
Introduction to Deep Inference

Lecture notes for ESSLLI’19

August 5–16, 2019, University of Latvia

Andrea Aler Tubella

Ume̊a University
901 87 Ume̊a— Sweden

https://aalertubella.com/

Lutz Straßburger

INRIA Saclay – Île-de-France
École Polytechnique, Laboratoire d’Informatique (LIX)

Rue de Saclay — 91128 Palaiseau Cedex — France

http://www.lix.polytechnique.fr/~lutz/

https://aalertubella.com/
http://www.lix.polytechnique.fr/~lutz/

Contents

0 What is this? 4

1 What are proof formalisms, and why do we need them? 5

1.1 Hilbert systems . 5

1.2 Natural deduction . 6

1.3 Sequent calculus . 8

1.4 Calculus of structures . 15

1.5 Notes . 18

2 Properties of deep inference 20

2.1 Locality and atomicity . 20

2.2 Duality and Regularity . 24

2.3 Self-dual non commutative connectives 25

2.4 Notes . 26

3 Formalisms, Derivations and Proofs 27

3.1 The Calculus of Structures . 27

3.2 Open Deduction . 29

3.3 Operations with derivations . 31

3.4 From deep inference to the sequent calculus and back 31

3.5 Derivations of switch and medial 34

3.6 Notes . 37

4 Normalisation and cut elimination 38

4.1 Decomposition . 38

4.2 Splitting . 43

4.3 Notes . 53

5 Atomic Flows 54

5.1 Basic definitions and properties . 54

5.2 From formal derivations to atomic flows 60

5.3 Local Flow Transformations . 63

5.4 Global Flow Transformations . 65

5.5 Normalizing Derivations via Atomic Flows 69

5.6 Atomic Flows as Categories . 70

5.7 Limits of Atomic Flows . 70

5.8 Notes . 71

6 Combinatorial Proofs 72

6.1 Basic definitions . 72

6.2 Horizontal composition of combinatorial proofs 76

6.3 Substitution for combinatorial proofs 77

6.4 Vertical composition of combinatorial proofs 79

6.5 Relation to to deep inference proofs 83

6.6 Notes . 86

2

7 Subatomic Proof Theory 88
7.1 Subatomic logic . 88
7.2 Splitting . 92
7.3 Decomposition . 101
7.4 Cycle elimination . 106
7.5 Notes . 107

8 Final Remarks 108

9 References 109

3

0 What is this?

These are the notes for a 5-lecture-course given during the first week of ESSLLI’19, held
from August 5 to 16, 2010, at The University of Latvia (Riga). The URL of the school is

http://esslli2019.folli.info

The course will give a basic introduction to deep inference, which is a design principle for
proof formalisms in which inference rules can be applied at any depth inside the proof. In
this course, we will provide a clear understanding of the intuitions behind deep inference,
together with a rigorous account of the properties that deep inference proof systems enjoy,
especially in regards to normalisation. Properties that particularly stand out are atomic-
ity, locality, and regularity. Normalisation procedures specific to deep inference allow for
new notions of normal forms for proofs, as well as for a general modular cut-elimination
theory. Furthermore, the ability to track every occurrence of an atom throughout a proof
allows for the definition of geometric invariants with which it is possible to normalise proofs
without looking at their logical connectives or logical rules, obtaining a purely geometric
normalisation procedure.

This course is intended to be introductory. That means no prior knowledge of proof theory
is required. However, the student should be familiar with the basics of propositional logic.

4

http://esslli2019.folli.info

1 What are proof formalisms, and why do we need them?

Already in ancient Greece people tried to formalize the notion of a logical argument. For
example, the rule of modus ponens, in modern notation written as

A A→B
mp

B
(1)

goes back at least to Aristoteles. The figure in (1) says that if you know that A is true and
you also know that A implies B, then you can conclude B.

In the early 20th century David Hilbert had the idea to formalize mathematics. He wanted
to prove its consistency in order to avoid paradoxes (like Russel’s paradox). Although this
plan failed, due to Gödel’s Incompleteness Theorem, Hilbert’s work had huge impact on
the development of modern proof theory. He introduced the first formal deductive system
consisting of axioms and inference rules.

1.1 Hilbert systems

Figure 1 shows a so-called Hilbert system (also called Frege systems or Hilbert-Frege-systems
or Hilbert-Ackermann-systems) for classical propositional logic. The system in Figure 1, that
we call here H, contains ten axioms and one rule: modus ponens.

More precisely, we should speak of ten axiom schemes and one rule scheme. Each axiom
scheme represents infinitely many axioms. For example

(a ∧ c)→ ((a ∨ (b ∧ ¬c))→ (a ∧ c))

is an instance of the axiom scheme

A→ (B →A)

Notation 1.1.1. Throughout this lecture notes, we use lower case latin letters a, b, c, . . . ,
for propositional variables, and capital latin letters A, B, C, . . . , for formula variables. As
usual, the symbol ∧ stands for conjunction (and), ∨ stands for disjunction (or), and → stands
for implication. Furthermore, to ease the reading of long formulas, we use different types of
brackets for the different connectives. We use (. . .) for ∧, (. . .) for ∨, and (. . .) for →. This is
pure redundancy and has no deep meaning.

A proof in a Hilbert system is a sequence of formulas A0, A1, A2, . . . , An, where for each
0 ≤ i ≤ n, the formula Ai is either an axiom, or it follows from Aj and Ak via modus ponens,
where j, k < i. The formula An is called the conclusion of the proof.

The main results on Hilbert systems are soundness and completeness:

Theorem 1.1.2 (Soundness). If there is a proof in H with conclusion A, then A is a tau-
tology.

Theorem 1.1.3 (Completeness). If the formula A is a tautology, then there is a proof in H
with conclusion A.

5

A→ (B →A)
(A→ (B → C))→ (A→B)→A→ C
A→ (A ∨B)
B → (A ∨B)
(A→ C)→ (B → C)→ ((A ∨B)→ C)

(A ∧B)→A
(A ∧B)→B
A→ (B → (A ∧B))
f →A
¬ ¬A→A

A A→B
mp

B

Figure 1: The Hilbert system H

The main achievement of Hilbert systems is that they made proofs into first-class mathe-
matical objects that could be manipulated by mathematical means, and about which theo-
rems could be stated and proved. Proof theory as a mathematical field was born.

However, Hilbert systems are not easy to use to actually prove stuff. Just as an exercise,
try to prove Pierce’s law in a Hilbert system.

Exercise 1.1.4. Prove Pierce’s law ((A→B)→A)→A in the Hilbert system shown in Fig-
ure 1.

1.2 Natural deduction

If you tried this exercise, you might have noticed that proving stuff in a Hilbert system can be
quite tedious. For this reason, Gerhard Gentzen introduced the notion of natural deduction
(in German Natürliches Schließen) which resembles more closely the way mathematicians
reason in mathematical proofs.

Figure 2 shows his system NK. Let us more closely inspect some of the rules:

∧I: This rule is called ∧-introduction, because it introduces an ∧ in the conclusion. It says:
if there is a proof of A and a proof of B, then we can form a proof of A ∧B which has
as assumptions the union of the assumptions of the proofs of A and B.

→I: This rule is called →-introduction, because introduces an →. It says that if we can
prove B under the assumption A, then we can prove A→B without that assumption.
The notation A simply says that A had been removed from the list of assumptions.

→E: This rule is called →-elimination, because it eliminates an →. It is exactly the same
as modus ponens.

Exercise 1.2.1. Find similar explanations for the other rules.

6

Π1

A

Π2

B
∧I

A ∧B

Π1

A ∧B
∧ER

A

Π1

A ∧B
∧EL

B

A
Π1

B
→I
A→B

Π1

A→B

Π2

A
→E

B

Π1

A
∨IR

A ∨B

Π1

B
∨IL

A ∨B

Π1

A ∨B

A
Π2

C

B
Π3

C
∨E

C

A
Π1

f
¬I
¬A

Π1

¬A

Π2

A
¬E

f

Π1

f
fE
C

Π1

¬ ¬A
¬¬E

A

Figure 2: The natural deduction system NK

Example 1.2.2. Let us now see an example proof:

A ∨ (B ∧ C)

A
∨IR

A ∨B

A
∨IR

A ∨ C
∧I

(A ∨B) ∧ (A ∨ C)

B ∧ C
∧ER

B
∨IR

A ∨B

B ∧ C
∧EL

C
∨IR

A ∨ C
∧I

(A ∨B) ∧ (A ∨ C)
∨E

(A ∨B) ∧ (A ∨ C)
→I

(A ∨ (B ∧ C))→ ((A ∨B) ∧ (A ∨ C))

(2)

Informally, we can read this proof as follows: We want to prove

(A ∨ (B ∧ C))→ ((A ∨B) ∧ (A ∨ C))

We assume A ∨ (B ∧ C). There are two cases: We have A or we have B ∧ C. In the first
case we can conclude A ∨B as well as A ∨ C, and therefore also (A ∨B) ∧ (A ∨ C). In the
second case we can conclude B and C, and therefore also A ∨B as well as A ∨ C, from which
we get (A ∨B) ∧ (A ∨ C). We have therefore shown (A ∨B) ∧ (A ∨ C) from the assumption
A ∨ (B ∧ C), and we can conclude (A ∨ (B ∧ C))→ ((A ∨B) ∧ (A ∨ C)).

As for Hilbert systems, we have soundness and completeness for NK.

Theorem 1.2.3 (Soundness). If there is a proof in NK with conclusion A, then A is a
tautology.

7

Theorem 1.2.4 (Completeness). If the formula A is a tautology, then there is a proof in
NK with conclusion A.

Exercise 1.2.5. Use the system NK (shown in Figure 2) for proving the axioms of the
system H (shown in Figure 1).

Exercise 1.2.6. If you did Exercises 1.1.4 and 1.2.5 then you can immediately produce
a proof of Pierce’s law in NK. How? Can you find a simpler proof of Pierce’s law
((A→B)→A)→A in NK?

1.3 Sequent calculus

In order to reason about derivations in natural deduction, Gentzen also introduced the
sequent calculus. Figure 3 shows his system LK. While Hilbert systems have many axioms
and few rules, sequent systems have few axioms and many rules. Gentzen’s original system
(Figure 3) is a variant of what is nowadays called a two-sided system, where a sequent

A1, . . . , An ` B1, . . . , Bm (3)

consists of two lists of formulas, and should be read as: The conjunction of the Ai entails
the disjunction of the Bj . As formula:

(A1 ∧ · · · ∧An)→ (B1 ∨ · · · ∨Bm)

Lists of formulas are usually denoted by capital greek letters, like Γ, ∆, Λ,

As for Hilbert systems an natural deduction, we have soundness and completeness for LK.

Theorem 1.3.1 (Soundness). If there is a proof in LK with conclusion ` A , then A is a
tautology.

Theorem 1.3.2 (Completeness). If the formula A is a tautology, then there is a proof in
LK with conclusion ` A .

Example 1.3.3. To give an example how the rules work, we prove here the same formula
as in Example 1.2.2:

id
A ` A

∨R1

A ` A ∨B

id
A ` A

∨R1

A ` A ∨ C
∧R

A ` (A ∨B) ∧ (A ∨ C)

id
B ` B

∧L1

B ∧ C ` B
∨R2

B ∧ C ` A ∨B

id
C ` C

∧L2

B ∧ C ` C
∨R2

B ∧ C ` A ∨ C
∧R

B ∧ C ` (A ∨B) ∧ (A ∨ C)
∨L

A ∨ (B ∧ C) ` (A ∨B) ∧ (A ∨ C)
→R
` (A ∨ (B ∧ C))→ ((A ∨B) ∧ (A ∨ C))

(4)

Exercise 1.3.4. Prove the axioms of the system H (shown in Figure 1) with the sequent
calculus LK (shown in Figure 3). Pay special attention to the cut-rule; which axioms of H
can you prove without it, and for which axioms do you need the cut-rule?

8

id
A ` A

Γ ` Θ
weakL

A,Γ ` Θ

Γ ` Θ
weakR

Γ ` Θ, A

A,A,Γ ` Θ
contL

A,Γ ` Θ

Γ ` Θ, A,A
contR

Γ ` Θ, A

∆, B,A,Γ ` Θ
exchL

∆, A,B,Γ ` Θ

Γ ` Θ, B,A,Λ
exchR

Γ ` Θ, A,B,Λ

A,Γ ` Θ
∧L1

A ∧B,Γ ` Θ

B,Γ ` Θ
∧L2

A ∧B,Γ ` Θ

Γ ` Θ, A Γ ` Θ, B
∧R

Γ ` Θ, A ∧B

A,Γ ` Θ B,Γ ` Θ
∨L

A ∨B,Γ ` Θ

Γ ` Θ, A
∨R1

Γ ` Θ, A ∨B

Γ ` Θ, B
∨R2

Γ ` Θ, A ∨B

Γ ` Θ, A B,∆ ` Λ
→L

A→B,Γ,∆ ` Θ,Λ

A,Γ ` Θ, B
→R

Γ ` Θ, A→B

Γ ` Θ, A
¬L
¬A,Γ ` Θ

A,Γ ` Θ
¬R

Γ ` Θ, ¬A

Γ ` Θ, A A,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

Figure 3: Gentzen’s sequent calculus LK

Observe that in natural deduction there are introduction rules and elimination rules,
whereas in the sequent calculus there are only introduction rules: introduction on the left
and introduction on the right. The rules for contraction (contL and contR), weakening (weakL
and weakR), and exchange (exchL and exchR) are called structural rules because they modify
only the “structure” of the sequent. The rules for ∧, ∨, →, and ¬ are called logical rules.
A special role is played by the id rule and by the cut rule, which, in a certain sense can
considered duals of each other.

The rule id is the axiom. It says that A implies A. An interesting observation is that in
the sequent calculus the identity axiom can be reduced to an atomic version

atomic id
a ` a

(5)

Proposition 1.3.5. The rule id is derivable in the system {atomic id} ∪ LK \ {id}.

9

Proof. Suppose we have an instance of id:

id
A ` A

We proceed by induction on the size of A to construct a derivation that uses only the atomic
version of id.

• If A = B ∧ C, then we can replace

id
B ∧ C ` B ∧ C

by

id
B ` B

∧L1

B ∧ C ` B

id
C ` C

∧L2

B ∧ C ` C
∧R

B ∧ C ` B ∧ C

(6)

and proceed by induction hypothese.

The other cases are similar (see Execise 1.3.6).

Exercise 1.3.6. Complete the proof of Proposition 1.3.5 (i.e., show the cases that are
omitted).

The cut rule expesses the transitivity of the logical consequence relation: if from B we can
conclude A, and from A we can conclude C, then from B we can conclude C directly. One
can say that the cut rule allows to use “lemmas” in a proof. The main and most surprising
result for the sequent calculus LK is that if there is a proof in LK, then the same conclusion
can be proved in LK without using the cut rule. This is nowadays called cut elimination.

