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Abstract We study some normalisation properties of the deep-inference proof
system NEL, which can be seen both as 1) an extension of multiplicative exponen-
tial linear logic (MELL) by a certain non-commutative self-dual logical operator;
and 2) an extension of system BV by the exponentials of linear logic. The in-
terest of NEL resides in: 1) its being Turing complete, while the same for MELL

is not known, and is widely conjectured not to be the case; 2) its inclusion of a
self-dual, non-commutative logical operator that, despite its simplicity, cannot be
axiomatised in any analytic sequent calculus system; 3) its ability to model the
sequential composition of processes. We present several decomposition results
for NEL and, as a consequence of those and via a splitting theorem, cut elimi-
nation. We use, for the first time, an induction measure based on flow graphs
associated to the exponentials, which captures their rather complex behaviour in
the normalisation process. The results are presented in the calculus of structures,
which is the first, developed formalism in deep inference.

Keywords: Proof theory, deep inference, calculus of structures, linear logic,
non-commutativity, cut elimination.

1 Introduction

Non-commutative logical operators have a long tradition [Lam58, Yet90, Abr91,
LMSS92, Ret97, AR00], and their proof theoretical properties have been studied
in the sequent calculus [Gen34] and in proof nets [Gir87]. Recent research has shown
that the sequent calculus is not adequate to deal with very simple forms of non-
commutativity [Gug07, GS01, Tiu06b]. On the other hand, proof nets are not ideal
for dealing with exponentials and additives, which are desirable for getting good
computational power.

In this paper (that is the fourth in a series, of which two already appeared [Gug07,
Tiu06b]) we show a logical system that joins a simple form of non-commutativity
with commutative multiplicatives and with exponentials. This is done in the deep-
inference formalism of the calculus of structures [GS01, Gug07], which overcomes
the difficulties encountered in the sequent calculus and in proof nets. This paper
contributes the following results:

http://alessio.guglielmi.name/
http://www.lix.polytechnique.fr/~lutz/
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1. We define a propositional logical system, called NEL (non-commutative ex-
ponential linear logic), which extends MELL (multiplicative exponential linear
logic [Gir87]) by a non-commutative, self-dual logical operator called seq. This
system, which was first presented in [GS01], is conservative over MELL aug-
mented by the mix and nullary mix rules [AJ94, FR94, Ret93]. System NEL

can equivalently be considered an extension of system BV [Gug07, Tiu06b] by
the exponentials of linear logic. System NEL can be immediately understood by
anybody acquainted with the sequent calculus, and is aimed at the same range
of applications as MELL. In nearly all computer science languages, sequential
composition plays a fundamental role, and it is therefore important to address
it in a direct way, in logical representations of those languages. Perhaps sur-
prisingly, parallel composition has been much easier to deal with, due to its
commutative nature, which is more similar to the typical nature of traditional
logics. The addition of seq opens new syntactic possibilities, for example in
dealing with process algebras. It has been used already, in the purely multi-
plicative setting of system BV, to model prefixing in CCS [Bru02]. Languages
and implementations have been realised, based on these deep-inference notions
[Kah05a, Kah05b, Kah07a, Kah07b, Rei07, Kah06a].

2. We prove for NEL a property called decomposition (first pioneered in [GS01,
Str03b]): we can transform every derivation into an equivalent one, composed
of up to eleven derivations carried into up to eleven disjoint subsystems of NEL.
We can study small subsystems of NEL in isolation and then compose them
together with considerable more freedom than in the sequent calculus, where,
for example, contraction can not be isolated in a derivation. Decomposition
is made available in the calculus of structures by exploiting a new top-down
symmetry of derivations. Since it is a basic compositional result, we expect
applications to be very broad in range; we are especially excited about the
possibilities in the semantics of derivations.

3. We prove cut elimination for NEL by use of decomposition and a technique that
we call splitting (first pioneered in [Gug07]). In the calculus of structures, the
traditional methods for proving cut elimination fail, due to the more general
applicability of inference rules. The deep reason for this is in how the calculus
deals with associativity. Splitting theorems are a uniform means of recovering
control over the way logical operators associate; they allow us to manage the
complex inductions required. The cut elimination argument becomes modular,
because we can reduce the cut rule to several more primitive inference rules,
each of which is separately shown admissible by way of splitting. Only one
of these rules (an atomic form of cut) is infinitary, all the others enjoy the
subformula property and can be used to extend the system without affecting
provability. It is worth noting that this result about splitting holds also in the
restriction of MELL (without mix and nullary mix), and is thus an alternative
proof of cut elimination for that fragment of linear logic.

The points above correspond, respectively, to Sections 2, 3 and 4. Readers who are
not interested in the proof theory of system NEL can just read Section 2.
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Other systems extending linear logic with non-commutative operators are studied in
[AR00, Rue00]. These are more traditional systems in the sequent calculus, for which
a more limited proof theory can be developed. However, the calculus of structures
allows us to design much simpler logics, while retaining analyticity, as witnessed by
the fact that we have just one self-dual non-commutative operator instead of two dual
ones.

While the techniques of decomposition and splitting have been presented in iso-
lation previously, for different logics, they have not been used together, like in this
paper. It appears that decomposition, in isolation, would be insufficient for proving
cut elimination for NEL, while it seems to be possible to achieve cut elimination via
splitting only (we leave this for future work). Anyway, decomposition provides for
a much more refined analysis of proofs than otherwise possible. The main results of
this paper have already been presented, without proof, in [GS02]. For several years,
the proofs of the statements have been available in a manuscript on the web. The
proofs in this paper are now much clearer and use a more efficient induction measure,
the result of the familiarity that we acquired in a few years with normalisation in the
calculus of structures.

We conclude this Introduction by a quick overview of deep inference and its main
results, so to put this work in the context of this relatively new area of proof theory.
The calculus of structures is the simplest formalism conceivable in deep inference,
and, to a very large extent, its proof theory and its relations with computer science
are now understood. Briefly, its achievements beyond what we consider here are:

• Classical [Brü03a, Brü03b, Brü06a, Brü06b, Brü06d, BG04, BT01, GG07, Str07a],
intuitionistic [Tiu06a, Hor06], linear [Str03a, Str03b, Str02] and several modal
logics [Brü06c, GT07, Hei05, SS05, Sto04, Sto07, Str07b] are expressed in ana-
lytic systems. Contrary to deep inference, Gentzen’s methodology has difficul-
ties dealing with modal logics, to the point that for many of them no analytic
proof systems outside of deep inference are known. In particular, modal logics
B and K5, which do not enjoy analytic presentations in Gentzen’s formalisms,
are expressed by simple analytic systems [Brü06c]. Proof search systems have
been implemented for several logics [Kah04, Kah06a, Kah06b].

• Most deep-inference deductive systems consist entirely of local inference rules
[Brü06d, DG04, Gug07, Sto07, Str02, Tiu06a]; a local inference rule is one
whose computational complexity is a constant. Locality is a difficult property
to achieve, and it is almost never achievable with Gentzen’s methods [Brü03c],
because of the necessity of duplicating formulae of unbounded size (lack of
linearity). Thanks to locality, we could discover a new class of proof nets for
classical logic [LS05b, LS05a, Str05a, Str05b] and linear logic with units [SL04,
LS06]. Proof nets play a crucial role in understanding semantics of proofs
(see [Gui06, Lam07, LS05a, LS06, McK05, McK06, Str07c] for deep-inference
contributions).

• Some recent results show that deep inference allows for analytic formalisms
that are exponentially more efficient than Gentzen’s ones [BG07, Jap07], so
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contributing to the research on complexity lower bounds.

There are gentler introductions to deep inference and the calculus of structures
than this paper. In general, we recommend [Brü03b]. The web page

http://alessio.guglielmi.name/res/cos

provides several pieces of introductory material, from different points of view.

2 The System

We call calculus a formalism, like natural deduction or the sequent calculus, for
specifying logical systems. We say (deductive) system to indicate a collection of
inference rules in a given calculus.

When defining a system in the sequent calculus one first has to define a language
of formulae and sequents. Similarly, a system in the calculus of structures requires
a language of structures, which are intermediate expressions between formulae and
sequents.

We now define the language for system NEL and its variants. Intuitively, [S1 O · · · O Sh ]
corresponds to a sequent ⊢ S1, . . . , Sh in linear logic, whose formulae are essentially
connected by pars, subject to commutativity (and associativity). The structure
(S1 ² · · · ² Sh) corresponds to the associative and commutative tensor connection of
S1, . . . , Sh. The structure 〈S1 ⊳ · · · ⊳ Sh〉 is associative and non-commutative: this
corresponds to the new logical operator, called seq , that we add to those of MELL.

For reasons explained in [Gug07, GS01], dealing with seq involves adding the rules
mix and its nullary version mix0 (see [FR94, Ret93, AJ94]):

⊢ Φ ⊢ Ψ
mix and

⊢ Φ, Ψ
mix0 .

⊢

This has the effect of collapsing the multiplicative units 1 and ⊥: we will only have
one unit ◦ common to par, times and seq.

Please notice that mix and mix0 are not an artefact of the calculus of structures.
See [Str03b, Str02, Str03a] for systems that do not involve mix.

2.1 Definition There are countably many positive and negative atoms. They,
positive or negative, are denoted by a, b, . . . . Structures are denoted by S, P , Q, R,
T , U , V , W , X and Z. The structures of the language NEL are generated by

S ::= a | ◦ | [ S O · · · O S
︸ ︷︷ ︸

>0

] | ( S ² · · · ² S
︸ ︷︷ ︸

>0

) | 〈S ⊳ · · · ⊳ S
︸ ︷︷ ︸

>0

〉 | ?S | !S | S̄ ,

where ◦, the unit, is not an atom and S̄ is the negation of the structure S. Structures
with a hole that does not appear in the scope of a negation are denoted by S{ }.
The structure R is a substructure of S{R}, and S{ } is its context. We simplify the

http://alessio.guglielmi.name/res/cos
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Associativity

[ ~R O [ ~T ] O ~U ] = [ ~R O ~T O ~U ]

(~R ² (~T ) ² ~U) = (~R ² ~T ² ~U)

〈~R ⊳ 〈~T 〉 ⊳ ~U〉 = 〈~R ⊳ ~T ⊳ ~U〉

Commutativity

[ ~R O ~T ] = [ ~T O ~R]

(~R ² ~T ) = (~T ² ~R)

Unit

[◦ O ~R] = [ ~R]

(◦ ² ~R) = (~R)

〈◦ ⊳ ~R〉 = 〈~R〉

〈~R ⊳ ◦〉 = 〈~R〉

Singleton

[R] = (R) = 〈R〉 = R

Negation

◦ = ◦

[R1 O · · · O Rh ] = (R̄1 ² · · · ² R̄h)

(R1 ² · · · ² Rh) = [R̄1 O · · · O R̄h ]

〈R1 ⊳ · · · ⊳ Rh〉 = 〈R̄1 ⊳ · · · ⊳ R̄h〉

?R = !R̄

!R = ?R̄
¯̄R = R

Contextual Closure

if R = T then S{R} = S{T}

Figure 1: Basic equations for the syntactic equivalence =

indication of context in cases where structural parentheses fill the hole exactly: for
example, S [R O T ] stands for S{[R O T ]}.

Structures come with equational theories establishing some basic, decidable alge-
braic laws by which structures are indistinguishable. These are analogous to the laws
of associativity, commutativity, idempotency, and so on, usually imposed on sequents.
The difference is that we merge the notions of formula and sequent, and we extend
the equations to formulae. The structures of the language NEL are equivalent modulo
the relation =, defined in Figure 1. There, ~R, ~T and ~U stand for finite, non-empty
sequences of structures (elements of the sequences are separated by O, ⊳, or ², as
appropriate in the context).

2.2 Definition An (inference) rule is any scheme

T
ρ

R
,

where ρ is the name of the rule, T is its premise and R is its conclusion; R or T ,
but not both, may be missing. Rule names are denoted by ρ. A (deductive) system,
denoted by S , is a set of rules. A derivation in a system S is a finite chain of instances
of rules of S , and is denoted by ∆; a derivation can consist of just one structure.
The topmost structure in a derivation is called its premise; the bottommost structure
is called conclusion. A derivation ∆ whose premise is T , conclusion is R, and whose
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rules are in S is denoted by
T

S
‖
‖ ∆

R

.

The typical inference rules are of the kind

S{T}
ρ

S{R}
.

This rule scheme ρ specifies that if a structure matches R, in a context S{ }, it can
be rewritten as specified by T , in the same context S{ } (or vice versa if one reasons
top-down). A rule corresponds to implementing in the deductive system any axiom
T ⇒ R, where ⇒ stands for the implication we model in the system, in our case
linear implication. The case where the context is empty corresponds to the sequent
calculus. For example, the linear logic sequent calculus rule

⊢ A, Φ ⊢ B,Ψ
²

⊢ A ² B,Φ, Ψ

could be simulated easily in the calculus of structures by the rule

(Γ ² [A O Φ] ² [B O Ψ])
²

′

(Γ ² [(A ² B) O Φ O Ψ])
,

where Φ and Ψ stand for multisets of formulae or their corresponding par struc-
tures. The structure Γ stands for the times structure of the other hypotheses in the
derivation tree. More precisely, any sequent calculus derivation

⊢ Γ1 · · · ⊢ Γi−1

⊢ A, Φ ⊢ B,Ψ
²

⊢ A ² B,Φ, Ψ ⊢ Γi+1 · · · ⊢ Γh

llllllllllllllllllllRRRRRRRRRRRRRRRRRRRR

∆

⊢ Σ

containing the ² rule can by simulated by

(Γ′
1

² . . . ² Γ′
i−1

² [A′ O Φ′ ] ² [B′ O Ψ′ ] ² Γ′
i+1

² . . . ² Γ′
h)

²
′

(Γ′
1

² . . . ² Γ′
i−1

² [(A′ ² B′) O Φ′ O Ψ′ ] ² Γ′
i+1

² . . . ² Γ′
h)

‖
‖

∆′

Σ′

,

in the calculus of structures, where Γ′
j , A′, B′, Φ′, Ψ′, ∆′ and Σ′ are obtained from

their counterparts in the sequent calculus by the obvious translation. This means
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that by this method every system in the one-sided sequent calculus can be ported
trivially to the calculus of structures.

Of course, in the calculus of structures, rules could be used as axioms of a generic
Hilbert system, where there is no special, structural relation between T and R: then
all the good proof theoretical properties of sequent systems would be lost. We will
be careful to design rules in a way that is conservative enough to allow us to prove
cut elimination, and such that they possess the subformula property.

In our systems, rules come in pairs,

S{T}
ρ↓

S{R}
(down version) and

S{R̄}
ρ↑

S{T̄}
(up version) .

Sometimes rules are self-dual, i.e., the up and down versions are identical, in which
case we omit the arrows. This duality derives from the duality between T ⇒ R and
R̄ ⇒ T̄ , where ⇒ is the implication and (̄·) the negation of the logic. In the case of
NEL these are linear implication and linear negation. We will be able to get rid of the
up rules without affecting provability—after all, T ⇒ R and R̄ ⇒ T̄ are equivalent
statements in many logics. Remarkably, the cut rule reduces into several up rules,
and this makes for a modular decomposition of the cut elimination argument because
we can eliminate up rules one independently from the other.

Let us now define system NEL by starting from an up-down symmetric variation,
that we call SNEL. It is made by two sub-systems that we will call conventionally
interaction and structure. The interaction fragment deals with negation, i.e., duality.
It corresponds to identity and cut in the sequent calculus. In our calculus these
rules become mutually top-down symmetric and both can be reduced to their atomic
counterparts.

The structure fragment corresponds to logical and structural rules in the sequent
calculus; it defines the logical operators. Differently from the sequent calculus, the
operators need not be defined in isolation, rather complex contexts can be taken into
consideration. In the following system we consider pairs of logical relations, one inside
the other.

2.3 Definition In Figure 2, system SNEL is shown (symmetric non-commutative
exponential linear logic). The rules ai↓, ai↑, s, q↓, q↑, p↓, p↑, e↓, e↓, w↓, w↑, b↓, b↑, g↓,
and g↑ are called respectively atomic interaction, atomic cut, switch, seq, coseq, pro-
motion, copromotion, empty, coempty, weakening, coweakening, absorption, coabsorp-
tion, digging, and codigging. The down fragment of SNEL is {ai↓, s, q↓, p↓, e↓, w↓, b↓, g↓},
the up fragment is {ai↑, s, q↑, p↑, e↑, w↑, b↑, g↑}.

There is a straightforward two-way correspondence between structures not involv-
ing seq and formulae of MELL: for example

![(?a ² b) O c̄ O !d̄] corresponds to !((?a ² b)O c⊥ O !d⊥) ,

and vice versa. Units are mapped into ◦ (since 1 ≡ ⊥, when mix and mix0 are
added to MELL). System SNEL is just the merging of systems SBV and SELS shown
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S{◦}
ai↓

S [a O ā]

S(a ² ā)
ai↑

S{◦}

S([R O U ] ² T )
s
S [(R ² T ) O U ]

S〈[R O U ] ⊳ [T O V ]〉
q↓

S [〈R ⊳ T 〉 O 〈U ⊳ V 〉]

S(〈R ⊳ U〉 ² 〈T ⊳ V 〉)
q↑

S〈(R ² T ) ⊳ (U ² V )〉

S{![R O T ]}
p↓

S [!R O ?T ]

S(?R ² !T )
p↑

S{?(R ² T )}

S{◦}
e↓

S{!◦}

S{?◦}
e↑

S{◦}

S{◦}
w↓

S{?R}

S{!R}
w↑

S{◦}

S [?R O R]
b↓

S{?R}

S{!R}
b↑

S(!R ² R)

S{??R}
g↓

S{?R}

S{!R}
g↑

S{!!R}

Figure 2: System SNEL

in [Gug07, GS01, Str03b, Str03a]; there one can find details on the correspondence
between our systems and linear logic.1 The rules s, q↓ and q↑ are the same as in
pomset logic viewed as a calculus of cographs [Ret99].

