulé|, which is as non-local as theérule in the sequent calculus. However,



with deep inference, this rule can be made local, i.e., redtie an atomic version (in
the same sense as the identity axiom can be reduced to ancatersion). For this,
we need an additional set of rules which is shown in Figuregaita we show only
the down fragment), and which is calléd|. Clearly, all rules are sound, i.e., proper
implications ofMLL2. Now we have the following:

3.4 Theorem B B

Every derivation{n],f|}

2 canbetransformedintdn|} ULf| || 2’ , and vice versa.

c C

4 Proof nets for MLL2

For defining proof nets fokMLL2, we follow the ideas presented in [23,17] where the
axiom linking of multiplicative proof nets has been repldd® alinking formulato
accommodate the unitsand_L. In such a linking formula, the ordinary axiom links are
replaced byr-nodes, which are then connected®y. A unit can then be attached to a
sublinking by anothe®, and so on. Here we extend the syntax for the linking formula
by an additional construct to accommodate the quantifieosy, khe setZ of linking
formulasis generated by the grammar
Li=1|(Fd) | (102)| L 9L |34 L

In [23,17] a proof net consists of the sequent forest and itilénly formula. The
presence of the quantifiers, in particular, the presencest@itiation and substitution,
makes it necessary to expand the structure of the sequére proof net. The sef of
expanded formuldds generated by

Ei=1|1]|d |98 |(ERE)|VH.E |3 & | et & | DA &
There are only two additional syntactic primitives: thecalledvirtual existential quan-
tifier, and thed, calledbold existential quantifierAn expanded sequeit a finite list
of expanded formulas, separated by comma. We denote expparedeents by capi-
tal Greek lettersI(, 4, ...). For disambiguation, the formulas/sequents intcediun
Section 2 (i.e., those withogtand3) will also be callecsimple formulas/sequents

In the following we will identify formulas with their syntatxees, where the leaves
are decorated by elements.ef U 7+ U {1, L}. We can think of the inner nodes as
decorated either with the connectives/quantifiersy, Va, Ja, a, 3a, or with the
whole subformula rooted at that node. For this reason weus#l capital Latin letters
(4, B, C, ...) to denote nodes in a formula tree. We write< B if A is a (not
necessarily proper) ancestor Bf i.e., B is a subformula occurrence ia. We write
&I (respZA) for denoting the set of leaves of a sequéntresp. formulaA).

4.1 Definition A stretchingo for a sequent” consists of two binary relations:
and-% on the set of nodes df (i.e., its subformula occurrences) such tHatand-%
are disjoint, and whenevet % B or A% B thenA = 3a.A’ with A’ < Bin I".

% This is almost the same structure as Millesgansion treefl9]. The idea is to code a formula
and its “expansion” together in the same syntactic objeat.dBir case is simpler than in [19]
because we do not have to deal with duplication.
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Fig. 4. Two ways of writing a proof graph

A stretching consists of edges connectiigodes with some of its subformulas,
and these edges can be positive or negative. Their purptsenark the places of the
substitution of the atoms quantified by tBeWhen writing an expanded sequéntvith
a stretchingr, denoted byl « o, we will draw these edges either insidlewhen it is
written as a tree, or below when it is written as string. The positive edges are dotted
and the negative ones are dashed. Examples are shown ire&ige and 7 below.

4.2 Definition A pre-proof grapt is a quadruple, denoted kﬂ’/é I'«o,whereP a
linking formula, I" is an expanded sequentjs a stretching fotf ", andv is a bijection
@I % &P such that only dual atoms/units are paired up_lis simple, we say that

the pre-proof graph isimple In this caser is empty, and we can simply writé oI

For B € &1I" we write B¥ for its image under in &£ P. When we draw a pre-proof

graphP & I < o, then we writeP abovel” (as trees or as strings) and the leaves are
connected by edges accordingtdrigure 4 shows an example written in both ways.

4.3 Definition A switchings of a pre-proof graphP b I« ois the graph that is
obtained by removing all stretching edges and by removingdgchs-node one of the
two edges connecting it to its children. A pre-proof grdbﬁ I" « o is multiplicatively
correctif all its switchings are acyclic and connected [7].

4 The “pre-” means that we do not yet know whether it really cerfiem an actual proof. The
concept of a “not yet proof” is in the literature (e.g., [7I3@called “proof structure”.
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Fig. 5. Examples (1)—(5) are not well-nested, only (6) is well-edst

For multiplicative correctness the quantifiers are treat®dnary connectives and
are therefore completely irrelevant. The example in Figuisemultiplicatively correct.
For involving the quantifiers into a correctness criteriwa,need some more conditions.

Let s be a switching for? & I', and letA and B be two nodes in". We write
A_(5) Biifthereis a path iz from A to B, starting fromA by going down to its parent
and coming intoB from below. Similarly, one can define the notatioAS™ B and
A5 _BandA_B.

Let A andB be nodes in” with A < B. Thequantifier depttof B in A, denoted
by V 4B, is the number of quantifier nodes on the path frdrto B (including A if it
happens to be avior an3, but not includingB). Similarly we definé(/ . B. For quan-

tifier nodesA’ in P andA in I, we say4 and A’ arepartners denoted byd’ £als A, if
thereis aleaBB € &I'with A< BinI',andA’ < B”in P,and{ ,B =V 4, B".

4.4 Definition We say a simple pre-proof grarﬂ’lé I" is well-nestedf the follow-
ing five conditions are satisfied:
1. ForeveryB € &', we havé\ B =/, B”.

If A’Lals A, thenA’ and A quantify the same variable.

For every quantifier nodé in I" there is exactly ong-nodeA’ in P with A’ £als A,
For every3-nodeA’ in P there is exactly ong-nodeA in I" with A’ £l A,

If A’£als A and A’ &L A,, then there is no switchingwith 4, _(5) As.

Every quantifier node i must be ard, and every quantifier node ifi has exactly
one of them as partner. On the other hand;Jam P can have many partners in, but
exactly one of them has to be &nFollowing Girard [9], we can call ad in P together
with its partners inl” the doors of anv-boxand the sub-graph induced by the nodes
that have such a door as ancestor is calledvthex associated to the uniguédoor.
Even if the boxes are not really present, we can use the tetogy to relate our work
to Girard's. In order to help the reader to understand thesecfinditions, we show in
Figure 5 six simple pre-proof graphs, where the first failaditon 1, the second one
fails Condition 2, and so on; only the sixth one is well-ndste

a s~ wbd



4.5 Definition A simple pre-proof grapt® & I is correctif it is well-nested and
multiplicatively correct. In this case we will also speakasfimple proof graph

Let us now turn our attention towards substitution, whictheraison detrefor the
expansion withd and3.

4.6 Definition For an expanded formul& and a stretching, we define theeiling
and thefloor®, denoted by[E « o] and | E « o |, respectively, to be simple formulas,
which are inductively defined as follows:

[1«0]=1 [A®B«o|=[A«d"]®[B«d"]

[L«0]=1L J[A®B«o|=[A«0d|®[B«d"]
[a<(] =a [Va. A« o] =Va.[A<o] [da.A«o] =Fa.[A«o]
[at <0l =at [Fa.A«o]=Ta.[A0] [Ja.A«o] =[A<0']
[1«0] =1 |A®B<o|=|A«d'|®|B<d"]
|L«0]=1 |A®B<o|=|A«d'|Q|B<d"]
la<l] =a |Va.A«c| =Va.|A<o] |Fa.A<o| =[A0]
lat «0] =at |3a.A<c]=3Fa.|A<0] |Fa.A«o| =3a.|A«c]|

wherec’ is the restriction ot to A, ando” is the restriction ot to B. The expanded
formulaA is obtained fromA as follows: For every nod8 with A < B and3a.A%B
remove the whole subtrée and replace it by, and for every3 with 3a.A-% B replace
B by al. The stretching is the restriction of to A.

Note that ceiling and floor of an expanded sequéntiffer from I" only on3 and
3. In the ceiling, thed is treated as ordinary, and thed is completely ignored. In the
floor, thed is ignored, and th& uses the information of the stretching to “undo the
substitution”. To provide this information on the locatisrthe purpose of the stretch-
ing. To ensure that we really only “undo the substitutiorstead of doing something
weird, we need some further constraints, which are givenéiynidion 4.7 below.

We write A~ B if A is a3-node and there is a stretching edge frdnto B, or A
is an ordinary quantifier node ariglis the variable (or its negation) that is bound4n
andA < B.

4.7 Definition A pair I" « o is appropriate if the following three conditions hold:
1. If A%B; andA%B,, then| By « 01| = | By < 02,

if A%B; andA%B,, then| By «o1| = | By <02,

if A%B; andA%B,, then| By « 01] = | By « 02]*, (Wheres; ando, are the

restrictions ofr to B; and Bs, respectively).