Theorem 1.3.7. If a sequent Γ ` Θ is provable in LK, then it is also provable in LK \ {cut}.

(Sketch). We do not show the complete proof here, but we will discuss the basic proof idea
and the biggest problem to overcome. Let us consider a topmost instance of cut in a proof
in LK. I.e., we have a situation:

Π1

Γ ` Θ, A

Π2

A,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

(7)

where Π1 and Π2 do not contain instances of cut, i.e., are cut-free. Usually, the cut elimination
proceeds by an induction measure that includes the size of cut-formula A and the sizes of one
or both of Π1 and Π2 and maybe another value incorporating arrangements of the instances
of contraction in the proof. Then the cut elimination proof usually proceeds by a case
analysis on the bottommost rule instances in Π1 and Π2. The simplest case is when one of
these two rule instances does not involve the cut-formula A. Then we can perform a simple
rule permutation:

10

Π′
1

B,Γ′ ` Θ, A
∧L1

B ∧ C,Γ′ ` Θ, A

Π2

A,∆ ` Λ
cut

B ∧ C,Γ′,∆ ` Θ,Λ

;

Π′
1

B,Γ′ ` Θ, A

Π2

A,∆ ` Λ
cut

B,Γ′,∆ ` Θ,Λ
∧L1

B ∧ C,Γ′,∆ ` Θ,Λ

and proceed by induction hypothesis. If both rules decompose the cut formula, we can reduce
the cut. For example, assume A = B ∧ C, and we have a situation as shown on the left below:

Π′
1

Γ ` Θ, B

Π′′
1

Γ ` Θ, C
∧R

Γ ` Θ, B ∧ C

Π′
2

B,∆ ` Λ
∧R1

B ∧ C,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

;
Π′

1

Γ ` Θ, B

Π′
2

B,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

This can be replaced by a single cut on the subformula B, as shown on the right above. Note
that (i) the size of the cut formula is reduced (which is the reason that we can apply the
induction hypothesis) and (ii) the subproof Π′′1 has been deleted. It can also happen, that a
subproof is duplicated, as in the situation on the left below, where the cut formula is subject
to a contraction:

Π′
1

Γ ` Θ, A,A
contR

Γ ` Θ, A

Π2

A,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

;

Π′
1

Γ ` Θ, A,A

Π2

A,∆ ` Λ
cut

Γ,∆ ` Θ,Λ, A

Π2

A,∆ ` Λ
cut

Γ,∆,∆ ` Θ,Λ,Λ
contR

Γ,∆,∆ ` Θ,Λ
contL

Γ,∆ ` Θ,Λ

(8)

When we try to permut this instance of the contraction rule below the cut, we have to replace
the cut-instance by two instances of cut with the same cut formula A, and many instances
of contraction below the two cuts, as shown on the right above. If the bottommost rule in
Π2 is a contL-instance on A, then it is easy to see that this never terminates and the proof
only gets bigger and bigger. To solve this problem, Gentzen intoduced the Mischung, now
also known as Mix or multi-cut :1

Γ ` Θ, A, . . . , A A, . . . , A,∆ ` Λ
mcut

Γ,∆ ` Θ,Λ

where and arbitrary number of A are introduced on both premises. Then the situation in (8)
can be resolved as follows:

1The name Mix has many different meanings in different proof theory communities. For this reason, we
stick here to multi-cut.

11

Π′
1

Γ ` Θ, A, . . . , A,A
contR

Γ ` Θ, A, . . . , A

Π2

A, . . . , A,∆ ` Λ
mcut

Γ,∆ ` Θ,Λ

;
Π′

1

Γ ` Θ, A, . . . , A,A

Π2

A, . . . , A,∆ ` Λ
mcut

Γ,∆ ` Θ,Λ

Where we can proceed by induction hypothesis because the height of the proof branch on
the left is reduced.

Exercise 1.3.8. Complete the proof for Theorem 1.3.7. In particular, list all cases and find
an induction measure that is reduced in each case. Then you can conclude that the reduction
procedure terminates.

Some consequences of cut elimination (in propositional logic and in first order predicate
logic) are the subformula property and the consistency of the system.

The subformula property says that every formula that occurs somewhere in the proof is a
subformula of the conclusion. It is easy to see that only the cut rule violates this property
in LK.

Consistency says that there is no formula A such that we can prove both A and ¬A. This
can be proved as follows: By way of contradiction assume we have such a formula. By using
the cut rule, we can derive the empty sequent ` . By cut elimination there is a cut-free
proof of the empty sequent ` . But by the subformula property this is impossible.

One-sided sequent calculus

If the logic has DeMorgan duality (like classical logic), we only need to consider formulas in
negation normal form, i.e., negation is pushed to the atoms via the DeMorgan laws:

¬(A ∧B) = ¬A ∨ ¬B ¬(A ∨B) = ¬A ∧ ¬B ¬ ¬A = A (9)

and implication is eliminated by using

A→B = ¬A ∨B (10)

Then we need to consider only one-sided sequents:

` B1, . . . , Bm (11)

In such a system, negation is often denoted by (·), i.e., we write Ā instead of ¬A.
The translation of a two-sided sequent (3) into a one-sided sequent is simply
` Ā1, . . . , Ān, B1, . . . , Bm

The practical advantage is that we can halve the number of rules. Figure 4 shows the
one-sided version of LK.

There are many different sequent systems for classical logic; a second one is shown in
Figure 5. One-sided systems are also called Gentzen-Schütte systems.

Exercise 1.3.9. Translate the axioms of the Hilbert system H into negation normal form,
and prove them using the rules in Figure 4.

Exercise 1.3.10. Show that the two systems in Figures 4 and 5 are equivalent, i.e., prove
the same sequents.

12

id
` Ā, A

` Γ
weak

` Γ, A

` Γ, A,A
cont

` Γ, A

` ∆, B,A,Γ
exch
` ∆, A,B,Γ

` Γ, A ` Γ, B
∧

` Γ, A ∧B

` Γ, A
∨1

` Γ, A ∨B

` Γ, B
∨2

` Γ, A ∨B

` Γ, A ` Ā,∆
cut

` Γ,∆

Figure 4: One-sided version of LK

` Γ
weak

` Γ, A

` Γ, A,A
cont

` Γ, A

` ∆, B,A,Γ
exch
` ∆, A,B,Γ

id
` a, ā

` Γ, A ` ∆, B
∧
` Γ, A ∧B,∆

` Γ, A,B
∨
` Γ, A ∨B

` Γ, A ` Ā,∆
cut

` Γ,∆

Figure 5: Another one-sided sequent calculus for classical logic

id
` A⊥, A

` ∆, B,A,Γ
exch
` ∆, A,B,Γ

` Γ, A ` A⊥,∆
cut

` Γ,∆

` Γ, A
�1

` Γ, A �B

` Γ, B
�2

` Γ, A �B

` Γ, A ` Γ, B
N

` Γ, A NB

Figure 6: Sequent system ALL− for additive linear logic without units

id
` A⊥, A

` ∆, B,A,Γ
exch
` ∆, A,B,Γ

` Γ, A ` A⊥,∆
cut

` Γ,∆

` Γ, A,B
O
` Γ, A �B

` Γ, A ` B,∆
�
` Γ, A �B,∆

Figure 7: Sequent system MLL− for multiplicative linear logic without units

Linear logic

If you compare again the two systems in Figures 4 and 5, you will observe that the only rules
that are different are the ones for ∧ and ∨. The variants in Figure 4 are called additive and

13

the variants in Figure 5 are called multiplicative. If the rules of contraction and weakening
are present, then the two variants are equivalent (as you have observed in Exercise 1.3.10).

But what happens if we remove contraction and weakening? Then we get different logics
and different symbols for the connectives are used: N (with) and � (plus) for the additive
conjunction and disjunction, and � (tensor) and O (par) for the multiplicative conjunction
and disjunction. Figures 6 and 7 show additive and multiplicative linear logic (without units).
Note that in linear logic, negation is denoted differently.

Exercise 1.3.11. What is the maximal/minimal number of formulas that can occur in a
provable sequent in ALL−? What about MLL−?

Exercise 1.3.12. Prove cut elimination for ALL− and MLL−.

Exercise 1.3.13. We can combine the two systems into multiplicative additive linear logic
(MALL) without units. Write down the rules for that system.

In classical logic, the units t (truth) and f (falsum) can be recovered via the formula a0 ∨ ā0

and a0 ∧ ā0, respectively, for some fresh propositional variable a0. However, in linear logic
this is not possible, and this leads to four different units > (top), 1 (one), ⊥ (bottom), and
0 (zero), defined via the rules:

>
` Γ,>

1
` 1

` Γ
⊥
` Γ,⊥

no rule for 0

Exercise 1.3.14. Which unit belongs to which connective? Why?

In multiplicative additive linear logic, no duplication or deletion is possible because there
is no contraction and weakening. In order to recover these in a controlled way, linear logic has
two modalities ? (called why not) and ! (called of course or bang), subject to the following
inference rules:

` A, ?B1, . . . , ?Bn
!
` !A, ?B1, . . . , ?Bn

` Γ, ?A, ?A
?c

` Γ, ?A

` Γ
?w
` Γ, ?A

` Γ, A
?d
` Γ, ?A

Finally, Figure 8 shows the sequent system for full propositional linear logic.

Exercise 1.3.15. Show that Proposition 1.3.5, i.e., that the atomic identiy rule

atomic id
` a⊥, a

can replace the rule id, also holds for the system LL in Figure 8. In other words, prove that
id is derivable in {atomic id} ∪ LL \ {id}.

Exercise 1.3.16. Prove cut elimination for LL.

14

id
` A⊥, A

` Γ, A ` A⊥,∆
cut

` Γ,∆

` ∆, B,A,Γ
exch
` ∆, A,B,Γ

1
` 1

` Γ, A ` B,∆
�
` Γ, A �B,∆

` Γ, A,B
O
` Γ, A �B

` Γ
⊥
` Γ,⊥

>
` Γ,>

` Γ, A ` Γ, B
N

` Γ, A NB

` Γ, A
�1

` Γ, A �B

` Γ, B
�2

` Γ, A �B

` Γ, A
?d
` Γ, ?A

` A, ?B1, . . . , ?Bn
!
` !A, ?B1, . . . , ?Bn

` Γ, ?A, ?A
?c

` Γ, ?A

` Γ
?w
` Γ, ?A

Figure 8: System LL for full propositional linear logic

1.4 Calculus of structures

All proof formalisms that we have seen so far have one common feature: The proof progresses
by manipulating the outermost connectives of the formula trees. In natural deduction and
the sequent calculus it is only the root connective (or main connective) that is removed
or introduced in an inference rule. This is the most important property that makes cut
elimination work. In the following, we will call this kind of formalism shallow inference
formalisms.

This brings us directly to the actual topic of this course: the deep inference formalism, that
abandons the importance of the main connective. The first such formalism is the calculus
of structures2, which breaks with the tradition of the main connective and allows rewriting
of formulas deep inside any context. It derives its name from the fact that there is no
distinction between sequents and formulas, but there is a unique syntactic structure which
can be seen as an equivalence class of formulas modulo associativity and commutativity and
unit equations that are sometimes imposed on sequents (in the previous section the comma
is associative and concatenation with the empty sequent does not change a sequent).

Figure 10 shows the equation that we use here to generate these equivalence classes,
and Figure 9 shows system SKSg. However, one can avoid such an equational theory by
incorporating the equations into the rules, as it is done in the system shown in Figure 11.
That system has another property: all rules are local.

We have seen in Proposition 1.3.5 that in the sequent calculus, the identity axiom can
be reduced to an atomic form. The same can be done for the corresponding rule in SKSg.
However, by duality, we can do the same for the cut rule, which is not possible in the sequent
calculus. Furthermore, if we add the rules

S{f}
nm↓

S{f ∧ f}
S{(A ∧B) ∨ (C ∧D)}

m
S{(A ∨ C) ∧ (B ∨D)}

S{t ∨ t}
nm↑

S{t}
(12)

2The original motivation for the calculus of structures was to overcome some restrictions of the sequent
calculus which could not express a certain logic with a self-dual non-commutative connective. We will discuss
this later in the course.

15

S{t}
i↓
S{A ∨ Ā}

S{A ∧ Ā}
i↑

S{f}

S{(A ∨B) ∧ C}
s
S{A ∨ (B ∧ C)}

S{f}
w↓
S{A}

S{A}
w↑

S{t}

S{A ∨A}
c↓

S{A}
S{A}

c↑
S{A ∧A}

Figure 9: The deep inference system SKSg for classical logic

A ∧ (B ∧ C) = (A ∧B) ∧ C A ∧B = B ∧A A ∧ t = A

A ∨ (B ∨ C) = (A ∨B) ∨ C A ∨B = B ∨A A ∨ f = A

Figure 10: Equational theory for SKSg

we can do the same with contraction and weakening, which is also impossible in the sequent
calculus.3

Proposition 1.4.1. The rules i↓, i↑, c↓, c↑, w↓, and w↑ are derivable in SKS.

Proof. As in the proof of Proposition 1.3.5, we proceed by induction on the size of the
principal formula of the rule.

• If A = B ∧ C, then we can do the following replacements:

S{t}
i↓
S{(B ∧ C) ∨ C̄ ∨ B̄}

→

S{t}
i↓
S{B ∨ B̄}

i↓
S{(B ∧ (C ∨ C̄)) ∨ B̄}

s
S{(B ∧ C) ∨ C̄ ∨ B̄}

(13)

S{f}
w↓
S{B ∧ C}

→

S{f}
nm↓

S{f ∧ f}
w↓
S{f ∧ C}

w↓
S{B ∧ C}

(14)

S{(B ∧ C) ∨ (B ∧ C)}
c↓

S{B ∧ C}
→

S{(B ∧ C) ∨ (B ∧ C)}
m
S{(B ∨B) ∧ (C ∨ C)}

c↓
S{(B ∨B) ∧ C}

c↓
S{B ∧ C}

(15)

3We will come back to this in the next section.

16

S{t}
ai↓
S{a ∨ ā}

S{a ∧ ā}
ai↑

S{f}

S{A ∧ (B ∨ C)}
s
S{(A ∧B) ∨ C}

S{f}
aw↓

S{a}
S{a ∨ a}

ac↓
S{a}

S{a}
ac↑

S{a ∧ a}
S{a}

aw↑
S{t}

S{f}
nm↓

S{f ∧ f}
S{(A ∧B) ∨ (C ∧D)}

m
S{(A ∨ C) ∧ (B ∨D)}

S{t ∨ t}
nm↑

S{t}

S{A ∨ (B ∨ C)}
α↓
S{(A ∨B) ∨ C}

S{A ∨B}
σ↓
S{B ∨A}

S{A ∧B}
σ↑
S{B ∧A}

S{A ∧ (B ∧ C)}
α↑
S{(A ∧B) ∧ C}

S{A}
f↓
S{A ∨ f}

S{A}
t↓
S{A ∧ t}

S{f ∨A}
t↑

S{A}
S{t ∧A}

f↑
S{A}

Figure 11: System SKS

In each case we can proceed by induction hypothesis. For the rules i↑, c↑, and w↑ the
situation is similar.