All equations are typical of a sequent calculus presentation, save those for units
and contextual closure. Contextual closure just corresponds to equivalence being
a congruence, it is a necessary ingredient of the calculus of structures. All other
equations can be removed and replaced by rules (see, e.g., [Str05a]), as in the sequent
calculus. This might prove necessary for certain applications. For our purposes, this
setting makes for a much more compact presentation, at a more effective abstraction

1Note that there is a change of our system with respect to the system SELS in [Str03b] and the
version of SNEL presented in the conference version [GS02] of this paper: Here we have added the
rules e↓, e↑, g↓, and g↑, whereas previously we used the equations ??R = ?R and !!R = !R, as well as
!◦ = ◦ = ?◦ in [GS02] and !1 = 1 and ?⊥ = ⊥ in [Str03b] (see also [Str03a]). From the viewpoint of
provability, there is no difference between the two approaches, but certain properties of the system
(e.g., decomposition, see Section 3) can be demonstrated in a cleaner way. Also from the viewpoint of
denotational semantics, our system is now easier accessible. For example in coherence spaces [Gir87]
we do not have an isomorphism between !R and !!R.
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level.

Negation is involutive and can be pushed to atoms; it is convenient always to
imagine it directly over atoms. Please note that negation does not swap arguments
of seq, as happens in the systems of Lambek [Lam58] and Abrusci-Ruet [AR00]. The
unit ◦ is self-dual and common to par, times and seq. One may think of it as a
convenient way of expressing the empty sequence. Rules become very flexible in the
presence of the unit. For example, the following notable derivation is valid:

(a ² b)
q↑

〈a ⊳ b〉
q↓

[a O b]

≡

(a ² b)
=

(〈a ⊳ ◦〉 ² 〈◦ ⊳ b〉)
q↑

〈(a ² ◦) ⊳ (◦ ² b)〉
=

〈a ⊳ b〉
=

〈[a O ◦] ⊳ [◦ O b]〉
q↓

[〈a ⊳ ◦〉 O 〈◦ ⊳ b〉]
=

[a O b]

.

The right-hand side above is just a complicated way of writing the left-hand side.
Using the “fake inference rule =” sometimes eases the reading of a derivation.

Each inference rule in Figure 2 corresponds to a linear implication that is sound
in MELL plus mix and mix0. For example, promotion corresponds to the implication
!(R O T ) ⊸ (!R O ?T ). Notice that interaction and cut are atomic in SNEL; we can
define their general versions as follows.

2.4 Definition The following rules are called interaction and cut :

S{◦}
i↓

S [R O R̄]
and

S(R ² R̄)
i↑

S{◦}
,

where R and R̄ are called principal structures.

The sequent calculus rule

⊢ A, Φ ⊢ A⊥, Ψ
cut

⊢ Φ, Ψ

is realised as
([A O Φ] ² [Ā O Ψ])

s
[([A O Φ] ² Ā) O Ψ]

s
[(A ² Ā) O Φ O Ψ]

i↑ ,
[Φ O Ψ]

where Φ and Ψ stand for multisets of formulae or their corresponding par structures.
Notice how the tree shape of derivations in the sequent calculus is realised by making
use of tensor structures: in the derivation above, the premise corresponds to the two
branches of the cut rule. For this reason, in the calculus of structures rules are allowed
to access structures deeply nested into contexts.
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The cut rule in the calculus of structures can mimic the classical cut rule in the
sequent calculus in its realisation of transitivity, but it is much more general. We
believe a good way of understanding it is in thinking of the rule as being about
lemmas in context. The sequent calculus cut rule generates a lemma valid in the
most general context; the new cut rule does the same, but the lemma only affects the
limited portion of structure that can interact with it.

We easily get the next two propositions, which say: 1) The interaction and cut
rules can be reduced into their atomic forms—note that in the sequent calculus it
is possible to reduce interaction to atomic form, but not cut. 2) The cut rule is as
powerful as the whole up fragment of the system, and vice versa.

2.5 Definition A rule ρ is derivable in the system S if ρ /∈ S and

for every instance
T

ρ
R

there exists a derivation

T

S
‖
‖ ∆

R

.

The systems S and S ′ are strongly equivalent if

for every derivation

T

S
‖
‖ ∆

R

there exists a derivation

T

S ′ ‖
‖ ∆′

R

,

and vice versa.

2.6 Proposition The rule i↓ is derivable in {ai↓, s, q↓, p↓, e↓}, and, dually, the
rule i↑ is derivable in the system {ai↑, s, q↑, p↑, e↑}.

Proof: Induction on principal structures. We show the inductive cases for i↑:

S(P ² Q ² [P̄ O Q̄])
s
S(Q ² [(P ² P̄ ) O Q̄])

s
S [(P ² P̄ ) O (Q ² Q̄)]

i↑, i↑
S [◦ O ◦]

=
S{◦}

S(〈P ⊳ Q〉 ² 〈P̄ ⊳ Q̄〉)
q↑

S〈(P ² P̄ ) ⊳ (Q ² Q̄)〉
i↑, i↑

S〈◦ ⊳ ◦〉
=

S{◦}

S(?P ² !P̄ )
p↑

S{?(P ² P̄ )}
i↑

S{?◦}
e↑

S{◦}

.

The cases for i↓ are dual. ⊓⊔

Note that in the proof above we tacitly used (for the sake of saving paper) another
helpful notation: writing i↑, i↑ just means that two instances of i↑ applied one after
the other, where the order does not matter.

2.7 Proposition Each rule ρ↑ in SNEL is derivable in {i↓, i↑, s, ρ↓}, and, dually,
each rule ρ↓ in SNEL is derivable in the system {i↓, i↑, s, ρ↑}.
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◦↓
◦

S{◦}
ai↓

S [a O ā]

S{◦}
e↓

S{!◦}

S([R O U ] ² T )
s
S [(R ² T ) O U ]

S〈[R O U ] ⊳ [T O V ]〉
q↓

S [〈R ⊳ T 〉 O 〈U ⊳ V 〉]

S{![R O T ]}
p↓

S [!R O ?T ]

S{◦}
w↓

S{?R}

S [?R O R]
b↓

S{?R}

S{??R}
g↓

S{?R}

Figure 3: System NEL

Proof: Each instance
S{T}

ρ↑
S{R}

can be replaced by
S{T}

i↓
S(T ² [R O R̄])

s
S [R O (T ² R̄)]

ρ↓
S [R O (T ² T̄ )]

i↑
S{R}

and dually. ⊓⊔

In the calculus of structures, we call core the set of rules that is used to reduce
interaction and cut to atomic form. We use the term hard core to denote the set of
rules in the core other than atomic interaction/cut and empty/coempty. Rules that
are not in the core are called non-core.

2.8 Definition The core of SNEL is {ai↓, ai↑, s, q↓, q↑, p↓, p↑, e↓, e↑}, denoted by
SNELc. The hard core, denoted by SNELh, is {s, q↓, q↑, p↓, p↑}, and the non-core is
{w↓, w↑, b↓, b↑, g↓, g↑}.

System SNEL is up-down symmetric, and the properties we saw are also symmetric.
Provability is an asymmetric notion: we want to observe the possible conclusions that
we can obtain from a unit premise. We now break the up-down symmetry by adding
an inference rule with no premise, and we join this logical axiom to the down fragment
of SNEL.

2.9 Definition The following rule is called unit :

◦↓
◦

.

System NEL is shown in Figure 3.

As an immediate consequence of Propositions 2.6 and 2.7 we get:
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2.10 Proposition The systems NEL ∪ {i↑} and SNEL ∪ {◦↓} are strongly equiv-
alent.

2.11 Definition A derivation with no premise is called a proof, denoted by Π.
A system S proves R if there is in the system S a proof Π whose conclusion is R,
written −

S
‖
‖ Π

R
.

We say that a rule ρ is admissible for the system S if ρ /∈ S and

for every proof

−
S ∪ {ρ} ‖

‖ Π

R
there is a proof

−
S

‖
‖ Π′

R
.

Two systems are equivalent if they prove the same structures.

Except for cut and coweakening, all rules in the systems SNEL and NEL enjoy
a subformula property (which we treat as an asymmetric property, by going from
conclusion to premise): premises are made of substructures of the conclusions.

To get cut elimination, so as to have a system whose rules all enjoy the subformula
property, we could just get rid of ai↑ and w↑, by proving their admissibility for the
other rules. But we can do more than that: the whole up fragment of SNEL (except
for s which also belongs to the down fragment) is admissible. This entails a modular
scheme for proving cut elimination. In Sections 3 and 4 we will give the proof of the
cut elimination theorem:

2.12 Theorem System NEL is equivalent to SNEL ∪ {◦↓}.

2.13 Corollary The rule i↑ is admissible for system NEL.

Any linear implication T ⊸ R, i.e., [T̄ O R], is connected to derivability by:

2.14 Corollary For any two structures T and R, we have

T

SNEL
‖
‖

R

if and only if

−
NEL

‖
‖

[T̄ O R]
.

Proof: For the first direction, perform the following transformations:

T

SNEL
‖
‖ ∆

R

1
;

[T̄ O T ]

SNEL
‖
‖ ∆′

[T̄ O R]

2
;

◦↓
◦

i↓
[T̄ O T ]

SNEL
‖
‖ ∆′

[T̄ O R]

3
;

−
NEL

‖
‖ Π

[T̄ O R]
.
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In the first step we replace each structure S occurring inside ∆ by [T̄ O S ], or, in
other words, the derivation ∆′ is obtained by putting ∆ into the context [T̄ O { }].
This is then transformed into a proof by adding an instance of i↓ and ◦↓. Then we
apply Proposition 2.6 and cut elimination (Theorem 2.12) to obtain a proof in system
NEL. For the other direction, we proceed as follows:

−
NEL

‖
‖ Π

[T̄ O R]
;

◦

NEL \ {◦↓} ‖
‖ ∆

[T̄ O R]

;

T

NEL \ {◦↓} ‖
‖ ∆′

(T ² [T̄ O R])
s

[(T ² T̄ ) O R]
i↑

R

;

T

SNEL
‖
‖

R

,

where the first two steps are trivial, and the last one is an application of Proposi-
tion 2.6. ⊓⊔

It is easy to prove that system NEL is a conservative extension of MELL plus mix

and mix0 (see [Gug07, Str03a]). The locality properties shown in [GS01, Str03b] still
hold in this system, of course. In particular, the promotion rule is local, as opposed
to the same rule in the sequent calculus.

3 Decomposition

The new top-down symmetry of derivations in the calculus of structures allows to
study properties that are not observable in the sequent calculus. The most remarkable
results so far are decomposition theorems. In general, a decomposition theorem says
that a given system S can be divided into n pairwise disjoint subsystems S1, . . . ,
Sn such that every derivation ∆ in system S can be rearranged as composition of n
derivations ∆1, . . . , ∆n, where ∆i uses only rules of Si, for every 1 ≤ i ≤ n.

System SNEL can be decomposed into eleven subsystems, and there are many
different possibilities to transform a derivation into eleven subderivations. We state
here only four of them, but, due to the modular proof, the others are evident.
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3.1 Theorem (Decomposition) For every derivation

T

∆ ‖
‖ SNEL

R

there are deriva-
tions

T

{e↓} ‖
‖
P1

{g↑} ‖
‖
P2

{b↑} ‖
‖
P3

{ai↓} ‖
‖
P4

{w↓} ‖
‖
P5

SNELh
‖
‖

Q5

{w↑} ‖
‖

Q4

{ai↑} ‖
‖

Q3

{b↓} ‖
‖

Q2

{g↓} ‖
‖

Q1

{e↑} ‖
‖
R

T

{g↑} ‖
‖
U1

{b↑} ‖
‖
U2

{e↓} ‖
‖
U3

{w↓} ‖
‖
U4

{ai↓} ‖
‖
U5

SNELh
‖
‖
V5

{ai↑} ‖
‖
V4

{w↑} ‖
‖
V3

{e↑} ‖
‖
V2

{b↓} ‖
‖
V1

{g↓} ‖
‖
R

T

{e↓} ‖
‖

W1

{g↑} ‖
‖

W2

{b↑} ‖
‖

W3

{w↑} ‖
‖

W4

{ai↓} ‖
‖

W5

SNELh
‖
‖
Z5

{ai↑} ‖
‖
Z4

{w↓} ‖
‖
Z3

{b↓} ‖
‖
Z2

{g↓} ‖
‖
Z1

{e↑} ‖
‖
R

T

{g↑} ‖
‖
T1

{b↑} ‖
‖
T2

{w↑} ‖
‖
T3

{e↓} ‖
‖
T4

{ai↓} ‖
‖
T5

SNELh
‖
‖

R5

{ai↑} ‖
‖

R4

{e↑} ‖
‖

R3

{w↓} ‖
‖

R2

{b↓} ‖
‖

R1

{g↓} ‖
‖
R

For simplicitity we will in the following call the four statements first, second, third,
and fourth decomposition (from left to right).

Apart from a decomposition into eleven subsystems, the first and the second de-
composition can also be read as a decomposition into three subsystems that could
be called creation, merging and destruction. In the creation subsystem, each rule
increases the size of the structure; in the merging system, each rule does some re-
arranging of substructures, without changing the size of the structures; and in the
destruction system, each rule decreases the size of the structure. Here, the size of
the structure incorporates not only the number of atoms in it, but also the modality-
depth for each atom. In a decomposed derivation, the merging part is in the middle of
the derivation, and (depending on your preferred reading of a derivation) the creation
and destruction are at the top and at the bottom, as shown in the left of Figure 4.
In system SNEL the merging part contains the rules s, q↓, q↑, p↓ and p↑, which coin-
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T

T ′

creation
¥¯

DL

destruction

R′

KS

merging
®¶

R

destruction
¥¯

creation

DL

T

empty modality (down) ‖
‖
T ′

noncore (up) ‖
‖

T ′′

interaction (down) ‖
‖

T ′′′

hard core (up and down) ‖
‖

R′′′

interaction (up) ‖
‖

R′′

noncore (down) ‖
‖
R′

empty modality (up) ‖
‖
R

T

noncore (up) ‖
‖
T ′

core (up and down) ‖
‖
R′

noncore (down) ‖
‖
R

Figure 4: Readings of the decompositions

cides with the hard core. In the top-down reading of a derivation, the creation part
contains the rules e↓, g↑, b↑, w↓ and ai↓, and the destruction part consists of e↑, g↓,
b↓, w↑ and ai↑. In the bottom-up reading, creation and destruction are exchanged.

Note that this kind of decomposition (creation, merging, destruction) is quite typi-
cal for logical systems presented in the calculus of structures, and is not restricted to
system SNEL. It holds, for example, also for systems SBV and SELS [GS01, Str03b],
for classical logic [BT01], and for full propositional linear logic [Str02].

The third decomposition allows a separation between hard core and noncore of
the system, such that the up fragment and the down fragment of the noncore are
not merged, as it is the case in the first and second decomposition. More precisely,
we can separate the seven subsystems shown in the middle of Figure 4. The fourth
decompostion is even stronger in this respect: it allows a complete separation between
core and noncore, as shown on the right of Figure 4. This decomposition also plays
a crucial rule for the cut elimination argument. Recall that cut elimination means to
get rid of the entire up-fragment. Because of the decomposition, the elimination of
the non-core up-fragment is now trivial (see Section 4 for details). Furthermore, recall
that for cut elimination in the sequent calculus, the most problematic cases are usually
the ones where cut interacts with rules like contraction and weakening, and that in
our system these rules appear as the non-core down rules. In the third decomposition
these are below the actual cut rules (i.e., the core up rules, cf. Propositions 2.6,
2.7, and 2.10) and can therefore no longer interfere with the cut elimination. This
considerably simplifies our cut elimination argument in Section 4.
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T

SNEL
‖
‖
R

1
−→

T

{e↓}
‖
‖

W1

S1
‖
‖

Z1

{e↑}
‖
‖
R

2
−→

T

{e↓}
‖
‖

W1

{g↑, b↑, w↑}
‖
‖

W4

S2
‖
‖

Z4

{g↓, b↓, w↓}
‖
‖

Z1

{e↑}
‖
‖
R

3
−→

T

{e↓}
‖
‖

W1

{g↑}
‖
‖

W2

{b↑}
‖
‖

W3

{w↑}
‖
‖

W4

S2
‖
‖

Z4

{w↓}
‖
‖

Z3

{b↓}
‖
‖

Z2

{g↓}
‖
‖

Z1

{e↑}
‖
‖
R

4
−→

T

{e↓}
‖
‖

W1

{g↑}
‖
‖

W2

{b↑}
‖
‖

W3

{w↑}
‖
‖

W4

{ai↓}
‖
‖

W5

SNELh
‖
‖

Z5

{ai↑}
‖
‖

Z4

{w↓}
‖
‖

Z3

{b↓}
‖
‖

Z2

{g↓}
‖
‖

Z1

{e↑}
‖
‖
R

5
−→

T

{g↑}
‖
‖
T1

{b↑}
‖
‖
T2

{w↑}
‖
‖
T3

{e↓}
‖
‖
T4

{ai↓}
‖
‖
T5

SNELh
‖
‖

R5

{ai↑}
‖
‖

R4

{e↑}
‖
‖

R3

{w↓}
‖
‖

R2

{b↓}
‖
‖

R1

{g↓}
‖
‖
R

Figure 5: Obtaining the third and fourth decomposition

However, it is well-known that there is no free lunch. We cannot expect that the
proof of the decomposition theorem is trivial. At least, we have to expect problems
when the non-core rules (which in case of SNEL do all deal with the modalities ! and
?) do interact with the rules p↓ and p↑ (which are the only core rules that properly
deal with ! and ?). The good news is that these are the only cases where the proof of
the decomposition theorem becomes problematic.

We will now continue with a very brief sketch of the proof and in the remainder of
the section we will fill in the details.

