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Abstract. We investigate the question of what constitutes a proof whemti-

fiers and multiplicative units are both present. On the tairevel this paper
provides two new aspects of the proof theoryMif L2 with units. First, we give
a novel proof system in the framework of the calculus of gtrgs. The main
feature of the new system is the consequent use of deeprgreshich allows
us to observe a decomposition which is a version of Herbgatigorem that is
not visible in the sequent calculus. Second, we show a nelwmof proof nets
which is independent from any deductive system. We haveutseatiplisation”

into the calculus of structures as well as into the sequéatites. Since cut elim-
ination is terminating and confluent, we have a categotMbE 2 proof nets. The
treatment of the units is such that this category is stasraarhous.

1 Introduction

The question of when two proofs are the same is important foofptheory and its
applications. It comes down to the question of which infatioracontained in a proof
is essential, and which information is purely bureaucratie to the chosen deductive
system. One of the first results in that direction is Herbiatiteorem which allows a
separation between the quantifiers and the propositioagident of first order classical
predicate logic. The work on expansion trees by Miller [1¢sis how Herbrand'’s result
can be generalized to higher order. In this paper we pressimitar result for linear
logic. Our work is motivated by the desire to find eventualtyemeral treatment for the
quantifiers, independent from the propositional fragmdrthe logic (see the related
work by McKinley [2]).

The first contribution of this paper is a presentationMfL?2 in the calculus of
structures, which is a new deductive formalism usilegp inferenceThat means that
inferences are allowed anywhere deep inside a formula, sienjar to what happens
in term rewriting. As a consequence of this freedom we camwslhdecomposition the-
orem, which is not possible in the sequent calculus, andiwtan be seen as a version
of Herbrand’s Theorem folMLL2. Secondly, we give a combinatorial presentation of
MLL2 proofs that we call herproof nets(following the tradition) and that quotient
away irrelevant rule permutations in the deductive systé&aguent calculus and cal-
culus of structures). The identifications made by thesefpmets are consistent with
ones forMLL (with units) made by star-autonomous categories [3—5]. A& moti-
vation for these proof nets is to exhibit the precise retabetween deep inference and
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Fig. 1. Sequent calculus system fistLL2

the existing presentations dMLL2-proofs: sequent calculus, Girard’s proof nets with
boxes [6], and Girard’s proof nets with jumps [7]. In parlexythere is a close connec-
tion between the decomposition theorem in deep inferemzktree sequentialization of
proof nets. Furthermore, our proof nets are the first to aantate the quantifiers and
the multiplicative units together without boxes. The proefs proposed here are inde-
pendent from the deductive system, i.e., we do not have tbhegtonnection between
links in the proof net and rule applications in the sequefdutas. However, we have
“sequentialization” into the sequent calculus as well &s the calculus of structures.
As expected, there is a confluent and terminating cut elitiingrocedure, and thus,
the two conclusion proof nets form a category.

2 MLL2 in the sequent calculus

Let us recall howMLL2 is presented in the sequent calculus. ket {a,b,¢,...} be
a countable set gfropositional variablesThen the set# of formulasis generated by

Fu=1|1|d | A" |[FRF)|(FRF) |V F | 3. F

Formulas are denoted by capital Latin letters B, C, .. .). Linear negation(—)~ is
defined for all formulas by the De Morgan lawBequentsire finite lists of formulas,
separated by comma, and are denoted by capital Greek Ieftess . . .). The notions

of free andbound variableare defined in the usual way, and we can always rename

bound variables. In view of the later parts of the paper, anarder to avoid changing
syntax all the time, we use the following syntactic convems:
(i) We always put parentheses around binary connectivash&er readability we
usel[...] for e and(...) for ®.
(i) We omit parentheses if they are superfluous under themagton thate and®
associate to the left, e.d4 = B e C 2 D] abbreviate$|[A e B] 2 C] s D).

(iii) The scope of a quantifier ends at the earliest possitdeg(and not at the latest
possible place as usual). This helps saving unnecessagthases. For example,
in [Va.(a ®b) ® 3e.c® a], the scope ofa is (a ® b), and the scope dlc is justc.