• We leave the cases A = B ∨ C, A = t, A = f, and A = a as an exercise.

Exercise 1.4.2. Complete the proof of Proposition 1.4.1.

Proposition 1.4.3. The rules nm↓, nm↑, and m are derivable in SKSg.

Proof. The rules nm↓ and nm↑ are instances of w↓ and w↑, respectively. The rule m can be
derived using w↓ and c↓ (see Exercise 1.4.4).

Exercise 1.4.4. Show how medial can be derived using w↓ and c↓. Can you also derive
medial using w↑ and c↑?

Exercise 1.4.5. Conclude that if there is a derivation from A to B in SKSg then there is
one in SKS, and vice versa.

We use the following notation

A

S Π

B

and
S Π′

B

17

for denoting a derivation Π in system S from premise A to conclusion B, and a proof Π′ of
conclusion B in system S , respectively, where a proof is a derivation with premise t.

Theorem 1.4.6 (Soundness and Completeness). The formula A→B is a tautology if and
only if there is a derivation

A

SKS Π

B

Exercise 1.4.7. Prove the axioms of the Hilbert system H using SKSg.

The two systems in the calculus of structures that we presented so far have an interesting
property. All inference rules come in pairs:

S{A}
ρ
S{B}

and
S{B̄}

ρ̄
S{Ā}

(16)

where ρ̄ is the dual of ρ, and is obtained from ρ by negating and exchanging premise and
conclusion. For example, c↓ is the dual of c↑, and i↑ is the dual of i↓. The rules s and m are
self-dual.

If the rules i↓, i↑, and s a derivable in a system S , then S can derive for each rule also
its dual:

Proposition 1.4.8. Let ρ and ρ̄ be a pair of dual rules. Then ρ̄ is derivable in the system
{ρ, i↓, i↑, s}.

Proof. The rule ρ̄ can be derived in the following way:

S{B̄}
ρ̄
S{Ā}

;

S{B̄}
i↓
S{B̄ ∧ (a ∨ Ā)}

ρ
S{B̄ ∧ (B ∨ Ā)}

s
S{(B̄ ∧B) ∨ Ā}

i↑
S{Ā}

(17)

In a well-defined system in the calculus of structures, cut elimination means not only the
admissibility of the cut-rule i↑, but the admissibility of the whole up fragment, i.e., all rules
with an ↑ in the name. We will discuss cut elimination in deep inference several times in
this couse.

1.5 Notes

As the name says, Hilbert systems have been introduced by David Hilbert [Hil22, HA28].
Gödel’s Incompleteness Theorem has been published in [Göd31]. Natural Deduction and the
sequent calculus have been introduced by Gerhard Gentzen in [Gen35a, Gen35b], where he
also presented cut elimination. There is a similar result for natural deduction, called nor-
malization, which has first been described by Dag Prawitz [Pra65]. A standard textbook on

18

proof theory, treating these issues in more detail is [TS00]. Linear logic has been introduced
by Jean-Yves Girard in [Gir87]. An easier introduction is [Gir95]. The calculus of structures
is due to Alessio Guglielmi [Gug07, GS01]. The system SKS has first been presented by Kai
Brünnler and Alwen Tiu [BT01, Brü03].

19

2 Properties of deep inference

Some properties that immediately stand out when we naively look at deep inference proof
systems are their regularity, duality and atomicity. In this section we will present these
significant properties of systems that are only made possible because of the ability to apply
rules deep inside of a formula.

To illustrate these properties, we will observe different deep inference systems that share
the same characteristic features. The first of these is system SKS (Figure 11) for classical
logic, introduced in the precious section. The second system we will consider is system SLLS
(Figure 12): it is a sound and complete deep inference system for linear logic (see Section
1.3) which we will use as an example throughout these lecture notes. Last, we will see system
BV (Figure 14), which features a self-dual non commutative connective /. We feature this
system since it is not possible to support these connectives in shallow systems such as the
sequent calculus.

2.1 Locality and atomicity

A main feature of deep inference is that rules can be made local, in the sense that determining
whether an application of the rule is correct we do not need to inspect arbitrarily big formulae.
This is achieved by turning all structural rules such as contraction and cut into their atomic
versions: as we can see, in systems SKS, SLLS and BV all the structural rules only concern
atoms. Atomicity is only possible in systems where we can apply rules deep: restricting
contractions to their atomic form in shallow systems like the sequent calculus is impossible.

Definition 2.1.1. A rule is local if it does not require the inspection of expressions of
arbitrary size.

Consider the following rule instances

Γ ` Φ, A,A
cont

Γ ` Φ, A
vs.

S{a ∨ a}
ac↓

{a}

id
A ` A

vs.
S{t}

ai↓
S{a ∨ ā}

In the sequent rules, going from bottom to top in constructing a proof e.g., during proof
search, through an instance of contraction a formula A of unbounded size is duplicated.
Whatever mechanism performs this duplication, needs to inspect all of A, so it has to have
a global view on A; whereas inspection in the atomic case is restricted to a single atom.
Likewise, to inspect the correctness of the sequent identity rule, we need to verify that
formulae on either side of the sequent are identical, which requires inspection of formulae of
unbounded size. In the atomic case, we simply need to check that both atoms are the same.

Locality has a number of advantages in terms of proof normalisation (e.g. cut-elimination),
proof system design, and generality. Having atomic rules allows us to follow atoms from their
creation to their destruction. This ability is crucial for some graphical representations of
proofs, as we will see in Section 5. Furthermore, locality allows for a normalisation procedure
known as decomposition, which is not achievable in shallow proof systems. Decomposition
procedures consist in restricting certain rules to specific parts of a derivation. For example, a

20

S{1}
ai↓
S{a O ā}

S{a � ā}
ai↑

S{⊥}

S{(A OB) N (C OD)}
d↓
S{(A N C) O (B �D)}

S{(A �B) � (C ND)}
d↑
S{(A � C) � (B �D)}

S{!(R O T)}
p↓

S{!RO?T}
S{!R�?T}

p↑
S{?(R � T)}

S{0}
aw↓

S{a}
S{a � a}

ac↓
S{a}

S{a}
ac↑

S{a N a}
S{a}

aw↑
S{>}

S{0}
nm↓

S{0 N 0}
S{(A OB) � C}

s
S{(A � C) OB}

S{(A NB) � (C ND)}
m
S{(A � C) N (B �D)}

S{> �>}
nm↑

S{>}

S{0}
nm1↓

S{0 O 0}
S{(A OB) � (C OD)}

m1↓
S{(A � C) O (B �D)}

S{(A NB) � (C ND)}
m1↑

S{(A � C) N (B �D)}
S{> �>}

nm1↑
S{>}

S{0}
nm2↓

S{0 � 0}
S{(A �B) � (C �D)}

m2↓
S{(A � C) � (B �D)}

S{(A NB) O (C ND)}
m2↑

S{(A O C) N (B OD)}
S{> O>}

nm2↑
S{>}

S{0}
nl1↓

S{?0}
S{?R � ?T}

l1↓
S{?(R � T)}

S{!(R N T)}
l1↑

S{!R N !T}
S{!>}

nl1↑
S{>}

S{0}
nl2↓

S{!0}
S{!R � !T}

l2↓
S{!(R � T)}

S{?(R N T)}
l2↑

S{?R N ?T}
S{?>}

nl2↑
S{>}

S{⊥}
nz↓

S{?0}
S{?R O T}

z↓
S{?(R � T)}

S{!(R N T)}
z↑

S{!R � T}
S{!>}

nz↑
S{1}

Figure 12: System SLLS

A �B = B �A (A �B) � C = A � (B � C) A � 1 = A
A NB = B NA (A NB) N C = A � (B N C) A N> = A
A �B = B �A (A �B) � C = A � (B � C) A � 0 = A
A OB = B OA (A OB) O C = A O (B O C) A O 1 = ⊥

??R =?R !!R =!R
⊥ �⊥ = ⊥ =?⊥ 1 N 1 = 1 =!1

Figure 13: Equational theory of SLLS

21

S{◦}
ai↓
S{a O ā}

S{a � ā}
ai↑

S{◦}

S{(A OB) � C)}
s
S{(A � C) OB}

S{(A OB) / (C OD)}
q↓
S{(A / C) O (B / D)}

S{(A / B) � (C / D)}
q↑
S{(A � C) / (B �D)}

Figure 14: System SBV

A �B = B �A (A �B) � C = A � (B � C) A � ◦ = A
A OB = B OA (A OB) O C = A O (B O C) A O ◦ = A

(A / B) / C = A / (B / C) A / ◦ = A = ◦ / A

Figure 15: Equational theory of SBV

useful decomposition procedure is one that allows us to constrain all instances of contraction
to the bottom of a proof, and therefore to restrict all formula duplications to the bottom
phase of the proof. Decomposition results provide new normal forms for proofs and an
improved understanding of complexity creation during cut-elimination. We will expand on
it in Sections 4.1 and 7.3. Last, atomicity introduces a strong regularity in the shape of
inference rules, which is invaluable for generalising proof systems and obtaining general
logic-agnostic properties, as we will see in Section 7.

Whereas reducing the identity and cut axioms to their atomic versions is possible in shallow
systems such as the sequent calculus, the ability to apply rules deep inside of formulae is
strictly necessary to make contraction atomic. The following counter-example is enough to
show that.

Theorem 2.1.2. The sequent

` a ∧ b, (ā ∨ b̄) ∧ (ā ∨ b̄)

has no cut-free sequent proof in which all contractions are atomic.

Sketch of proof. We will show that no such proof exists in the one-sided sequent calculus of
Figure 5 without the cut.

The idea is that we need to duplicate a ∧ b to produce all the atoms necessary to close the
proofs through identity axioms. However, as we are restricted to atomic contractions and
we can only apply rules in a shallow way, we cannot apply contraction straight away since
there are no single atoms.

We have to apply another rule, and it is easy to see that every rule we can apply separates
the formulae into two independent branches in such a way that we get invalid premisses.

As we mentioned previously, a fundamental property for which we will exploit atomicity
is decomposition, and in particular we are looking for the ability to restrict all contractions

22

to the bottom of proofs. This decomposition is not possible without locality, which can be
shown through a similar counter-example to the one above.

Theorem 2.1.3 (Decomposition). For every proof

SKS

A

in system SKS there is a proof

SKS\{ac↓}

B

{ac↓}

A

such that all instances of atomic contraction are restricted to the bottom of the proof. Fur-
thermore, there is a cut-free proof

SKS\{ac↓,ai↑}

C

{ac↓}

A

such that all instances of atomic contraction are restricted to the bottom of the proof.

Example 2.1.4.

(t ∨ f) ∧ t
ai↓

(a ∨ ā ∨ f) ∧ t
aw↓

(a ∨ a ∨ ā) ∧ t
ac↓

(a ∨ ā) ∧ t
ai↓

(a ∨ ā) ∧ (b ∨ b̄)
s
(a ∧ (b ∨ b̄)) ∨ ā

−→

(t ∨ f) ∧ t
ai↓

(a ∨ ā ∨ f) ∧ t
aw↓

(a ∨ a ∨ ā) ∧ t
ai↓

(a ∨ a ∨ ā) ∧ (b ∨ b̄)
s
((a ∨ a) ∧ (b ∨ b̄)) ∨ ā

ac↓
(a ∧ (b ∨ b̄)) ∨ ā

Note that this decomposition theorem holds specifically for proofs rather than for deriva-
tions. Recall that proofs are derivations with premiss t. Similar decomposition results exist
for many systems. In this course we will show a few examples (Section 4.1) to illustrate
the methodologies employed to prove such results, as well as introduce a generalised version
of the above theorem (Section 7) to highlight just how general this phenomenon is in deep
systems. Such decomposition is not achievable in shallow systems.

Theorem 2.1.5. The sequent
` a ∧ a, ā ∧ ā

has no cut-free sequent proof in which all contractions are at the bottom.

Sketch of proof. We will show that no such proof exists in the one-sided sequent calculus of
Figure 5 without the cut.

It suffices to show that, for any number of occurrences of the formulae a ∧ a and ā ∧ ā the
sequent ` a ∧ a, . . . , a ∧ a, ā ∧ ā, . . . , ā ∧ ā is not provable without contraction.

23

We will show that every derivation without contraction with an endsequent of the form
t ` a ∧ a, . . . , a ∧ a, ā ∧ ā, . . . , ā ∧ ā has a leaf that contains at most a single atom. Since we
need two single atoms to apply the identity axiom, such a derivation can never be a proof-.
We will proceed by induction on the length of the derivation.

If the proof is of length 0, then it is obvious.
If the derivation Φ is of lenght n, let us choose a leaf l and remove its topmost rule ρ to

obtain a derivation Φ′. By induction hypothesis, Φ′ has a leaf that contains at most a single
atom. If that leaf is not l, then Φ clearly also has a leaf that contains at most a single atom,
and we are done. Otherwise, the conclusion of ρ contains at most a single atom. We have
to show that in the premiss of ρ there is a sequent which contains at most a single atom.
Since the connective ∨ does not occur in the endsequent, by the subformula property only
the rules id,weak, exch and ∧ can appera in the derivation.

• If ρ is an instance of
` Γ

weak
` Γ, A

, then ` Γ contains at most a single atom-

• If ρ is an instance of
` ∆, B,A,Γ

exch
` ∆, A,B,Γ

, then ` ∆, A,B,Γ contains at most a single

atom.

• If ρ is an instance of
` Γ, A ` ∆, B

∧
` Γ, A ∧B,∆

, then Γ and ∆ contain at most a single atom

between the two of them, and thus one of them does not contain any single atoms.
Without loss of generality, assume ∆ does not contain any single atoms. Then, the
sequent ` ∆, B contains at most a single atom.

The proofs of Theorems 2.1.2 and 2.1.5 only rely on the ∧-introduction rule being mul-

tiplicative, i.e. of the form
` Γ, A ` ∆, B

∧
` Γ, A ∧B,∆

rather than
` Γ, A ` Γ, B

∧
` Γ, A ∧B

. For this

reason, they can be replicated whether the shallow system is for propositional or for first-
order predicate logic, whether it is two- or one-sided, whether or not rules for implication
are in the system, whether weakening is explicit or buit into the axiom, whether a multi-
plicative or additive version of the ∨-introduction is used. Likewise, they can be adapted to
non-classical logics with a multiplicative connective. In those shallow systems, contraction
can thus neither be restricted to atoms nor to the bottom of a proof.