Proof of Theorem 3.1 (Sketch): The third and fourth decomposition are ob-
tained via the five steps shown in Figure 5, where S1 = SNEL \ {e↓, e↑} and S2 =
{ai↓, ai↑} ∪ SNELh. The first and second decomposition are reached as shown in Fig-
ure 6, where S3 = {ai↓, ai↑, w↓, w↑}∪SNELh. Some explanation: Step 1 is performed
via a rather simple rule permutation. The rule e↓ is permuted up in the derivation,
and the rule e↑ is permuted down via the dual procedure. The concept of permuting
rules in the calculus of structures is explained in more detail in Section 3.1. Step 2
is the most critical one. In some sense it can also be considered as a simple rule
permutation. However, contrary to Step 1, it is not obvious at all that Step 2 does



A System of Interaction and Structure IV: The Exponentials 17

T

{e↓}
‖
‖
P1

{g↑}
‖
‖
P2

{b↑}
‖
‖
P3

{ai↓}
‖
‖
P4

{w↓}
‖
‖
P5

SNELh
‖
‖

Q5

{w↑}
‖
‖

Q4

{ai↑}
‖
‖

Q3

{b↓}
‖
‖

Q2

{g↓}
‖
‖

Q1

{e↑}
‖
‖
R

7
←−

T

{e↓}
‖
‖
P1

{g↑}
‖
‖
P2

{b↑}
‖
‖
P3

S3
‖
‖

Q3

{b↓}
‖
‖

Q2

{g↓}
‖
‖

Q1

{e↑}
‖
‖
R

6
←−

T

SNEL
‖
‖
R

8
−→

T

{g↑}
‖
‖

U1

{b↑}
‖
‖

U2

{e↓}
‖
‖

U3

S3
‖
‖
V3

{e↑}
‖
‖
V2

{b↓}
‖
‖
V1

{g↓}
‖
‖
R

9
−→

T

{g↑}
‖
‖

U1

{b↑}
‖
‖

U2

{e↓}
‖
‖

U3

{w↓}
‖
‖

U4

{ai↓}
‖
‖

U5

SNELh
‖
‖
V5

{ai↑}
‖
‖
V4

{w↑}
‖
‖
V3

{e↑}
‖
‖
V2

{b↓}
‖
‖
V1

{g↓}
‖
‖
R

Figure 6: Obtaining the first and second decomposition

terminate: while permuting g↑, b↑, and w↑ up, new instances of g↓, b↓, and w↓ are
introduced, and vice versa. For showing termination, we introduce in Section 3.3 the
concept of !-?-flow-graph. Steps 3, 4 and 5 are again rather simple rule permutations
and are detailed out in Section 3.1 as well. Steps 6 and 8 are essentially the same
as Steps 1–3 and 5 with the only difference that the rules w↑ and w↓ do not need
attention. Steps 7 and 9 are only slight variations of each other and are not more
complicated than Step 4. They are also done in Section 3.1. One last remark: Treat-
ing the rules g↑, b↑, w↑ together in Step 2 and separating them afterwards in Step 3
has been done on purpose. Treating them separately from the very beginning would
not give termination in the general case. ⊓⊔

3.1 Permutation of Rules

The basic idea of permuting rules is to change the order of two consecutive rule
instances in a derivation without changing the essence of the derivation.
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3.1.1 Definition A rule π permutes over a rule ρ (or ρ permutes under π) if

for every derivation

Q
ρ

U
π

P

there is a derivation

Q
π

V
ρ

P

for some structure V .

For obtaining our decompositions, this definition is too strict. We would need, for
example, that the rule e↓ permutes over all other rules in the system, which is not
the case. We give a weaker concept:

3.1.2 Definition A rule π permutes over a rule ρ by a system S , if

for every derivation

Q
ρ

U
π

P

there is a derivation

Q
π

V
ρ

W

S
‖
‖

P

for some structures V and W . Dually, ρ permutes under π by S , if

for every derivation

Q
ρ

U
π

P

there is a derivation

Q

S
‖
‖

W
π

V
ρ

P

for some structures V and W .

Additionally, we will use the following terminology borrowed from term rewriting.
In a rule instance

S{W}
ρ

S{Z}

we call Z the redex and W the contractum of the rule’s instance. If we have Z = W ,
then the rule instance is called trivial. (This can happen because of the equational
theory and the involvement of the unit ◦.) In the following we will assume, without
loss of generality, that the trivial rule instances are removed from all derivations.

When reading this section, the reader might notice some similarity to the analysis
of critical pairs for local confluency in term rewriting. In fact, the basic idea is the
same but the conceptual goal is different, as it is shown in Figure 7.

Here is the first lemma about rule permutations:
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local confluency permutability of rules

have:

•
ρ

}}{{
{{

{{
{{ π

!!CC
CC

CC
CC

• •

•
ρ

}}{{
{{

{{
{{

•

π !!CC
CC

CC
CC

•

want:

•
ρ

}}{{
{{

{{
{{ π

!!CC
CC

CC
CC

•

S !!

•

S}}
•

•
ρ

¡¡¡¡
¡¡

¡¡
¡¡

¡ π
''NNNNNNN

•

ρ
²²

•

π
ÁÁ>

>>
>>

>>
>>

•

Sww•

or

•
ρ

¡¡¡¡
¡¡

¡¡
¡¡

¡ S

'' •

π
²²

•

π
ÁÁ>

>>
>>

>>
>>

•

ρwwppppppp

•

S is the full system S is as small and restricted as possible

Figure 7: The analysis of critical pairs for local confluency and the permutability of
rules

3.1.3 Lemma The rule e↓ permutes over the rules e↑, ai↓, ai↑, s, q↓, q↑, p↓, p↑,
w↑, and g↓ by the system {s, q↓, q↑}.

The proof of this lemma is a rather tedious case analysis in which most cases are
trivial, and some cases are nontrivial. For the sake of completeness, this time we
explain the case analysis in detail, and for similar lemmas that come later, we show
only the nontrivial cases.

Proof of Lemma 3.1.3: Consider

S{W}
ρ

S{Z}
e↓ ,

S′{Z ′}

where ρ ∈ {e↑, ai↓, ai↑, s, q↓, q↑, p↓, p↑, w↑, g↓} = SNEL \ {e↓, w↓, b↓, b↑, g↑}. We have
to check all possibilities where the contractum ◦ of e↓ can appear inside S{Z}. We
start with the two trivial cases:

(i) The contractum ◦ of e↓ is inside the context S{ }. That means that Z ′ = Z,
and we can replace

S{W}
ρ

S{Z}
e↓

S′{Z}

→

S{W}
e↓

S′{W}
ρ

S′{Z}
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(ii) The contractum ◦ of e↓ is appears inside Z, but only inside a substructure of
Z that is not affected by the rule ρ. Instead of getting too formal, we show an
example:

S([R{◦} O U ] ² T )
s
S [(R{◦} ² T ) O U ]

e↓
S [(R{!◦} ² T ) O U ]

→

S([R{◦} O U ] ² T )
e↓

S([R{!◦} O U ] ² T )
s
S [(R{!◦} ² T ) O U ]

The cases where the ◦ appears inside U or T are similar. The same situation
can occur with the rules q↓, q↑, p↓, p↑, and g↓.

The next case is in fact a subcase of (i), but for didactic resons we list it separately.

(iii) The contractum ◦ of e↓ is the redex of ρ (which is one of e↑, ai↑, w↑). Then we
have

S(a ² ā)
ai↑

S{◦}
e↓

S{!◦}

→

S(a ² ā)
=

S [(a ² ā) O ◦]
e↓

S [(a ² ā) O !◦]
ai↑

S [◦ O !◦]
=

S{!◦}

Finally, we come to the case which is nontrivial. It is the one where we need the
system {s, q↓, q↑}.

(iv) The contractum ◦ of e↓ actively interferes with the rule ρ. This can happen
because of the equational theory for ◦.

(a) Let ρ = ai↓ and consider the two derivations:

S{◦}
ai↓

S [a O ā]
=

S [(a ² ◦) O ā]
e↓

S [(a ² !◦) O ā]

and

S{◦}
ai↓

S [a O ā]
=

S [〈a ⊳ ◦〉 O ā]
e↓

S [〈a ⊳ !◦〉 O ā]

They can be replaced by

S{◦}
=

S(◦ ² ◦)
e↓

S(◦ ² !◦)
ai↓

S([a O ā] ² !◦)
s
S [(a ² !◦) O ā]

and

S{◦}
=

S〈◦ ⊳ ◦〉
e↓

S〈◦ ⊳ !◦〉
ai↓

S〈[a O ā] ⊳ !◦〉
q↓

S [〈a ⊳ !◦〉 O ā]

respectively. Here we used the rules s and q↓ to move the redex !◦ of e↓ out
of the way of the rule ai↓ such that the situation could be handled similarly
to case (i). A similar situation can occur with the rules s, p↓, and q↓. We
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will not show all possibilities here, but it should be clear that they all work
because of the same principle. We content ourselves of presenting only the
most complicated case (where ρ = q↓):

S〈[〈R ⊳ R′〉 O U ] ⊳ [〈T ⊳ T ′〉 O V ]〉
q↓

S [〈R ⊳ R′ ⊳ T ⊳ T ′〉 O 〈U ⊳ V 〉]
=

S [〈R ⊳ (〈R′ ⊳ T 〉 ² ◦) ⊳ T ′〉 O 〈U ⊳ V 〉]
e↓

S [〈R ⊳ (〈R′ ⊳ T 〉 ² !◦) ⊳ T ′〉 O 〈U ⊳ V 〉]

→

S〈[〈R ⊳ R′〉 O U ] ⊳ [〈T ⊳ T ′〉 O V ]〉
=

S(〈[〈R ⊳ R′〉 O U ] ⊳ [〈T ⊳ T ′〉 O V ]〉 ² ◦)
e↓

S(〈[〈R ⊳ R′〉 O U ] ⊳ [〈T ⊳ T ′〉 O V ]〉 ² !◦)
q↓

S( [〈R ⊳ R′ ⊳ T ⊳ T ′〉 O 〈U ⊳ V 〉] ² !◦)
s
S [(〈R ⊳ R′ ⊳ T ⊳ T ′〉 ² !◦) O 〈U ⊳ V 〉]

q↑
S [〈R ⊳ (〈R′ ⊳ T ⊳ T ′〉 ² !◦)〉 O 〈U ⊳ V 〉]

q↑
S [〈R ⊳ (〈R′ ⊳ T 〉 ² !◦) ⊳ T ′〉 O 〈U ⊳ V 〉]

Here, two instances of q↑ and one instance of s are needed to move the !◦
out of the way of q↓.

(b) Let ρ = p↑ and consider the two derivations

S(?(R ² R′) ² !(T ² T ′))
p↑

S{?(R ² R′ ² T ² T ′)}
=

S{?(R ² [(R′ ² T ) O ◦] ² T ′)}
e↓

S{?(R ² [(R′ ² T ) O !◦ ] ² T ′)}

and

S(?(R ² R′) ² !(T ² T ′))
p↑

S{?(R ² R′ ² T ² T ′)}
=

S{?(R ² 〈(R′ ² T ) ⊳ ◦〉 ² T ′)}
e↓

S{?(R ² 〈(R′ ² T ) ⊳ !◦〉 ² T ′)}

which can be replaced by:

S(?(R ² R′) ² !(T ² T ′))
=

S(?(R ² [R′ O ◦]) ² !(T ² T ′))
e↓

S(?(R ² [R′ O !◦ ]) ² !(T ² T ′))
p↑

S{?(R ² [R′ O !◦] ² T ² T ′)}
s
S{?(R ² [(R′ ² T ) O !◦] ² T ′)}

and

S(?(R ² R′) ² !(T ² T ′))
=

S(?(R ² 〈R′ ⊳ ◦〉) ² !(T ² T ′))
e↓

S(?(R ² 〈R′ ⊳ !◦〉) ² !(T ² T ′))
p↑

S{?(R ² 〈R′ ⊳ !◦〉 ² T ² T ′)}
q↑

S{?(R ² 〈(R′ ² T ) ⊳ !◦〉 ² T ′)}

Here the !◦ has not been moved to the outside but to the inside, such that
the permutation could be handled as in case (ii) above. A similar situation
can occur with the rules ρ = s, q↓, q↑. Again, we do not show all possibilities.
But the reader should be able to convince himself that it is always possible
to move the !◦ out of the way of ρ.2 ⊓⊔

For completing Step 1 of the proof of Theorem 3.1, it is also necessary to permute
e↓ over the rules w↓, b↓, b↑, and g↑, which have been left out in Lemma 3.1.3. The
nontrivial cases are as follows:

• for w↓:
S{◦}

w↓
S{?R{◦}}

e↓
S{?R{!◦}}

→
S{◦}

w↓
S{?R{!◦}}

(1)

2A complete list of all possible cases can be found in [Str03a].
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• for b↓:

S [?R{◦} O R{◦}]
b↓

S{?R{◦}}
e↓

S{?R{!◦}}

→

S [?R{◦} O R{◦}]
e↓, e↓

S [?R{!◦} O R{!◦}]
b↓

S{?R{!◦}}

(2)

• for b↑:

S{!R{◦}}
b↑

S(!R{◦} ² R{◦})
e↓

S(!R{!◦} ² R{◦})

→

S{!R{◦}}
e↓

S{!R{!◦}}
b↑

S(!R{!◦} ² R{!◦})
w↑

S(!R{!◦} ² R{◦})

(3)

• for g↑:

S{!R}
g↑

S{!!R}
=

S{!(◦ ² !R)}
e↓

S{!(!◦ ² !R)}

→

S{!R}
g↑

S{!!R}
g↑

S{!!!R}
b↑

S{!(!!R ² !R)}
w↑

S{!(!◦ ² !R)}

(4)

Note that these cases do not follow the statement of Definitions 3.1.1 or 3.1.2, which
is the reason why they have been left out in Lemma 3.1.3. But together with that
lemma, they are sufficient to show by an easy inductive argument that in any SNEL

derivation all instances of e↓ can be permuted to the top, and dually, all instances of
e↑ can be permuted to the bottom. This completes Step 1 in the proof of Theorem 3.1.

The attentive reader might complain that the permutation of rules is a tedious
business. However, the important point here is not the way it is done, but the fact
that it can be done. No other deductive formalism allows such a freedom in moving
around inference rules in a derivation. That this freedom has its price should not be
surprising.

3.1.4 Lemma The rules w↓ and ai↓ permute over the rules e↑, ai↓, ai↑, s, q↓, q↑,
p↓, p↑, w↑, and g↓ by the system {s, q↓, q↑}.

Proof: The contractum of w↓ and ai↓ is the same as of e↓, namely ◦. Hence, this
proof is the same as the one for Lemma 3.1.3. ⊓⊔

Clearly, this lemma is more than enough to show that in a derivation in the system
{ai↓, ai↑} ∪ SNELh = {ai↓, ai↑, s, q↓, q↑, p↓, p↑} all instances of ai↓ can be permuted to
the top, and dually, all ai↑ can be permuted to the bottom. This completes Step 4 in
the proof of Theorem 3.1. Similarly, Lemma 3.1.4 is used to complete Steps 7 and 9.
Note that for Step 7, we additionally need to permute ai↓ over w↓, for which the only
nontrivial case is similar to (1).

We will now continue with Step 3, for which the following lemma (and its dual) is
sufficient.
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3.1.5 Lemma For every derivation

T

{g↑, b↑, w↑} ‖
‖

R

there is a derivation

T

{g↑} ‖
‖

V

{b↑} ‖
‖

U

{w↑} ‖
‖

R

.

Proof: This is again a simple rule permutation. First, all instances of g↑ are per-
muted up to the top. The trivial cases are as in Lemma 3.1.3. The only nontrivial
cases are the following:

S{!R}
b↑

S(!R ² R)
g↑

S(!!R ² R)

→

S{!R}
g↑

S{!!R}
b↑

S(!!R ² !R)
b↑

S(!!R ² !R ² R)
w↑

S(!!R ² ◦ ² R)
=

S(!!R ² R)

(5)

S{!R{!T}}
b↑

S(!R{!T} ² R{!T})
g↑

S(!R{!!T} ² R{!T})

→

S{!R{!T}}
g↑

S{!R{!!T}}
b↑

S(!R{!!T} ² R(!!T ))
b↑

S(!R{!!T} ² R(!!T ² !T ))
w↑

S(!R{!!T} ² R(◦ ² !T ))
=

S(!R{!!T} ² R{!T})

(6)

Finally, all w↑ are permuted under the b↑, where

S{!R{!T}}
w↑

S{!R{◦}}
b↑

S(!R{◦} ² R{◦})

→

S{!R{!T}}
b↑

S(!R{!T} ² R{!T})
w↑, w↑

S(!R{◦} ² R{◦})

(7)

is the only nontrivial case. ⊓⊔

3.1.6 Remark Note that the decomposition of Lemma 3.1.5 does not allow much
variation. We can neither permute b↑ over g↑, nor can we permute w↑ over b↑, as
the following examples show:

!a
g↑

!!a
b↑

(!!a ² !a)

and

!a
b↑

(!a ² a)
w↑

a
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3.1.7 Lemma The rules g↑, b↑, and w↑ can be permuted over e↓.

Proof: The only nontrival cases are the following.

• for g↑:
S{◦}

e↓
S{!◦}

g↑
S{!!◦}

→

S{◦}
e↓

S{!◦}
e↓

S{!!◦}

• for b↑:
S{◦}

e↓
S{!◦}

b↑
S(!◦ ² ◦)

→

S{◦}
e↓

S{!◦}
=

S(!◦ ² ◦)

• for w↑:
S{◦}

e↓
S{!◦}

w↑
S{◦}

→ S{◦}

In all of them the instance of g↑, b↑, and w↑, which is permuted up disappears. The
trivial cases are as in case (i) of Lemma 3.1.3. Case (ii) in the proof of that lemma
cannot occur here. ⊓⊔

This completes Step 5. For completing Steps 6 and 8, note that they are almost
identical to Steps 1 to 3 and 5, with the only difference that the rules w↑ and w↓ are
ommitted.

After this tour de force of simple rule permutations, the proof of Theorem 3.1 is
completed, except for Step 2. At first sight one might expect that this can also be
done by simple rule permutations. So, let us attempt to permute all g↑, b↑, and w↑
up to the top of a derivation.

3.1.8 Permuting g↑, b↑, w↑ up: Consider a derivation

S{W}
ρ

S{Z}
π

P

,

where ρ ∈ SNEL\{g↑, b↑, w↑, e↓, e↑} and π ∈ {g↑, b↑, w↑}. The trivial cases (i) and (ii)
are as in the proof of Lemma 3.1.3. Then there is another (almost) trivial case which
does not correspond to a case in the proof of Lemma 3.1.3.