In particular, thes at the end is free.
The inference rules faviLL2 are shown in Figure 1. In the following, we will call this
systemMLL2s.q. As shown in [6], it has the cut elimination property:

FILA AL A
-1, A

2.1 Theorem The cutrule cut is admissible foMLL2g.
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3 MLL2 in the calculus of structures

We now present a deductive system kdkL2 based on deep inference. We use the cal-
culus of structures, in which the distinction between folasiand sequents disappears.
This is the reason for the syntactic conventions introdadzal/e!

The inference rules work directly (as rewriting rules) oe formulas. The system
for MLL2 is shown in Figure 2. There§{ } stands for an arbitrary (positive) formula
context. We omit the braces if the structural parenthedehédihole. E.g.S[A e B] ab-
breviatesS{[A *® B]}. The systemin Figure 2 is callédLL2p,,. We consider here only
the so-calleddown fragmentf the system, which corresponds to the cut-free system
in the sequent calculifsNote that thev-rule of MLL2seq is in MLL2p,; decomposed
into three pieces, namely|, u], andf|. We also need an explicit rule for associativity
which is “built in” the sequent calculus. The relation beénghe®-rule and the rules
Is andrs (calledleft switchandright switch has already in detail been investigated
by several authors [13-15, 9]. The following theorem ensthmatMLL2p,, is indeed a
deductive system faviLL2.

3.1 Theorem For every proof of- Ay,..., A4, in MLL2s, there is a proof of
[A179---7® A,] in MLL2p,;, and vice versa.

As for MLL2s.q, We also have foMLL2p; the cut elimination property, which can
be stated as follows:
L S(A®At) -
3.2 Theorem Thecutruleif —————= is admissible foMLL2p;.
S{L}

! In the literature on deep inference, e.g., [8, 9], the fomful®[b 9 (o ® c)]) would be writ-
ten ag(a, [b, (a*, ¢)]), while without our convention it would be written as(b’9(a™ ® ¢)).
Our convention can therefore be seen as an attempt to pletisedmmunities. In particular,
note that the motivation for the syntactic convention @ijove is the collapse of thg on the
formula level and the comma on the sequent level, &/@.(a ® b) ® Jc.c’® a] is the same as
Va.(a,b),3e.c, a].

2 Theup fragmen{which corresponds to the cut in the sequent calculus) &ined by dualizing
the rules in the down fragment, i.e., by negating and exdngngremise and conclusion. See,
e.g., [10, 11, 8, 12] for details.



4 Lutz StraBburger

S{3a.vb.A} S{3a.3b.A} S{3a.[A>9 B]} S{3a.(A® B)}

“Sivb3aAr TV S(F3aA}  SBaAwdaB] O S(GaA®3aB)
S{3a.1} S{3a.L} S{3ab}  S{3ab"} i) anasfy,

11 5{1} Lfl S{L} af| S{b} d S{bl} a is different frombd

Fig. 3. Towards a local system fdviLL22

A
We write MLL2p,,

2 for denoting a derivatior? in MLL2p,; with premiseA

B
and conclusiorB. The following decomposition theorem fbtLL2p,; can be seen as a
version of Herbrand’s theorem fdfLL2 and has no counterpartin the sequent calculus.

3.3 Theorem 1
{ail, L], 1],el} || 21
1 A
Every derivationMLL2p, || 2 can be transformed intqal,o|,ls,rs,ul} || 22 .
C B
{nl,fl} || Z5
C

This decomposition is obtained by permuting all instancesip, 1 |,1],e] up
and permuting all instances of , f| down. There are two versions of the “switch” in
MLL2p,;, theleft switchls, and theright switchrs. For Thm. 3.1, thés-rule would be
sufficient, but for obtaining the decomposition in Thm. 3.8 also need thes-rule.