Exercise 2.1.6. Find SKS proofs of the sequents of Theorems 2.1.2 and 2.1.5 with all
contractions restricted to the bottom.

2.2 Duality and Regularity

In deep inference systems every rule has its dual. We indicate the dual of a rule ρ↓ by ρ↑.
The concept of dual rule very intuitively corresponds to the iadea of the contrapositive of an
implication.

Since the premiss and conclusion of a deep inference rule are single formulas, dual rules
can very easily be defined in through the negation of formulas. We can define the negation
(or dual) of a formula inductively, using DeMorgan equivalences.

24

Example 2.2.1. In SKS, we inductively define the negation of a formula as:

t̄ = f f̄ = t

(A ∨B) = Ā ∧ B̄ (A ∧B) = Ā ∨ B̄

Definition 2.2.2. The dual of a rule
S{A}
S{B}

is the rule
S{B̄}
S{Ā}

.

Two rules are dual to each other if one can be obtained from the other by exchanging
premise and conclusion and negating them. The duality between different rules is thereby
exposed, like for example that of the identity axiom and the cut rule:

S{t}
ai↓
S{a ∨ ā}

S{a ∧ ā}
ai↑

S{f}
.

Some rules are said to be self-dual : the rule and its dual are identical. The medial and
switch rules are self-dual:

S{(A ∧B) ∨ (C ∧D)}
m
S{(A ∨ C) ∧ (B ∨D)

S{(A ∨B) ∧ C}
s
S{(A ∧ C) ∨B}

We can extend the concept of dual rules to define dual derivations,as we will see in Sec-
tion 3.

From naively observing the deep inference systems of these notes, we can quickly observe
that deep inference rules present a striking regularity. Many of them are of the shape

S{(A α B) β (C α′ D)}
S{(A β C) α (B β′ D)}

,

where α, β, α′ and β′ are connectives. This shape is called in the medial shape.

In fact, we can make systems where all the rules have this shape, as we will see in Section
7. This regularity allows us to design systems in a systematic way, as well as to generalise
proof-systems to reason about them independently of the logic.

2.3 Self-dual non commutative connectives

Consider multiplicative linear logic (see Section 1.3). If we enrich this system with a logical
connective /, which is self-dual (A / B = Ā / B̄) and non-commutative (A / B 6= B / A), we
obtain a logical system which to date is not known to be expressible in the sequent calculus.

In deep inference, this extension is expressible in the logical system BV [Gug07]. We
know that, any restriction on the depth of the inference rules of the system would result
in a strictly less expressive logical system4. We can therefore say that deep inference is a
non-trivial extension to the traditional sequent calculus: it allows for a simple formulation
of a logic which does not admit any straightforward formulation in sequent calculus without
deep inference.

4This is proved by means of a counterexample in [Tiu06b]

25

2.4 Notes

System SLLS is due to Lutz Straßburger [Str03a]. System SBV is due to Alessio Guglielmi
[Gug07]. The first definition of locality, as well as the counter-examples showing that locality
and decomposition are impossible in the sequent calculus are by Kai Brünnler [Brü06].

26

S{1}
ai↓
S{a O ā}

S{(A OB) � C}
s
S{(A � C) OB}

S{a � a}
ai↑

S{⊥}

Figure 16: System SMLS

A �B = B �A (A �B) � C = A � (B � C) A � 1 = A
A OB = B OA (A OB) O C = A O (B O C) A O 1 = ⊥

Figure 17: Equational theory of SMLS

id
` A,A⊥

` A,Φ ` A⊥,Ψ
cut

` Φ,Ψ

` A,Φ ` B,Ψ
�

` A �B,Φ,Ψ

` A,B,Φ
O

` A OB,Φ

` Φ
⊥
` ⊥,Φ

1
` 1

Figure 18: Sequent calculus system MLL

3 Formalisms, Derivations and Proofs

In order to do proof theory, we need a concise definition of what constitutes a proof system,
what is a derivation and what constitutes a proof. In deep inference we can apply rules at
any depth inside the derivation, and therefore different formalisms are needed to capture
this behaviour. In this section we will present two of these formalisms, and show how to
obtain sequent proofs from deep inference proofs and viceversa, with the simple example of
multiplicative linear logic.

Deep inference system SMLS for multiplicative linear logic is presented in Figure 16, and
a sequent system is shown in Figure 18).

3.1 The Calculus of Structures

The calculus of structures is a deep inference formalism in which inference rules can be applied
inside of a context S{ }. Formulae are often considered modulo equality and rules are applied
sequentially. Its motivations and some particularities have been informally introduced in
Section 1.4, and in this section we will formally define derivations and proofs, in order to
compare it to other deep inference formalisms.

Definition 3.1.1. An inference rule is a scheme of the form
S{R}

ρ
S{T}

where ρ is the name of

the rule, R is its premiss and T its conclusion.

A system S is a set of inference rules.

In logical systems, we usually associate an equational theory to formulae. These may
include associativity, commutativity and unit rules. Figures 10, 13 and 15 contain the
equational theories for SKS, SLLS and BV respectively.

27

In the Calculus of Structures, we most frequently operate with formulas modulo equality:
the equivalence class of equal formulas is called a structure. If for a specific purpose we do
not operate modulo equality and instead incorporate equality rules directly as inference rules
in the system (see Figure 11), we will state it explicitely. Note that unlike some sequent
systems, most deep inference systems include units (like t and f) and we explicitly use the
units in the introduction and cut rules.

Intuitively, given a set of rules, a straightforward way to define deep derivations is as a
sequence of rules, each of which can be applied to any subformula of the conclusion of the
previous rule.

Definition 3.1.2. A calculus of structures (CoS) derivation φ in S from premiss A to

conclusion B denoted by

A

Φ S

B

is defined to be one of the following:

• a formula Φ = A = B;

• a composition by inference

φ =

A

Φ1 S

S{R}
ρ
S{T}
Φ2 S

B

where R and T are structures,
R

ρ
T

is an instance of an inference rule in S and Φ1,Φ2

are derivations in S .

We denote by

A

Φ {ρ1,...,ρn}

B

a derivation where only the rules ρ1, . . . , ρn appear.

Sometimes we omit the name of a derivation or the name of the proof system if there is
no ambiguity.

Definition 3.1.3. A proof is a derivation whose premiss is equal to a distinguished unit.

We denote them by
Π S

A
.

28

3.2 Open Deduction

As we saw in the previous section, a Calculus of Structures derivation is simply a sequence of
rules. This allows us to order the rules, and to easily describe a rule as being above or below
another rule. However, by applying rules sequentially, we impose this order, which can be
superfluous in situations where the rule applications are completely independent from each
other. Consider for example the following two derivations:

A ∧B

C ∧B

C ∧D

A ∧B

A ∧D

C ∧D

. (18)

The two inference rules applied are completely independent (each affecting only the red
or blue part), and the order imposed on them is artificial: it is an example of what we call
bureaucracy. When considering questions like the identity of proofs, we would like the two
derivations above to be equivalent.

So far, we have seen throughout these notes that the motivation behind deep inference
is the ability to apply rules at any depth. A straightforward consequence of that is in fact
the ability to compose derivations vertically (through inference rules), but also horizontally
through connectives:

(A ∨B) ∧ C
s
(A ∧ C) ∨B

∧
f

aw↓
a

.

Open Deduction derivations will be built as sequences of rules which can also be composed
with the same connectives as we compose formulae. In this way, two Calculus of Structures
derivations that are equivalent except for the order of application of two independent rules
can be represented as the same Open Deduction derivation.

Definition 3.2.1. An open deduction (OD) derivation Φ in S from premiss A to conclusion

B denoted by

A

φ S

B

is defined to be one of the following:

• a formula Φ = A = B;

• a composition by inference

Φ =

A

Φ1 S

A′
ρ

B′

Φ2 S

B

where ρ is an instance of an inference rule in S and Φ1 and Φ2 are derivations in S ;

29

t
ai↓
a ∨ ā

a ∧ ā
ai↑

f

(A ∨B) ∧ C
s
(A ∧ C) ∨B

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

a ∨ a
ac↓

a

a
ac↑

a ∧ a

f
aw↓

a

a
aw↑

t

Figure 19: Open Deduction presentation of SKS

• a composition by connectives

φ =

A1

Φ1 S

B1

?

A2

Φ2 S

B2

where ? is a logical connective, A ≡ A1?A2, B ≡ B1?B2, and φ1 and φ2 are derivations
in S .

We can therefore represent the two derivations above (equation 18) as one single Open
Deduction derivation:

A ∧B

C ∧B

C ∧D

−→
A

C
∧
B

D
←−

A ∧B

A ∧D

C ∧D

Since when we apply rules deep we are no longer applying them inside a context but rather
performing a composition by connectives, we often describe open deduction systems without
the context S{ } that is included in Calculus of Structures presentations, as in Figure 3.2.
The same rules describe the same logics in both formalisms, but note that the equational
theory is slightly different. The equations f ∧ f = f and t ∨ t = t have been added as àrt
of the equational theory (i.e. we wok modulo these equations as well), whereas in the CoS
presentation they could be recovered through

S{f}
nm↓

S{f ∧ f}
and

S{f ∧ f}
=
S{f ∧ ((f ∧ t) ∨ (t ∧ f))}

m
S{f ∧ ((f ∨ t) ∧ (f ∨ t))}

S{f}

.

Exercise 3.2.2. Show that for every open deduction derivation there is (at least) one calcu-
lus of structures derivation, and for every calculus of structures derivation, there is an open
deduction derivation.

30

A ∧ (B ∧ C) = (A ∧B) ∧ C A ∧B = B ∧A A ∧ t = A

A ∨ (B ∨ C) = (A ∨B) ∨ C A ∨B = B ∨A A ∨ f = A

t ∨ t = t f ∧ f = f

Figure 20: Equational theory for the Open Deduction presentation of SKS

Having several formalisms allows us to choose the most convenient one depending on our
goals. The sequential form of the Calculus of Structures makes it ideal for reasoning by
induction, proofs where we need to look at the ordering of rules... On the other hand, the
ability to apply rules in a synchronous way in Open Deduction makes it concise and ideal for
reasoning about composition, about local rewritings, and in general about operations where
proofs remain in the same equivalence class modulo superflous ordering of rules.

3.3 Operations with derivations

For both formalisms, we can define operations pn derivations, yielding new derivations.
These operations will be used often when proving properties of systems.

Definition 3.3.1. Given a derivation

A

Φ

B

, we define its dual

B̄

Φ̄

Ā

as the derivation obtained

by taking the dual of each inference rule in Φ.

Definition 3.3.2. Let

A

Φ

B

be a derivation, and K{ } a context. We define the derivation

K{Φ} from K{A} to K{B} as the derivation obtained by inserting Φ in the place of the
hole in K{ }.

3.4 From deep inference to the sequent calculus and back

We will present the correspondence between sequent calculus proofs and deep inference proofs
for the simple example of multiplicative linear logic (MLL). For this, we will consider the
systems of Figures 16 and 18.

We want to construct a sequent proof for every CoS proof, and viceversa, with ”the same”
conclusion. To define such a concept, we introduce a translation from sequents to deep
inference formulae, and conversely.

Definition 3.4.1. We consider the obvious translation between MLL formulae and SMLS
formulae, in which propositional variables correspond to atoms, negated variables corre-
spond to negated atoms, and compositions wih a connective correspond to the equivalent
compositions via the same connective.

We extend this translation to sequents by setting that the empty sequent ` corresponds
to the formula ⊥ and the sequent ` A1, . . . , Ah corresponds to the formula A1 O . . .OAh. We
will abuse notation, and denote the formula obtained as a disjunction of all the formulae of
a sequent Γ as Γ.

31

All that is needed to show the correspondence between proofs in the two formalisms are
the following two lemmas.

Lemma 3.4.2. For every rule
R

ρ
T

in SMLS, the sequent ` R⊥, T is provable in MLL.

Proof. It is enough to show that it holds for the down-rules, since we can use the same
corresponding MLL proofs for the dual rules.

For the rule
1

ai↓
a O ā

and its dual
a O ā

ai↑
⊥

, we give the MLL proof

id
` a, a⊥

O

` a O a⊥
⊥
` ⊥, a O a⊥

.

For the rule
(A OB) � C

s
(A � C) OB

, we give the MLL proof

id
` C,C⊥

id
` A,A⊥

id
` B,B⊥

�

` A, (A⊥ �B⊥), B
�

` (A⊥ �B⊥), C⊥, (A � C), B
O

` (A⊥ �B⊥), C⊥, (A � C) OB
O

` (A⊥ �B⊥) O C⊥, (A � C) OB

.

Lemma 3.4.3. For any context S{ }, if ` R⊥, T is provable in MLL, then ` S{R}⊥, S{T}
is provable as well.

Exercise 3.4.4. Prove the above Lemma.

Armed with these two lemmas, we proceed to show the translation from SMLS to MLL.

Theorem 3.4.5. If there is a proof of C in SMLS, then ` C is provable in MLL.

Proof. We proceed by induction on the length of the proof Π of C.

In the base case, if Π = 1, then the corresponding MLL proof is 1
` 1

.

Otherwise, Π = S{R}
ρ
S{T}

. By Lemmas 3.4.2 and 3.4.3, the sequent ` S{R}⊥, S{T} is

provable. By the induction hypothesis, the sequent ` S{R} is provable.
We then get a proof of ` S{T} through the cut rule:

` S{R} ` S{R}⊥, S{T}
cut

` S{T}
.

32

Conversely, we can translate from MLL to SMLS

Theorem 3.4.6. If the sequent ` Γ is provable in MLL, then Γ is provable in SMLS. Fur-
thermore, if a sequent is cut-free provable in MLL, then its translation is cut-free provable in
SMLS.

Proof. We proceed by induction on the length of the proof Π of ` Γ.

If Π is id
` A,A⊥

, the corresponding proof

1

{ai↓,s}

A O Ā

is obtained as in Proposition 1.4.1.

If Π is 1
` 1

, the corresponding proof is simply 1.

For the inductive step, we consider the last rule of Π.

• If the last rule is
` A,∆ ` A⊥,Θ

cut
` ∆,Θ

, then by induction hypothesis there are proofs

1

Φ1

A O ∆

and

1

Φ2

Ā O Θ

. We then construct the proof

1

Φ1

A O ∆

(AO∆)�Φ2

(A O ∆) � (Ā O Θ)
2s

(A � Ā) O ∆ O Θ
ai↑

∆ O Θ

.

• If the last rule is
` A,∆ ` B,Θ

�

` A �B,∆,Θ
, then by induction hypothesis there are proofs

1

Φ1

A O ∆

and

1

φ2

B O Θ

. We then construct the proof

1

Φ1

A O ∆

(AO∆)�Φ2

(A O ∆) � (B O Θ)
2s

(A �B) O ∆ O Θ

.