(iii) The redex Z of ρ is inside the contractum of π, i.e., we have one of the following
three situations

S{!R{W}}
ρ

S{!R{Z}}
g↑

S{!!R{Z}}

S{!R{W}}
ρ

S{!R{Z}}
b↑

S(!R{Z} ² R{Z})

S{!R{W}}
ρ

S{!R{Z}}
w↑

S{◦}
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which can be replaced by

S{!R{W}}
g↑

S{!!R{W}}
ρ

S{!!R{Z}}

S{!R{W}}
b↑

S(!R{W} ² R{W})
ρ, ρ

S(!R{Z} ² R{Z})

S{!R{W}}
w↑

S{◦}
(8)

respectively.

The next case corresponds to case (iv) in the proof of Lemma 3.1.3.

(iv) The contractum !R of π actively interferes with the redex Z of ρ. This can only
happen with ρ ∈ {w↓, b↓, p↓}. If ρ is w↓ or b↓, then the situation is similar to
(1) and (2) above. If ρ = p↓, then we have one of

S{![R O T ]}
p↓

S [!R O ?T ]
g↑

S [!!R O ?T ]

S{![R O T ]}
p↓

S [!R O ?T ]
b↑

S [(!R ² R) O ?T ]

S{![R O T ]}
p↓

S [!R O ?T ]
w↑

S [◦ O ?T ]

which can be replaced by (respectively):

S{![R O T ]}
g↑

S{!![R O T ]}
p↓

S{![!R O ?T ]}
p↓

S [!!R O ??T ]
g↓

S [!!R O ?T ]

S{![R O T ]}
b↑

S(![R O T ] ² [R O T ])
p↓

S([!R O ?T ] ² [R O T ])
s
S [([!R O ?T ] ² R) O T ]

s
S [(!R ² R) O ?T O T ]

b↓
S [(!R ² R) O ?T ]

S{![R O T ]}
w↑

S{◦}
=

S [◦ O ◦]
w↓

S [◦ O ?T ]

This means that there is indeed no objection against permuting all instances of
g↑, b↑, and w↑ up to the top of a derivation, and then (by duality) permute all g↓,
b↓, and w↓ down to the bottom. However, the problem is that while permuting g↑,
b↑, w↑ up, we introduce, in case (iv), new instances of g↓, b↓, w↓, and dually, while
permuting g↓, b↓, w↓ down, we introduce new instances of g↑, b↑, w↑. This means
that this permuting up and down could run forever. At least, it is not obvious that
it terminates eventually, as it is the case with Steps 1, 4, 7 and 9 in the proof of
Theorem 3.1.

Please note that there is no obvious induction measure related to the size of the
derivation that could be used for showing termination. The up and down permutation
of w↑ and w↓ alone is unproblematic because at each critical case the disturbing
instance of p↓ or p↑ is destroyed (but for convenience we will deal with all six rules
g↑, b↑, w↑ and g↓, b↓, w↓ together). The up and down permutation of g↑, b↑ and
g↓, b↓ is very problematic, however. The rules g↑ and g↓ cause a duplication of the
disturbing instance of promotion, and the permutation of b↑ and b↓ causes an even
worse increase in the size of the derivation. In fact, the ρ in the middle derivation in
(8) could be an instance of a promotion that is disturbing for another g↑ or b↑.

Clearly, a different technology is needed here, and will be introduced in the next
sections.
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3.2 Order theoretic preliminaries

Let 〈A,≤〉 be a partial order. If a, b ∈ A and a ≤ b and a 6= b, then we write a < b.
Recall that the order 〈A,≤〉 is well-founded iff there is no infinite strictly descending
chain a0 > a1 > a2 > · · · . Let now A# denote the free commutative monoid generated
by A, i.e., the set N

A of all functions from A to the set N = {0, 1, 2, . . .} of natural
numbers, that have value 0 almost everywhere. Equivalently, we can define A# by
taking the set A∗ of all finite words over A, and disregarding the order of the letters
inside a word u ∈ A∗. We can write an element u ∈ A# as a formal sum

u =
∑

a∈A

uaa (9)

where a ∈ A and ua ∈ N such that ua > 0 for only finitely many a. If ua > 0, then
we say that a occurs in u. When we think of u as a finite word over A, then ua is
the number of occurrences of the letter a in u, which is the only information that
matters when we live in the free commutative monoid. The monoid operation of two
elements u, v ∈ A# is defined as their sum in the obvious way:

u + v =
∑

a∈A

uaa +
∑

a∈A

vaa =
∑

a∈A

(ua + va)a

For simplicity, we can see A as a subset of A# by identifying a ∈ A with 1a ∈ A#.
For v, u ∈ A# we write v ≺ u if there are w, z ∈ A# and a ∈ A, such that u = w + a,
and v = w + z and b < a for all b occurring in z. We define ≤ to be the reflexive,
transitive closure of ≺.

3.2.1 Theorem If 〈A,≤〉 is a well-founded order, then 〈A#,≤〉 is a well-founded
order.

This theorem is well-known, see, e.g., [Reu89, Théorème 2.6] for a variation of it.
The proof is a direct application of König’s lemma [Kön50, Satz 6.6].

In this paper we will use Theorem 3.2.1 for the set A = ω × (ω + 1)× ω, equipped
with the lexicographic ordering, where ω = {0, 1, 2, . . .} and ω +1 = ω∪{ω} are both
equipped with the natural ordering.

3.3 !-?-Flow-Graphs

3.3.1 Definition For instances of the rules g↓, g↑, b↓, b↑, w↓, w↑, and p↓, p↑ we
define their principal structure as indicated below with a grey background:

S{??T}
g↓

S{?T }
,

S [?T O T ]
b↓

S{?T }
,

S{◦}
w↓

S{?T }
,

S{!R}
g↑

S{!!R}
,

S{!R}
b↑

S(!R ² R)
,

S{!R}
w↑

S{◦}
,



A System of Interaction and Structure IV: The Exponentials 27

(i)
S{ R}

ρ
S′{ R}

S{!R}
ρ

S′{!R}

S{ T}
ρ

S′{ T}

S{?T}
ρ

S′{?T}

(ii)
S{ R{W}}

ρ
S{ R{Z}}

S{!R{W}}
ρ

S{!R{Z}}

S{ T{W}}
ρ

S{ T{Z}}

S{?T{W}}
ρ

S{?T{Z}}

(iii)
S{ R}

b↑
S( R ² R)

S{!R}
b↑

S(!R ² R)

S [ T O T ]
b↓

S{ T}

S [?T O T ]
b↓

S{?T}

(iv)
S{ R}

g↑
S{ R}

S{!R}
g↑

S{!!R}

S{ T}
g↓

S{ T}

S{??T}
g↓

S{?T}

(v)
S{ V { R}}

b↑
S( V { R} ² V { R})

S{!V {!R}}
b↑

S(!V {!R} ² V {!R})

S [ U{ T} O U{ T}]
b↓

S{ U{ T}}

S [?U{?T} O U{?T}]
b↓

S{?U{?T}}

(vi)
S [ U{ R} O U{ R}]

b↓
S{ U{ R}}

S [?U{!R} O U{!R}]
b↓

S{?U{!R}}

S{ V { T}}
b↑

S( V { T} ² V { T})

S{!V {?T}}
b↑

S(!V {?T} ² V {?T})

(vii)
S{ [R O T ]}

p↓
S [ R O T ]

S{![R O T ]}
p↓

S [!R O ?T ]

S( T ² R)
p↑

S{ (T ² R)}

S(?T ² !R)
p↑

S{?(T ² R)}

Figure 8: Edges in the !-?-flow-graph

S{![R O T ]}
p↓

S [ !R O ?T ]
,

S(?T ² !R)
p↑

S{?(T ² R)}
.

I.e., if ρ ∈ {g↓, b↓, w↓}, then its principal structure is the redex ?T of ρ. If ρ ∈
{g↑, b↑, w↑}, then its principal structure is the contractum !R of ρ. If ρ = p↓, then its
principal structure is the !-substructure of its redex, and if ρ = p↑, then its principal
structure is the ?-substructure of its contractum.

The basic idea of the !-?-flow-graph of a derivation is to mark the “path” that is
taken by the principal structures of instances of g↑, g↓, b↑, b↓, w↑, w↓ while they are
travelling up and down in the derivation. Formally, the !-?-flow-graph is defined as
follows:

3.3.2 Definition Let ∆ be a derivation in SNEL. The !-?-flow-graph of ∆ is a
directed graph, denoted by G!?(∆), whose vertices are the occurrences of !- and ?-
substructures appearing in ∆. Two such substructures are connected via an edge
in G!?(∆) if they appear inside the premise and the conclusion of an inference rule
according to the prescriptions in Figure 8.
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When visualizing the !-?-flow-graph of a derivation, we draw it inside the derivation,
as indicated in Figure 8, and as shown in the example below:

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

(10)

The first two cases in Figure 8 are straightforward: The rule ρ either modifies
the context of !R or ?T , or ρ works inside !R or ?T , without touching the modality.
Cases (iii) and (iv) take care of the modalities that are actively involved in the redex
and contractum of the absorption and digging rules. Cases (v) and (vi) involve a
duplication of a modality structure due to absorption, which causes a branching in
the !-?-flow-graph. The most interesting case is (vii). It takes care of the situation
in case (iv) in 3.1.8. Note that in Figure 8 the cases (vi) and (vii) are the only ones
where we have a “forking” in the graph. In cases (iv) and (v) the situation is better
described as “merging”, and in all other cases the situation is purely “linear”.

For two vertices U and V of G!?(∆), we write U y∆ V if there is an edge from U to
V in G!?(∆). We use y

+

∆ to denote the transitive closure of y∆ , and y
∗

∆ to denote the
reflexive transitive closure of y∆ . We use the standard notions of paths and cycles in
directed graphs:

3.3.3 Definition A path in the !-?-flow-graph of a derivation ∆ is a sequence
of vertices V0, V1, . . . , Vn, such that Vi−1 y∆ Vi for each i ∈ {1, . . . , n}. A cycle is a
path such that the first vertex and the last vertex are identical. The !-?-flow-graph
of a derivation is acyclic, if it does not contain any cycle, i.e., there is no vertex V
with V y

+

∆ V . A path p is called cyclic, if there is a vertex which occurs more than
once in p.

Clearly, every cycle is a cyclic path, and the !-?-flow-graph of a derivation is acyclic,
if and only if it contains no cyclic path. To come back to our example in (10), consider
the following four excerpts from its !-?-flow-graph:

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

(11)

The first example shows a path, where the first and the last vertex in the path are
marked with a light grey background. The subgraph indicated in the second example
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is not a path (direction matters). The third example shows a cycle, and the last
example a cyclic path (again, first and last vertex are marked). In particular, the
!-?-flow-graph in (10) is not acyclic.

3.3.4 Definition A vertex V in G!?(∆) is called a !-vertex if it is a !-structure,
and ?-vertex if it is a ?-structure. Note that an edge from a !-vertex to a !-vertex
always goes upwards in a derivation. Hence, we call a path that contains only !-
vertices an up-path. Similarly, a path with only ?-vertices is called a down-path.
Edges from !-vertices to ?-vertices or from ?-vertices to !-vertices are called flipping
edges. The number of flipping edges in a path p is called the flipping number of p,
denoted by fl(p).

For example, the path indicated in the leftmost derivation in (11) has flipping
number 2, and the two paths in the second derivation in (11) have both flipping
number 0.

3.3.5 Definition Let ∆ be a derivation. A vertex V in G!?(∆) is called a p-vertex
if it is the principal structure of a p↓ or p↑. The vertex V is called a b-vertex if it is
the principal structure of a b↓ or b↑.

3.4 The Induction Measure

3.4.1 Definition The p-number of a path p in G!?(∆), denoted by p(p), is the
number of p-vertices occurring in p. If p is cyclic, the vertices with multiple occur-
rences in p are counted as many times as they occur in p.

For example, the path p indicated in the leftmost example in (11), we have p(p) = 2.
The rightmost one has p(p) = 3 if the path passes through the cycle once, and
p(p) = 5 if the path passes through the cycle twice, and so on. Note that we do not
have p(p) = fl(p) in general. But we have always p(p) ≥ fl(p).

3.4.2 Definition Let ∆ be a derivation and let V be a vertex in G!?(∆). Then
the p-number of V in ∆, denoted by p(V ), is defined as follows:

p(V ) = sup{ p(p) | p is a path starting in V } . (12)

For a rule instance ρ in ∆ of the kind g↓, b↓, w↓, or g↑, b↑, w↑, we define its p-number,
denoted by p∆(ρ) to be the p-number of its principal structure.

In other words, for determining p(V ), we take the maximum of all p(p), where p
ranges over all paths that have V as starting vertex. If one of these paths is cyclic,
then p(V ) = ω.

For example, consider again the derivation in (10). Below we show it again twice
where in each derivation one vertex of the !-?-flow-graph is marked. Let us denote
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them by V1 and V2, respectively.

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

(13)

On the left, we have shown all paths starting in V1. There are only two of them, one
has p-number 1 and the other has p-number 0. Hence p(V1) = 1. On the right we
have shown all paths starting in V2. Because of the cycle, we have p(V2) = ω.

3.4.3 Definition Let ∆ be a derivation. A look-back tree t in G!?(∆) is a subgraph
which is a directed tree such that the edges are directed towards the root, and such
that every path from a leaf to the root in t contains at most one flipping edge, and
such that every branching vertex of t, i.e., every vertex with two incoming edges is
the principle structure of an instance of g↓ or g↑. The b-number of a look-back tree
t, denoted by b(t), is the number of b-vertices occurring in t.

Note that because of the restriction of the flipping number of paths in t to 1, a
look-back tree cannot be cyclic.

Consider for example the following derivations in which we exhibited subgraphs of
the !-?-flow-graph.

[a O b O b]
p↓

[ a O [ b O b] ]
b↓

[ a O b ]
g↓

[ a O b]
b↑

[( a ² a) O b ]

![a O ?b O b]
p↓

[!a O ?[?b O b] ]
b↓

[!a O ??b ]
g↓

[ !a O ?b]
b↑

[(!a ² a) O ?b ]

( a ² [b O c])
p↓

( a ² [ b O c])
s

[( a ² b) O c]
p↑

[ (a ² b) O c]

(?a ² ![b O c])
p↓

(?a ² [!b O ?c])
s

[(?a ² !b) O ?c]
p↑

[?(a ² b) O ?c]

[ a O a]
g↓

[ a O a]
g↓

[ a O a]
b↓

a
g↓

a

[???a O ??a]
g↓

[??a O ??a]
g↓

[??a O ?a]
b↓

??a
g↓

?a

(14)

On the left we have a look-back tree, and its b-number is two. Its root and the two
b-vertices are marked with a grey background. The second example in (14) is not a
look-back tree because of the two flippings in the path. The third example is not a
look-back because there is a branching vertex (marked with grey background) that is
not the principle structure of an instance of g↓ or g↑.

3.4.4 Definition Let ∆ be a derivation and let V be a vertex in G!?(∆). We
define the b-number of V , denoted by b(V ), as follows:

b(V ) = sup{ b(t) | t is a look-back tree with root V } . (15)

Note that for the p-number of a vertex, we look forward in the graph, and for the
b-number we look backwards. Furthermore, for the b-number we consider only paths
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with flipping number 0 or 1, and we allow branchings as in case (iv) of Figure 8, but
never as in cases (v), (vi), and (vii) of that Figure.

To see some example, consider again the rightmost derivation in (14). Let us denote
the ?a-occurrence in the conclusion by V3. The first two derivations below in (16)
show two look-back tree with V3 as root. The third derivation shows a look-back tree
of the !![!a O a]-vertex in the premisse of the derivation in (10). Let us denote that
vertex by V4.

[ a O a]
g↓

[ a O a]
g↓

[ a O a]
b↓

a
g↓

a

[???a O ??a]
g↓

[??a O ??a]
g↓

[??a O ?a]
b↓

??a
g↓

?a

[ a O a]
g↓

[ a O a]
g↓

[ a O a]
b↓

a
g↓

a

[???a O ??a]
g↓

[??a O ??a]
g↓

[??a O ?a]
b↓

??a
g↓

?a

[ a O a]
p↓

[ a O a]
b↓

a
b↑

( a ² a)
p↑

( a ² a)
p↑

( a ² a)

!![!a O a]
p↓

![?!a O !a]
b↓

!?!a
b↑

(!?!a ² ?!a)
p↑

?(?!a ² !a)
p↑

??(!a ² a)

(16)

We have b(V3) = 1. The first look-back tree has b-number 1 and the second one
has b-number 0. We have b(V4) = 2 because both instances, b↑ and b↓ have their
principal structure as vertex in the indicated look-back tree.

3.4.5 Definition Let ∆ be a derivation and ?Z{!R} a structure occurring in ∆.
Then we say that the ?-vertex ?Z{!R} is in the onion ¸(!R) of the !-vertex !R. Dually,
we define the onion of a ?-vertex ?T , denoted by ¸(?T ), to be the set of all !-vertices
that have this occurrence of ?T as substructure. For every rule instance ρ in ∆ of the
kind g↓, b↓, w↓, or g↑, b↑, w↑, we define its onion ¸∆(ρ) in ∆ to be the onion of its
principal structure. The onion b-number of ρ in ∆, denoted by b¸∆(ρ), is the sum
of the b-numbers of the vertices in its onion, i.e.,

b¸∆(ρ) =
∑

V ∈¸∆(ρ)

b(V ) .

For example, consider the bottommost occurrence of !a in the derivation in (10). It
is marked in the leftmost derivation in (11). Its onion consists of the two ?-structures
in the conclusion of the derivation. Both have b-number 1. Hence, the onion b-number
of that !a is 2.