If A;=B; andA,;—~B> andA; < A; andB; X Bs, thenB; < As.

3. For all3a.A, the variable: must not occur free in the formulad « o’ | (whereo’
is the restriction of to A).

N

The first condition above says that in a substitution a végiahinstantiated every-
where by the same formulB. The second condition ensures that there is no variable
capturing in such a substitution step. The third conditmexactly the side condition
of the rulef| in Figure 2. For better explaining the three conditions &yave show in

5 Note the close correspondece to Miller's expansion tre@k {there these two functions are
calledDeepandShallow respectively.



a b at bt b \ /
\ / / \/ ]
® 2 \

\ \ ®

® Vb I

\ \ Ja

Jc Ja |

dc

Ac.[(a®b)va’] 3a.vb.[b9b] Ac.da.([wpa™|@bh)

Fig. 6. Examples of expanded sequents with stretchings that ar@ppobpriate

a at bt
a b at btob \ /
\/ / \ / K

® ? \
\ | ®
4 a ‘
dc
Ac Vb I
Ja

3c.[(a®b)wa’t] Vb.3a.[b9b] Ja.3c.([wpa*)@bh)

Fig. 7. Appropriate examples of expanded sequents with stretshing

Figure 6 three examples of paif$« ¢ that are not appropriate: the first fails Condi-
tion 1, the second fails Condition 2, and the third fails Gtind 3. In Figure 7 all three
examples are appropriate. The example in Figure 4 is als@ppate.

In [9] and [10], the first two conditions of Definition 4.7 agpeonly implicitly
without being mentioned in the treatment of theule. But for capturing the essence of
a proof independently of a deductive system, we have to makgthing explicit.

4.8 Definition We say that a pre-proof graph b I' < o is correct if the simple
pre-proof graph? 5 [I"« o] is correct and the paif « o is appropriate. In this case we
say thatP bl <ois aproof graphand|I" « ¢ | is itsconclusion

The example in Figure 4 is correct. There we have fliak o] is the simple se-
quent - Je.(ct @ ct), (Velewd®(at ®at)® L), [a®a®lat®a]] and the con-
clusion|I"«o|is F3d.(d®d),Ja.(at ®a® L), [a®a®atwa] .

Due to the presence of the multiplicative units (see [23),1¥¢ need to enforce an
equivalence relation on proof graphs.

4.9 Definition Let~ be the smallest equivalence on proof graphs satisfying

P[Q®R|bT«0 ~ PR9Q|b 0o

PQ®R)®S|b <0
P1®1®Q)>T <0
PI®Q®R)> <o
P1®3a.Q)sI{l}0

~

~

~

2

P

P
P
P

Q=eR®S||> 0

1®(1l®Q))>T<c
[(1QQ)®R|5 <0
{3a.1®Q)} > I'{Ja.L} <0
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Fig. 8. Translating sequent calculus proofs into proof nets

where in the third line/ is obtained fromv by exchanging the preimages of the two
1s. In all other equations the bijectiondoes not change. In the last limenust match
thel and_L. A proof netis an equivalence class 6f.

The first two equations in Definition 4.9 are simply assoeigtiand commutativity
of g inside the linking. The third is a version of associativifysn The fourth equation
could destroy multiplicative correctness, but since werdeft- only on proof graphs
we do not need to worry about tifaThe last equation says thatlacan freely tunnel
through the borders of a box. Let us emphasize that this gptirig via an equivalence
is due to the multiplicative units. If one wishes to use aayswithout units, one could

completely dispose the equivalence by usingry s in the linking.

5 Sequentialisation

In this section we will discuss how we can translate proothiésequent calculus and

the calculus of structures into proof nets and back.

Let us begin with the sequent calculus. The translation fikbbh2s., proofs into
proof graphs is done inductively on the structure of the satjproof as shown in Fig-
ure 8. For the rule& and1, this is trivial (4 andw, are uniquely determined and the
stretching is empty). In the rulé, the v, is obtained fronv by adding an edge be-
tween the newt and_L. Theexch and’g-rules are also rather triviaH, v, ando remain
unchanged). For the rule, the two linkings are connected by a ng@anode, and the
two principal formulas are connected bywan the sequent forest. The same is done for
the cut rule, where we use a special cut connectivéhe two interesting rules are the
ones fory and3. In theV-rule, to every root node of the proof graph for the premise a
guantifier node is attached. This is what ensures the wstiedeess condition. It can
be compared to Girard’s putting a box around a proof net. Tirpgse of thed can
be interpreted as simulating the border of the box. Thele is the only one where

%1n [23, 17] the relation~ is defined on pre-proof graphs, and therefore a side condigal to
be given to that equation (see also [14]).
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the stretchings is changed. As shown in Figure 1, in the conclusion of thag,rtile
subformulaB of A is replaced by the quantified variakleWhen translating this rule
into proof graphs, we keep the, but to every place where it has to be substituted we
add a positive stretching edge from the ngw Similarly, whenever &+ should be
replaced by:*, we add a negative stretching edge. The new stretching is

A pre-proof graph iSC-sequentializabi¢it can be obtained from a sequent proof
as described above. If a pre-proof gralphi I" « o is obtained this way then the simple
sequent " « o] is exactly the conclusion of the sequent proof we starteahfro

5.1 Theorem Every SC-sequentializable pre-proof graph is a proof graph

For the other direction, i.e, for going from proof graphdtbl 2s., proofs we need
to consider two linking formula$; and P, to be equivalent modulo associativity and
commutativity ofs. We write this as?, & P,. Then, we have to remove altnodes
from " in order to get a sequentialization theorem because thslation shown in
Figure 8 never introduces afinode in/". For this we replace i everyJa.A with
Ja.3a.A and by adding a stretching edge between the Bewnd every: anda that
was previously bound bya (i.e, is free inA). Let us writel” < o for the result of this
modification applied td" « o.

5.2 Theorem If P& I' « o is correct, then there is & 2 P, suchthatP’ 5 "« o
is SC-sequentializable.

The proof works in the usual way by induction on the sizaob '« 0. Itis a
combination of the sequentialization proofs in [17] and f8id it makes crucial use of
the “splitting tensor lemma” which in our case also needd-westedness.

Let us now discuss the translation between proof nets arivatiens in the calculus
of structures. This can be done in a more modular way tharhé&séquent calculus.

5.3 Proposition An MLL2 formula P is a linking formula if and only if there is a
derivation 1

1788 ()

1

fail, L1 1l el} |
P

5.4 Lemma LetP; andP; be two linkings. Then there is a derivation
Py
{al,ol,rs} H 2
Py
if and only if the simple pre-proof graph, > P~ is correct.

If P, and P, have this property, we say th&} is weaker than®, and denote it as
P, < P,. We can now characterize simple proof graphs in terms of d#epence:

5.5 Proposition A simple pre-proof grapt® & I is correct if and only if there is a
linking P’ with P’ < P and a derivation
P/L

{al,ol,ls,rs,ul} H L7 (3
r
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such that- coincides with the bijection induced by the flow graptiof

As an example, consider the derivation in (1) which corresisdo (6) in Figure 5.
Finally, we characterize appropriate paifs o in terms of deep inference.

5.6 Proposition For every derivation
D

{nl,fl}H@ (4)
C
there is an appropriate paif’ « o with
D=[T«c] and C=|I«0| . (5)
Conversely, ifl" « o is appropriate, then there is a derivatiga) with (5).
We can explain the idea of this proposition by consideringimghe examples in

Figures 6 and 7. To the non-appropriate examples in Figure@dwcorrespond the
following incorrect derivations: Ja.([a9 at] @ b)

b)®at vb.[b B b f
" [(;@[ );j]] " Hav[b [(f’?l)] lnl (leza”lobr)
C.|ICy C V0. -
Je.(c®bh)
And to the appropriate examples in Figure 7 correspond thexfimg correct deriva-
tions: Ja. Hebt
(e®b)75a] V.ot 98] NE Gt L)

nf ———~ nf ———— Ja.Fe.(c®b™)

Je.[(c®b) ] Vb.3a.[a "9 b] fl ———=

Je.(c@bt)

We can now easily translateMiLL2p,; proofinto a pre-proof graph by first decompos-
ing it via Theorem 3.3 and then applying Propositions 5.8, &nd 5.6. Let us call a
pre-proof grapiDI-sequentializabléf is obtained in this way from 8LL2p,; proof.