• If the last rule is
` A,B,∆

O

` A OB,∆
, then by induction hypothesis there is a proof

1

Φ

A OB O ∆
.

33

• If the last rule is
` ∆

⊥
` ⊥,∆

, then by induction hypothesis there is a proof

1

Φ

⊥ O ∆

.

Since cuts in the deep inference proofs are only introduced by the presence of cut in the
sequent proofs, it is easy to see that from a cut-free sequent proof we would only obtain a
cut-free deep inference proof.

These correspondence theorems, combined with cut-elimination for the sequent calculus
(as in Theorem 1.3.7) immediately entail cut-elimination for the Calculus of Structures:
given a CoS proof, we can translate it to a sequent proof, obtain a cut-free sequent proof of
it, and translate it again into a cut-free CoS proof. However, to gain a full advantage of a
formalism, it should have internal cut-elimination procedures: otherwise it cannot provide
any advantage in terms of cut-elimination (for example in terms of the procedure, or of the
complexity). In the next section, we will present such an internal cut-elimination procedure
for deep inference systems.

3.5 Derivations of switch and medial

The two rules switch and medial of SKS

S{A ∧ (B ∨ C)}
s
S{(A ∧B) ∨ C}

and
S{(A ∧B) ∨ (C ∧D)}

m
S{(A ∨ C) ∧ (B ∨D)}

(19)

have a particular shape; they do not introduce or delete subformulas: they only rearrange
the structure of the formulas. In other words, they are linear rewriting rules. In this section,
we study some properties of derivations that only use switch and medial.

First, we use the following convention for saving space: we use a new inference rule =,
which stands for any derivation using only rules from the last two lines in Figure 11. More
precisely,

A
=
B

abbreviates

A

{α↓,α↑,σ↓,σ↑,t↓,f↑,f↓,t↑}

B

.

The following lemma states a very useful property of the switch. It allows to move an
arbitrary formula into or out of an arbitrary context.

Lemma 3.5.1. For any formulas R, T and context S{ }, there exist derivations

R ∧ S{T}
{=,s}

S{R ∧ T}
and

S{R ∨ T}
{=,s}

S{R} ∨ T
.

Proof. We proceed by structural induction on S{ }.
If S{ } = { }, it is obvious.

34

If S{T} = S′{T} ∨Q, by induction hypothesis there is a derivation Φ such that

R ∧ (S′{T} ∨Q)
s
(R ∧ S′{T}) ∨Q

Φ {s,=}

S′{R ∧ T} ∨Q

.

If S{T} = S′{T} ∧Q, by induction hypothesis there is a derivation Φ such that

R ∧ S′{T} ∧Q
Φ {s,=}

S′{R ∧ T} ∧Q
.

The next Lemma follows immediately, by replacing some formulae with units.

Lemma 3.5.2. Given a context S{ } and a formula A, there exist derivations

A ∧ S{t}
{s,=}

S{A}
and

S{A}
{s,=}

S{f} ∨A
.

An example of an application of this lemma is the following transformation of a derivation
that takes a single instance of an ai↓ and puts it at the top of a derivation.

A

Φ′

S{t}
ai↓
S{a ∨ ā}

Φ′′

B

→

A
t↓
t ∧A

ai↓
(a ∨ ā) ∧A

(a∨ā)∧Φ′

(a ∨ ā) ∧ S{t}
{s,=}

S{a ∨ ā}
Φ′′

B

, (20)

We can perform the dual operation for ai↑.
Notice that the switch rule of linear logic, as seen in Figures 12 and 16 has the exact same

behaviour. Identical Lemmas hold for SLLS and SMLS, since these properties are due to the
shape of the rule, and not to the specific connectives.

Exercise 3.5.3. Show that in systems SLLS and SMLS, for any formulas R, T and context
S{ }, there exist derivations

R � S{T}
{=,s}

S{R � T}
and

S{R O T}
{=,s}

S{R} O T
.

35

Using Lemma 3.5.1 we can obtain the following derivation

S{t} ∧ T{A}
{s}

S{A} ∨ T{f}
(21)

for any S{ }, T{ } and A, by working inductively on the contexts S{ } and T{ }. We can
do this according to the following two schemes:

S{t} ∧ T{A}
{s}

T{S{t} ∧A}
{s}

T{S{A}}
{s}

S{A} ∨ T{f}

and

S{t} ∧ T{A}
{s}

S{T{A}}
{s}

S{A ∨ T{f}}
{s}

S{A} ∨ T{f}

.

This allows us to define the following ‘macro’ rule ss, called super switch, to be a shorthand
for any derivation of the above form:

S{t} ∧ T{A}
ss
S{A} ∨ T{f}

. (22)

Example 3.5.4. For S{ } = ({ } ∨ b) ∧ c and T{ } = (d ∧ { }) ∨ e, we have

((t ∨ b) ∧ c) ∧ ((d ∧A) ∨ e)
=

((t ∨ b) ∧ c) ∧ ((A ∧ d) ∨ e)
s
(((t ∨ b) ∧ c) ∧ (A ∧ d)) ∨ e

=
(((A ∧ (t ∨ b)) ∧ c) ∧ d) ∨ e

s
((((A ∧ t) ∨ b) ∧ c) ∧ d) ∨ e

=
(d ∧ (f ∨ ((A ∨ b) ∧ c))) ∨ e

s
((d ∧ f) ∨ ((A ∨ b) ∧ c)) ∨ e

=
((A ∨ b) ∧ c) ∨ ((d ∧ f) ∨ e)

.

Another useful derivation is the following, which allows to go from a subformula A ∧B to
A ∨B without introducing or deleting any other atoms:

Ψ =

(A ∨B) ∨ t
=

((A ∧ t) ∨ (t ∧B)) ∨ t
m

((A ∨ t) ∧ (t ∨B)) ∨ t
=

((A ∨ t) ∧ (B ∨ t)) ∨ t
s
(((A ∨ t) ∧B) ∨ t) ∨ t

=
(B ∧ (A ∨ t)) ∨ t

s
((B ∧A) ∨ t) ∨ t

=
(A ∧B) ∨ t

(23)

36

With Ψ and ss together, we can ‘move’ an atom a from one context S{ } to another context
T{ }, again without without introducing or deleting any other atoms.5

(S{t} ∧ T{a}) ∨ t
ss

(S{a} ∨ T{f}) ∨ t
Ψ {s,m}

(S{a} ∧ T{f}) ∨ t

.

This construction can be used zero or more times, for any h ≥ 0:

(S{t} · · · {t} ∧ T{a1} · · · {ah}) ∨ t
Φ {s,m}

(S{a1} · · · {ah} ∧ T{f} · · · {f}) ∨ t
(24)

3.6 Notes

The Calculus of Structures formalism is due Alessio Guglielmi, originally presented in [Gug07,
GS01]. Open Deduction is due to Alessio Guglielmi, Tom Gundersen, and Michel Parigot,
as introduced in [GGP10]. The proof of the correspondence between CoS and the sequent
calculus is adapted from [GS01]. For classical logic, this has first been shown by Brünnler
and Tiu in [BT01]. Similar proofs for more complex logics such as first-order classical logic
and full linear logic can be found in [Brü06] and [Str02b] respectively.

5This will become relevant in Section 5.

37

4 Normalisation and cut elimination

4.1 Decomposition

In Section 2 you have seen that deep inference formalisms can have nice properties, like local-
ity, atomicity, regularity, and duality. In this section, we will start to see what consequences
these properties can have.

Let us begin with the simplest symmetric (self-dual) system in the calculus of structures,
that we have seen: SMLS, shown in Figure 16. It contains only three inference rules, and
every derivation in SMLS can be decomposed into three subderivations each using only one
infernce rule. This is our first decomposition theorem:

Theorem 4.1.1. For every derivation

A

Φ SMLS

B

there is a derivation

A

{ai↓}

A′

{s}

B′

{ai↑}

B

for some A′ and

B′.

Proof. This can be proved by a simple permutation argument. We proceed by induction on
the number of ai↓-instances, and consider the topmost one that is below a s- or ai↑-instance,
and proceed by a second induction on the number of the s- and ai↑-instances that are above
this ai↓. We permute this ai↓-instance now over the s or ai↑ immediately above is. There are
only two types of cases to consider. Either we are in a situation as in (18), where permutation
is trivial; or we have a case as shown on the left below

S{(A{1} O C) �B}
s
S{(A{1} �B) O C}

ai↓
S{(A{a O ā} �B) O C}

;

S{(A{1} O C) �B}
ai↓
S{(A{a O ā} O C) �B}

s
S{(A{a O ā} �B) O C}

which can be replaced by the derivation on the right above. The cases where the ai↓ acts
inside the B or the C are similar.

The decomposition that is obtained in Theorem 4.1.1 can be depicted as follows:

(25)

There is first a phase in which in every rule instance new material is created, then there is
phase in which the size of the formula does not change, i.e., there is only rearrangement of
material, and then there is a third phase in which every rule instance destroys material. This
pattern reoccurs in many different decomposition theorems. We can state it immediately for
System SKSg shown in Figure 9 (together with the equational theory in Figure 10):

38

Theorem 4.1.2. For every derivation

A

Φ SKSg

B

there is a derivation

A

{ai↓,w↓,c↑}

A′

{s}

B′

{ai↑,w↑,c↓}

B

for some A′

and B′.

There is even a stronger form:

Theorem 4.1.3. For every derivation

A

Φ SKSg

B

there is a derivation

A

{c↑}

A′

{w↓}

A′′

{ai↓}

A′′′

{s}

B′′′

{ai↑}

B′′

{w↑}

B′

{c↓}

B

for some A′, A′′,

A′′′, B′′′, B′′, and B′.

Theorem 4.1.2 is an immediate corollary of Theorem 4.1.3. But the proof of Theorem 4.1.3
is much more complicated than the proof of Theorem 4.1.1. The reason is that the cocon-
traction rule

S{A}
c↑
S{A ∧A}

cannot as easily permuted up as the ai↓ in the proof of Theorem 4.1.1. To understand
the problem, consider the simple situation on the left below, showing an instance of c↑
immediately below an instance of s:

S{((A ∨ C) ∧B) ∨D}
s
S{(A ∧B) ∨ C ∨D}

c↑
S{(A ∧B) ∨ ((C ∨D) ∧ (C ∨D))}

;

S{((A ∨ C) ∧B) ∨D}
c↑
S{(((A ∨ C) ∧B) ∨D) ∧ (((A ∨ C) ∧B) ∨D)}

s
S{(((A ∨ C) ∧B) ∨D) ∧ ((A ∧B) ∨ C ∨D)}

s
S{((A ∧B) ∨ C ∨D) ∧ ((A ∧B) ∨ C ∨D)}

s
S{(A ∧B) ∨ (((A ∧B) ∨ C ∨D) ∧ (C ∨D))}

s
S{(A ∧B) ∨ (A ∧B) ∨ ((C ∨D) ∧ (C ∨D))}

c↓
S{(A ∧B) ∨ ((C ∨D) ∧ (C ∨D))}

(26)

39

The only way to permute this c↑ over the s is shown on the right above. The problem is not
only that one switch is relaced by four instances of switch, but also that an new instance of
c↓ is created that has to be permuted down in the next step, and which can in turn (by a
dual argument) create new instances of c↑.

This is not simplified by reducing contraction to atomic form and removing the equational
theory by making associativity and commutativity explicit, as done in the version of SKS
(shown in Figure 11). Then the problematic case is when an ac↑ meets an ai↓:

S{t}
ai↓
S{a ∨ ā}

ac↑
S{(a ∧ a) ∨ ā}

;

S{t}
ai↓
S{a ∨ ā}

t↓
S{(a ∧ t) ∨ ā}

ai↓
S{(a ∧ (a ∨ ā)) ∨ ā}

s
S{((a ∧ a) ∨ ā) ∨ ā}

α↓,σ↓
S{(a ∧ a) ∨ (ā ∨ ā)}

ac↓
S{(a ∧ a) ∨ ā}

The instance of ac↑ disappears, but a new instance of ac↓ is created, which in turn can create
a new instance of ac↑, and so on. In principle, we could be in a cyclic situation, contractions
creating cocontractions endlessly, and vice versa. It is is not immediately obvious whether
this process terminates or not.

Exercise 4.1.4. Take a guess. Does it terminate or not? Write your guess down. Later in
the course we will give an answer.

Theorem 4.1.5. For every derivation

A

Φ SKS

B

there is a derivation

A

{ac↑}

A′

SKS\{ac↓,ac↑}

B′

{ac↓}

B

for some

A′ and B′.

Exercise 4.1.6. Prove Theorem 4.1.5. You can use Theorem 4.1.3 and what you have
learned in Section 1.4.

Exercise 4.1.7. Use Theorem 4.1.3 to prove that for every derivation

A

Φ SKSg

B

there is a

40

derivation

A

{c↑}

A′

{ai↓}

A′′

{w↓}

A′′′

{s}

B′′′

{w↑}

B′′

{ai↑}

B′

{c↓}

B

for some A′, A′′, A′′′, B′′′, B′′, and B′.

All decompositions that we have discussed so far, followed the spirit of (25). This is also
called the first decomposition theorem. This name suggests that there is a second decompo-
sition theorem, which says that every derivation can be decomposed as follows:

A

nocore up

A′

{ai↓}

A′′

core (up and down)

B′′

{ai↑}

B′

noncore down

B

(27)

where the core is the part of the system that is needed to reduce the general interaction rules
i↓ and i↑ to their atomic forms ai↓ and ai↑. For SKSg, shown in Figure 9, only the switch
rule s is in the core. The second decomposition theorem for SKSg is therefore:

41

Theorem 4.1.8. For every derivation

A

Φ SKSg

B

there is a derivation

A

{c↑,w↑}

A′

{ai↓}

A′′

{s}

B′′

{ai↑}

B′

{c↓,w↓}

B

for some A′,

A′′, B′′, and B′.

There is, in fact, a stronger form:

Theorem 4.1.9. For every derivation

A

Φ SKSg

B

there is a derivation

A

{c↑}

A′

{w↑}

A′′

{ai↓}

A′′′

{s}

B′′′

{ai↑}

B′′

{w↓}

B′

{c↓}

B

for some A′, A′′,

A′′′, B′′′, B′′, and B′.

Proving the second decomposition via rule permutations is as problematic as for the first
decomposition. Contraction poses the same problems as discussed in (26). Additionally,
here weakening poses a similar problem, which is much less severe, as shown below:

S{((A ∨ C) ∧B) ∨D}
s
S{(A ∧B) ∨ C ∨D}

w↑
S{(A ∧B) ∨ t}

;

S{((A ∨ C) ∧B) ∨D}
w↑

S{t}
w↓
S{(A ∧B) ∨ t}

(28)

In any case, we need different technology to prove these decomposition theorems, and we
will come back to them later in the course.