If a derivationZ uses only the rulea|, o], s, rs, ul, then premise and conclusion
of & (and every formula in between the two) must contain the saoma accurrences.
Hence, theatomic flow-grapH16, 17] of the derivatior7? defines a bijection between
the atom occurrences of premise and conclusio oHere is an example of a deriva-
tion with its flow-graph. (We left some some applicationswfando | implicit.)

. Vave.(la % g @' B ¢)
. Va.ve. 41 5(4 8¢ 5 &))]
" Va.ve it s((a@ k) 9 k] O
ol Va.[Fe gt wve (@) 9y
ol Va.[F3e. gt 93 (4@ ") 8 Vo]
[Va.3c.d* % Ja.[Fe. (b @ &) B Vet

In the sequent calculus tiverule has a non-local behavior, in the sense that for apglyin
the rule we need some global knowledge about the codteraimely, that the variable
a does not appear freely in it. This is the reason for the baxs)iand the jumps in [7].

In the calculus of structures this “checking” whether a &bl appears freely is done
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in the rulef |, which is as non-local as thérule in the sequent calculus. However, with
deep inference, this rule can be made local, i.e., reducea @tomic version (in the
same sense as the identity axiom can be reduced to an atorsi@gn)eFor this, we need
an additional set of rules which is shown in Figure 3 (agaie,sliow only the down
fragment), and which is calldd | . Clearly, all rules are sound, i.e., proper implications
of MLL2. Now we have the following:

3.4 Theorem B B

Every derivatio{n|,f|} H 2 can be transformedintén| } U Lf]| H 2', and vice versa.
C C

4 Proof nets for MLL2

For defining proof nets foMLL2, we follow the ideas presented in [18, 5] where the
axiom linking of multiplicative proof nets has been repldd®y alinking formulato
accommodate the unitsand L. In such a linking formula, the ordinary axiom links are
replaced byr-nodes, which are then connected®g. A unit can then be attached to a
sublinking by anothe®, and so on. Here we extend the syntax for the linking formula
by an additional construct to accommodate the quantifiessy, khe setZ of linking
formulasis generated by the grammar

Li=1|(ded)|(182L)| (L9 |3d. &

In[18, 5] a proof net consists of the sequent forest and ttérig formula. The presence
of the quantifiers, in particular, the presence of instdiotreand substitution, makes it
necessary to expand the structure of the sequent in the pevofhe sef’ of expanded
formulas is generated by

En=111|d | adt 698 (ERE)|VA.E | 3. & | Vet & | Aed. &

There are only two additional syntactic primitives: thecalledvirtual existential quan-
tifier, and the3, calledbold existential quantifierAn expanded sequeit a finite list
of expanded formulas, separated by comma. We denote expaedeents by capi-
tal Greek letters I, 4, ...). For disambiguation, the formulas/sequents intoediuin
Section 2 (i.e., those withogt and3) will also be calledsimple formulas/sequents

In the following we will identify formulas with their syntattees, where the leaves
are decorated by elements.of U <7+ U {1, L }. We can think of the inner nodes as
decorated either with the connectives/quantifiersy, Va, Ja, a, a, or with the
whole subformula rooted at that node. For this reason weus# capital Latin letters
(4, B, C, ...) to denote nodes in a formula tree. We writex B if A is a (not
necessarily proper) ancestor 8%, i.e., B is a subformula occurrence iA. We write
&I (resp.ZA) for denoting the set of leaves of a sequénfresp. formulaA).

3 This is almost the same structure as Millesgansion treefl]. The idea is to code a formula
and its “expansion” together in the same syntactic objeat.d8ir case is simpler than in [1]
because we do not have to deal with duplication.
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4.1 Definition A stretchingo for a sequent” consists of two binary relationg

and-% on the set of nodes df (i.e., its subformula occurrences) such tHatand-%
are disjoint.

A stretching consists of edges connectiigodes with some of its subformulas,
and these edges can be positive or negative. Their purpéseriark the places of the
substitution of the atoms quantified by Bewhen writing an expanded sequéntvith
a stretchingr, denoted byl « o, we will draw these edges either insidewhen it is
written as a tree, or below when it is written as string. The positive edges are dotted
and the negative ones are dashed. Examples are shown ire&igu4 and 5 below. If
Ais anodeinl’, we writeo 4 to denote the restriction af to A.