Finally, we define the status of a rule instance to be either 0 or 1, such that it is 1 if
the rule is of the kind g↓, b↓, w↓, or g↑, b↑, w↑, and not yet at its final destination at
the top or the bottom of the derivation. The status is 0 if the rule does not play any
further role in the up-down-permutation. The motivation of this is that Step 2 of our
decomposition process (see Figure 5) is completed if and only if all rules instances in
the derivation have status 0. Formally, the status is defined as follows.
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3.4.6 Definition Let SNEL′ = SNEL \ {e↓, e↑}, let ∆ be a derivation in SNEL′,
and let ρ be a rule instance inside ∆. Then ρ splits ∆ into two parts:

Q

SNEL′ ‖
‖ ∆1

S{W}
ρ

S{Z}

SNEL′ ‖
‖ ∆2

P

The status of ρ in ∆, denoted by st∆(ρ) is 1 if we have one of the following two cases:

• ρ ∈ {g↑, b↑, w↑} and ∆1 contains an instance of a rule in SNEL′ \ {g↑, b↑, w↑},
or

• ρ ∈ {g↓, b↓, w↓} and ∆2 contains an instance of a rule in SNEL′ \ {g↓, b↓, w↓}.

Otherwise st∆(ρ) = 0.

The reason for using SNEL′ is that the rules e↓ and e↑ are not considered in Step 2
of Figure 5. However, all statements in this section about SNEL′ are also valid for
SNEL.

Now we are using the status, the p-number, and the onion b-number of a rule
instance to define its rank.

3.4.7 Definition For a rule instance ρ of the kind g↓, b↓, w↓ or g↑, b↑, w↑ inside
a derivation ∆, we define its rank rk∆(ρ) ∈ ω × (ω + 1) × ω to be the triple

rk∆(ρ) = 〈st∆(ρ), p∆(ρ), b¸∆(ρ)〉 .

For the whole of ∆, we define the rank rk(∆) ∈ (ω × (ω + 1) × ω)# to be the formal
sum of the ranks of its occurrences of g↓, b↓, w↓, g↑, b↑, w↑, i.e.,

rk(∆) =
∑

ρ in ∆ and ρ is one of

g↓,b↓,w↓,g↑,b↑,w↑

rk∆(ρ) .

We define the down-rank of ∆, denoted by rk↓(∆) by considering only the down-rules
g↓, b↓, w↓ in the formal sum:

rk↓(∆) =
∑

ρ in ∆ and ρ is one of g↓,b↓,w↓

rk∆(ρ) .

Similarly, the up-rank rk↑(∆) takes only the up-rules g↑, b↑, w↑ into account:

rk↑(∆) =
∑

ρ in ∆ and ρ is one of g↑,b↑,w↑

rk∆(ρ) .
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It follows immediately from the definition that rk(∆) = rk↓(∆) + rk↑(∆). For
example, in (10), we have that the rank of the b↓ instance is 〈1, ω, 1〉 and the rank of
the b↑ instance is 〈1, 0, 0〉. Hence, the rank of the whole derivation is the formal sum
〈1, ω, 1〉 + 〈1, 0, 0〉.

3.5 Permutations again

After what has been said in Section 3.2, it should be clear what is coming now.
Namely, we will use the rank of the derivation as induction measure to show that the
permutation process for achieving Step 2, as indicated at the end of Section 3.1, does
indeed terminate. For this, let us inspect what happens to the rank of a derivation
during the permutation process. Consider again the cases in 3.1.8. We begin with
the trivial cases (cf. the proof of Lemma 3.1.3).

3.5.1 Permuting g↑, b↑, w↑ up: Let a derivation ∆ be given. As in 3.1.8,
Consider a subderivation

S{W}
ρ

S{Z}
π

P

, (17)

where ρ ∈ SNEL′ \{g↑, b↑, w↑} and π ∈ {g↑, b↑, w↑}. In the following case analysis we
replace (as done in Section 3.1) in ∆ the subderivation in (17) by a new subderiva-
tion with the same premise and conclusion. We use ∆′ to denote the result of this
replacement.

(i) The contractum !R of π is inside the context S{ }. Here is an example with
π = g↑ and ρ = s:

′{ }{([ O ] ² )}
s

′{ }{[( ² ) O ]}
g↑

′{ }{[( ² ) O ]}

S′{!R}{([P O U ] ² T )}
s
S′{!R}{[(P ² T ) O U ]}

g↑
S′{!!R}{[(P ² T ) O U ]}

→

′{ }{([ O ] ² )}
g↑

′{ }{([ O ] ² )}
s

′{ }{[( ² ) O ]}

S′{!R}{([P O U ] ² T )}
g↑

S′{!!R}{([P O U ] ² T )}
s
S′{!!R}{[(P ² T ) O U ]}

Here, we used S′{ }{ } to denote a context with two independent holes, and
we used bold light lines to indicate bunches of parallel paths going through the
derivation. Clearly, in this case, neither p∆(π) nor b¸∆(π) change their value
(but st∆(π) could go down). The important fact to observe is that the rank
of all other rules in ∆ remains unchanged in ∆′. Hence, rk↑(∆′) ≤ rk↑(∆) and
rk↓(∆′) = rk↓(∆).

(ii) The contactum !R of π appears inside the redex Z of ρ, but only inside a
substructure of Z that is not affected by ρ. Again, we exhibit an example with
π = g↑ and ρ = s:

([ { } O ] ² )
s

[( { } ² ) O ]
g↑

[( { } ² ) O ]

S([P{!R} O U ] ² T )
s
S [(P{!R} ² T ) O U ]

g↑
S [(P{!!R} ² T ) O U ]

→

([ { } O ] ² )
g↑

([ { } O ] ² )
s

[( { } ² ) O ]

S([P{!R} O U ] ² T )
g↑

S([P{!!R} O U ] ² T )
s
S [(P{!!R} ² T ) O U ]
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As in the previous case, the values of p∆(π) and b¸∆(π) are not affected. This
is trivial for ρ ∈ {s, q↓, q↑}, and we leave it as an instructive exercise to the
reader to verify it also for ρ = p↓. For ρ = p↑, the value of p∆(π) remains
unchanged, but b¸∆(π) could go down. As in the previous case, st∆(π) could
go down, and the rank of all other rules in ∆ remains unchanged in ∆′. Hence,
rk↑(∆′) ≤ rk↑(∆) and rk↓(∆′) = rk↓(∆).

(iii) The redex Z of ρ is inside the contractum !R of π.

(a) If π = w↑, then

′{ { }}
ρ

′{ { }}
w↑

′{◦}

S′{!R{W}}
ρ

S′{!R{Z}}
w↑

S′{◦}

→
′{ { }}

w↑
′{◦}

S′{!R{W}}
w↑

S′{◦}

We have rk(∆′) ≤ rk(∆) because ρ is removed.

(b) If π = g↑, then

′{ { }}
ρ

′{ { }}
g↑

′{ { }}

S′{!R{W}}
ρ

S′{!R{Z}}
g↑

S′{!!R{Z}}

→

′{ { }}
g↑

′{ { }}
ρ

′{ { }}

S′{!R{W}}
g↑

S′{!!R{W}}
ρ

S′{!!R{Z}}

Note that the onion of ρ is changed (if ρ is an instance of w↓, b↓, or g↓).
But the b-number of the !-vertex in the premise of the derivations above is
the same as the sum of the b-numbers of the two !-vertices in the conlusion.
Hence, the onion b-number of ρ does not change. Therefore rk(∆′) ≤ rk(∆).

(c) If π = b↑, then the situation is not entirely trivial, because ρ gets duplicated:

′{ { }}
ρ

′{ { }}
b↑

′( { } ² { })

S′{!R{W}}
ρ

S′{!R{Z}}
b↑

S′(!R{Z} ² R{Z})

→

′{ { }}
b↑

′( { } ² { })
ρ

′( { } ² { })
ρ

′( { } ² { })

S′{!R{W}}
b↑

S′(!R{W} ² R{W})
ρ

S′(!R{W} ² R{Z})
ρ

S′(!R{Z} ² R{Z})

We distiguish the following cases:

(1) If ρ does not involve any modalities, i.e., ρ ∈ {ai↓, ai↑, s, q↓, q↑}, then
situation is similar to cases (i) and (ii) above. No rule changes its rank,
except that we could have that the status of the b↑ goes down. Hence,
we have rk↑(∆′) ≤ rk↑(∆) and rk↓(∆′) = rk↓(∆).

(2) If ρ = p↓, then

′{ { [ O ]}}
p↓

′{ [ O ]}
b↑

′( [ O ] ² [ O ])

S′{!R{![P O T ]}}
p↓

S′{!R[!P O ?T ]}
b↑

S′(!R[!P O ?T ] ² R[!P O ?T ])

→

′{ { [ O ]}}
b↑

′( { [ O ]} ² { [ O ]})
p↓

′( { [ O ]} ² [ O ])
p↓

′( [ O ] ² [ O ])

S′{!R{![P O T ]}}
b↑

S′(!R{![P O T ]} ² R{![P O T ]})
p↓

S′(!R{![P O T ]} ² R[!P O ?T ])
p↓

S′(!R[!P O ?T ] ² R[!P O ?T ])

As before, p∆(π) and b¸∆(π) do not change. However, the p-number,
as well as the onion b-number of other rules might go down because
some paths disappear. Hence, rk↑(∆′) ≤ rk↑(∆) and rk↓(∆′) ≤ rk↓(∆).
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(3) If ρ = p↑, then

′{ ( ² )}
p↑

′{ { ( ² )}}
b↑

′( { ( ² )} ² { ( ² )})

S′{!R(?T ² !P )}
p↑

S′{!R{?(T ² P )}}
b↑

S′(!R{?(T ² P )} ² R{?(T ² P )})

→

′{ ( ² )}
b↑

′( ( ² ) ² ( ² ))
p↑

′( ( ² ) ² { ( ² )})
p↑

′( { ( ² )} ² { ( ² )})

S′{!R(?T ² !P )}
b↑

S′(!R(?T ² !P ) ² R(?T ² !P ))
p↑

S′(!R(?T ² !P ) ² R{?(T ² P )})
p↑

S′(!R{?(T ² P )} ² R{?(T ² P )})

Again, neither p∆(π) nor b¸∆(π) can change (but st∆(π) could go
down). No other rule in ∆ changes its rank. Althought the p↑-instance
is duplicated, no path changes its p-number or its b-number. Hence,
rk↑(∆′) ≤ rk↑(∆) and rk↓(∆′) = rk↓(∆).

(4) Finally, we have to consider the case where ρ ∈ {g↓, b↓, w↓}. We show
only the case for ρ = g↓:

′{ ( )}
g↓

′{ { }}
b↑

′( { } ² { })

S′{!R(??T )}
g↓

S′{!R{?T}}
b↑

S′(!R{?T} ² R{?T})

→

′{ ( )}
b↑

′( { } ² { })
g↓

′( { } ² { })
g↓

′( { } ² { })

S′{!R(??T )}
b↑

S′(!R{??T} ² R{??T})
g↓

S′(!R{??T} ² R{?T})
g↓

S′(!R{?T} ² R{?T})

Again, neither p∆(π) nor b¸∆(π) can change (but st∆(π) could go
down). Hence, rk↑(∆′) ≤ rk↑(∆). However, the number of g↓ in-
stances in the derivation is increased. But both new instances of g↓
have strictly smaller rank in ∆′ than the original g↓ in ∆, because their
onion b-number is reduced by 1. Hence, rk↓(∆′) < rk↓(∆). The same
holds for ρ = b↓ and ρ = w↓. Note that for this, it is crucial that the
look-back tree of a vertex in the onion (that is used for computing the
onion b-number) is acyclic.

(iv) The crucial case is where the contractum !R of π actively interferes with the
redex Z of ρ. There are four subcases:

(a) For ρ = w↓, the situation is dual to case (iii.a). We show only the case
π = g↑:

{◦}
w↓

{ { }}
g↑

{ { }}

S{◦}
w↓

S{?Z{!R}}
g↑

S{?Z{!!R}}

→
{◦}

w↓
{ { }}

S{◦}
w↓

S{?Z{!!R}}

We have rk↑(∆′) < rk↑(∆) because π disappears, and rk↓(∆′) ≤ rk↓(∆)
because the status of the w↓ could go down.

(b) For ρ = g↓, the situation is dual to case (iii.b). We again show only the
case π = g↑:

{ { }}
g↓

{ { }}
g↑

{ { }}

S{??Z{!R}}
g↓

S{?Z{!R}}
g↑

S{?Z{!!R}}

→

{ { }}
g↑

{ { }}
g↓

{ { }}

S{??Z{!R}}
g↑

S{??Z{!!R}}
g↓

S{?Z{!!R}}
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We have rk↑(∆′) ≤ rk↑(∆) and rk↓(∆′) ≤ rk↓(∆) because the status of
both rules could go down, and nothing else changes, for the same reason as
explained in (iii.b).

(c) For ρ = b↓ the permutations are dual to the ones in case (iii.c.4) above.
For π = w↑, we have

[ { } O { }]
b↓

{ { }}
w↑

{ {◦}}

S [?Z{!R} O Z{!R}]
b↓

S{?Z{!R}}
w↑

S{?Z{◦}}

→

[ { } O { }]
w↑

[ { } O {◦}]
w↑

[ {◦} O {◦}]
b↓

{ {◦}}

S [?Z{!R} O Z{!R}]
w↑

S [?Z{!R} O Z{◦}]
w↑

S [?Z{◦} O Z{◦}]
b↓

S{?Z{◦}}

For π = g↑, we have

[ { } O { }]
b↓

{ { }}
g↑

{ { }}

S [?Z{!R} O Z{!R}]
b↓

S{?Z{!R}}
g↑

S{?Z{!!R}}

→

[ { } O { }]
g↑

[ { } O { }]
g↑

[ { } O { }]
b↓

{ { }}

S [?Z{!R} O Z{!R}]
g↑

S [?Z{!R} O Z{!!R}]
g↑

S [?Z{!!R} O Z{!!R}]
b↓

S{?Z{!!R}}

And for π = b↑, we have

[ { } O { }]
b↓

{ { }}
b↑

{ ( ² )}

S [?Z{!R} O Z{!R}]
b↓

S{?Z{!R}}
b↑

S{?Z(!R ² R)}

→

[ { } O { }]
b↑

[ { } O ( ² )]
b↑

[ ( ² ) O ( ² )]
b↓

{ ( ² )}

S [?Z{!R} O Z{!R}]
b↑

S [?Z{!R} O Z(!R ² R)]
b↑

S [?Z(!R ² R) O Z(!R ² R)]
b↓

S{?Z(!R ² R)}

In all three cases, the rule π is duplicated. But both copies have a smaller
onion b-number in ∆′. Hence rk↑(∆′) < rk↑(∆). As in case (iii.c.4) above,
this crucially relies on the fact that the look-back tree of a vertex is acyclic.
We also have rk↓(∆′) ≤ rk↓(∆) because the status of the b↓ could go down,
and nothing else changes.

(d) The most interesting case is when ρ = p↓. We have the following situations:

(1) For π = g↑:

{ [ O ]}
p↓

[ O ]
g↑

[ , ]

S{![R O T ]}
p↓

S [!R O ?T ]
g↑

S [!!R, ?T ]

→

{ [ O ]}
g↑

{ [ O ]}
p↓

{ [ O ]}
p↓

[ O ]
g↓

[ O ]

S{![R O T ]}
g↑

S{!![R O T ]}
p↓

S{![!R O ?T ]}
p↓

S [!!R O ??T ]
g↓

S [!!R O ?T ]

A single g↑ is replaced by a g↑ and a g↓. We clearly have rk↑(∆′) ≤
rk↑(∆) because the status of the g↑-instance could go down. If G!?(∆)
is acyclic, then also its p-number goes down. Note that no other up-rule
changes its rank. We cannot make any statements about rk↓(∆). But,
observe that if G!?(∆) is acyclic, then the p-number of the new g↓ is
strictly smaller than the p-number of the original g↑. Hence, if G!?(∆)
is acyclic, then rk(∆′) < rk(∆). Note that even in the case of acyclicity
of G!?(∆), we do not have rk↓(∆′) ≤ rk↓(∆).
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(2) For π = b↑ we have:

{ [ O ]}
p↓

[ O ]
b↑

[( ² ) O ]

S{![R O T ]}
p↓

S [!R O ?T ]
b↑

S [(!R ² R) O ?T ]

→

{ [ O ]}
b↑

( [ O ] ² [ O ])
p↓

([ O ] ² [ O ])
s

[([ O ] ² ) O ]
s

[( ² ) O O ]
b↓

[( ² ) O ]

S{![R O T ]}
b↑

S(![R O T ] ² [R O T ])
p↓

S([!R O ?T ] ² [R O T ])
s
S [([!R O ?T ] ² R) O T ]

s
S [(!R ² R) O ?T O T ]

b↓
S [(!R ² R) O ?T ]

(18)

This case is similar to the one for g↑ above, but slightly more compli-
cated. The b↑-instance is replaced by a b↑ and a b↓. By this, it can
happen that the onion b-number of other down rules in ∆ is increased.
But note that no up-rule can change its onion b-number. (This is the
reason for allowing one flipping edge in a path in the look-back tree in
Definition 3.4.3, instead of forbidding any flipping edge. Note that cases
(iii.c.4) and (iv.c) above would also work without the flipping edges in
the look-back tree.) Since, as before, the status of the b↑ could go down,
we have rk↑(∆′) ≤ rk↑(∆). But since the rank of some down-rules can
become bigger, we cannot compare rk(∆′) with rk(∆). Nonetheless, it
is important to mention that if G!?(∆) is acyclic, then the p-number of
the new b↓ is strictly smaller than the p-number of the original b↑.

(3) For π = w↑ we have:

{ [ O ]}
p↓

[ O ]
w↑

[◦ O ]

S{![R O T ]}
p↓

S [!R O ?T ]
w↑

S [◦ O ?T ]

→

{![R O T ]}
w↑

{◦}
=

[◦ O ◦]
w↓

[◦ O ?T ]

S{![R O T ]}
w↑

S{◦}
=

S [◦ O ◦]
w↓

S [◦ O ?T ]

This case is simpler than the other two because the instance of p↓ dis-
appears. Hence, we have rk↑(∆′) ≤ rk↑(∆) and if G!?(∆) is acyclic also
rk(∆′) < rk(∆). But we do not have rk↓(∆′) ≤ rk↓(∆).

This case analysis is enough to show the following three lemmas.