5.7 Theorem Every DI-sequentializable pre-proof graph is a proof graph

By the method presented in [22], it is also possible to ti@eshMLL2p,; directly
into a proof graph without prior decomposition. Howeveg ttecomposition is the key
for the translation from proof graphs inkbLL2p,; proofs (i.e., “sequentialization” into
the calculus of structures). Propositions 5.3, 5.5, andjiy&us the following:

5.8 Theorem If P& I" « o is correct, then there is &’ < P, such thatP’ APy
is DI-sequentializable.

There is an important difference between the two sequésatans. While for the
sequent calculus we have a monolithic procedure reduciegtbof graph node by
node, we have for the calculus of structures a modular proedtiat treats the different
parts of the proof graph (which correspond to the three wiffeaspects of the logic)
separately. The core is Proposition 5.5 which deals wittptirely multiplicative part.
Then comes Proposition 5.6 which only deals with instaiotiaind substitution, i.e,
the second-order aspect. Finally, Proposition 5.3 takes @fthe linking, whose task
is to describe the role of the units in the proof. TherefoeedQuivalence in 4.9, which
is due to the mobility if thel, only deals with the linkings. This modularity in the
sequentialization is possible because of the decompositibheorem 3.3. Because of
this modularity we treated the units via the linking formai|a3, 17] instead of a linking
function as done by Hughes in [15, 14].
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6 Comparison to Girard’s proof nets for MLL2

Such a comparison can only make senseMat 2, i.e., the logic without the units
1 and_L. In [10] the units are not considered, and in [9] the unitstegated in a way
that is completely different from the one suggested her@s€guently, in this section
we consider only proof nets without any occurrences aind L. For simplicity, we
will allow n-ary’gs in the linkings, so that we can discard the equivalenceioelaf
Definition 4.9 and identify proof graphs and proof nets.

The translation from our proof nets to Girard’s boxed proatbrof [9] is immediate:

If PcT«oisa given proof net, then (1) for eaéhin P draw a box around the sub-
proof net which has as doors thisand its partners id’; (2) replace inl” every nodeA
thatis not & by its floor | A « & |, and remove all stretching edges andfaliodes, and
finally (3) remove alB- and all’?-nodes inP, and replace the-nodes inP by axiom
links. For the converse translation we proceed in the oppaster. It is clear that in
both directions correctness is preserved, i.e., the twer@iare equivalent. Both data
structures contain the same information. However, Gisdodxed proof nets depend on
the deductive structure of the sequent calculus. A box stémdthe global view that
theV-rule has in the sequent calculus, and #knk is attached to it full premise and
conclusion that are subject to the same side conditions theisequent calculus. The
new proof nets presented in this paper make these side mmléxplicit in the data
structure, which is the reason why our definitions are a bigé than Girard’s.

The proof nets of [10] are obtained from the box proof netsitmpl/ removing the
boxes. In our setting this is equivalent to removing=atiodes inP and all3-nodes
in I'. Hence, this new data structure contains less informafibis. raises the question
whether the other two representations contain reduntdatatavhether Girard’s box-
free proof nets make more identifications, and whether ttesimy data can be recov-
ered. The answer is that the proof nets of [10] make indee@ maof identifications.
For example the following proofs of Va.a, (3b.b ®[c’s ¢t]) would be identified:

Ja.[(at ®a) (ct ®c)] Fa.(a™ ®a)9(ct ®c))
and (6)
Va.a, Ja.(Ib.a* @[c’9 ct)) Va.a, (Ja.3b.a* @[c'9 ct))

When translating back to box-nets, we must for e@dimk introduce a box around its
whole empire. This can be done because a proof net does edtdadrrectness if @-
box is extended to a larger (correct) subnet, provided timbteariable does not occur
freely in the new scope. In [10], Girard avoids this by valéatenaming. The reason
why this gives unique representants is the stability anduemess of empires MLL~
proof nets. However, as already noted in [17], under thegmes of the units, empires
are no longer stable, i.e., due to the mobility of théhe empire of aiv-node might be
different in different proof graphs, representing the samo®f net.

Another reason for not using the solution of [10] is the des&ir find a treatment
for the quantifiers that is independent from the underlyirgppsitional structure, i.e.,
that is also applicable to classical logic. While Girard&tshare tightly connected to
the structure oMLL ™~ -proof nets, our presentation is closely related to Miflexpan-
sion trees [19] and the recent development by McKinley [I8Jus, we can hope for a
unified treatment of quantifiers in classical and lineardogi

13



7 Concluding Remarks

We have investigated the relation between deep inferendgerof nets and the se-
quent calculus foMLL2, and we have shown that this relation is much closer than one
might expect. We did not go into the details of cut eliminati®ecause from the previ-
ous sections it should be clear that everything works asdatdn [9, 10] and [17, 23].
There are no technical surprises, and we have a conflueneemihtting cut elimina-
tion procedure for our proof nets. An important consequénteat we have a category
of proof nets: the objects are (simple) formulas and a thap B is a proof net with
conclusion A+, B, where the composition of maps is defined by cut elimination.
detailed investigation of this category (which is *-autamaus [17]) has to be postponed
to future research. The proof identifications made in thjzgpare motivated by the in-
terplay between proof nets, calculus of structures, andesgccalculus. They should
not be considered to be the final word. For example the prasfimeGirard [10] make
more identifications, and the ones by Hughes [15] make |les#ifitations. However,
there are some observations about the units to be made therenits can be expressed
with the second-order quantifiers vias Va.[a" % a] and L = Ja.(a ® a). An inter-
esting question to ask is whether these logical equivakesiceuld be isomorphisms in
the categorification of the logic. In the category of cohésgraces [9] they are, but in
our category of proof nets they are not: The two canonicalsiWaga’ 9 a] — 1 and

1 — Va.[a" 2 a] are given by:

[Le(lel)] (1®3a.(a®a))
N\ N and \ |\ (7
Ao.(1® 1), 1 1, Va.[a 2 a]

respectively. Composing them means performing this catirlting:

[L2(1®1l)2(1®3a.(a®ab))] [L2(1®3a.(a®a™)))
N VN — \ \ N ®)
2. (1®1), 10 L, Ya.[a" ®d] a.(1® 1), Va.[a™ 9 4d]

If the two maps in (7) where isos, the result of (8) must be #reesas the identity map
Ya.[a" 9 a] — Va.[a" 2 a] which is represented by the proof net

Ja.[(a* ®a) 9 (a®a™)] ©
Ja.(a®a™), Va.la" 9 a

This is obviously not the case (even if we repladadby Ja.3a as for Theorem 5.2).
A similar situation occurs with the additive units, for whigve haved) = Va.a and

T = Ja.a. Since we do not have and T in the language, we cannot check whether
we have these isos in our category. However, sthaad T are commonly understood
as initial and terminal objects of the category of proofs ceald ask whethéva.a and
Ja.a have this property: We clearly have a canonical proofffera — A for every
formula A, but it is not necessarily unique. The correct treatment of additivesunit
proof nets is still an open problem for future research.
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A Proofs

Proof of Theorem 3.1: We proceed by structural induction on the sequent proof to
construct the deep inference proof. The only non-trivislesaare the rules fa and

V. If the last rule application in the sequent proof i®athen we have by induction
hypothesis two proofs

1 1
MLL2py, H D and MLL2py; H Dy
s A B Al
From these we can built
1
MLL2py; || Z-
(B A
[CERER
MLL2py, H Z

] ([I"e A]® B) % A]
[I''9(A® B) e A]
In case of the/-rule, we have by induction hypothesis a proof

1
MLL2py, H 2
(A% I
from which we get
1
el Vol
MLL2p, || 2
Va.[A% I
Va.A3a.I']
[Va.AwT]

Conversely, for translating BILL2p,; proof Z into the sequent calculus, we proceed
by induction on the length a¥. We then translate

1

MLL2py, || 2/

A
"B
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into

W (10)

A - AL B

FB
whereZ, exists by induction hypothesis atg exists because every rytef MLL2p,,
is a valid implication ofMLL2. Finally, we apply cut elimination (Theorem 2.1). Re-
mark: By using the proof nets introduced in this paper, trasglation can be done
without using cut elimination. a

cut

Proof of Theorem 3.2:  Given a proof inMLL2p,; U{iT}, we translate it intd1LL2sq
as done in the proof of Theorem 3.1, eliminate the cut (Thedtd), and translate the
result back intaMlLL2p,;. When translating a sequent calculus proof with cuts ingo th
calculus of structures as described in the proof of TheoremtBen the sequent cut

FILA FAR A _S(A® AL)
rule cut is simulated exactly by the rule¢] ———=

FI,A S{L}
It is also possible to give a direct proof of Theorem 3.2 usinty the calculus of

structures (see, e.g., [21, 4, 11]), without referring ®$bquent calculus.