The virtue of second ordeviLL is the possibility of substitution and instantiation,
which is theraison d’etre of the expansion via and3.

4.2 Definition For an expanded formul@ and a stretching, we define theeiling
and thefloor*, denoted by E « o] and | E « o], respectively, to be simple formulas,
which are inductively defined as follows:

[1«<0]=1 [A®B<o|=[A«cs]®[B<op]

[L«0]=L [A®B«o|=[A«04|®[B«og]
[a«(] =a [Va.A«o] =Va.[A«o] [Fa.A«o] =Fa.[A«o]
[at«0] =at [Ja.A«o]=Ta.[A«0] [Ja.A«o] =[A<04]

«f)=1 |A®B<og|=|A«oca]®|B<og]
[L<0]=1 [A®B<o|=[A<04]®Bos]

«fl=a [Va.A<«o| =Va.|A« o] [3a.A«c| =|A«0]
lat <0 =at [Fa.A<«c|=Fa.|A«0] |Fa.A«o| =3a.|A<oy]
The expanded formuld in the last line is obtained from as follows: For every node
B with A < B and3a.A-%B remove the whole subtre® and replace it by, and for

every B with 3a.A-%B replaceB by a*.

Note that ceiling and floor of an expanded sequéntiffer from I" only on3 and
3. In the ceiling, thes is treated as ordinary, and theld is completely ignored. In the
floor, thed is ignored, and th& uses the information of the stretching to “undo the
substitution”. To provide this information on the locatimthe purpose of the stretch-
ing. To ensure that we really only “undo the substitutiorstead of doing something
weird, we need some further constraints, which are given éfjridion 4.3 below.
GivenI" « ¢ and nodesA, B in I', then we writeA—~ B if A is a3-node and there
is a stretching edge from to B, or A is an ordinary quantifier node antl< B andB
is the variable (or its negation) that is bound#yn |A < o4 ].

4.3 Definition A pair I" « o is appropriate if the following three conditions hold:
1. If A%BandA%C, then|B«og| =|C<oc],

if A%2BandA%C,then|B<«og| = [C<oc],
if A7+B andA%C,then|B«og| =|C<oc]*.

4 Note the close correspondece to Miller's expansion tregsajiere these two functions are
calledDeepandShallow respectively.
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Fig. 5. Appropriate examples of expanded sequents with stretshing

2. If AldBl andAQ"*BQ andA1 < A2 and31 < Bs, then31 < AQ.
3. For all3a. A, the variablez must not occur free in the formulad « o 4 |.

The first condition above says that in a substitution a végigbinstantiated every-
where by the same formul&. The second condition ensures that there is no variable
capturing in such a substitution step. The third conditiexactly the side condition of
the rulef| in Figure 2. We show in Figure 4 three examples of pairs o that are not
appropriate: the first fails Condition 1, the second failsx@iion 2, and the third fails
Condition 3. In Figure 5 all three examples are appropriate.

In [6] and [7], the first two conditions of Definition 4.3 appealy implicitly with-
out being mentioned in the treatment of theule. But for capturing the essence of a
proof independently of a deductive system, we have to ma&eything explicit.

4.4 Definition A pre-proof graphis a quadruple, denoted WE I' « o, whereP a
linking formula, I" is an expanded sequentjs a stretching fot", andv is a bijection
@I % @P such that only dual atoms/units are paired ug lis simple, we say that

the pre-proof graph isimple In this caser is empty, and we can simply write 5T

For B € &1I" we write B¥ for its image under in & P. When we draw a pre-proof

graphP & I « o, then we writeP abovel’ (as trees or as strings) and the leaves are
connected by edges accordingtdrigure 6 shows an example written in both ways.

4.5 Definition A switchings of a pre-proof graphP b I'<ois the graph that is
obtained from the whole dP & "<& by removing all stretching edges and by removing
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Fig. 6. Two ways of writing a proof graph

for each2-node one of the two edges connecting it to its children. Agneof graph
PET«cois multiplicatively correctf all its switchings are acyclic and connected [19].