3.5.2 Lemma

Every derivation

P

SNEL′ ‖
‖ ∆

Q

can be transformed into

P

{g↑, b↑, w↑} ‖
‖

P ′

SNEL′ \ {g↑, b↑, w↑} ‖
‖

Q

.
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Proof: This transformation is obtained by permuting all instances of g↑, b↑, w↑
to the top of a derivation as described in 3.5.1. Termination is ensured by using as
measure the pair 〈rk↑(∆), δ〉 in a lexicographic ordering, where δ is the number of
rule instances in the derivation above the topmost instance of g↑, b↑, or w↑ with
status 1. If we always choose this topmost instance of g↑, b↑, or w↑ with status 1 for
performing the next permutation step, then this measure always goes down, and by
of Theorem 3.2.1, this is well-founded. ⊓⊔

3.5.3 Lemma

Every derivation

P

SNEL′ ‖
‖ ∆

Q

can be transformed into

P

SNEL′ \ {g↓, b↓, w↓} ‖
‖

Q′

{g↓, b↓, w↓} ‖
‖

Q

.

Proof: Dual to the previous lemma. ⊓⊔

3.5.4 Lemma If the !-?-flow-graph of a derivation

P

SNEL′ ‖
‖ ∆

Q

is acyclic, then ∆ can be transformed into a derivation ∆′

Q

{g↑, b↑, w↑} ‖
‖

Q′

{ai↓, ai↑, s, q↓, q↑, p↓, p↑} ‖
‖

P ′

{g↓, b↓, w↓} ‖
‖

P

. (19)

Proof: The derivation ∆′ is obtained from ∆ by a sequence of transformations:

∆ = ∆0 ; ∆1 ; ∆2 ; ∆3 ; . . . ; ∆′ , (20)

where ∆i+1 is obtained from ∆i by permuting all instances of g↑, b↑, w↑ up to the top
of the derivation if i is even, and by permuting all instances of g↓, b↓, w↓ down to the
bottom of the derivation if i is odd. Each of these single steps is well-defined because
of Lemma 3.5.2 and Lemma 3.5.3. Now assume i is even and i ≥ 2. Then there are no
instances of g↑, b↑, or w↑ in ∆i+1, and all instances of g↓, b↓, w↓ in ∆i+1 have been
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introduced by case (iv.d) in 3.5.1. Hence, for each ρ′ of the kind g↓, b↓, w↓ in ∆i+1,
there is a ρ of the kind g↑, b↑, w↑ in ∆i, with st∆i

(ρ) = 1 and p∆i
(ρ) > p∆i+1

(ρ′), and
therefore rk∆i

(ρ) > rk∆i+1
(ρ′). Hence rk(∆i) > rk(∆i+1). By a similar argument we

can conclude that rk(∆i) > rk(∆i+1) for all odd i with i > 1. By Theorem 3.2.1, we
can conclude that the process indicated in (20) terminates eventually. The resulting
derivation ∆′ is of the desired shape (19). ⊓⊔

Note that the argument in the previous proof is necessary because of case (iv.d.2)
in 3.5.1. In all other permutation steps the rank does not increase.

As the derivation in (10) shows, we cannot hope for a lemma saying that G!?(∆) is
always acyclic. Nonetheless, the decomposition terminates for (10), and the result is
shown in Figure 9. Since in that figure, the !-?-flow-graph is acyclic, the cycle must
have been broken eventually. For understanding how this is happening, we will now
continue with an investigation in the structure of cycles in the flow-graph, and how
they are broken. Before, we exhibit another example of a derivation with a cycle in
its !-?-flow-graph:

( [b O a] ² [c O d])
p↓, p↓

([ b O a] ² [ c O d])

b↑

( ([ b O a] ² [ c O d]) ² [ b O a] ² [ c O d])
s, s

( [ a O ( b ² c) O d] ² [ b O a] ² [ c O d])
s, s

( [ a O ( b ² c) O d] ² [ b O ( a ² d) O c])
p↑, p↑

( [ a O (b ² c) O d] ² [ b O (a ² d) O c])
g↑

( [ a O (b ² c) O d] ² [ b O (a ² d) O c])

!(![b O a] ² ![c O d])
p↓, p↓

!([?b O !a] ² [!c O ?d])

b↑

(!([?b O !a] ² [!c O ?d]) ² [?b O !a] ² [!c O ?d])
s, s

(![!a O (?b ² !c) O ?d] ² [?b O !a] ² [!c O ?d])
s, s

(![!a O (?b ² !c) O ?d] ² [?b O (!a ² ?d) O !c])
p↑, p↑

(![!a O ?(b ² c) O ?d] ² [?b O ?(a ² d) O !c])
g↑

(![!!a O ?(b ² c) O ?d] ² [?b O ?(a ² d) O !c])

(21)

This derivation can be used to explain why we have Steps 2 and 3 in the proof of
Theorem 3.1 (see Figure 5), instead of doing something like

W1

SNEL′ ‖
‖

Z1

2′
−→

W1

{g↑} ‖
‖

W2

SNEL′ \ {g↓, g↑} ‖
‖

Z2

{g↓} ‖
‖

Z1

2′′
−→

W1

{g↑} ‖
‖

W2

{b↑} ‖
‖

W3

SNEL′ \ {g↓, g↑, b↓, b↑} ‖
‖

Z3

{b↓} ‖
‖

Z2

{g↓} ‖
‖

Z1

· · ·
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Running Step 2′ on the derivation in (21) does indeed fail because of non-termination.
If we apply all the transformations of 3.5.1 together with the ones in (5) and (6) (and
their duals), then the instances of g↑ (and g↓) get caught in the cycle in (21), and
the process will run forever. Only if the b↑ is permuted up together with the g↑, the
process does terminate. The reason is that when the instance of b↑ is permuted over
the two p↓ on the top of the derivation, the cycle is broken, because some edges in
the !-?-flow-graph disappear. This shows the importance of case (iii.c.2) in 3.5.1, and
motivates the following definition.

3.5.5 Definition A cycle c in G!?(∆) is called forked if there is an instance of

S{!R}
b↑

S(!R ² R)
or

S [?T O T ]
b↓

S{?T}

inside ∆ such that both copies of R of the redex of the b↑, or both copies of T in the
contractum of b↓ contain vertices of the cycle. We say that such an instance of b↑ or
b↓ forks the cycle c. The number of b↑ and b↓ that fork a cycle c is called the forking
number of c, denoted by fk(c). A cycle c with fk(c) = 0 is called unforked.

The cycles in (10) and (21) are both forked. The one in (10) has forking number 2
(since both, the b↓ and the b↑ fork the cycle), and the cycle in (21) has forking
number 1. Let us now state the key property of !-?-flow-graphs, that in the end
makes the decomposition possible.

3.5.6 Theorem There is no derivation ∆ in SNEL, such that G!?(∆) contains an
unforked cycle.

We will postpone the proof of this theorem to the next section. Let us now see how
this theorem can be used to show that all forked cycles are eventually broken. Thus,
Lemma 3.5.4 gives us our desired result.

3.5.7 Lemma Let ∆ be a derivation that contains no instances of g↓, b↓, w↓,
and let ∆′ be the outcome of applying Lemma 3.5.2 to ∆. If ∆′ contains a cycle c
with fk(c) = n for some n > 0, then it also contains a cycle c′ with fk(c′) = n − 1.

Proof: The cycle c is forked by n instances of b↓ that have all been introduced by
the transformation shown in (18). Now consider the topmost b↓ that forks c. The
introduction of this b↓ causes a duplication of all up-paths and down-paths through
T (we are still referring to (18)). Furthermore, the continued up-permutation of
the b↑ (that caused the introduction of the b↓) causes a duplication of all flipping
edges connecting up-paths and down-paths through T (see cases (iii.c.2) and (iii.c.3)
in 3.5.1). Therefore, for every path starting or ending inside the right-hand side copy
of T in the contractum of the b↓, we have a path starting or ending at the same place
inside the left-hand side copy of T . Hence, from c, we can construct another cycle
c′, which does not use the right-hand side copy of T , as it is visualized in Figure 10.
Thus, the b↓ does not fork c′. Hence fk(c′) = n − 1. ⊓⊔
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[ a O a]
b↑

( [ a O a] ² [ a O a])
b↑

( [ a O a] ² [ a O a] ² [ a O a])
b↑

( [ a O a] ² [ a O a] ² [( a ² a) O a])
b↑

( [ a O a] ² [ a O a] ² [( a ² a) O a] ² [( a ² a) O a])
b↑

( [ a O a] ² [ a O a] ² [ a O a] ² [( a ² a) O a] ² [( a ² a) O a])
p↓

( [ a O a] ² [ a O a] ² [ a O a] ² [( a ² a) O a] ² [( a ² a) O a])
p↓

( [ a O a] ² [ a O a] ² [ a O a] ² [( a ² a) O a] ² [( a ² a) O a])
p↓

( [ a O a] ² [ a O a] ² [ a O a] ² [( a ² a) O a] ² [( a ² a) O a])
p↓

( [ a O a] ² [ a O a] ² [ a O a] ² [ ( a ² a) O a] ² [( a ² a) O a])
s
( [ a O a] ² [ a O a] ² [ a O a] ² [ ( a ² a) O ( a ² [( a ² a) O a])])

s
( [ a O a] ² [ a O a] ² [ a O a] ² [ ( a ² a) O ( a ² a) O ( a ² a)])

s
( [ a O a] ² [ a O a] ² [ ( a ² a) O ( a ² a) O ([ a O a] ² a ² a)])

s
[( [ a O a] ² [ a O a] ² [ ( a ² a) O ( a ² a)]) O ([ a O a] ² a ² a)]

s
[( [ a O a] ² [ ( a ² a) O ([ a O a] ² a ² a)]) O ([ a O a] ² a ² a)]

s
[( [ a O a] ² ( a ² a)) O ([ a O a] ² a ² a) O ([ a O a] ² a ² a)]

p↑
[ ([ a O a] ² a ² a) O ([ a O a] ² a ² a) O ([ a O a] ² a ² a)]

s
[ [([( a ² a) O a] ² a)] O ([ a O a] ² a ² a) O ([ a O a] ² a ² a)]

s
[ [( a ² a) O ( a ² a)] O ([ a O a] ² a ² a) O ([ a O a] ² a ² a)]

s
[ [( a ² a) O ( a ² a)] O ([( a ² a) O a] ² a) O ([ a O a] ² a ² a)]

s
[ [( a ² a) O ( a ² a)] O ( a ² a) O ( a ² a) O ([ a O a] ² a ² a)]

s
[ [( a ² a) O ( a ² a)] O ( a ² a) O ( a ² a) O ([( a ² a) O a] ² a)]

s
[ [( a ² a) O ( a ² a)] O ( a ² a) O ( a ² a) O ( a ² a) O ( a ² a)]

p↑
[ [ ( a ² a) O ( a ² a)] O ( a ² a) O ( a ² a) O ( a ² a) O ( a ² a)]

p↑
[ [ ( a ² a) O ( a ² a)] O ( a ² a) O ( a ² a) O ( a ² a) O ( a ² a)]

p↑
[ [ ( a ² a) O ( a ² a)] O ( a ² a) O ( a ² a) O ( a ² a) O ( a ² a)]

b↓
[ ( a ² a) O ( a ² a) O ( a ² a) O ( a ² a) O ( a ² a)]

b↓
[ ( a ² a) O ( a ² a) O ( a ² a) O ( a ² a)]

b↓
[ ( a ² a) O ( a ² a) O ( a ² a)]

b↓
[ ( a ² a) O ( a ² a)]

b↓
( a ² a)

!![!a O a]
b↑

(!![!a O a] ² ![!a O a])
b↑

(!![!a O a] ² ![!a O a] ² ![!a O a])
b↑

(!![!a O a] ² ![!a O a] ² ![(!a ² a) O a])
b↑

(!![!a O a] ² ![!a O a] ² ![(!a ² a) O a] ² [(!a ² a) O a])
b↑

(!![!a O a] ² ![!a O a] ² ![!a O a] ² ![(!a ² a) O a] ² [(!a ² a) O a])
p↓

(![?!a O !a] ² ![!a O a] ² ![!a O a] ² ![(!a ² a) O a] ² [(!a ² a) O a])
p↓

(![?!a O !a] ² [?!a O !a] ² ![!a O a] ² ![(!a ² a) O a] ² [(!a ² a) O a])
p↓

(![?!a O !a] ² [?!a O !a] ² [?!a O !a] ² ![(!a ² a) O a] ² [(!a ² a) O a])
p↓

(![?!a O !a] ² [?!a O !a] ² [?!a O !a] ² [?(!a ² a) O !a] ² [(!a ² a) O a])
s
(![?!a O !a] ² [?!a O !a] ² [?!a O !a] ² [?(!a ² a) O (!a ² [(!a ² a) O a])])

s
(![?!a O !a] ² [?!a O !a] ² [?!a O !a] ² [?(!a ² a) O (!a ² a) O (!a ² a)])

s
(![?!a O !a] ² [?!a O !a] ² [?(!a ² a) O (!a ² a) O ([?!a O !a] ² !a ² a)])

s
[(![?!a O !a] ² [?!a O !a] ² [?(!a ² a) O (!a ² a)]) O ([?!a O !a] ² !a ² a)]

s
[(![?!a O !a] ² [?(!a ² a) O ([?!a O !a] ² !a ² a)]) O ([?!a O !a] ² !a ² a)]

s
[(![?!a O !a] ² ?(!a ² a)) O ([?!a O !a] ² !a ² a) O ([?!a O !a] ² !a ² a)]

p↑
[?([?!a O !a] ² !a ² a) O ([?!a O !a] ² !a ² a) O ([?!a O !a] ² !a ² a)]

s
[?[([(?!a ² !a) O !a] ² a)] O ([?!a O !a] ² !a ² a) O ([?!a O !a] ² !a ² a)]

s
[?[(?!a ² !a) O (!a ² a)] O ([?!a O !a] ² !a ² a) O ([?!a O !a] ² !a ² a)]

s
[?[(?!a ² !a) O (!a ² a)] O ([(?!a ² !a) O !a] ² a) O ([?!a O !a] ² !a ² a)]

s
[?[(?!a ² !a) O (!a ² a)] O (?!a ² !a) O (!a ² a) O ([?!a O !a] ² !a ² a)]

s
[?[(?!a ² !a) O (!a ² a)] O (?!a ² !a) O (!a ² a) O ([(?!a ² !a) O !a] ² a)]

s
[?[(?!a ² !a) O (!a ² a)] O (?!a ² !a) O (!a ² a) O (?!a ² !a) O (!a ² a)]

p↑
[?[?(!a ² a) O (!a ² a)] O (?!a ² !a) O (!a ² a) O (?!a ² !a) O (!a ² a)]

p↑
[?[?(!a ² a) O (!a ² a)] O ?(!a ² a) O (!a ² a) O (?!a ² !a) O (!a ² a)]

p↑
[?[?(!a ² a) O (!a ² a)] O ?(!a ² a) O (!a ² a) O ?(!a ² a) O (!a ² a)]

b↓
[??(!a ² a) O ?(!a ² a) O (!a ² a) O ?(!a ² a) O (!a ² a)]

b↓
[??(!a ² a) O ?(!a ² a) O ?(!a ² a) O (!a ² a)]

b↓
[??(!a ² a) O ?(!a ² a) O ?(!a ² a)]

b↓
[??(!a ² a) O ?(!a ² a)]

b↓
??(!a ² a)

Figure 9: Result of applying the decomposition to the derivation in (10)

3.5.8 Lemma Let ∆ be a derivation in SNEL′, and let ∆′ be the result of applying
two permutation steps to ∆ (i.e., first permute all g↓, b↓, w↓ down, and second
permute all g↑, b↑, w↑ up). Then G!?(∆

′) is acyclic.
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...

S [? T O T ]

b↓

S{? T }

...

...

S [? T O T ]

b↓

S{? T }

...

→

...

S [? T O T ]

b↓

S{? T }

...

...

S [? T O T ]

b↓

S{? T }

...

Figure 10: The basic idea of the proof of Lemma 3.5.7

Proof: This follows immediately by way of contradiction from Theorem 3.5.6 and
Lemma 3.5.7 by an induction on the forking number of the cycle. ⊓⊔

Now Step 2 of the decomposition theorems (see Figure 5) is obtained via Lemmas
3.5.8 and 3.5.4. It remains to show that unforked cycles cannot exist, which is the
purpose of the next section.

3.6 Switch and Seq

The deep reason for the impossibility of unforked cycles in a !-?-flow-graph has noth-
ing to do with the modalities ! and ?, but is caused by a fundamental property of
derivations in the system {s, q↓, q↑}. This property is stated in the following lemma
(a similar result has already been shown by Retoré [Ret99]):

3.6.1 Lemma Let n > 0 and let a0, a1, . . . , an−1, b0, b1, . . . , bn−1 be 2n different
atoms. Further, let W0, . . . , Wn−1, Z0, . . . , Zn−1 be structures, such that

• Wi = [ai O bi ] or Wi = 〈ai ⊳ bi〉, for every i = 0, . . . , n − 1,

• Zj = (bj ² aj+1) or Zj = 〈bj ⊳ aj+1〉, for every j = 0, . . . , n − 1 (where the
indices are counted modulo n).

Then there is no derivation

(W0 ² W1 ² . . . ² Wn−1)

{s, q↓, q↑} ‖
‖ ∆̃

[Z0 O Z1 O . . . O Zn−1 ]

(22)

Before giving the proof of it, let us state and prove the second lemma of this
section, which says that an unforked cycle in the !-?-flow-graph of a derivation ∆
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can be transformed into a derivation ∆̃ as shown in (22) above. The basic idea is to
remove from ∆ everything that does not belong to the cycle, and then construct ∆̃
such that the !-?-flow-graph of ∆ becomes the atomic flow-graph of ∆̃.

To make this technically precise, note that in every cycle c in a !-?-flow-graph, the
following numbers are all equal:

• the number of maximal !-up-paths in c,

• the number of maximal ?-down-paths in c,

• the number of flipping edges in c from a !-vertex to a ?-vertex, and

• the number of flipping edges in c from a ?-vertex to a !-vertex.

We call this number the characteristic number of c. For example, the cycle in the
derivation in (10) has characteristic number 1, and the one in (21) has characteristic
number 2.