Proof of Theorem 3.3: The construction is done in two phases. First, we permute all
instances ofi|, 1 |,1],e] to the top of the derivation. Faii| ande] this is trivial,
because all steps are similar to the following:

S[A B{1}] S[A% B{1}]
LSBT eA - S SamBMal)
& SB(Vall® A] 7 S[B{Va.1} % 4]

For 1| and1] there are some more cases to inspect. We show here only caedeec
all others are similar:

S{Va.[A= B]}
S(l®Va.[A B])
S(1®[Va.As 3a.B))
S[(1®Va.A) e Ja.B]
Here, in order to permute thg above thei |, we need an additional instancerefand
possibly two instances af|). The situation is analogous if we permute theoverls,
rs, ora| (orai] or_L |, but this is not needed for this theorem). When permutingip
(instead ofl | ), then we need:| (andc ) instead ofrs. For a detailed analysis of this
kind of permuation arguments, the reader is referred ta [21]

In the second phase of the decomposition, all instance$ ahdf| are permuted
down to the bottom of the derivation. For the rulg this is trivial since no rule can
interfere (except fof |, which is also permuted down). For permuting down the fule
the problematic cases are as before caused by theuwyjés, rs, anda|. To get our
result, we need an additional inference rule:

S{3a.][A" B]}
S[3a.A s Ja.B)

S{Va.[A® B]} 1]
! SVa.A®3a.B] — ul
S[(1®Va.A) 2 Ja.B] rs

(11)
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Now we can do the following replacement
S(Ja.][A® B]®C)
S(3a.[A® B] ® C) Vl S(Ba.A®3aB]®C)
_S(A®B]eC) - fs SEa.A5(Fa.B®0)
S[A»(B®C)] S[A9(Ja.B ® O)]
S[A9(B®C)]
and continue permuting the two néwfurther down. Finally, we eliminate all instances

of v| by permuting them up. This is trivial since no rule has=am its conclusion,
except foru| andn]. In the case ofi| we can replace

S{Va.[A9[B®C]|}

S{Va.[A9[B% O} ol AR Ble O]}
SNVa. A% 3a.[B% O] by M SVa.[A® B] % 3a.C]
' SVa. A% [Ba.B® 3a.C]] " S[a.A® 3a.B] 9 3a.C]

SVa.A2[da.B e Ja.C]
and in the case of|, we can replace

S{[A17® A2)(a\B)} S{[A17® A2)(a\B)}

N " S[41(a\B) ® A3(a\B)]
SBaldimdaly by nl =

S3a.A1%da. A
[a 1? “ 2] nl S[EaAl?ﬂaAg]

Because we start from a proof, i.e., the premise of the d#givas 1, all v| must
eventually disappear. O

Proof of Theorem 3.4: For transformingZ into 2, we replace every instance of
f| by a derivation using only the rules in Figure 3. For this, wegeed by structural
induction on the formulal in thef | . We show here only one case, the others are similar:
If A= (A'®A")thenreplace

S{Ja.(A® A")}
SEe(Aean} V: S(@a.A®3a.A")
S(A® A") p S(A® Ja.A")
S(A® A")
Conversely, for transforming’ into a derivation using only| andf|, note thatlf|,

1f|, af|, andaf| are already instances éf. The rulesx, y|, v], andw| can be
replaced as follows:

S{3a.[A® B]}
S{3a.[A7® B]} " {30 BaAw B}
“SBaA®wdaB " S{3a.3a¢.Aw3a.B]}
f S[3a.A9 Ja.B)
where in the twan |, the variable: is substituted by itself. The other rules are handled
similarly. O
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Proof of Theorem 5.1: The pre-proof graphs obtained from the rulésand 1 are
obviously correct. Then it is an easy exercise to check thaither rules preserve
correctness. O

Proof of Theorem 5.2: We proceed by induction on the size Bft I" < o, i.e., the
number of nodes in the graph. In the base case where our prayoifi gs justL > 1 we
have an instance of thierule and we are done.

If there are anyg-roots in P or I, we simply remove them. If we removera
root in I", we have to apply the-rule and can proceed by induction hypothesis. Note
that by removing ag-root from P, the linking formula becomes a “linking sequent”.
This is the reason for the “modulo associativity and comitiwitg’ in the statement
of the theorem. If there is 8-root in I" then we can simply remove this node, which

corresponds to applying therule because its conclusion ﬂ§/<\aj, and we proceed
by induction hypothesis.

We are now in a situation where all roots of our proof graphedtteerv-, 3-, 3-, or
®-nodes. (By our transformation above, alhodes are inside the linking.) Let us first
consider the case in which there aremooots. By well-nestedness and connectedness,
all of them quantify the same variable, the linkidgconsists of exactly one formula
rooted by ard-node, and” contains exactly oné-root, all other roots being-nodes.
Therefore, we can apply thérule, remove all root-nodes, and proceed by induction
hypothesis.

Let us now consider the case wheyeaoots are present (but r@- nor 3-roots). By
the splitting tensor lemma (Lemma B.8, proved in Appendixg know that one of
them must be splitting. This splitting tensor can eithertside the sequerit or inside
the linking P. If it is inside I", we can immediately apply th@-rule and proceed by
induction hypothesis. If the splitting tensor is insilethen there are two possibilities:
either both children are dual atoms, or one child is 8oth cases handled exactly as
in[17]. O
Proof of Proposition 5.3: We can proceed by structural induction £no construct
2. The base case is trivial. Here are the four inductive cases:

1
1 { 9 1
e] —
o H 17 B Va.l
ail 1]
[a* 9 d] A (1®B) 7'
Sy { " Va.A
(A® B)

where 2’ and 2" always exist by induction hypothesis. Conversely, we pedday
induction on the length o7 to show thatP is a linking formula. We show only the
case where the bottommost rulegnis aail, i.e.,Z is

1

|«

S{1}

+l Sla* 2 a
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By induction hypothesis{1}+ = P{L} is a linking for some contexP{ }. Hence
Slat 2 a]t = P(a®at) is also a linking. The other cases are similar. O

In the following we also need the inference rules
S(A®B&C S(A® B
M and O-T (7) (12)
S(A®B)®C) S(B®A)
which are the duals far| ando |, respectively.
We also use the following definition.

A.1 Definition If a linking has the shap&; (1 ® Sz(a® at)) for some contexts
S1{ } andS,{ }, then we say that the governsthe pair(a ® a*). Let P, and P, be
two linkings. We say that; is weaker than?, denoted byP?; < P, if
— @EP = &P,
— P and P, contain the same set @fnodes, and for every-node, its set of leaves
is the same irP; and P, and
— whenever d governs a paifa ® a) in P, then it also governs this pair iR, .

Proof of Lemma 5.4: We prove that for any two linking®; and P, the following
are equivalent
1. P, < P.
2. There is a derivation
Py
fal,ol,rs}|
P

9

3. There is a derivation
Py
{al,07,1s} | '
P
4. The simple pre-proof graph, > Pj- is correct.
1 = 2: The only way in whichP; and P, can differ from each other are the-trees
above the pairgz ® a*) and where in these trees th@ccurrences are attached. There-
fore, the rules for associativity and commutativity@fand the rule
S(1®[BwC))
P S1®B) %]
are sufficient to transforn®; into P.

2 = 3: The derivation?’ is the dual of2.

3 = 4: We proceed by induction on the length @f. Clearly P, > P;* is correct.
Furthermore, all three inference rule$, o1, andls preserve correctness.

4 = 1: We haveP, = &P, becauseP, > Pi- is a simple proof graph. The
second condition in Definition A.1 follows immediately frothe well-nestedness of
P, > Pj- and the fact thaf; and P, are both linkings, i.e., do not contaifinodes.
Therefore, we only have to check the last condition. Asslbyayay of contradiction,

that there is d-occurrence which governs a péir® ) in P, butnotinPy, i.e., P, =
S1(1® Sa(a®at))forsome context§:{ }andSy{ },andP; = S3[S4{1} % S5(a®a™t)]
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for some context$’s{ }, S4{ }, andSs{ }. This means we have the following situa-
tionin P, > Pj-
®

/)
SN

1
I

®
which clearly fails the acyclicity condition. a

In the following proof we use a series of lemmas which aregiveAppendix C.
We also use the following notation: Let and B be nodes inl” with A £ B and
B £ A. Then we writeA {5 B if the first common ancestor of andB is a®, and we

write A %} Bifitisag, orif A andB appear in different formulas df.

Proof of Proposition 5.5: Let a simple pre-proof grapR & I be given, and assume
we have a linking?’ < P and derivatior? as in (3) whose flow-graph determines
By Lemma 5.4 we have a derivation, such that

PJ_
fal,ots} | 22
Pt (13)
{al,ol,ls,rs,ui}{ 9
r

Now we proceed by induction on the length®@f and 2 to show thatP & I is multi-
plicatively correct and well-nested. In the base case i$y¢o see thaP > P has the
desired properties. Now it remains to show that all rui¢so |, aT,07,lIs,rs,ul pre-
serve multiplicative correctness and well-nestednegsariedtiplicative correctnessiit is
easy: foru] it is trivial because it does not change theg-structure of the graph, and
for the other rules it is well-known. That well-nestednesgsreserved is also easy to see:
rulesal,ol,al,o7,ls, rs do not modify thev-3-structure of the graph, and therefore
trivially preserve Conditions 1-4 in Definition 4.4. For the-down-path condition it
suffices to observe that it cannot happen that & changed into while going down

in a derivation. Finally, it is easy to see thdt preserves all five conditions in Defini-
tion 4.4.