Exercise 4.1.10. Derive Theorems 4.1.8 and 4.1.9 from each other.

42

The purpose of the second decomposition theorem is its usefuleness for proving cut elimi-
nation. Recall that in a self-dual deep inference system, the whole up-fragment corresponds
to the cut and is admissible for proofs, i.e., derivations that start from t. If we have a proof

t

Φ SKSg

B

then by Theorem 4.1.8 we get
t

{ai↓}

A′′

{s}

B′′

{ai↑}

B′

{c↓,w↓}

B

because neither c↓ nor w↓ can have premise t. And since w↓ and c↓ are already at the
bottom for the derivation, the cut elimination now only has to be concerned with the rules
ai↓, s, and ai↑, which is just multiplicative linear logic. Speaking more generally, if we have
the second decomposition, cut elimination is only needed for the core of the system. This is
exaclty what splitting is about and will be discussed in the next section.

4.2 Splitting

Splitting is based on a simple idea: to show that an atomic cut involving a and ā is admissible,
we follow a and ā to the top of the derivation to find two independent subderivations, the
premisses of which contain the dual of a and the dual of ā respectively. In this way we obtain
two proofs that don’t interact above the cut, that we can rearrange to get a new cut-free
proof.

Ha �
1

ā O a

Ka O a

�

1

ā O a
�Hā

ā OKā

Ka O
a � ā

⊥
OKā

splitting−−−−−→

Ha �
1

ā O a
�Hā

Ha � ā

Ka

O

a �Hā

Kā

Proofs of cut-elimination by splitting therefore rely on two main properties of a proof
system: the dualities present in it to ensure that each of the independent subproofs contains
the dual of an atom involved in the cut, and the shape of the linear rules ensuring that the
two proofs remain independent above the cut. In the CoS, the cut rule is usually divided
into several rules. Often, only one of these rules is infinitary, the atomic cut, but all the

43

rules involved in making the cut rule atomic can be shown admissible. The splitting method
allows us to prove the admissibility of these cut rules in linear systems. Used in conjunction
with decomposition, it allows us to prove cut-elimination in many systems, not necessarily
linear.

The core propositional connectives of linear logic are divided into additive and multiplica-
tive connectives, exemplifying perfectly the behaviours we are highlighting in this course
in terms of how they split the context above them. The introduction rules for the addi-
tive conjunction N and the multiplicative conjunction � are given in their sequent calculus
presentation as follows (see Section 1.3):

` A,Γ ` B,Γ
` A NB,Γ

,
` A,Γ ` B,∆
` A �B,Γ,∆

.

Reading bottom up, we see that the additive conjunction ∧ requires a duplication of
the context whereas the multiplicative conjunction � requires that the context be divided
between its hypotheses. There is no communication between Γ and ∆ in the proof above the
tensor rule where they are united.

Π1

` A,Γ
Π2

` B,∆
�

` A �B,Γ,∆

∆

` F{A �B},Σ

It is precisely this multiplicative rule shape that splitting hinges on. In the sequent calcu-
lus, the presence of a main connective allows us to know exactly which rules can be applied
above a cut. In deep inference, this is not possible since any rule can be applied at any depth,
and we therefore focus on the behaviour of the context around a cut to tackle cut-elimination.
This allows us to have a better understanding of how the cut-elimination procedure changes
the proof globally. If all the connectives of a system require a splitting of the context like the
multiplicative tensor does, then we can keep track of exactly how the context around a con-
nective behaves. This allows us to split a proof into independent subproofs above every rule,
just like in the example above the proof is divided into Π1 and Π2 above the � introduction
rule. Cut-elimination is then only a matter of rearranging the independent subproofs into a
cut-free proof.

Multiplicative linear logic (MLL) is the fragment of linear logic comprising only the mul-
tiplicative connectives and their units. It is a very simple system in which every connective
requires such a splitting of the context, and therefore ideal to provide an example of a proof
of cut-elimination via splitting. In what follows we will present a proof of cut-elimination
via splitting for MLL. The same methodology can be used to prove splitting theorems for a
wide variety of logics.

We will present this proof in CoS proof system for multiplicative linear logic SMLS (Figure
16). The form of the statement follows the standard scheme for splitting theorems: it is
divided in two results for ease of reading, called shallow splitting and context reduction. We

44

will work in a system for SMLS with explicit rules for the equational theory, as presented
in 21. In this system we will also use an alternative version of switch, given by s′. Working
modulo the equality rules, we can obtain s′ from the usual presentation of switch s and
viceversa as follows:

(A OB) � (C OD)
s
(A � (C OD)) OB

s
(A � C) O (B OD)

and

(A OB) � C
=

(A OB) � (C O⊥)
s′

(A � C) O (B O⊥)
=

(A � C) OB

.

This updated presentation of switch will allow us to have a simple induction measure to
prove the splitting result.

By simple observation, we can notice that in SMLS↓ the scope of the connective � only
decreases when reading top to bottom. The widening scope of relations from bottom to top
is the main property used to prove splitting. If we follow a particular instance of the tensor
� through a proof, its scope will be at its widest in the premiss. Therefore, if we have a proof

of F{A �B}, we can follow � up in the proof to obtain two independent proofs
Π1

QA{A}
and

Π2

QB{B}
.

Π1

A OK1 OQ1

�
Π2

B OK2 OQ2

(A OK1) � (B OK2)

(A �B) OK1 OK2

OQ1 OQ2

If we do this for every occurrence of � in the conclusion of a proof, starting from the
outermost, we obtain a series of subproofs independent from each other. This is the gist of
the splitting theorem, and cut-elimination comes as a corollary, by showing that we are free
to rearrange these independent subproofs in such a way that the cut is no longer necessary.

In what follows we will present the splitting theorem for SMLS↓. Our induction measure
will be the length of Π, but without counting the aoccurrences of equality rules for O.

Definition 4.2.1. Given a proof Φ in SMLS↓, we define the O-length of Φ as the number
of inference rules in Φ different from the equality rules for the associativity, commutativity
and unit of O. We denote it by |Φ|.

Theorem 4.2.2 (Shallow splitting). For all formulae A,B,C, if there is a proof Π of (A �

B) O C in SMLS↓, there exist Q1, Q2 and

Q1 OQ2

Φ

C

,
Π1

A OQ1

,
Π2

B OQ2

such that |Π1|+ |Π2| ≤ |Π|.

45

S{1}
ai↓
S{a O ā}

S{(A OB) � (C OD)}
s′

S{(A � C) O (B OD)}
S{a � a}

ai↑
S{⊥}

S{A �B}
σ↑
S{B �A}

S{(A �B) � C}
α↑
S{A � (B � C)}

S{A}
⊥↑
S{A � 1}

S{A � 1}
1↑

S{A}

S{A OB}
σ↓
S{B OA}

S{(A OB) O C}
α↓
S{A O (B O C)}

S{A O⊥}
⊥↓

S{A}
S{A}

1↓
S{A O⊥}

Figure 21: System SMLS with explicit equality rules.

Proof. Since we do not count the equality rules for O, we can easily combine them together
in a meta-rule. We define =O as the equivalence relation defined by the axioms for the
associativity, commutativity and unit of O. We will work modulo this equivalence relation.

Given a proof Π of (A �B) O C in SMLS↓, we proceed by induction on |Π|.

If |φ| = 0, then (A �B) O C =O 1. Then, either:

• A = B = 1, C = ⊥ and we take

Φ =
⊥ O⊥

, Π1 = 1 O⊥ , Π2 = 1 O⊥ ; or

• A = ⊥, B = C = 1 and we take

Φ = 1 O⊥ , Π1 = ⊥ O 1 , Π2 = 1 O⊥ ; or

• B = ⊥, A = C = 1 and we proceed symmetrically.

If |Π| = n > 0, inspection of the rules provides us the following possible cases:

(1) Π =O

Π′

(A′ �B) O C
ρ

(A �B) O C

;

(2) Π =O

Π′

(A �B′) O C
ρ

(A �B) O C

;

(3) Π =O

Π′

(A �B) O C ′
ρ

(A �B) O C

;

46

(4) Π =O

Π′

((A O C1) � (B O C2)) O C3
s′

(A �B) O C1 O C2 O C3

with C =O C1 O C2 O C3 ;

(5) Π =O

Π′

(((A �B) O C1) � (C2 O C3)) O C4
s′

(A �B) O (C1 � C2) O C3 O C4

with C =O (C1 � C2) O C3 O C4 ;

(6) Π =O

Π′

(A1 � (A2 �B)) O C
�a

((A1 �A2) �B) O C

with A =O A1 �A2;

(7) Π =O

Π′

(A �B) O C
�c

(B �A) O C

;

(8) Π =O

Π′

(((A �B) O C1) � 1) O C2

(A �B) O C1 O C2

with C =O C1 O C2 ;

(9) Π =O

Π′

A O C

(A � 1) O C

with B =O 1 ;

(1) Since |Π′| = n− 1, we apply the induction hypothesis to Π′. There exist Q1, Q2 and

Q1 OQ2

Φ

C

, Π1 =O

Π′
1

A′ OQ1
ρ
A OQ1

,
Π2

B OQ2

such that |Π1|+ |Π2| = |Π′1|+ |Π2|+ 1 ≤ |Π′|+ 1 = |Π|.

(2) This case is analogous to (1).

(3) We apply the induction hypothesis to Π′. There exist Q1, Q2 and

Q1 OQ2

ψ′

C ′
ρ
C

,
Π1

A OQ1

,
Π2

B OQ2

47

such that |Π1|+ |Π2| ≤ |Π′| ≤ |Π|.

(4) We apply the induction hypothesis to Π′. There exist Q′1, Q′2 and

Q′1 OQ2

Φ′

C3

,
Π1

A O C1 OQ′1
,

Π2

B O C2 OQ′2

such that |Π1|+ |Π2| ≤ |Π′| ≤ |Π|.
We take Q1 = C1 OQ′1 and Q2 = C1 OQ′2, and we have

Φ =

C1 O C2 OQ′1 OQ′2
Φ′

C1 O C2 O C3

.

(5) We apply the induction hypothesis to Π′. There exist Q′1, Q′2 and

Q′1 OQ′2
Φ1

C4

,
Π′

1

(A �B) O C1 OQ′1
,

Π′
2

C2 O C3 OQ′2

such that |Π′1|+ |Π′2| ≤ |Π′|.

We apply the induction hypothesis to Π′1. There exist Q1, Q2 and

Φ =O

Q1 OQ2
�u

(Q1 OQ2) � 1

Φ2

(C1 OQ′2) � 1

Π′
2

(C1 OQ′2) � (C2 O C3 OQ′2)
s′

(C1 � C2) O C3 OQ′1 OQ′2
Φ1

(C1 � C2) O C3 O C4

,
Π1

A OQ1

,
Π2

B OQ2

such that |Π1|+ |Π2| ≤ |Π′1| ≤ |Π|.

(6) We apply the induction hypothesis to Π′. There exist Q′1, Q′2 and

Q′1 OQ′2
Φ1

C

,
Π′

1

A1 OQ′1
,

Π′
2

(A2 �B) OQ′2

such that |Π′1|+ |Π′2| ≤ |Π′|.

48

We apply the induction hypothesis to Π′2. There exist M , Q2 and

M OQ2

Φ2

Q′2

,
Θ1

A2 OM
,

Θ2

B OQ2

such that |Θ1|+ |Θ2| ≤ |Π′2|.

We take Q1 ≡ Q′1 OM and Π2 = Θ2 and

ψ =O

Q′1 OM OQ2

Φ2

Q′1 OQ′2
Φ1

C

, Π1 =O

1 � 1

Π′
1

(A1 OQ′1) � 1

Θ1

(A1 OQ′1) � (A2 OM)
s′

(A1 �A2) OQ′1 OM

.

We have:
|Π1|+ |Π2| = |Π′1|+ |Θ1|+ 1 + |Θ2| ≤ |Π′1|+ |Π′2|+ 1 ≤ |Π′|+ 1 = |Π|.

(7) This case is clear.

(8) We apply the induction hypothesis to Π′. There exist Q′1, Q′2 and

Q′1 OQ′2
Φ1

C2

,
Π′

1

(A �B) O C1 OQ′1
,

Π′
2

1 OQ′2

such that |Π′1|+ |Π′2| ≤ |Π′|.

We apply the induction hypothesis to Π′1. There exist Q1, Q2 and

Φ =O

Q1 OQ2
�u↓

(Q1 OQ2) � 1

Φ2

(C1 OQ′1) � 1

Π′
2

(C1 OQ′1) � (1 OQ′2)
s′

(C1 � 1) OQ′1 OQ′2
�u↑

C1 OQ′1 OQ′2
Φ1

C1 O C2

,
Π1

A OQ1

,
Π2

B OQ2

such that |Π1|+ |Π2| ≤ |Π′1| ≤ |Π′| ≤ |Π|.

49

(9) We take

Φ =O

C O⊥
=O

C
, Π1 ≡

Π′

A O C
, Π2 ≡

1
=O

1 O⊥
.

We have |Π1|+ |Π2| = |Π′| ≤ |Π|.

Exercise 4.2.3. Think about what would happen in the proof above if we had a medial
rule like in classical logic. What would happen in its induction case?

Shallow splitting tells us that from ‘shallow’ contexts where the main connective is O

we can follow occurrences of � and of the atoms up in the proof and obtain independent
subproofs. We can now apply shallow splitting starting from the outermost occurrences of �

or the atoms, and apply this process recursively on every subproof to obtain a series of nested
subproofs that in a way make-up the original proof. We formalise this recursive process in
the following theorem.

Definition 4.2.4. We say that a context H{ } is provable if H{1} = 1.

Theorem 4.2.5 (Context Reduction). For any formula A and any context S, given a proof

Π SMLS↓

S{A}
there exist a provable context H{ }, a formula K and derivations

Θ

K OA

,

H{K O { }}
χ

S{ }
.

Proof. Given a context S{ } we define its height as the number of instances of � that { } is
in the scope of. We denote it by |S|. We proceed by induction on |S|.

- If S{A} =O A OK, it is clear.

- If S{A} =O (S′{A} �L) OM (L and M can be units), we apply Theorem 4.2.2. There
exist Q1, Q2 and

Q1 OQ2

Φ

M

,
Π1

S′{A} OQ1

,
Π2

L OQ2

.

50

We apply the induction hypothesis to S′{A}OQ1. There exist a provable context H{ },
a formula K and derivations

Θ

K OA

, χ =

H{K O { }} � 1

χ′

(S′{ } OQ1) � 1

Π2

(S′{ } OQ1) � (L OQ2)
s′

(S′{ } � L) � (Q1 OQ2)

Φ

(S′{ } � L) �M

.

We take H{ } ≡ H ′{ } � 1.