3.6.2 Lemma Let ∆ be a derivation in SNEL′ such that G!?(∆) contains an un-
forked cycle c. Then there is a derivation

([a0 O b0 ] ² [a1 O b1 ] ² . . . ² [an−2 O bn−2 ] ² [an−1 O bn−1 ])

{s, q↓, q↑} ‖
‖ ∆̃

[(b0 ² a1) O (b1 ² a2) O . . . O (bn−2 ² an−1) O (bn−1 ² a0)]

(23)

for some atoms a0, . . . , an−1, b0, . . . , bn−1, where n > 0 is the characteristic number
of c.

Proof: First, we transform ∆ into a derivation ∆′ which contains only rules from
SNEL′\{g↓, b↓, w↓, w↑} and in which the cycle is preserved. This is done by moving the
rules g↓, b↓, and w↓ down in the derivation by applying Lemma 3.5.3, and by moving
all instances of w↑ also down in derivation (by applying the dual of Lemma 3.1.4,
together with (7)):

P

SNEL′ ‖
‖ ∆

Q

;

P

SNEL′ \ {g↓, b↓, w↓, w↑} ‖
‖

∆′

Q′

{g↓, b↓, w↓, w↑} ‖
‖

Q

.

Since c is unforked, no transformation step destroys the cycle, which is therefore still
present in G!?(∆

′).

We continue the proof by marking some structures occurring in ∆′. We start by
marking all !- and ?-vertices of c by !• and ?•, respectively. Since c is unforked, it
cannot happen that a !•- or ?•-structure occurs inside another !•- or ?•-structure (as
it would be the case in the example in (10)). Now we replace every !• by !•i and every
?• by ?•j for some i, j ∈ {0, . . . , n − 1}, such that
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• two !•-vertices in the same up-path get the same index, and two ?• in the same
down-path get the same index, and

• every flipping edge in c goes from a !•i to a ?•i vertex, or from a ?•i to a !•i+1

vertex, where the addition is modulo n.

Note that at every flipping edge from a !•i to a ?•i vertex there is another edge in
G!?(∆) also starting at !•i , which continues the up-path marked by !•i up to the top of
the derivation, We mark all !-vertices on this path by !Ni . Since there are no instances
of b↓ left in ∆′, the !Ni up-path is never forked, and since there are no e↓ and no w↓
in ∆′, this path does not end before the top of the derivation. Hence, the premise P
of ∆′ contains exactly n substructures, marked by !N0 , !N1 , . . . , !Nn−1. Let us call them
!N0 W0, !N1 W1, . . . , !Nn−1Wn−1. We also have n instances of p↓ in ∆, marked as follows:

S{!Ni [R O T ]}
p↓

S [!•i R O ?•i T ]
(24)

Now we proceed similarly and mark the continuations of the ?•i -down-paths by ?H

i ,
i.e., we obtain n instances of p↑ marked as

S(?•i T ² !•i+1R)
p↑

S{?H

i (T ² R)}
(25)

However, note that now it can happen that we meet during the marking process a
proper forking vertex, due to the presence of b↑:

S{ V { H

i T}}
b↑

S( V { T} ² V { T})

S{!V {?H

i T}}
b↑

S(!V {?T} ² V {?T})
.

then we continue the marking in only one side, namely, into that copy of V {?T} in
the redex of b↑, that contains already a !•-, ?•-, !N-, or ?H-marking. Note that it
cannot happen that both copies of V {?T} contain such a marking because the cycle
is unforked. If neither side contains a marking, we arbitrarily pick one side. Since
there are no e↑ and w↑ in ∆′, the ?H-paths cannot end in the middle of the derivation.
Hence, the conclusion Q′ of ∆′ contains exactly n different marked ?H-structures, that
we denote by ?H

0 Z0, ?H

1 Z1, . . . , ?H

n−1Zn−1. Now we remove in ∆′ every modality that
is not marked, and we replace every atom that is not inside a marked structure by
the unit ◦. The important point is that after this rather drastic change we still have
a correct derivation. Every rule instance in ∆′ remains valid, or becomes vacuous,
i.e., premise and conclusion are identical. Note that here we make crucial use of the
fact that the cycle is unforked: Doing this deletion to a b↑ which forks c would yield
an incorrect inference step.

Let us call the new derivation ∆′′. Its premise P ′′ is made from the structures
!N0 W0, !N1 W1, . . . , !Nn−1Wn−1 by using only the binary connectives ², ⊳, and O, and its
conclusion Q′′ s made from ?H

0 Z0, ?H

1 Z1, . . . , ?H

n−1Zn−1 by using only ², ⊳, and O. Now
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note that for arbitrary structures A and B, we have the following three derivations:

(A ² B)
=

(〈A ⊳ ◦〉 ² 〈◦ ⊳ B〉)
q↑

〈(A ² ◦) ⊳ (◦ ² B)〉
=

〈A ⊳ B〉

and

(A ² B)
=

(A ² [◦ O B ])
s

[(A ² ◦) O B ]
=

[A O B ]

and

〈A ⊳ B〉
=

〈[A O ◦] ⊳ [◦ O B ]〉
q↓

[〈A ⊳ ◦〉 O 〈◦ ⊳ B〉]
=

[A O B ]

Hence, we can extend ∆′′ as follows:

(!N0 W0 ² !N1 W1 ² · · · ² !Nn−1Wn−1)

{q↑, s} ‖
‖

P ′′

‖
‖ ∆′′

Q′′

{q↓, s} ‖
‖

[?H

0 Z0 O ?H

1 Z1 O · · · O ?H

n−1Zn−1 ]

(26)

Let us use ∆′′′ to denote the derivation in (26). We finally obtain ∆̃ from ∆′′′ by
replacing every !•i -structure by ai, every ?•i -structure by bi, every !Ni -structure by
[ai O bi ], and every ?H

i -structure by (bi, ai+1). Clearly, every inference rule remains
valid, or becomes vacuous, as for example the instances of p↓ in (24) and p↑ in (25):

S{!Ni [R O T ]}
p↓

S [!•i R O ?•i T ]
→

S [ai O bi ]
=

S [ai O bi ]

and
S(?•i T ² !•i+1R)

p↑
S{?H

i (T ² R)}
→

S(bi ² ai+1)
=

S(bi ² ai+1)

If a rule does not become vacuous, it must be one of s, q↓, and q↑. ⊓⊔

Proof of Lemma 3.6.1: The proof is carried out by induction on the pair 〈n, q〉,
where q is the number of seq-structures in the conclusion, and we endorse the lexico-
graphic ordering on N × N. The base case (i.e., n = 1) is trivial. For the inductive
case we assume by way of contradiction the existence of the derivation ∆̃ in (22) and
consider the bottommost rule instance ρ. There are three cases.

(i) ρ = q↑. There is only one possibility to apply this rule:

(W0 ² W1 ² . . . ² Wn−1)

{s, q↓, q↑} ‖
‖ ∆′

[Z0 O · · · O Zj−1 O (bj ² aj+1) O Zj+1 O · · · O Zn−1 ]
q↑

[Z0 O · · · O Zj−1 O 〈bj ⊳ aj+1〉 O Zj+1 O · · · O Zn−1 ]

We can apply the induction hypothesis to ∆′ because the number n did not
change and the number q of seq-structures in the conlusion did decrease by 1.
Hence we get a contradiction.
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(ii) ρ = q↓. There are several possibilities to apply this rule. We show here only two
representative cases and leave the others to the reader because they are very
similar. The complete case analysis can be found in [Str03a].

(a) If we have

(W0 ² W1 ² . . . ² Wn−1)

{s, q↓, q↑} ‖
‖ ∆′

[〈[b0 O bi ] ⊳ [a1 O ai+1 ]〉 O Z1 O · · · O Zi−1 O Zi+1 O · · · O Zn−1 ]
q↓

[〈b0 ⊳ a1〉 O Z1 O · · · O Zi−1 O 〈bi ⊳ ai+1〉 O Zi+1 O · · · O Zn−1 ]

then ∆′ remains valid if we replace am and bm by ◦ for every m > i and for
m = 0. This gives us the derivation

(W1 ² · · · ² Wi)

{s, q↓, q↑} ‖
‖ ∆′′

[〈bi ⊳ a1〉 O Z1 O · · · O Zi−1 ]

which is a contradiction to the induction hypothesis because i < n.

(b) Consider

(W0 ² W1 ² . . . ² Wn−1)

{s, q↓, q↑} ‖
‖ ∆′

[〈b0 ⊳ [a1 O Zk1
O · · · O Zkv

]〉 O Zh1
O · · · O Zhs

]
q↓

[〈b0 ⊳ a1〉 O Z1 O · · · O Zn−1 ]

where {1, . . . , n − 1} \ {k1, . . . , kv} = {h1, . . . , hs} and s = n − v − 1 and
(without loss of generality) k1 < k2 < . . . < kv. As before, the derivation ∆′

remains valid if we replace am and bm by ◦ for every m with 1 ≤ m ≤ kv.
Then we get

(W0 ² Wkv+1 ² · · · ² Wn−1)

{s, q↓, q↑} ‖
‖ ∆′′

[〈b0 ⊳ akv+1〉 O Zkv+1 O · · · O Zn−1 ]

which is (as before) a contradiction to the induction hypothesis because
v ≥ 1.

(iii) ρ = s. This is similar to the case for q↓. But note that a situation like in (ii.a)
cannot happen for s. ⊓⊔

Proof of Theorem 3.5.6: The existence of an unforked cycle in G!?(∆) implies
by Lemma 3.6.2 the existence of a derivation as in (23). By Lemma 3.6.1, this is
impossible. ⊓⊔
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4 Cut Elimination

The classical arguments for proving cut elimination in the sequent calculus rely on the
following property: when the principal formulae in a cut are active in both branches,
they determine which rules are applied immediately above the cut. This is a conse-
quence of the fact that formulae have a root connective, and logical rules only hinge
on that, and nowhere else in the formula.

This property does not necessarily hold in the calculus of structures. Further, since
rules can be applied anywhere deep inside structures, everything can happen above
a cut. This complicates considerably the task of proving cut elimination. On the
other hand, a great simplification is made possible in the calculus of structures by the
reduction of cut to its atomic form, which happens simply and independently of cut
elimination. The remaining difficulty is actually understanding what happens, while
going up in a proof, around the atoms produced by an atomic cut. The two atoms of
an atomic cut can be produced inside any structure, and they do not belong to distinct
branches, as in the sequent calculus: complex interactions with their context are
possible. As a consequence, our techniques are largely different than the traditional
ones.

Two approaches to cut elimination in the calculus of structures have been explored
in previous papers: in [GS01, Str03b] we relied on permutations of rules, in [BT01]
Brünnler and Tiu relied on semantics, and in [Brü03a] Brünnler presents a simple
syntactic method that employs the atomicity of cut together with certain proof the-
oretical properties of classical logic. In this paper we use a third technique, called
splitting [Gug07], which has the advantage of being more uniform than the one based
on permutations and which yields a much simpler case analysis. It also establishes
a deep connection to the sequent calculus, at least for the fragments of systems that
allow for a sequent calculus presentation (in this case, the commutative fragment).
Since many systems are expressed in the sequent calculus, our method appears to
be entirely general; still it is independent of the sequent calculus and of a complete
semantics.

Splitting can be best understood by considering a sequent system with no weakening
and absorption (or contraction). Consider for example multiplicative linear logic: If
we have a proof of the sequent ⊢ F{A ² B}, Γ, where F{A ² B} is a formula that
contains the subformula A ² B, we know for sure that somewhere in the proof there
is one and only one instance of the ² rule, which splits A and B along with their
context. This is indicated in Figure 11. We can consider, as shown at the left,
the proof for the given sequent as composed of three pieces, ∆, Π1 and Π2. In the
calculus of structures, many different proofs correspond to the sequent calculus one:
they differ for the possible sequencing of rules, and because rules in the calculus of
structures have smaller granularity and larger applicability. But, among all these
proofs, there must also be one that fits the scheme at the right of Figure 11. This
precisely illustrates the idea behind the splitting technique.

The derivation ∆ in Figure 11 implements a context reduction and a proper split-
ting. We can state, in general, these principles as follows:
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ÄÄ
ÄÄ

Ä?????Π1

⊢ A, Φ
ÄÄ

ÄÄ
Ä?????Π2

⊢ B,Ψ
²

⊢ A ² B,Φ, Ψ

rrrrrrrrrrrrrrrrLLLLLLLLLLLLLLLL

∆

⊢ F{A ² B}, Γ

corresponds to

−
‖
‖ Π1

[A O Φ]

‖
‖ Π2

([A O Φ] ² [B O Ψ])
s

[([A O Φ] ² B) O Ψ]
s

[(A ² B) O Φ O Ψ]

‖
‖ ∆

[F (A ² B) O Γ]

.

Figure 11: The basic idea behind splitting and context reduction

1. Context reduction: If S{R} is provable, then S{ } can be reduced to the struc-
ture [{ } O U ], such that [R O U ] is provable. In the example above, [F{ } O Γ]
is reduced to [{ } O Γ′ ], for some Γ′.

2. Splitting: If [(R ² T ) O P ] is provable, then P can be reduced to [P1 O P2 ], such
that [R O P1 ] and [T O P2 ] are provable. In the example above Γ′ is reduced to
[Φ O Ψ]. Splitting holds for all logical operators.

Context reduction is in turn proved by splitting, which is then at the core of the
matter. The biggest difficulty resides in proving splitting, and this mainly requires
finding the right induction measure.

4.1 Splitting

In this section we will state and prove splitting, as we will need it for cut elimination.
For notational convenience, we define system NELc to be the system obtained from
NEL by removing the non-core rules:

NELc = NEL \ {w↓, b↓, g↓} = {◦↓, ai↓, s, q↓, p↓, e↓} = SNELc↓ ∪ {◦↓} .

4.1.1 Lemma (Splitting) Let R, T , P be any NEL structures.

(i) If [(R ² T ) O P ] is provable in NELc, then there are structures PR and PT , such
that

[PR O PT ]

NELc
‖
‖

P

and

−
NELc

‖
‖

[R O PR ]
and

−
NELc

‖
‖

[T O PT ]
.

(ii) If [〈R ⊳ T 〉 O P ] is provable in NELc, then there are structures PR and PT , such
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that
〈PR ⊳ PT 〉

‖
‖ NELc

P

and

−
NELc

‖
‖

[R O PR ]
and

−
NELc

‖
‖

[T O PT ]
.

Proof: We prove both statements simultaneously by structural induction on the
number of atoms in the conclusion and the length (number of rule instances) of the
proof, ordered lexicographically. Without loss of generality, assume R 6= ◦ 6= T
(otherwise both statements are trivially true).

(i) Consider the bottommost rule instance ρ in the proof of [(R ² T ) O P ]. We can
distinguish between three different kinds of cases:

(a) The first kind appears when the redex of ρ is inside R, T or P . Then we
have the following situation:

−
NELc

‖
‖ Π

[(R′ ² T ) O P ]
ρ

[(R ² T ) O P ]

where we can apply the induction hypothesis to Π because it is one rule
shorter (if ρ = ai↓ also the conclusion is smaller). We get

[PR′ O PT ]

NELc
‖
‖ ∆P

P

and

−
NELc

‖
‖ ΠR

[R′ O PR ]
and

−
NELc

‖
‖ ΠT

[T O PT ]

From ΠR, we can get
−

NELc
‖
‖ Π′

R

[R′ O PR ]
ρ

[R O PR ]

and we are done. If the redex of ρ is inside T or P , the situation is similar.

(b) In the second kind of case the substructure (R ² T ) is inside the redex
of ρ, but is not modified by ρ. These cases can be compared with the
“commutative cases” in the usual sequent calculus cut elimination argument.
We show only one representative example (a complete case analysis can be
found in [Gug07] and [Str03a]): Suppose we have

−
NELc

‖
‖ Π

[〈[(R ² T ) O P1 O P3 ] ⊳ P2〉 O P4 ]
q↓

[(R ² T ) O 〈P1 ⊳ P2〉 O P3 O P4 ]
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We can apply the induction hypothesis to Π because it is one rule shorter
(the size of the conclusion does not change). This gives us

〈Q1 ⊳ Q2〉

NELc
‖
‖ ∆1

P4

and

−
NELc

‖
‖ Π1

[(R ² T ) O P1 O P3 O Q1 ]
and

−
NELc

‖
‖ Π2

[P2 O Q2 ]

We can apply the induction hypothesis again to Π1, because now the the
number of atoms in the conclusion is strictly smaller (because we can assume
that the instance of q↓ is not trivial). We get

[PR O PT ]

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]

and

−
NELc

‖
‖ ΠR

[R O PR ]
and

−
NELc

‖
‖ ΠT

[T O PT ]

From ∆1, ∆2 and Π2 we can build the following derivation

[PR O PT ]

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]

NELc
‖
‖ Π2

[〈[P1 O Q1 ] ⊳ [P2 O Q2 ]〉 O P3 ]
q↓

[〈P1 ⊳ P2〉 O P3 O 〈Q1 ⊳ Q2〉]

NELc
‖
‖ ∆1

[〈P1 ⊳ P2〉 O P3 O P4 ]

and we are done. All other cases in this group are similar.