Conversely, assumg & I is well-nested and multiplicatively correct. For con-
structing, we will again need the rule| that has already been used in the proof of
Theorem 3.3.

We proceed by induction on the distance betwéen and I". For defining this
formally, let A be a simple formula and defiré A to be the number of pair&:, b)
with a,b € ZA andag‘;b, and define#3 A to be the number ofi-nodes inA. Now
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observe thaP! andI” have the same set of leaves. We can therefore define
5p(PH,T) = #5D — #5 Pt
03(PH,I') = #al’ — #3P~+
Note that because of acyclicity it can never happen thatdores:, b € &I" we have
a%?b anda % b. Therefores (P*, I') is the number of pairs, b € &I with a%fb

anda %} b. Furthermore, observe that by definition there cannot bedJamgde inP+.

Henceds(P+, Iy = #3I". Now define thedistance betweeR" andI” to be the pair
§(PH.I) = (b(P+,I),85(P*,T))
where we assume the lexicographic ordering.
Let us now pick in/” a pair of dual atoms, say- anda, which appear in the same

“axiom link” in P, i.e., P is P(a®a™’). We now make a case analysis on the relative
position ofa anda to each other if". Because of acyclicity we must hawe \g a.

Thismeand” = S[A{a'} s B{a}] for some context§{ }, A{ },andB{ }.Without
loss of generality, we assume that neitdenor B has a as root (otherwise apply|
ando|). There are the following cases:

1. A{ } andB{ } have both a quantifier as root. Then both must quantify theesam
variable (because of the same-depth-condition and the-saneble-condition),
and at least one of them must be arfbecause of the oné-condition and the
one¥-condition). Assume, without loss of generality, théfa-} = vb.A’{at}
and B{a} = 3b.B'{a}. Then by Lemma C.3 we have th&t & I with [ =
S{vb.[A'{at}® B'{a}]} is also correct. We can therefore apply therule and
proceed by induction hypothesis becasi&, ') is strictly smaller thaw (P, I').
If A and B have both ard as root, the situation is the same, except that we apply
v]-rule instead ofi] .

2. One of A{ } and B{ } has a quantifier as root and the other has as root.
Without loss of generality, let{ } = Vb.A’{ } andB{ } = (B'{ }®B"),
ie., " = S[vb.A'{a'} ®(B'{a} ® B")]. Then by Lemma C.1 we have th&t>
I with I'" = S([vb.A{at} s B'{a}]® B") is also correct. We can therefore
apply thels-rule and proceed by induction hypothesis becayse, I'’) is strictly
smaller thans(P+, I').

3. One ofA{ } andB{ } has a quantifier as root and the other is jlus}. This is
impossible because it is a violation of the same-depth-itiomd

4. A{ }andB{ } have both & as root. Without loss of generality, assume that
S[(A” @ A'{at}) ®»(B'{a} ® B")]. Then, we have by Lemma C.2 th&t> I is
correct, with eithel” = S([(A” ® A'{a*})® B'{a}]® B")orI" = S(A"” ®[A'{a*}2(B'{a} ® B"))).
In one case we apply the-rule, and in the other thie-rule. In both cases we have
thatd (P, I'') is strictly smaller thad (P, I'). Therefore we can proceed by in-
duction hypothesis.

5. One ofA{ } andB{ } has a® as root and the other is ju$t }. Without loss of
generality,]” = S[a' ®(B'{a} ® B")]. Then, by Lemma C.4, we have that> "’
with I = S([a* 2 B'{a}] ® B"), is also correct. We can therefore apply the
rule and proceed by induction hypothesis (as befdie*, ') is strictly smaller
thans(P+, I)).
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6. If A{ } andB{ } are bothjus{ },i.e.,I" = S[a* 2 a], then do nothing and pick

another pair of dual atoms.
We continue until we cannot proceed any further by applyiregé cases. This means,
all pairs of dual atoms inZ[" are in a situation as in case 6 above. Now observe that a
formula is the negation of a linking formula iff it is genesdtby the grammar

N i=1|[Fgred]|[LeAN] | (N RN) |V N

Consequently, the only thing that remains to do is to brirgath | to the left-hand side
of a>g. This can be done in a similar fashion as we brought gairss a] together, by
applyingal,ol,ls,rs,ul. This makes" the negation of a linking. (Because of well-
nestedness, there can befoodes left.) Let us call this linking formul&’. Now we
have a proof grapi > P'*. By Lemma 5.4 we have’ < P.

It remains to remove all instances of, which is done exactly as in the proof of
Theorem 3.3. ad

Proof of Proposition 5.6: We begin by extracting’ « o from 2. For this, we proceed
by induction on the length a@. In the base case, lét = D = C ando be empty. In
the inductive case le¥ be

D
(nl,fl} H 7
Cl
el
wherep is either
S{3a.A} or S{A(a\B)}
S{A} RANTERWY)

and letI « ¢’ be obtained by induction hypothesis fragi. In particular,C’ = | I «
a'l.

— If pisf|, then we construct’ from I’ as follows: If thed to whichf| is applied
appears i’ as ordinaryd, then replace it by a-node, and letr = ¢’. If the 3
is in fact a3, then completely remove it, and letbe obtained frona’ by remov-
ing all edges adjacent to that In both cases the same-formula-condition and the
no-capture-condition (4.7-1 and 4.7-2) are satisfiedfaro by induction hypoth-
esis (becausg” « ¢’ is appropriate). The not-free-condition (4.7-3) holdsahese
otherwise theé | would not be a valid rule application.

— If pisn], we insert ard-node at the position where thé-rule is applied and let
be obtained frona’ by adding a positive (resp. negative) edge from this Bew
every occurrence a8 in C’ which is replaced by (resp.a™) in C. Then clearly the
same-formula-condition is satisfied since it is everywlileeesame3 which is sub-
stituted. Let us now assume by way of contradiction, thantireapture-condition
is violated. This means we haw,, Ao, B, Bs such thatd; ~B; and Ay, —~Bsy
andA; < A; andB; < B; andB; £ As. Note that by the definition of stretching
we have thatd,, A5, By, B> all sit on the same branch iR. Therefore we must
have thatd), < By, whereA} is child of A,. Since the no-capture-condition is sat-
isfied forI"” « o/ we have that eithed; or A, is the newly introduced. Note that
it cannot beA, because thef; would not be visible in " « ¢’ | because it has
been replaced by the variahtebound inA;. SinceBs is inside B; it would also
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be invisible in| I'" « ¢’ |. Hence the nevd must beA; . Without loss of generality,
let A; = Ja.A’. Then oum|-instance must look like

S{A1{Qb. A5 {B:{b}}}}
S{3a. A} {Qb.AL{a}}}
whereq is substituted byB; {b} everywhere insidel; {Qb.A,{a}} andQ is either
v or 3. Clearly, the variablé is captured. Therefore (14) is not a valid rule ap-
plication. Hence, the no-capture-condition must be satisfrinally, the not-free-

condition could only be violated in a situation as above wh&r is a3-node. But
since (14) is not valid, the not-free-condition does alslolho

Conversely, for constructing from I" « o, we proceed by induction on the number
of 3 and3in I'. The base case is trivial. Now pick ifi an3 or 3 which is minimal
wrt. <, i.e., has no othef or 3 as ancestor.

— If we pick an3, sayl" = S{3a.A}, then let” = S{3a.A}. By the not-free-
condition,a does not appear free i1 « . Hence

" o]
[T<o]

(14)

is a proper application df] .

— If we pick an3, sayl’ = S{3a.A}, then letl” = S{A} and leto’ be obtained
from o by removing all edges coming out of the seleciad We now have to check
that

L[«

[ o]

is a proper application af| . Indeed, by the same-formula-condition, every occur-

rence ofa bound by3a in | I" « 0| is substituted by the same formula|ifi” « ¢’ |.

The no-capture-condition ensures that no other varialdapsured by this.