The splitting results are stronger than cut-elimination: they give us information about the
structure of a proof and the ‘pieces’ from which it’s built. Cut-elimination is a corollary of
these results, stemming from our ability to rearrange these pieces in a way that suits us and
still obtain a proof.

Finally, we have all the pieces to show that we can eliminate cuts.

Corollary 4.2.6 (Cut Elimination). For any context S and any proof

Π ≡
SMLS↓

S

{
a � ā

ai↑
⊥

}
,

there is a proof

Π′ SMLS↓

S{⊥}
.

Proof. Given a proof
SMLS↓

S{a � ā}
, we apply Theorem 4.2.5.

There exist a provable context H, a formula K and derivations

Θ SMLS↓

K O (a � ā)
,

H{K O { }}
χ

S{ }
.

We apply Theorem 4.2.2 to ζ. There are formulae Q1, Q2 and derivations

Q1 OQ2

Φ

K

,
Π1 SMLS↓

a OQ1

,
Π2 SMLS↓

ā OQ2

.

51

If we isolate the first occurrence of the atom appearing in their conclusion, Π1 and Π2

have to be of the form

Π1 =

Π′
1

J1{1}
ai↓
J1{a O ā}

Ψ1

a OQ1

and Π2 =

Π′
2

J2{1}
ai↓
J2{a O ā}

Ψ2

ā OQ2

.

Finally then, there exists a proof in SMLS↓:

H{1}
Π′

1

H{J1{1}}
Π′

2

H{J1{J2{1}}}
ai↓
H{J1{J2{a O ā}}}

{=,s}

H{J1{ā O J2{a}}}
{=,s}

H{J1{ā} O J2{a}}
=
H{J1{⊥ O ā} O J2{a O⊥}}

Ψ1

H{Q1 O J2{a O⊥}}
Ψ2

H{Q1 OQ2}
Φ

H{K}
χ

S{⊥}

,

where the Lemma of Exercise 3.5.3 has been applied twice.

We can apply this result to every cut starting from the topmost, to eliminate all of them.

Exercise 4.2.7. Prove shallow splitting, context reduction and cut-elimination for BV.

The shallow splitting and context reduction results tell us in what way we can split a proof
to get independent subroofs. The rearrengement of these subproofs can not only be used to
show cut-elimination, but also more generally toshow the admissibility of all the up-rules.

Exercise 4.2.8. Use shallow splitting and context reduction to prove that the rule α↑ is
admissible.

52

4.3 Notes

Decomposition in the calculus of structures has first been observed for MELL in [GS01].
The first proof has been given by Straßburger in in [Str03b], and a slightly simplified ver-
sion can be found in Straßburger’s PhD thesis [Str03a]. Similar decomposition results exist
for many systems, the local version of SKS [BT01, Gun09], the local system SLLS for lin-
ear logic [Str02a, Str03a], SBV [GS01], SNEL [GS02, SG11], and a system for intuitionistic
logic [GS14].

The splitting methodology is due to Alessio Guglielmi and was first introduced in [Gug07].
Cut-elimination via splitting has been shown to work in a vast array of deep inference
systems: full propositional linear logic [Str03a, CGS11], the mixed commutative/non-
commutative logic BV [Gug07], its extension with linear exponentials NEL [GS02, GS11],
and MAV1 [HTAC19] (which is BV extended with additives and quantifiers), and finally also
linear logic extended with sub-additives [Hor19].

53

ai↓ ac↓ aw↓ ae aw↑ ac↑ ai↑

a ā a

a a

a a b

b a a a

a a

a ā

Figure 22: Generators for atomic flows

= =

= =

= =

= =

= =

a ā = ā a
a ā = ā a

Figure 23: Relations for atomic flows

5 Atomic Flows

In the the first section of these lecture notes, we have seen several syntactic formalisms
to denote proofs. In this section, we begin to remove syntax. The main motivation is to
understand what makes a proof. What are the essential ingredients? What is the essence of
a proof?

The idea behind atomic flows, that we study in this section, is to forget about the con-
nectives that are used to compose the formulas, and only look at the atoms, and how the
atoms are created, deleted, and moved around in a proof.

The technical motivation for atomic flows is that they give us an elegant new method
of proving cut elimination in the calculus of structures; and additionally we get some new
insight to answer the question posed in Exercise 4.1.4.

5.1 Basic definitions and properties

We start from a countable set A of atomic types, equipped with an involutive bijection
(̄·) : A → A , such that for all a ∈ A , we have ā 6= a and ¯̄a = a. A (flow) type is a finite
list of atomic types, denoted by p, q, r, . . ., and we write p | q for the list concatenation of p
and q, and we write 0 for the empty list. An atomic flow φ : p → q is a two-dimensional

54

diagram, written as
p︷ ︸︸ ︷
· · ·
φ
· · ·

︸ ︷︷ ︸
q

where p is the input type and q is the output type. The number of edges corresponds to the
lengths of the lists, and each edge is labelled by the corresponding list element. For each
type q, we have the identity flow idq:

· · ·

We can compose atomic flows horizontally: for φ : p→ q and φ′ : p′ → q′, we get φ|φ′ : p|p′ →
q | q′ of the shape

· · ·
φ
· · ·

· · ·
φ′
· · ·

And we can compose atomic flows vertically: for φ : p→ q and ψ : q → r, we get ψ ◦φ : p→ r
of the shape

· · ·
ψ
· · ·
φ
· · ·

For φ : p → q we have φ ◦ idp = φ = idq ◦ φ and φ | id0 = φ = id0 | φ. We also have
(ψ ◦ φ) | (ψ′ ◦ φ′) = (ψ | ψ′) ◦ (φ | φ′) which is pictured as

· · ·
ψ
· · ·
φ
· · ·

· · ·
ψ′
· · ·
φ′
· · ·

Finally, we have to give a set of generators and relations, which is done in Figures 22 and 23.
The generators in Figure 22 are called ai↓ (atomic interaction down), ac↓ (atomic contrac-

tion down), aw↓ (atomic weakening down), ae (atomic exchange), aw↑ (atomic weakening
up), ac↑ (atomic contraction up), and ai↑ (atomic interaction up). The typing information
in Figure 22 says that

• for ai↓ (resp. ai↑) the two output edges (resp. input edges) carry opposite atomic types,

• for ac↓ (resp. ac↑) all input and output edges carry the same atomic type,

• for aw↓ (resp. aw↑) there are no typing restrictions, and

• for ae, the left input has to carry the same type as the right output, and vice versa.

We will see in the next section that it is no coincidence that these generators carry the same
names as the atomic inference rules in SKS.

When picturing an atomic flow we will omit the typing when this information is irrelevant
or clear from context, as done in Figure 23. The typing is needed for two reasons: first, we
need to exclude illegal flows like

.

55

Note, that for this it would suffice to have only two types, + and −. However, the second rea-
son for having the types here is the use of the atomic flows as tool for proof transformations.

Definition 5.1.1. For a given atomic flow diagram φ, we define its atomic flow graph Gφ to
be the directed acyclic graph whose vertices are the generators ai↓, ai↑, ac↓, ac↑, aw↓, aw↑
(i.e., all except ae) appearing in φ, whose incoming (resp. outcoming) edges are the incoming
(resp. outcoming) edges of φ, and whose inner edges are downwards oriented as indicated by
the flow diagram for φ. A path in φ is a path in Gφ.

Remark 5.1.2. If we label the edges in Gφ by the corresponding atomic type, then for every
path in φ, all its edges carry the same label.

Notation 5.1.3. For making large atomic flows easier to read, we introduce the following
notation:

abbreviates · · ·

This can be extended to all generators:

abbreviates ···

abbreviates

··· ···

··· ···

abbreviates

··· ···

···

abbreviates ···

··· ···

And similarly for aw↑, ac↑, and ai↑. In each case we allow the number of edges to be 0,
which then yields the empty flow. Moreover, if we label an abbreviation with atomic type
a, we mean that each edge being abbreviated has type a. For instance:

a ā
abbreviates

a a āā

···

··· ···

.

Notation 5.1.4. A box containing some generators stands for an atomic flow generated
only from these generators, and a box containing some generators crossed out stands for an
atomic flow that does not contain any of these generators. For example, the two diagrams

and

stand for a flow that contains only ai↓ and aw↓ generators and a flow that does not contain
any ac↑ and ai↑ generators, respectively.

56

Proposition 5.1.5. Every atomic flow φ can be written in the following form:

(29)

Proof. Let φ be given and pick an arbitrary occurrence of ai↓ inside φ. Then φ can be written
as shown on the left below.

φ′

φ′′
=

φ′

φ′′

(30)

The equality follows by induction on the number of vertical edges to cross, For ai↑ we proceed
dually.

Exercise 5.1.6. Compare this proof to the construction in (20) and to the proof of Theo-
rem 4.1.1.

Definition 5.1.7. An atomic flow is weakly streamlined (resp., streamlined and strongly
streamlined) if it can be represented as the flow on the left (resp., in the middle and on the
right):

. (31)

Proposition 5.1.8. An atomic flow φ is weakly streamlined if and only if in Gφ there is no
path from an ai↓-vertex to an ai↑-vertex.

Proof. Immediate from (30), read from right to left.

Definition 5.1.9. An atomic flow φ is weakly streamlined with respect to an atomic type a
if in Gφ there is no path from an ai↓-vertex to an ai↑-vertex, whose edges are labelled by a
or ā.

Definition 5.1.10. Let a be an atomic type. An atomic flow φ is ai-free with respect to a if
φ does not contain any ai↓ generators whose outputs are typed by a and ā, and φ does not
contain any ai↑ generators whose inputs are typed by a and ā.

57

Proposition 5.1.11. Let a be an atomic type. Then every atomic flow φ can be written as

a ā

φ′

a ā

, (32)

where φ′ is ai-free with respect to a.

Proof. Repeatedly apply the construction of the proof of Proposition 5.1.5 (and the relations
in the last line of Figure 23).

Proposition 5.1.12. For any two atomic flows φ and ψ, we have

φ ψ = ψ φ

Proof. We have

φ

ψ
=

φ

ψ

=

φ

ψ

=

φ

ψ

Where the first equality follows by induction on the size of φ, the second by induction
on the size of ψ, and the third from repeatedly applying the equations in the first line of
Figure 23.

Definition 5.1.13. An atomic flow φ is called pure if all edges carry the same atomic type.
It is called semi-pure if only two different atomic types a and b occur in φ with b = ā.

Note that a pure atomic flow cannot contain any ai↓ nor ai↑ generators.

Proposition 5.1.14. Every atomic flow can be written as

φ1 · · · φn

where φ1, . . . , φn are all semi-pure.

58

Proof. We proceed by induction on the size of φ. If φ is a generator or ida for some atomic
type a, then the result is trivial. If φ = φ′ | φ′′, then by induction hypothesis we have that φ
is equal to

φ′1 · · · φ′n φ′′1 · · · φ′′m

and the result follows from Proposition 5.1.12. If φ = φ′ ◦ φ′′, then by induction hypothesis
we have that φ is equal to

φ′1 · · · φ′n

φ′′1 · · · φ′′m

Because of Proposition 5.1.12, we can assume that the edges in φ′i and φ′′i carry the same
atomic types, and by allowing the empty flow, we can assume that n = m. Then, the two
exchange boxes in the middle must compose to the identity.

Proposition 5.1.15. Every semi-pure atomic flow φ can be written as

φ+ φ−

where φ+ and φ− are both pure.

Proof. First apply Proposition 5.1.11 to get a flow of shape (32). Then apply the construction
of the previous proof to φ′.

59

(a ∧ (ā ∨ t)) ∧ ā
ai↓

(a ∧ (ā ∨ (ā ∨ a))) ∧ ā
=

(a ∧ ((ā ∨ ā) ∨ a)) ∧ ā
s
((a ∧ (ā ∨ ā)) ∨ a) ∧ ā

ac↓
((a ∧ ā) ∨ a) ∧ ā

ai↑
(f ∨ a) ∧ ā

=
a ∧ ā

ac↑
(a ∧ a) ∧ ā

=
a ∧ (a ∧ ā)

ai↑
a ∧ f

a ∧

(
ā ∨

t
ai↓
ā ∨ a

)
s

a ∧
ā ∨ ā

ac↓
ā

ai↑
f

∨
a

ac↑
a ∧ a

∧ ā

=

a ∧
a ∧ ā

ai↑
f

Figure 24: Example of translating a derivation in deep inference to atomic flows

Theorem 5.1.16. Every atomic flow can be written as

φ+
1 φ−1 · · · φ+

n φ−n

where φ+
1 , φ−1 , . . . , φ+

n , φ−n are all pure.

Proof. Immediate from Propositions 5.1.14 and 5.1.15.

5.2 From formal derivations to atomic flows

In this section we show how formal derivation are translated into atomic flows. Let us
emphasize that this is not restricted to deep inference formalisms. We show it here for the
sequent calculus, for the calculus of structures, and for open deduction.

We can assign to each formula, sequent, or list of sequents its flow type by forgetting the
structural information of ∧, ∨, t and f, and simply keeping the list of atomic types as they
occur in the formulas. For a formula A, we denote this type by fl(A).

Now we can assign atomic flows to inference rules. We begin with the system shown in
Figure 5. The two rules

` Γ, A ` B,∆
∧
` Γ, A ∧B,∆

and
` Γ, A,B

∨
` Γ, A ∨B

60

are translated into the identity flows idfl(Γ) | idfl(A) | idfl(B) | idfl(∆) and idfl(Γ) | idfl(A) | idfl(B),
respectively. The structural rules

` Γ
weak

` Γ, A

` Γ, A,A
cont

` Γ, A

` ∆, B,A,Γ
exch
` ∆, A,B,Γ

are translated into the flows

,

respectively. Finally, the (atomic) identity and cut rules

id
` a, ā

and
` Γ, A ` Ā,∆

cut
` Γ,∆

are translated into

and ,

respectively. Then, sequent derivations are translated into atomic flows by composing the
translations of the rule instances. It should be obvious that proof in any sequent system can
be translated into atomic flows in this manner.

However, atomic flows carry more symmetries than present in the sequent calculus. In
order to be able to mirror the richness of atomic flows inside a sound and complete deductive
system for classical logic, we now look at deep inference systems.