(c) In the last type of case the substructure (R ² T ) is destroyed by ρ. These
cases can be compared to the “key cases” in a standard sequent calculus
cut elimination argument. We have only one possibility. The most general
situation is as follows:

−
NELc

‖
‖ Π

[([(R1 ² T1) O P1 ] ² R2 ² T2) O P2 ]
s

[(R1 ² R2 ² T1 ² T2) O P1 O P2 ]

where one of R1 and R2 might be ◦, but not both of them (similarly for T1

and T2). As before, we can apply the induction hypothesis to Π and get

[Q1 O Q2 ]

NELc
‖
‖ ∆1

P2

and

−
NELc

‖
‖

Π1

[(R1 ² T1) O P1 O Q1 ]
and

−
NELc

‖
‖

Π2

[(R2 ² T2) O Q2 ]



A System of Interaction and Structure IV: The Exponentials 51

We can apply the induction hypothesis again to Π1 and Π2. (Because we
assume that the instance of s is not trivial, the conclusions are strictly
smaller than the one of the original proof.) We get:

[PR1
O PT1

]

NELc
‖
‖ ∆3

[P1 O Q1 ]

and

−
NELc

‖
‖ ΠR1

[R1 O PR1
]

and

−
NELc

‖
‖ ΠT1

[T1 O PT1
]

and

[PR2
O PT2

]

NELc
‖
‖ ∆4

Q2

and

−
NELc

‖
‖ ΠR2

[R2 O PR2
]

and

−
NELc

‖
‖ ΠT2

[T2 O PT2
]

Now let PR = [PR1
O PR2

] and PT = [PT1
O PT2

]. We can build

[PR1
O PR2

O PT1
O PT2

]

NELc
‖
‖ ∆4

[PR1
O PT1

O Q2 ]

NELc
‖
‖ ∆3

[P1 O Q1 O Q2 ]

NELc
‖
‖ ∆1

[P1 O P2 ]

and

−
NELc

‖
‖ ΠR1

[R1 O PR1
]

NELc
‖
‖

ΠR2

[(R1 ² [R2 O PR2
]) O PR1

]
s

[(R1 ² R2) O PR1
O PR2

]

and a similar proof of [(T1 ² T2) O PT1
O PT2

], and we are done.

(ii) The case for [〈R ⊳ T 〉 O P ] is similar to the one for [(R ² T ) O P ], and we leave
it to the reader. ⊓⊔

4.1.2 Lemma (Splitting for Modalities) Let R and P be any NEL structures.

(i) If [!R O P ] is provable in NELc, then there are structures P1, . . . , Ph for some
h ≥ 0, such that

[?P1 O · · · O ?Ph ]

NELc
‖
‖

P

and

−
NELc

‖
‖

[R O P1 O · · · O Ph ]
.

(ii) If [?R O P ] is provable in NELc, then there is a structure PR, such that

!PR

NELc
‖
‖

P

and

−
NELc

‖
‖

[R O PR ]
.
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Proof: The proof is similar to the previous one. We use the same induction measure
and the same pattern in the case analysis as before.

(i) We consider again the bottommost rule instance ρ in the proof of [!R O P ], and
we have the same three classes of cases as in the proof of Lemma 4.1.1.

(a) The redex of ρ is inside R or P . This case is the similar as in the proof of
Lemma 4.1.1.

(b) The substructure !R is inside the redex of ρ, but is not changed by ρ. This
case is almost literally the same as for Lemma 4.1.1. We only have to replace
(R ² T ) by !R, and

[PR O PT ]

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]

by

[?P1 O · · · O ?Ph ]

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]

(As for the previous lemma, the full details can be found in [Str03a].)

(c) The substructure !R is destroyed by ρ. There are two possibilities (ρ = e↓
and ρ = p↓):

−
NELc

‖
‖

[◦ O P ]
e↓

[!◦ O P ]

and

−
NELc

‖
‖ Π

[![R O P1 ] O Q2 ]
p↓

[!R O ?P1 O Q2 ]

For ρ = e↓ we are done immediately by letting h = 0. For ρ = p↓ we can
apply the induction hypothesis to Π and get structures P2, . . . , Ph such that

[?P2 O · · · O ?Ph ]

NELc
‖
‖

Q2

and

−
NELc

‖
‖

[R O P1 O P2 O · · · O Ph ]

We immediately get
[?P1 O ?P2 O · · · O ?Ph ]

NELc
‖
‖

[?P1 O Q2 ]

.

(ii) As before, consider the bottommost rule instance ρ in the proof of [?R O P ].

(a) The redex of ρ is inside R or P . This case is the similar as before.

(b) The substructure ?R is inside the redex of ρ, but is not changed by ρ. As
before, this case is almost literally the same as in the proof of Lemma 4.1.1.
This time we have to replace (R ² T ) by ?R, and

[PR O PT ]

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]

by

!PR

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]
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(c) The substructure ?R is destroyed by ρ. For this case there is only one
possibility:

−
NELc

‖
‖ Π

[![R O P1 ] O P2 ]
p↓

[?R O !P1 O P2 ]

We can apply part (i) of the lemma and get

[?Q1 O · · · O ?Qh ]

NELc
‖
‖ ∆

P2

and

−
NELc

‖
‖ ΠR

[R O P1 O Q1 O · · · O Qh ]

Now let PR = [P1 O Q1 O . . . O Qh ]. We can build

![P1 O Q1 O · · · O Qh ]

{p↓} ‖
‖

[!P1 O ?Q1 O · · · O ?Qh ]

NELc
‖
‖ ∆

[!P1 O P2 ]

as desired. ⊓⊔

4.1.3 Lemma (Splitting for Atoms) Let a be any atom and P be any NEL

structure.

If there is a proof

−
NELc

‖
‖

[a O P ]
then there is a derivation

ā

NELc
‖
‖

P

.

Proof: After the previous two proofs this is an almost trivial exercise: The case (a)
is as before, and for (b), we have to replace (R ² T ) by a, and

[PR O PT ]

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]

by

ā

NELc
‖
‖ ∆2

[P1 O P3 O Q1 ]

.

For case (c), the only possibility is

−
NELc

‖
‖ Π′

P1
ai↓

[a, ā, P1 ]
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from which we immediately get

ā

NELc
‖
‖

[ā, P1 ]

.

as desired. ⊓⊔

4.2 Context Reduction

The idea of context reduction is to reduce a problem that concerns an arbitrary (deep)
context S{ } to a problem that concerns only a shallow context [{ } O P ]. In the
case of cut elimination, for example, we will then be able to apply splitting.

Before giving the statement, we need to define the modality depth of a context S{ }
to be the number of ! and ? in whose scope the { } occurs. In the following lemma,
the { } is treated as ordinary atom.

4.2.1 Lemma (Context Reduction) Let R be a NEL structure and S{ } be a
context. If S{R} is provable in NELc, then there is a structure PR, such that

! · · · ![{ } O PR ]

NELc
‖
‖ ∆

S{ }

and

−
NELc

‖
‖ Π

[R O PR ]

where the number of ! in front of [{ } O PR ] is the modality depth of S{ }.

Proof: We proceed by structural induction on the context S{ }. The base case
when S{ } = { } is trivial. Now we can distinguish four cases

(a) S{ } = [(S′{ } ² T ) O P ] where,without loss of generality, T 6= ◦. Note that
we do allow P = ◦. We can apply splitting (Lemma 4.1.1) to the proof of
[(S′{R} ² T ) O P ] and get:

[PS O PT ]

NELc
‖
‖ ∆P

P

and

−
NELc

‖
‖

ΠS

[S′{R} O PS ]
and

−
NELc

‖
‖

ΠT

[T O PT ]

Because T 6= ◦ we can now apply the induction hypothesis to ΠS and get:

! · · · ![{ } O PR ]

NELc
‖
‖ ∆′

[S′{ } O PS ]

and

−
NELc

‖
‖

Π

[R O PR ]
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From this we can build

! · · · ![{ } O PR ]

NELc
‖
‖ ∆′

[S′{ } O PS ]

NELc
‖
‖ ΠT

[(S′{ } ² [T O PT ]) O PS ]
s

[(S′{ } ² T ) O PS O PT ]

NELc
‖
‖ ∆P

[(S′{ } ² T ) O P ]

as desired.

(b) The cases S{ } = [〈S′{ } ⊳ T 〉 O P ] and S{ } = [〈T ⊳ S′{ }〉 O P ] are handled
similarly to (a).

(c) If S{ } = [!S′{ } O P ], then we can apply splitting (Lemma 4.1.2) to the proof
of [!S′{R} O P ] and get:

[?P1 O · · · O ?Ph ]

NELc
‖
‖ ∆P

P

and

−
NELc

‖
‖ ΠS

[S′{R} O P1 O · · · O Ph ]
.

By applying the induction hypothesis to ΠS we get PR such that

! · · · ![{ } O PR ]

NELc
‖
‖ ∆′

[S′{ } O P1 O · · · O Ph ]

and

−
NELc

‖
‖ Π

[R O PR ]

From this we can build

!! · · · ![{ } O PR ]

NELc
‖
‖ ∆′

![S′{ } O P1 O · · · O Ph ]

{p↓} ‖
‖

[!S′{ } O ?P1 O · · · O ?Ph ]

NELc
‖
‖ ∆P

[!S′{ } O P ]

Note that in this case the number of ! in front of [{ } O PR ] increases.

(d) The case where S{ } = [?S′{ } O P ] is similar to (c). ⊓⊔
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4.3 Elimination of the Up Fragment

In this section, we will first show four lemmas, which are all easy consequences of
splitting and which say that the core up rules of system SNEL are admissible if they
are applied in a shallow context [{ } O P ]. Then we will show how context reduction
is used to extend these lemmas to any context. As a result, we get a proof of cut
elimination that can be considered modular, in the sense that the four core up rules
ai↑, q↑, p↑, and e↑ are shown to be admissible independently from each other.

4.3.1 Lemma Let P be a structure and let a be an atom. If [(a ² ā) O P ] is
provable in NELc, then P is also provable in NELc.

Proof: Apply splitting to the proof of [(a ² ā) O P ]. This yields:

[Pa O Pā ]

NELc
‖
‖

P

and

−
NELc

‖
‖

[a O Pa ]
and

−
NELc

‖
‖

[ā O Pā ]
.

By applying Lemma 4.1.3, we get a derivation from ā to Pa and one from a to Pā.
From these we can build our proof

◦↓
◦

ai↓
[ā O a]

NELc
‖
‖

[Pa O Pā ]

NELc
‖
‖

P

as desired. ⊓⊔

4.3.2 Lemma Let R, T, U, V and P be any NEL structures. If [(〈R ⊳ U〉 ² 〈T ⊳ V 〉) O P ]
is provable in NELc, then [〈(R ² T ) ⊳ (U ² V )〉 O P ] is also provable in NELc.

Proof: By applying splitting several times to the proof of [(〈R ⊳ U〉 ² 〈T ⊳ V 〉) O P ],
we get structures PR, PT , PU , and PV such that

[〈PR ⊳ PU 〉 O 〈PT ⊳ PV 〉]

NELc
‖
‖

P

−
NELc

‖
‖

[R O PR ]

−
NELc

‖
‖

[U O PU ]

−
NELc

‖
‖

[T O PT ]

−
NELc

‖
‖

[V O PV ]
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By putting things together, we can build the proof

−
NELc

‖
‖

〈([R O PR ] ² [T O PT ]) ⊳ ([U O PU ] ² [V O PV ])〉
s, s, s, s

〈[(R ² T ) O PR O PT ] ⊳ [(U ² V ) O PU O PV ]〉
q↓, q↓

[〈(R ² T ) ⊳ (U ² V )〉 O 〈PR ⊳ PU 〉 O 〈PT ⊳ PV 〉]

NELc
‖
‖

[〈(R ² T ) ⊳ (U ² V )〉 O P ]

as desired. ⊓⊔

4.3.3 Lemma Let R, T and P be any NEL structures. If [(?R ² !T ) O P ] is prov-
able in NELc, then [?(R ² T ) O P ] is also provable in NELc.

Proof: As above, we apply splitting several times to the proof of [(?R ² !T ) O P ]
and get structures PR, P1, . . . , Ph such that:

[!PR O ?P1 O · · · O ?Ph ]

NELc
‖
‖

P

and

−
NELc

‖
‖

[R O PR ]
and

−
NELc

‖
‖

[T O P1 O · · · O Ph ]

By putting things together, we can build the proof

−
NELc

‖
‖

!([R O PR ] ² [T O P1 O · · · O Ph ])
s, s

![(R ² T ) O PR O P1 O · · · O Ph ]

{p↓} ‖
‖

[?(R ² T ) O !PR O ?P1 O · · · O ?Ph ]

NELc
‖
‖

[?(R ² T ) O P ]

as desired. ⊓⊔

4.3.4 Lemma Let P be any NEL structure. If [?◦ O P ] is provable in NELc, then
[◦ O P ] is also provable in NELc.

Proof: This is now a trivial exercise, that we leave to the reader. ⊓⊔

By the use of context reduction, we can extend the statements of Lemmas 4.3.1–
4.3.4 from shallow contexts [{ } O P ] to arbitrary contexts S{ }.
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4.3.5 Lemma Let R, T , U and V be any structures, let a be an atom and let
S{ } be any context. Then we have the following

(i) If S(a ² ā) is provable in NELc, then so is S{◦}.

(ii) If S(〈R ⊳ U〉 ² 〈T ⊳ V 〉) is provable in NELc, then so is S〈(R ² T ) ⊳ (U ² V )〉.

(iii) If S(?R ² !T ) is provable in NELc, then so is S{?(R ² T )}.

(iv) If S{?◦} is provable in NELc, then so is S{◦}.

Proof: All four statements are proved similarly. We will here show only the third:
Let a proof of S(?R ² !T ) be given and apply context reduction, to get a structure P ,
such that

! · · · ![{ } O P ]

NELc
‖
‖ ∆

S{ }

and

−
NELc

‖
‖ Π

[(?R ² !T ) O P ]

By Lemma 4.3.3 there is a proof Π′ of [?(R ² T ) O P ]. By plugging ?(R ² T ) into the
hole of ∆, we can build

−
{◦↓, e↓} ‖

‖

! · · · !◦

NELc
‖
‖ Π′

! · · · ![?(R ² T ) O P ]

NELc
‖
‖ ∆

S{?(R ² T )}

It is obvious that the other statements are proved in the same way. ⊓⊔

4.3.6 Lemma If a structure R is provable in NELc ∪ {ai↑, q↑, p↑, e↑} then it is
also provable in NELc.

Proof: The instances of the rules ai↑, q↑, p↑, e↑ are removed one after the other
(starting with the topmost one) via Lemma 4.3.5. ⊓⊔

Now we can very easily give a proof for the cut elimination theorem for the sys-
tem NEL.

Proof of Theorem 2.12: Cut elimination is obtained in two steps:

◦↓
◦

SNEL
‖
‖

R

1
−→

−
NELc ∪ {ai↑, q↑, p↑, e↑} ‖

‖

R′

{w↓, b↓, g↓} ‖
‖

R

2
−→

−
NELc

‖
‖

R′

{w↓, b↓, g↓} ‖
‖

R
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Step 1 is an application of the fourth decomposition (Theorem 3.1). The instances
of g↑, b↑, w↑ disappear because their premise must be the unit ◦, which is impossible.
Step 2 is just Lemma 4.3.6. ⊓⊔

This technique shows how admissibility can be proved uniformly, both for cut rules
(the atomic ones) and the other up rules, which are actually very different rules than
cut. So, our technique is more general than cut elimination in the sequent calculus,
for two reasons:

1. it applies to connectives that admit no sequent calculus definition, as seq;

2. it can be used to show admissibility of non-infinitary rules that involve no
negation, like q↑ and p↑.

5 Conclusions and Future Work

We have defined the logical system NEL, which integrates multiplicative commuta-
tivity and non-commutativity, together with exponentials. This has been done in the
formalism of the calculus of structures, which allows us to obtain very simple systems.
In addition, we get properties of locality, atomicity and modularity that do not hold
in other known calculi.

Proving cut elimination in deep inference is more difficult than in the sequent
calculus. However, the methods we used are more general than the traditional ones,
and, we believe, unveil some fundamental properties of logical systems that were
previously hidden. We make an essential use of a top-down symmetric notion of
derivation, which leads to a reduction of the cut rule into constituents which are dual
to the common logical rules.

System NEL was originally inspired by Retoré’s pomset logic [Ret97]. There is
research in progress to show that the multiplicative fragments of his logic and ours
coincide. In this case, our system and the work [Tiu06b] would explain why sequen-
tialising pomset logic has been so hard and unfruitful. It should be possible to extend
our system NEL to other logical operators, perhaps to full linear logic, and also to
the self-dual modality associated to Retoré’s non-commutative operator [Ret94]. In
this paper we limited ourselves to the bare necessary to include MELL.

In [Str03c], it is shown that NEL is Turing-complete. This result establishes an
interesting boundary to MELL, whose decidability is still an open problem. If it turns
out, as many believe, that MELL is decidable, then the boundary with undecidability is
crossed by our simple extension to seq. This would give a precise technical content to
the perceived difficulty of getting Turing-completeness for MELL, namely the trouble
in realising the tape of a Turing machine. In this sense, our sequentiality would be
even more strongly motivated by a basic computational mechanism.

One of the biggest open problems we have is understanding when and why decom-
position theorems work. They seem to have a strong relation to the notion of core
system, but we fail to understand the deep reasons for this. For the time being we
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observe that decomposition theorems hold for all logics we studied so far (classical,
linear and several commutative/non-commutative systems).

We believe that there is a close relation to the theory of structads that has recently
been developed by Lamarche [Lam01]. The exploration of this promises to be an
active area of research.
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[Brü06a] Kai Brünnler. Cut elimination inside a deep inference system for classical
predicate logic. Studia Logica, 82(1):51–71, 2006.

http://cs.bath.ac.uk/ag/p/PrComplDI.pdf
http://www.iam.unibe.ch/~kai/Papers/RestContr.pdf


A System of Interaction and Structure IV: The Exponentials 61
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tures in Computer Science, 4(2):273–285, 1994.

[Gen34] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathe-
matische Zeitschrift, 39:176–210, 1934.

[GG07] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep infer-
ence via atomic flows. Accepted for publication in LMCS, 2007. Available
from: http://cs.bath.ac.uk/ag/p/NormContrDIAtFl.pdf.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in
the calculus of structures. In Laurent Fribourg, editor, Computer Science
Logic, CSL 2001, volume 2142 of LNCS, pages 54–68. Springer-Verlag,
2001.

[GS02] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension
of MELL. In Matthias Baaz and Andrei Voronkov, editors, Logic for
Programming, Artificial Intelligence, and Reasoning, LPAR 2002, volume
2514 of LNAI, pages 231–246. Springer-Verlag, 2002.
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[Kah06a] Ozan Kahramanoğulları. Nondeterminism and Language Design in Deep
Inference. PhD thesis, Technische Universität Dresden, 2006. Available
from: http://www.doc.ic.ac.uk/~ozank/Papers/ozansthesis.pdf.
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