In both cases we have that’ « ¢’ = [I"« o]. Therefore we can proceed by induction
hypothesis. O

nl

Proof of Theorem 5.7: Apply Theorem 3.3 and Propositions 5.3, 5.5, and 5.6. We
get a pre-proof grap? & I" « o with P~ = Aand[I'«c] = Band|['«<o| =C. O

Proof of Theorem 5.8: Propositions 5.3, 5.5, and 5.6 give us foPa> I « o the
derivations
1

{ail, L1, 1l,el} | 21
prL
{al,ol,ls,rs,ul} || D
[res]

{nl,fl} || 25

T
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whereP’ < P. Note that together with Lemma 5.4, we also have
1

{ail, L1, 1l,el} || 21
pL
{aT,07,al,0l,ls,rs,ul } || 22
[Fes)

{nl.fl} | Z5

|I'<s)

B The splitting tensor lemma

For proving our sequentialization (into the sequent calsulve need the so-called
“splitting tensor lemma”, which is a well-known fact for tipairely multiplicative case
[9]. Unfortunately, due to the presence of the quantifiedstae units, the proof of the
splitting tensor lemma is slightly more complicated tharttie purely multiplicative
case. This means, for the sake of completeness, we haveue iptere again. We fol-
low closely the presentation in [2]. We need the concept weak(pre-)proof graph
P & I' « o which is a (pre-)proof graph in which the linking does not have to be a
formula but can be a sequent, i.e., some of the re@are removed.

B.1 Definition Letsr; andrs be weak pre-proof graphs. We sayis asubpregraph
of mo, written asm; C w9 if all nodes appearing im; are also present in,. We say
1 Is asubgraphof =, if 71 C w9, andm; andwy are both multiplicatively correct (i.e,
for the time being we ignore well-nestedness and appraéss). Adoor of 7 is any
root node (inP or in I") of .

B.2 Lemma Letn’ andn” be subgraphs of some weak proof graph
(i) The subpregraph’ U 7 is a subgraph ofr if and only if7/ N 7' # (.
(i) If 7’ Nz # O thens’ N «” is a subgraph ofr.

Proof: Intersection and union in the statement of that lemma halie tmderstood in
the canonical sense: An edge/node/link appearsinint” (resp.x’ Un”) if it appears
in both,7’ and=” (resp. in at least one af or «’’). For proving the lemma, let us first
note that because in every switching is acyclic, also in every subpregraph @very
switching is acyclic, in particular also irf U 7" and=’ N 7”’. Therefore, we need only
to consider the connectedness condition.

(i) If 7’ N7 = () then every switching of’ Ux" must be disconnected. Conversely,
if 7' N7 # (0, then every switching off’ U 7”7 must be connected (in every
switching ofr’ U " every node int’ N 7" must be connected to every noderin
and to every node in”, becauser’ and=” are both multiplicatively correct).

(i) Let ' N 7" # () and lets be a switching forr’ U . Thens is connected and
acyclic by (i). Lets., s/, ands,/n.~, be the restrictions of to «’, 7", andn’ N
7', respectively. Now led and B be two nodes i’ N «”. ThenA and B are
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connected by a path isf. becauser’ is correct, and by a path isf becauser”
is correct. Sinces is acyclic, the two paths must be the same and therefore be
contained ins,/ . O

B.3 Lemma Letw be aweak proof graph, and lgtbe a node appearing in. Then
there is a subgraph’ of , that hasA as a door.

Proof: For proving this lemma, we need the following notation. kebe a proof
graph, letA be some node im, and lets be a switching forr. Then we writes(r, A)
for the graph obtained as follows:
— If Ais a child of a binary nod® in 7, and there is an edge fromto A in s, then
remove that edge and lefr, A) be the connected component of (the remainder of)
s that containsA.
— Otherwise lets(w, A) be justs.

Now let
= ﬂ s(m, A)

wheres ranges over all possible switcshings of (Note that it could happen that for-
mally 7’ is not a subpregraph because some edges in the formula tiglestia miss-
ing. We graciously add these missing edges’tsuch that it becomes a subpregraph.)
Clearly,Aisinz’.

We are now going to show that is a door ofr’. By way of contradiction, assume
it is not. This means there is ancesi@rof A that is in(, s(w, A). Now choose a
switching s such that whenever there issanode betweenl andB, i.e.,

A A
Cl ég (:;'2 Cl
N/ or N\ /
Cy ® Cs Cs 5 Cy
B B

thens choose<’; (i.e., removes the edge betwe@nand its parenty.Then there must
be a® betweend andB:

A
D1 D2 D2 Dl
N/ or N/
Dy ® Ds Dy® Dy
B B

OtherwiseB would not be int’ (because we remove every edge frdnto its parent).
Now suppose we have chosen the uppermost sucfkhen the path connecting and
Dy in §(w, A) cannot pass through, (by the construction af(, A)). But this means
thatins (where the edge betweehand its parent is not removed) there are two distinct
paths connectingl and D1, which contradicts the acyclicity 6f

Now we have to show that’ is a subgraph. Let be a switching for’. Sincern’ is
a subpregraph af, we have that is acyclic. Now lets be an extension ofto 7. Then
s is the restriction of(w, A) to «/, and hence connected. O

" Note that there is a mistake in [2].
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B.4 Definition Letw be aweak proof graph, and létbe a node inr. Thekingdom
of Ain 7, denoted byt A4, is the smallest subgraph of that hasA as a door. Similarly,
theempire ofA in 7, denoted by A4, is the largest subgraph ef that hasA as a door.
We defined « B iff A € kB, whereA andB can be any nodes in.

An immediate consequence of Lemmas B.2 and B.3 is that kimgalod empire
always exist.

B.5 Remark The subgrapl’ constructed in the proof of Lemma B.3 is in fact the
empire of A. But we will not need this fact later and will not prove it here

B.6 Lemma Letw be aweak proof graph, and let, A’, B, and B’ be nodes i,
such thatd and B are distinct,A’ is a child of A, and B’ is a child of B. Now suppose
that B’ € eA’. Then we have thaB ¢ eA’ if and only if A € kB.

Proof: We haveB’ € eA’ N kB. Hencen’ = eA’ N kB andn” = eA’ U kB are
subnets ofr. By way of contradiction, leB ¢ ¢A’ andA ¢ kB. Thenn” hasA’ as
door and is larger thamA’ because it contain8. This contradicts the definition ef4’.
On the other hand, iB € eA’ and A € kB thenn’ hasB as door and is smaller than
kB because it does not contain This contradicts the definition &fB. O

B.7 Lemma LetAandB be nodesinaweak proof grap‘hE I'«o.If A< Band
B < A, then eitherd and B are the same node or they are dual leaf-nodes connected
via an edge in.

Proof: If a anda’ are two dual leaf-nodes connected viahen clearlyka = ka™*.
Now let A and B be two distinct non-leaf nodes with € kB and B € kA. Then
kAN kB is asubgraph and hengel = kAN kB = kB. We have three cases:
— If Ais a quantifier node, then the result of removithfrom & B is still a subgraph,
contradicting the minimality ok B.
— If A= A’ A” then the result of removing from kB is still a subgraph, contra-
dicting the minimality ofk B.
—fA=A®A"thenkA = EA'UKA"U{A’"® A”}.HenceB € kA" or B € kA",
This contradicts Lemma B.6, which says tliatt eA’ andB ¢ e¢A”. O

From Lemma B.7 it immediately follows that is a partial order on the nodes of
a weak proof graph. We make crucial use of this fact in in the proof of the spiti
tensor lemma

B.8 Lemma LetP & I' <o be aweak proof graph in which no root (i or I') is
an’g- or 3-node. If there arez-roots in P or I, then at least one of them is splitting,
i.e., by removing tha®, the graph becomes disconnected.

Proof: Choose among the-roots of P & I' « o one which is maximal w.r.t<.
Without loss of generality, assume itis = A, ® AY. We will now show that it is
splitting, i.e.,m = { A, ® A7} UeA] UeA?. By way of contradiction, assumé&, ® A/
is not splitting. This means we have somewhere anodeB with two childrenB’ and
B" such thatB’ € eA]; andB” € eA/, and therefore3 ¢ eA; andB ¢ eA/. We also
know that4; < B for some other root nodg;. We have now two cases to consider
— If A;is a®-node, sayd; = A} ® A}, thenB € kA; and therefor&B C kA;.
But by Lemma B.6 we havel; € kB and therefored; € k£A;, which contradicts
the maximality ofA4; w.r.t. <.
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— Otherwised; is aV-, 3-, or 3-node. TherB is inside a box which had; as a door.
SinceeA] ande A are both multiplicatively correct, we have a switchingvith
two paths A, s~ B’ and A/ 55~ B”. Both paths must enter the box at some point.
This can happen only through a door. And because of the aityationdition the
two paths must come in through two different doors. At most ohthem can be
in the linking P, because otherwise the oAezondition (4.4-3) would be violated.
But if one of the doors is irP and the other i, we have immediately a violation
of the acyclicity condition. (For every box we can alwaysstoact a switching with
a direct path from th&-door in P to any chosen door ift. Hence both doors must
be insidel". But this violates the no-down-path condition (4.4-5),dese there is
a down path between the two doors going througl® A!. Contradiction. O

C Properties of simple proof graphs

In this appendix we present a series of lemmas which are ddedthe proof of Propo-
sition 5.5, and whose role in the big picture is similar to tble of the “splitting tensor
lemma” for the sequent calculus.