For multiplicative correctness the quantifiers are treagdinary connectives and
are therefore completely irrelevant. The example in Figuiemultiplicatively correct.
For involving the quantifiers into a correctness criteriwe,need some more conditions.

Let s be a switching forP > I', and letA and B be two nodes in". We write
A _(5)_Bifthereis a path irs from A to B, starting fromA by going down to its parent
and coming intoB from below. Similarly, one can define the notatiaAss™ B and
A5 BandA_(57B.

Let A andB be nodes i with A < B. Thequantifier depttof B in A, denoted
by V 4B, is the number of quantifier nodes on the path frdrto B (including A if it
happens to be avior an3, but not includingB). Similarly we definéy/ . B. For quan-
tifier nodesA’ in P andA in I", we say4 and A’ arepartners denoted byA’ £l A, if
thereis aleal € &I"'with A < BinI',andA’ < B”in P,and\{/ ,B =V 4, B".

4.6 Definition We say a simple pre-proof graﬂhé I" is well-nestedf the follow-
ing five conditions are satisfied:
1. ForeveryB € &I', we havé\/ . B =/, B".

2. If A’&L A, thenA’ and A quantify the same variable.
3. For every quantifier nodé in I" there is exactly ong-nodeA’ in P with A’ £als A,
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Fig. 7.Examples (1)—(5) are not well-nested, only (6) is well-adst

4. For everyd-nodeA’ in P there is exactly ong-nodeA in I" with A’£als A,
5. If A’&L A and A’ £l Ay, then there is no switchingwith A, _5)_As.

Every quantifier node if® must be art, and every quantifier node ifi has exactly
one of them as partner. On the other hand;am P can have many partners in, but
exactly one of them has to be snFollowing Girard [6], we can call ad in P together
with its partners inl” the doors of anv-boxand the sub-graph induced by the nodes
that have such a door as ancestor is calledvt®x associated to the unigiedoor.
Even if the boxes are not really present, we can use the tetagw to relate our work
to Girard's. In order to help the reader to understand thesecibnditions, we show in
Figure 7 six simple pre-proof graphs, where the first failai@iton 1, the second one
fails Condition 2, and so on; only the sixth one is well-ndste

4.7 Definition We say that a pre-proof grap‘hé I" « o is correctif the pairl" « o
is appropriate and the simple pre-proof gra@h’i [I" « o] is well-nested and multi-

plicatively correct. In this case we say thats I « o is aproof graphand | " « o] is
its conclusion

The example in Figure 6 is correct. There we have fHak | is the simple se-
quent - 3e.(ct @ ct), (Veewd ®@(at ®at)® L), [a®a’9[at 2 a]] and the con-
clusion| "« o|is - 3d.(d®d),Ja.(a* ®a® 1), [a®a®at ®d] .

As said before, due to the presence of the multiplicativésysee [18, 5]), we need
to enforce an equivalence relation on proof graphs.

4.8 Definition Let~ be the smallest equivalence on proof graphs satisfying

P[Q®R]5I'«0 ~ P[R®Q|6 <0
Pl[Q®R]wS|b <o ~ PQwR%S||5T <0
PA®(I®Q)ET <0 ~ %

P1(1®Q))>I'<o
P(1®Q)SR|b <o
P{Fa.(19Q)} s I'{Za.l} 0o

PAQQ¥R) <o
P1®3a.Q)5I'{L} <0

2

2
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Fig. 8. Translating sequent calculus proofs into proof nets

where in the third line/ is obtained fromv by exchanging the preimages of the two
1s. In all other equations the bijectiondoes not change. In the last limenust match
thel and_L. A proof netis an equivalence class of.

The first two equations in Definition 4.8 are simply assoeigtiand commutativity
of g inside the linking. The third is a version of associativifys. The fourth equation
could destroy multiplicative correctness, but since werdefi~ only on proof graphs
we do not need to worry about thaThe last equation says thatlacan freely tunnel
through the borders of a box. Let us emphasize that this euiirtig via an equivalence
is due to the multiplicative units. If one wishes to use aayswithout units, one could
completely dispose the equivalence by usingry s in the linking.