In the following we will sometimes identify a sequehtA,, ..., A, with the for-
mulafA; -9 A,].

C.1 Lemma Let
Pla®a“) 5 SIVb.A'{a*} 9(B'{a} ® B")] (15)

be a simple proof graph, wherg{ }, A’{ }, andB’{ } are arbitrary contextsP{ }
is a linking formula context, and pairs up the shown occurrencesmanda’. Then

Pla®a’) 5 S(vb.A'{a"}» B'{a}] ® B") (16)

is also correct.

Proof: Let us abbreviate (15) b¥ & I" and (16) byP 517, By way of contradiction,
assume thaP & I” is not correct.

If it is not multiplicatively correct then there is a switclgi s which is either discon-
nected or cyclic. If it is disconnected, then we get frefimmediately a disconnected
switching forP & I'. So, let us assumeis cyclic. The only modification frond” to I
that could produce such a cycle is the change fiéfu’} £ B” to A'{a*} & B".
Hence, we must have a path{a} 15~ B”, which is also present i & I". Note that
this path cannot pass through anda because otherwise we could Us#' {a} ® B")

to get a cyclic switching fo? & I'. Furthermore, because & I is well-nested, there
is an3b-node insideB’{a} belowa. We can draw the following pictures to visualize
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the situation:

inP>I" inP>1I
El) El)
® ®
/N /N
Lol Lol
A B B
vlb B/ Bl/ A/ B/ B/l
\ / / N/
S Yo ®
\ N/
® s

Now, letc be the leaf at which our path leave${a"} and goes intd?, and letc’ be
the leaf at which it leave® and comes back intb. by well-nestedness a@? & I', there
must be somélb-node somewhere i belowc’. We also know that our path, coming
into I" atc, goes first down, and at some point goes up again. This tupoing must
be somer-node below’. Since thedb-node and they-node are both on the path from
¢’ to the root of the formula, one must be an ancestor of the otle¢ius first assume

the® is below thedb. Then our path is of the shape

& s
A N\
B
® A' B/ B
N/
A ®
N
14

This, however, is a contradiction to the well-nestednesEB of I" because it violates

the no-down-path-condition (4.4-5) because there is alpettneen thélb below thed’
and thedb below thea. Therefore thex must be above théb. The situation is now as
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follows:

EJ
& e
TR a/ \ 1
YARE
b A B B
| \ /
Vb ®
N
s

From the®, the path must go up again. Without loss of generality, assititeaves!”
atd and reenterg” atd’. For the same reasons as above, there must B and a®
belowd’. And so on. There are two possibilities: either at some phiatz is below
the3b, which gives us a violation of the no-down-path-conditisrira(17), or we reach
eventuallyB”:

§ 8 i B B
T AN

I \ /
Vb ®
NS
s
For the same reasons as above, there must Bé miside B”, and we get immediately

a violation of the no-down-path-condition because of thershath between the twebh
aboveB’ andB”. ConsequentlyP & I must be multiplicatively correct.

Let us therefore assunte & I” is not well-nested. The same-depth-condition and
the same-variable-condition (4.4-1 and 4.4-2) must hol& in I because they hold
in P I" and the quantifier structure is identicalinand ™. For the same reasons also

the oned-condition and the one-condition (4.4-3 and 4.4-4) must hold iR & I".
Therefore, it must be the no-down-path-condition whichidated. This means we
must have inf” two quantifier nodes, sayc andd3c, connected by a pattc_(5) Jcin
some switchings. Because this path is not presentRnE I'" it must pass through the
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new® betweervb.A’{a} andB”, as follows:

®
I\,
||

q a
1? (18)
Vb B B" ac
\ /
o
\

®

SinceP & I" is multiplicatively correct, the switching must be connected. Therefore
there is ins a path from thé/b-node to the: inside B’. This new path must follow the
path betweeivc and3c for some steps in one direction. Hence, we either have

®
I\
||

a a

N
\//
s
\
(29

or

A (20)
A

Ve Vb B B" »

\
)
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Clearly, (19) violates the acyclicity condition fd? & I as well as forP & I'. And
from (20), we can obtain a switching fét o I" with a pathve_(5) dc as follows:

®
SN
Lo
s (21)
Ve A B B 3¢
I \ ¥
b ®
N S
i
Contradiction. (Note that although in (20) and (21) the htls not go through the*
inside A’, this case is not excluded by the argument.) a
C.2 Lemma Let
Pa®@a") > S[(A"® A'{a"}) B(B'{a} ® B")] (22)

be a simple proof graph. Then at least one of

Pla®a') s S([(A” ® A'{a'})» B'{a}] ® B") (23)
and

Pla®a™) 5 S(A" @[A'{a} 9 (B'{a} @ B"))) (24)
is also correct.

Proof: We will abbreviate (22) by? > I, (23) by P > I, and (24) byP > I'".

We start by showing that bott? > I'" and P > I'” have to be multiplicatively
correct. We consider here only the acyclicity condition &gale connectedness to the
reader. Suppose by way of contradiction, that there is akimity s’ for P > I’ that is
cyclic. Then the cycle must pass through, the root® and thes as follows:

®
SN
|, |

a-a

A" A/ B/ B
\ \ /
®
/
i
/

®
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Otherwise we could construct a switching with the same dycte If our cycle contin-
ues throughB”, i.e.,

®
(1/ \(IJ'
|, |

JIES VR Ve (25)
\ \ /
®
/
S
/
®

then we can use the path fra#f to B” (which cannot go througH’ or B’) to construct
a cyclic switchings in P > I" as follows:

®
I\,
||

a a

A// A/ B/ B//

¢/ ¢/
® ®
N S
c

Hence, the cycle in’ goes throughB’, giving us a path fromd” to B’ (not passing
throughA’):

®
I\,
||

JEES VI (26)
\ \ /
&
/
S
/
®

By the same argumentation we get a switchifign P > I with a path fromA4’ to B”,
not going throughB’. Froms’ ands’, we can now construct a switchingfor P > I
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with a cycle as follows:

&
I\,
|, |

a a

AII Al BI BII

N\ N\
® ®
NS
S
which contradicts the correctnessof> 1.

We now have to show thd® > I'" and P > I'”" are both well-nested. This can be
done in almost literally the same way as in the proof of Lemnia C a

C.3 Lemma Let

Pla®a™) & SIVb.A'{a"} % 3b.B'{a}] (27)

be a simple proof graph. Then

Pla®a') > S{vb.[A'{a"} s B'{a}]} (28)

is also correct.

Proof: Multiplicative correctness of (28) follows immediatelgdause the-2-structure
is the same as in (27). Furthermore, all five conditions inmigdin 4.4 are obviously
preserved by going from (27) to (28). Hence (28) is correct. a

C.4 Lemma Let
P(a®a") > Sla* 9(B'{a} ® B")] (29)
be a simple proof graph. Then

Pla®a’) 5 S([at» B'{a}] ® B") (30)

is also correct.

Proof: As before, we abbreviate (29) iy > I" and (30) byP > I"’. Well-nestedness
of P > I'" follows trivially from the well-nestedness &t > I". By way of contradiction,
assumeP > I is not multiplicatively correct. Since connectednessiigdl, assume
there is a cyclic switching. If the cycle does not involve the betweeru' and B”,
then we immediately have a cyclic switching fBr> I". Since the cycle involves*, it
must also involve:. Therefore it must leav®’{a} at some other leaf, and finally enter
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Fig. 9. Cut reduction for MLL2 proof nets (Part 1)

B’ from above, as shown below on the left.

inPvI’ inPrT
® ®
a/ \aJ- a al
aJ‘ 0,. .
®
B/ BII
/
S
\
®
This allows us to construct a cyclic switching fBr> I, as shown on the right above.
Contradiction. a

D Cutelimination

For the convenience of the referee we show how cut eliminatiarks for the proof nets
introduced in this paper. We will be brief because the egaléngredients have already
been shown in [9] and [17]. gradﬂé I" <« o is a special binary connectivg, such that
whenever we havel © B in I, then we must haveA < o] = | B « o]+ .2 Morally, a

@ may occur only at the root of a formula ifi. However, due to well-nestedness we
must allow cuts to havé-nodes as ancestors. Then thés treated in the correctness

8 Note that it does not mea# = B, becausd is expanded.
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Fig. 10.Cut reduction for MLL2 proof nets (Part 2)

criterion in exactly the same way as tlze and sequentialization does also hold for
proof graphs with cut.