5 Sequentialisation

In this section we will discuss how we can translate proofhasequent calculus and
the calculus of structures into proof nets and back.

Let us begin with the sequent calculus. The translation fidbi2s., proofs into
proof graphs is done inductively on the structure of the segproof as shown in Fig-
ure 8. For the rulesd and1, this is trivial (p andv, are uniquely determined and the
stretching is empty). In the rulé, thev, is obtained fromv by adding an edge be-
tween the nevt and_L. Theexch and’g-rules are also rather triviaK, v, ande remain
unchanged). For the rule, the two linkings are connected by a nganode, and the
two principal formulas are connected byan the sequent forest. The same is done for
the cut rule, where we use a special cut connectiv&he two interesting rules are the
ones forv andd. In theV-rule, to every root node of the proof graph for the premise a
guantifier node is attached. This is what ensures the wsledaess condition. It can
be compared to Girard’s putting a box around a proof net. Tlvpgse of thed can
be interpreted as simulating the border of the box. Tkele is the only one where
the stretchings is changed. As shown in Figure 1, in the conclusion of that,rthe

51n [18, 5] the relation~ is defined on pre-proof graphs, and therefore a side condita to
be given to that equation (see also [20]).
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subformulaB of A is replaced by the quantified variableWhen translating this rule
into proof graphs, we keep thi, but to every place where it has to be substituted we
add a positive stretching edge from the ngw Similarly, whenever &~ should be
replaced by, we add a negative stretching edge. The new stretchiaty is

A pre-proof graph iSC-sequentializabl&it can be obtained from a sequent proof

as described above. If a pre-proof gra@h’é I" < o is obtained this way then the simple
sequent I" « o is exactly the conclusion of the sequent proof we startehfro
5.1 Theorem Every SC-sequentializable pre-proof graph is a proof graph

For the other direction, i.e, for going from proof graphsva L 2s., proofs we need
to consider two linking formulag’ and P, to be equivalent modulo associativity and

commutativity of'g. We write this asP; k3 P,. Then, we have to remove altnodes
from I" in order to get a sequentialization theorem because thslatian shown in
Figure 8 never introduces aftnode inI". For this we replace id” every3a.A with

3a.3a.A and by adding a stretching edge between the Bevand every: anda™ that

was previously bound bya (i.e, is free inA). Let us writel” « o for the result of this
modification applied td” « o.

5.2 Theorem If P& I' « o is correct, then there is ® 2 P, suchthatP’ 5 ' < o
is SC-sequentializable.

The proof works in the usual way by induction on the sizeob '« 0. Itis a
combination of the sequentialization proofs in [5] and @id it makes crucial use of
the “splitting tensor lemma” which in our case also needd-westedness.

Let us now discuss the translation between proof nets ariebtiens in the calculus
of structures. This can be done in a more modular way tharhBséquent calculus.

5.3 Proposition An MLL2 formula P is a linking formula if and only if there is a

derivation
1

CINERTRNE )
PL
5.4 Lemma LetP;, andP; be two linkings. Then there is a derivation
Pl
{al,cl,rs} H 9
P,
if and only if the simple pre-proof graph, > Pj- is correct.

If P, and P, have this property, we say th&; is weaker thanP,, and denote it as
P, < P,. We can now characterize simple proof graphs in terms of d€epence:

5.5 Proposition A simple pre-proof grapt¥ & I is correct if and only if there is a
linking P’ with P’ < P and a derivation

P/J_
fal,alsls, s} | 2, 3)
I
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such that coincides with the bijection induced by the flow graptiof

As an example, consider the derivation in (1) which corresizdo (6) in Figure 7.
Finally, we characterize appropriate palfs o in terms of deep inference.

5.6 Proposition For every derivation
D
L1y | 2 (@)
C
there is an appropriate paif”’ « o with
D=[l«c] and C=|T«0] . (5)
Conversely, ifl" « o is appropriate, then there is a derivatiga) with (5).

We can explain the idea of this proposition by consideringimghe examples in
Figures 4 and 5. To the non-appropriate examples in Figur@didvwcorrespond the
following incorrect derivations:

Ja.([a® a*] @ bF)
([aa”]®b)
Je.(c®bh)

[(a®b)9at] Vo.[b 9 b] fl
Je.[c® ¢t " Ja.Vb.[a " b] nl

And to the appropriate examples in Figure 5 correspond thewing correct deriva-

tions:
Ja.([awat]@bh)

Ja.3e.(c®bh)
Je.(c®bt)

[(a®b)®at] Vb.[bt 9 b] nl
" 3 cab) we] " b 3alaw b fl

We can now easily translateMLL2p,; proof into a pre-proof graph by first decompos-
ing it via Theorem 3.3 and then applying Propositions 5.8, &nd 5.6. Let us call a
pre-proof graptDI-sequentializabléf is obtained in this way from #LL2p,; proof.

5.7 Theorem Every DI-sequentializable pre-proof graph is a proof graph

By the method presented in [21], it is also possible to ti@eshMLL2p,; directly
into a proof graph without prior decomposition. Howeveg ttecomposition is the key
for the translation from proof graphs inMLL2p,; proofs (i.e., “sequentialization” into
the calculus of structures). Propositions 5.3, 5.5, andjv& us the following:

5.8 Theorem If P& I" « o is correct, then there is &’ < P, such thatP’ AP
is DI-sequentializable.

There is an important difference between the two sequézdtadns. While for the
sequent calculus we have a monolithic procedure reduciagptbof graph node by
node, we have for the calculus of structures a modular proedtiat treats the different
parts of the proof graph (which correspond to the three difieaspects of the logic)
separately. The core is Proposition 5.5 which deals withptimely multiplicative part.
Then comes Proposition 5.6 which only deals with instaiotiaéind substitution, i.e,
the second-order aspect. Finally, Proposition 5.3 takes @fthe linking, whose task
is to describe the role of the units in the proof. Therefomeahuivalence in 4.8, which
is due to the mobility if thel, only deals with the linkings. This modularity in the
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sequentialization is possible because of the decompositibheorem 3.3. Because of
this modularity we treated the units via the linking fornm[48, 5] instead of a linking
function as done by Hughes in [22, 20].

6 Comparison to Girard’s proof nets for MLL2

Such a comparison can only make senseMat 2, i.e., the logic without the units
1 and_L. In [7] the units are not considered, and in [6] the units aeated in a way
that is completely different from the one suggested her@s€quently, in this section
we consider only proof nets without any occurrenced aind L. For simplicity, we
will allow n-arygs in the linkings, so that we can discard the equivalenceioel®f
Definition 4.8 and identify proof graphs and proof nets.

The translation from our proof nets to Girard’s boxed proetiaof [6] is immediate:

fPET<cisa given proof net, then (1) for eaéhin P draw a box around the sub-
proof net which has as doors thisand its partners id’; (2) replace inl” every nodeA
that is not a by its floor | A « o |, and remove all stretching edges andgahodes, and
finally (3) remove alB- and all’-nodes inP, and replace the-nodes inP by axiom
links. For the converse translation we proceed in the oppasder. It is clear that in
both directions correctness is preserved, i.e., the twergiare equivalent. Both data
structures contain the same information. However, Gisgbdxed proof nets depend on
the deductive structure of the sequent calculus. A box stémdthe global view that
theV-rule has in the sequent calculus, and #knk is attached to it full premise and
conclusion that are subject to the same side conditions #eirequent calculus. The
new proof nets presented in this paper make these side amrxl@xplicit in the data
structure, which is the reason why our definitions are a igkr than Girard’s.