The cut reduction relation» is defined on pre-proof graphs as shown in Figures
9 and 10. The reductions not involving quantifiers are exatishown in [17]. If we
encounter a cut between two binary connectives, then wacepl 2 B] ©(C ® D) by
two smaller cutsA © C andB @ D. Note that if|[A’® B]«c| = |(C ® D) <o+ then
|A«o| = |C«co|*+and|B«o| = | D<c|*. If we have an atomic cut" @ a, then we
must have inP two “axiom links” (a* ® a), which are by the leaf mappingattached
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to the two atoms in the cut. It was shown in [17] that the twop@i* ® a) can, under
the equivalence relation in Definition 4.9, be brought nexéach other such that
has|(a ® at) ®(a ® a't)] as subformula. We can replace this by a sirgte ® a) and
remove the cut. If we encounter a dup L on the units, we must have in the linking a
correspondingL and a subformulél ® @), which can (for the same reasons as for the
atomic cut) be brought together, such that we hav® ia subformuld L 2(1 ® Q)].

We replace this by) and remove the cut.

Let us now consider the cuts that involve the quantifiersr&laee three cases, one
for each of3, 3, and3. The first two correspond to the ones in [9]. The third one does
not appear in [9] because there is neverr@ode created when a sequent calculus proof
is translated into a proof net.

If one of the cut formulas is aB-node, then the other must be'arwhich quantifies
the same variable, say we hade.A @ Va.B. Then we pick a stretching edge starting
from Ja.A. Let C be the node where it ends and Bt = |C « o]. Note that by
Condition 4.7-1,D is independent from the choice of the edge in case there ang ma
of them. (If there are only negative edges, thenllet= |C « o|*. If there are no
stretching edges at all, then 1Bt = a. Now we can inside the box &fa. B substitute
a everywhere byD. Then we remove all the doors of the. B-box and replace the
cut by A © B. There are two subtleties involved in this case. First, ‘oeimg a door”
means for al that the node is removed, but for afidt means that the node is replaced
by an3 and a stretching edge is added for evergnd e bound by the3-node to
be removed. Second, by substitutiagvith D we get “axiom links” which are not
atomic anymore, but it is straightforward to make them atoagain: one proceeds by
structural induction oD. If D = Vb.D1, then replace

El)
® |
/ N\ .
L /\
Vb.|D1 3b.|D1 with ?1 /ljlL (31)
DL Vb.Dy fljf /|31
I Vb
and if D = (D; ® D») then replace
/ ?\
/ BN A
(D1®D2) [Di®Dy] with D, Di Dy Ds (32)
| | /IDL D>L<D 1|)
[Di % Dy] (D1 ® Do) \1?/ ? \1®/ ’

The cases fofla.D; and[D, ® D-] are similar.
If one of the two cut formulas is d-node, then the other one can be anything.
Say, we havela.A © B. Let eB be theempireof B, i.e, largest sub-proof graph of

P & I' < o that hasB as a conclusion. LeB., ..., B, be the other doors afB inside
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I, and letR be the door okB in P. If eB has more than one root-node inside the
linking P, then we can rearrange thienodes inP via the equivalence in 4.9 such that
eB has a singleg-root in P. Furthermore, as in the case of the atomic cut we can use
the equivalence in 4.9 to get iR a subformuld3a.Q = R] where3a.Q is the partner

of Ja.A. Now we replace o the formula[Za.Q @ R] by Ja.[Q 2 R] and inI" the
formulas By, ..., B, by Ja.By,...,3a.B,. Put in plain words, we have pulled the
whole empire ofB inside the box oBla.A. But now we have a little problem: Morally,
we should replace the ctiu. A © B by A @ B; the cut is also pulled inside the box.
But by this we would break our correctness criterion, nagrtesame-depth-condition
4.4-1. To solve this problem, we allow cut-nodes to haweodes as ancestors, and we
replace the cufa.A © B by Ja.(A © B). Note that this does not cause problems for
the other cut reduction steps because we can just ke€paaitestors when we replace
a cut by a smaller one.

Finally, there is the cut between an ordinarpode and &-node, saya. A O Va.B.
Then we do not pull the whole empire 6. B inside the box oHa.A but only the
Va.B-box. This is the same as merging the two boxes into one. Riyre Ja.Q and
Ja.R be the partners ofa. A andVa. B, respectively. Again, for the same reasons as in
the case of the atomic cut, we can assume that we have theweniig[3a.Q 2 Ja.R)
in P, which we replace bya.[Q 7 R]. The cut is replaced bya.(4A © B).

This cut reduction relation is definedpriori only on pre-proof graphs. For a pre-
proof graphP > I'«candacutA® B in I', we say the cut iseady if the cut
can immediately be reduced without further modificatiolrPofWe now can show the
following:

D.1 Theorem The cut reduction relation preserves correctness and i$-aeflned
on proof nets.

Proof: That correctness is preserved follows immediately fronpéasing the six
cases. To show that cut reduction is well-defined on procf net need to verify the
following two facts:

1. Whenever the same cut is reduced in two different reptagens of the same proof
net, then the two results also represent the same proof net.

2. Whenever there is a cut in a proof net, then this cut candheces, i.e., there is a
representant to which the corresponding reduction stejgur€s 9 and 10 can be
applied.

For the first statement, it suffices to observe that whenaweobthe basic equivalence
steps in Definition 4.9 can be performed in the non-reducedimen the same step can
be performed in the reduced net or is vacuous in the redude&arethe second state-
ment we have to make a case analysis on the type of cut: If the lclre B] ©(C' ® D)
orda.A ©Va.B, then it is trivial because these cuts are always ready. $ ebw con-
sider a cutla. A @ Va.B. Clearly, the two boxes of whicha andva are doors each have
a single dooda in P, and their first common ancestor issa(because of the acyclicity
condition). Therefore, the linking is of the shapéS; {3a.Q} 2 S2{Ja.R}] for some
contextsS;{ } andS2{ }. Now we proceed by induction on the size $f{ } and
S»{ } and make a case analysis on their root-nddes:

9 Note the similarity to the proof of Proposition 5.5.
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— Both contexts are empty. In this case the linking has theel@shape, and we are
done.

— One of them has @-root. In this case we apply associativity of theand proceed
by induction hypothesis.

— One of them has af-node as root. This is impossible because it would violage th
well-nested condition.

— One ofthem has @-root, and the other context is empty. Without loss of gelitgra
the linking is of the shap®[(1 ® S{{3a.Q}) %® a.R]. We claim, that in this case
the correctness is preserved if we replace the linkingby®[S1{3a.Q} ® Ja.R)).
We leave the proof of this claim to the reader because it ig sienilar to the proof
of Lemma C.4. Hence, we can proceed by induction hypothesis.

— Both contexts have @-root. Then the linking is of the shape

P[(1®51{Fa.Q}) 2(1 ® S5{3a.R})]
Now we claim that we can replace this linking with one of
P(1®[S1{3a.Q} »(1® S4{3a.R})])
and
P(1®[(1®S7{3a.Q}) % S5{3a.R}])
without destroying correctness. Again, we leave the proahe reader because
it is almost the same as the proof of Lemma C.2. As before, wepcaceed by
induction hypothesis.
For a cutda.A © B we proceed similarly. The only difference is that we first dnvée
apply associativity and commutativity &f to bring the proof graph in a form where
the empire=3 has a single roaR in the linking. For cuts: © o and1 ® L we can also
proceed similarly. a

D.2 Theorem The cutreduction relation is terminating and confluent.

Proof: Termination has already been shown in [9], and we will noeegjit here. For
showing confluence it suffices to show local confluence. Wedailthis first for proof
graphs. Suppose we have two cuts which are ready in a givehgrmaph. We claim that
the result of reducing them is independent from the ordém@féeduction. There is only
one critical pair, since the only possibility for overlappiredexes is when one cut is
Ja.A @ Va.B and the other iSa.C @ Va.D and the formula¥a. B and3a.C' are doors
of the same box. If we reduce first the &it. A © Va. B, then we do first the substitution
in theVa. B-box, remove its border, change the second c@dd@”’ @ Va.D, and then
do the same substitution in th&. D-box and remove its border. If we reduce first the
cutda.C ©Va.D, then we merge the two boxes into one, and then do the sulstitu
and remove the border of the box. Clearly, the result is tiheesa both cases. Hence,
we have local confluence for the cut reduction on proof graphthe case of proof
nets, it can happen that the two cuts are ready in two diffespresentants. With the
method shown in the previous proof we can try to constructpaesentant in which
both cuts are ready. There are only two cases in which this fHie first is when we
have two atomic cuts using the same “axiom link”. But thenrésult of reducing the
two is a single axiom link, independent from the order. Theose case is when we
have two cutsla.A © Va.B and3a.C O Va.D whereVa.B andJa.C are doors of the
same box. Here the result of reducing the two will be a big bbictvis the merge of
all three boxes, independent of the order in which the twe atg reduced. ad
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