The proof nets of [7] are obtained from the box proof nets loydy removing the
boxes. In our setting this is equivalent to removing=hodes inP and all3-nodes
in I". Hence, this new data structure contains less informatfibis raises the ques-
tion whether the other two representations contain redurmtata or whether Girard's
box-free proof nets make more identifications, and whetmentissing data can be re-
covered. The answer is that the proof nets of [7] make indem® proof identifications.
For example the following proofs of Va.a, (3b.b ®[c’s ¢]) would be identified:

Ja.[(a* ®a)®(ct ®¢)] [Ba.(a* ® a) R (ct @ c)]
and (6)
Va.a,3da.(Ib.a* ®cw ct)) Va.a, (3a.3b.a* ®[c'9 ct))

When translating back to box-nets, we must for egdimk introduce a box around its
whole empire. This can be done because a proof net does rdtdamrrectness if ¥-
box is extended to a larger (correct) subnet, provided thendwariable does not occur
freely in the new scope. In [7], Girard avoids this by varabénaming. The reason
why this gives unique representants is the stability andueress of empires MLL~
proof nets. However, as already noted in [5], under the presef the units, empires
are no longer stable, i.e., due to the mobility of théhe empire of aiv-node might be
different in different proof graphs, representing the saraof net.

Another reason for not using the solution of [7] is the detirénd a treatment for
the quantifiers that is independent from the underlying psifional structure, i.e., that
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is also applicable to classical logic. While Girard’s nets aghtly connected to the
structure ofMLL~-proof nets, our presentation is closely related to Miflexkpansion
trees [1] and the recent development by McKinley [2]. Thus,oan hope for a unified
treatment of quantifiers in classical and linear logic.

7 Concluding Remarks

We have investigated the relation between deep inferendgeoof nets and the se-
quent calculus foMLL2, and we have shown that this relation is much closer than one
might expect. We did not go into the details of cut eliminatliecause from the pre-
vious sections it should be clear that everything works &bkdat in [6, 7] and [5, 18].
There are no technical surprises, and we have a conflueneaméhating cut elimina-
tion procedure for our proof nets. An important consequésnteat we have a category
of proof nets: the objects are (simple) formulas and a ap- B is a proof net with
conclusion A+, B , where the composition of maps is defined by cut eliminatfon.
detailed investigation of this category (which is *-autamuus [5]) has to be postponed
to future research. The proof identifications made in thiggpaare motivated by the
interplay between proof nets, calculus of structures, augient calculus. They should
not be considered to be the final word. For example the protsfine Girard [7] make
more identifications, and the ones by Hughes [22] make |les#ifitations. However,
there are some observations about the units to be made Herenits can be expressed
with the second-order quantifiers vias Va.[a* > a] and L = Ja.(a ® a*). An inter-
esting question to ask is whether these logical equivakesiceuld be isomorphisms in
the categorification of the logic. In the category of cohésmaces [6] they are, but in
our category of proof nets they are not: The two canonicalswapa s a] — 1 and

1 — Va.[at 2 a] are given by:

[L2(1® 1)] (1®3a.(a®a™))
NV N and ) I\ (7)
Ja(l@l), 1 1, Va.Ja" 9 q

respectively. Composing them means performing this cotiahting:

[Lo(1®1l)2(1®3a.(a®ab))] [Lo(1®3a.(a®at))
N VN - \ (8)
Fa.(1®1), 10L, Ya.[a" 9 a) .(1® 1), Va.[at 2 a]

If the two maps in (7) where isos, the result of (8) must be Hraesas the identity map
Va.[at *® a] — Va.[a" % a] which is represented by the proof net

Ja.[(at ®a)P(a®at)] )
Ja.(a®ar), Ya.[at ® a]
This is obviously not the case (even if we repladadby Ja.3a as for Theorem 5.2).
A similar situation occurs with the additive units, for whieve have) = Va.a and
T = Ja.a. Since we do not haveé and T in the language, we cannot check whether
we have these isos in our category. However, sthaad T are commonly understood
as initial and terminal objects of the category of proofs,omald ask whethéva.a and
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Ja.a have this property: We clearly have a canonical proof\fara — A for every
formula A, but it is not necessarily unique. The correct treatment of additivesuinit
proof nets is still an open problem for future research.
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