Let us look a the system SKS in the calculus of structures, shown in Figure 11. Recall
that these rules can, like rewrite rules, be applied inside arbitrary contexts. For example,

(a ∨ (c ∧ ((b ∧ b̄) ∨ ā))) ∨ (b ∧ c̄)
ai↑

(a ∨ (c ∧ (f ∨ ā))) ∨ (b ∧ c̄)

is a correct application of the rule ai↑ inside the context (a ∨ (c ∧ ({ } ∨ ā))) ∨ (b ∧ c̄). A
derivation Φ: A→ B in SKS is a rewrite path from A to B using the rules in Figure 11. We
call A the premise and B the conclusion of Φ. A derivation is also denoted as

A

Φ S

B

.

where S is the set of inference rules used in Φ. A proof of a formula A in SKS is a derivation
Π: t→ A. A proof in SKS is cut-free if it does not contain any instances of the rules ai↑, aw↑,
or ac↑. Since the rules for weakening, contraction, and identity and cut are already in atomic
form in SKS, it is straightforward to translate SKS-derivations into atomic flows. Formally,
we assign to each context S{ } a left type and a right type denoted by l(S{ }) and r(S{ }),
containing the lists of atomic types appearing in S{ } on the left, respectively on the right
of the hole { }. For example, for S{ } = (a ∨ (c ∧ ({ } ∨ ā))) ∨ (b ∧ c̄) we have l(S{ }) = 〈a, c〉
and r(S{ }) = 〈ā, b, c̄〉. Then, for each rule r of SKS we define the rule flow fl(r) as follows:
we map the rules ai↓, ai↑, ac↓, ac↑, aw↓, and aw↑ to the corresponding generator (with the

61

appropriate typing), and we map the rules σ↓, σ↑, and m to the permutation flows shown
below:

σ↓, σ↑ : m :
fl(A) fl(B)

fl(A)fl(B)

fl(A) fl(B) fl(C) fl(D)

fl(A) fl(C) fl(B) fl(D)

All remaining rules are mapped to the identity flow. Then an inference step

S{A}
r
S{B}

is mapped to idl(S{ }) | fl(r) | idr(S{ })

A derivation Φ is mapped to the atomic flow φ = fl(Φ), which is the vertical composition of
the atomic flows obtained from the inference steps in Φ.

Translating derivations in open deduction into atomic flows is even simpler, as the hor-
izontal composition of derivation can be directly translated as horizontal composition of
atomic flows. Figure 24 shows an example of a derivation in the calculus of structure, in
open deduction, and its atomic flow.

Exercise 5.2.1. Define the translation from open deduction derivations to atomic flows
formally.

Theorem 5.2.2. For every flow φ : p → q there is a derivation Φ: A → B with fl(A) = p
and fl(B) = q and fl(Φ) = φ.

Proof. First observe that if φ has only ae generators, then the theorem holds trivially. Now
we proceed induction on the number zφ of (non-ae) generators in a given atomic flow φ. The
cases where z = 0 or z = 1 are trivial. If z > 1 then φ can be considered as composed of two
flows ψ and π, each with zψ < zφ and zπ < zφ, as follows:

ε̂1 · · · ε̂k ε̃1 · · · ε̃m
φ

ε̂′1 · · · ε̂′l ε̃′1 · · · ε̃′n
=

ε̃m· · ·ε̃1· · ·
ψ

ε̂kε̂1

εh· · ·ε1

π

ε̃′nε̃′1 · · ·ε̂′l· · ·ε̂′1

,

where h, k, l,m, n ≥ 0 (this can possibly be done in many different ways). By the inductive

hypothesis, there exist derivations

A′

Ψ

S{aε11 } · · · {a
εh
h }

and

T{aε11 } · · · {a
εh
h }

Π

B′
whose flows are,

respectively, ψ and π. Using these, we can build

(T{t} · · · {t} ∧ γ) ∨ t

(T{t}···{t}∧Ψ)∨t

(T{t} · · · {t} ∧ S{aε11 } · · · {a
εh
h }) ∨ t

Ξ

(T{aε11 } · · · {a
εh
h } ∧ S{f} · · · {f}) ∨ t

(Π∧ζ{f}···{f})∨t

(B′ ∧ S{f} · · · {f}) ∨ t

,

whose flow is φ, where Ξ is obtained from (24) in Section 3.5.

62

aw↓-ai↑: → → :ai↓-ai↑

aw↓-ac↑: → → :ac↓-ai↑

aw↓-aw↑: → → :ac↓-ac↑

ai↓-ac↑: → → :ac↓-ai↑

Figure 25: Local rewrite rules for atomic flows

Theorem 5.2.2 only works because the flows forget the structural information about ∧, ∨,
t and f. If we fix φ : p → q together with A and B with fl(A) = p and fl(B) = q, we can
in general not provide a derivation Φ: A → B with fl(Φ) = φ. We are thus interested in
properties of atomic flows that can be lifted to derivations, in the following sense:

Definition 5.2.3. We say that a binary relation R on atomic flows can be lifted to SKS,
if R(φ, φ′) implies that for every derivation Φ: A → B with fl(Φ) = φ there is a derivation
Φ′ : A→ B with fl(Φ′) = φ′.

Remark 5.2.4. The construction in the proof of Proposition 5.1.5 does not change the
flow, so there is nothing “to lift”. Nonetheless, the construction in (20), which changes
the derivation but does not change the underlying atomic flow, can be seen as “the lifting”
of (30).

Definition 5.2.5. A derivation Φ: A → B is weakly streamlined (resp. streamlined, resp.
strongly streamlined) if fl(Φ) is weakly streamlined (resp. streamlined, resp. strongly stream-
lined).

The property strongly streamlined can indeed be seen as the up-down symmetric general-
ization being cut-free:

Proposition 5.2.6. Every strongly streamlined proof in SKS is cut-free.

Proof. If the premise of a strongly streamlined derivation is t, then the upper box of its flow,
as given on the right in (31), must be empty.

5.3 Local Flow Transformations

We denote by
cw→ the rewrite relation on atomic flows generated by the rules shown in

Figure 25. There are two important immediate observations about this relation: first, it can
be lifted to SKS and second, it is locally confluent.

Theorem 5.3.1. The relation
cw→ can be lifted to SKS.

63

T{f}
aw↓

T{a}
Φ

S{a ∧ ā}
ai↑

S{f}

aw↓-ai↑−→

T{f}
Φ{a/f}

S{f ∧ ā}
aw↑

S{f ∧ t}
=

S{f}

T{f}
aw↓

T{a}
Φ

S{a}
aw↑

S{t}

aw↓-aw↑−→

T{f}
Φ{a/f}

S{f}
=
S{(t ∧ f) ∨ (f ∧ t)}

m
S{(t ∨ f) ∧ (f ∨ t)}

=
S{t}

T{f}
aw↓

T{a}
Φ

S{a}
ac↑

S{a ∧ a}

aw↓-ac↑−→

T{f}
Φ{a/f}

S{f}
nm↓

S{f ∧ f}
aw↓

S{a ∧ f}
aw↓

S{a ∧ a}

T{a ∨ a}
ac↓

T{a}
Φ

S{a ∧ ā}
ai↑

S{f}

ac↓-ai↑−→

T{a ∨ a}
Φ{a/a∨a}

S{(a ∨ a) ∧ ā}
ac↑

S{(a ∨ a) ∧ (ā ∧ ā)}
=,s

S{(a ∨ (a ∧ ā)) ∧ ā}
=,s

S{(a ∧ ā) ∨ (a ∧ ā)}
ai↑

S{f ∨ (a ∧ ā)}
=

S{a ∧ ā}
ai↑

S{f}

Figure 26: Lifting of the rules in the left column in Figure 25

Proof. Let ψ be an atomic flow with redex , and let ψ′ be the result of applying the

rule aw↓-ai↑ to it, i.e., rewriting that redex with . Then any derivation Ψ having ψ as

atomic flow must be of shape as indicated in the upper left of Figure 26. Let Ψ′ be the
derivation obtained from Ψ by performing the transformation indicated Figure 26. There
Φ{a/f} stands for the derivation Φ in which in every line the unique occurrence of the a that
corresponds to the path between the aw↓ and the ai↑ is replaced by f. Then the atomic flow
of Ψ′ is ψ′. For the other rules we can proceed similarly. Figure 26 shows the corresponding
derivations for the rewrite rules of

cw→ shown on the left in Figure 25. We leave the the other
four rules as an exercise.

Exercise 5.3.2. Complete the proof for Theorem 5.3.1 by showing the reamining four cases.

Proposition 5.3.3. The rewrite relation
cw→ is locally confluent.

Proof. The result follows from a case analysis on the critical peaks, which are:

, and ,

and their duals.

Exercise 5.3.4. Fill in the details of this proof.

64

However, in general the reduction
cw→ is not terminating. This can easily be seen by the

following example:

a a
ā

a

cw→
ā

a

a

ā

cw→
a a

ā
a

cw→ · · ·

The reason is that there can be cycles composed of paths connecting instances of the ai↓
and ai↑ generators. The purpose of the notion “weakly streamlined” (Definition 5.1.7) is
precisely to avoid such a situation.

Theorem 5.3.5. Every weakly streamlined atomic flow has a unique normal form with
respect to

cw→, and this normal form is strongly streamlined.

Proof. First, we have to show the existence of a normal form, i.e., termination of the rewrite
system. For this, observe that the generators ac↑ and aw↑ move upwards in the flow and
the generators ac↓ and aw↓ move down. For each ac↑- and aw↑-generator x, we let xcw
be the number of ac↓ and aw↓-generators above it, and xi be the number of ai↓ above it.
Dually we define xcw and xi for ac↓- and aw↓-generators x. Note that xi is either 1 or 0;
and for an ac↓ (resp. ac↑) created bu the rewrite ac↓-ai↑ (resp. ai↓-ac↑), this xi always 0
(because by Proposition 5.1.8 there is no path between an ai↓ and an ai↑). Now, for each
generator x of type ac↑, aw↑, ac↓, and aw↓ we define its value to be the pair 〈xi, xcw〉 ordered
lexicographically. Now observe that each rewrite step either removes generators or replaces
them by other generators of smaller value. Furthermore, the generators in the atomic flow
that are not touched by a rewrite step do not change their value. Thus, we can define the
value of an atomic flow to be the multiset of the values of its generators (we do not count ae,
ai↓, and ai↑). Then each rewrite step reduces this value according to the standard multiset
ordering. Since this ordering is well-founded, the process terminates.

Uniqueness of the normal form follows from Proposition 5.3.3 (because local confluence and
termination entail confluence). Since

cw→ preserves the property of being weakly streamlined,
and in the normal form there are no more redexes for

cw→, there is no generator ai↓, aw↓, ac↓
above a generator ai↑, aw↑, ac↑, which means that the atomic flow is strongly streamlined.

Exercise 5.3.6. Look back at your guess in Exercise 4.1.4. Do you stick to your opinion,
or do you change your mind. Use what you have learned in Sections 5.2 and 5.3 to prove it.

5.4 Global Flow Transformations

In this section we show a method that can transform any atomic flow into a weakly stream-
lined one. The actual challenge for doing so is to find an operation that can be lifted to
derivations in SKS. The key idea of the method we present here is to breaks paths in the
flow without removing any edge. For this reason it is called the path breaker.

Definition 5.4.1. Let φ be an atomic flow of the shape on the left below, where the edges
of the selected ai↓ and ai↑ generators carry the same atomic types, and let φ′ be the atomic

65

flow on the right below.

φ =

a ā

ψ

a ā

φ′ =

a ā

ψ

a

ā

ā

ψ

a

ā

a

ψ

a ā

. (33)

Then we call φ′ a path breaker of φ with respect to a, and write φ
pb→a φ

′.

Lemma 5.4.2. Let φ and φ′ be given with φ
pb→a φ

′, and let b be any atomic type. If φ is
weakly streamlined with respect to b, then so is φ′.

Proof. The only edges connecting an output of one copy of ψ to an input of another copy
of ψ are typed by a and ā. Thus, the lemma is evident for b 6= a and b 6= ā. Let us now
assume b = a and proceed by contradiction. Assume there is an ai↓ generator connected to
an ai↑ generator via a path typed by a. If this is inside a copy of ψ, we have a contradiction;
if it passes through the a-edge between the upper and the middle copy of ψ in (33), then
this path connects to the ai↓ on the left in (33), which also is a contradiction. Similarly for
a path typed by ā.

Lemma 5.4.3. Let φ, ψ, and a be given as on the left in (33), and let φ
pb→a φ

′. If ψ is
ai-free with respect to a, then φ′ is weakly streamlined with respect to a.

Proof. For not being weakly streamlined with respect to a, we would need a path connecting
the upper ai↓ in (33) to the lower ai↑. However, such a path must pass through both
the evidenced edge of type a and the evidenced edge of type ā, which is impossible (see
Remark 5.1.2).

Lemmas 5.4.2 and 5.4.3 justify the name path breaker for the atomic flow on the right
of (33). It breaks all paths between the upper ai↓ and the lower ai↑ in the flow on the left
of (33), and it does not introduce any new paths. Furthermore, the interior of the flow ψ is
not touched. And as promissed, the path breaker can be lifted to SKS.

Lemma 5.4.4. The relation
pb→a can be lifted to SKS.

66

Proof. Let Φ: A→ B with fl(Φ) = φ and a be given. By applying (20) we have a derivation

A
ai↓,t↓

(a ∨ ā) ∧A

Ψ

B ∨ (a ∧ ā)
t↑,ai↑

B

,

with fl(Ψ) = ψ. We also have the derivations

(B ∨ (a ∧ ā)) ∧A
aw↑

(B ∨ (a ∧ t)) ∧A
=

(B ∨ (a ∨ f)) ∧A
aw↓

(B ∨ (a ∨ ā)) ∧A
s
B ∨ ((a ∨ ā) ∧A)

and

(B ∨ (a ∧ ā)) ∧A
aw↑

(B ∨ (t ∧ ā)) ∧A
=

(B ∨ (f ∨ ā)) ∧A
aw↓

(B ∨ (a ∨ ā)) ∧A
s
B ∨ ((a ∨ ā) ∧A)

that we call Φa and Φā, respectively. We can now build

A

{c↑,ai↓,=}

(((a ∨ ā) ∧A) ∧A) ∧A

(Ψ∧A)∧A

((B ∨ (a ∧ ā)) ∧A) ∧A

Φa∧A

(B ∨ ((a ∨ ā) ∧A)) ∧A

(B∨Ψ)∧A

B ∨ ((B ∨ (a ∧ ā)) ∧A)

B∨Φā

B ∨ (B ∨ ((a ∨ ā) ∧A))

B∨(B∨Ψ)

B ∨ (B ∨ (B ∨ (a ∧ ā)))

{c↓,ai↑,=}

B

,

whose atomic flow is as shown on the right of (33).

Exercise 5.4.5. Write the derivation in the proof of Lemma 5.4.4 using open deduction.

We now have to find a way to convert any atomic flow φ into one of shape on the left
of (33) with ψ being ai-free with respect to a. For this, notice that by Proposition 5.1.11,
we can write φ as shown on the left below where θ is ai-free with respect to a. This can be

67

transformed into a flow φ′ on the right below:

φ =

a ā

θ
a ā

φ′ =

a ā

θ

a ā

ψ

, (34)

which is of the desired shape and fulfills the condition of Lemma 5.4.3.

Definition 5.4.6. Let φ and φ′ of shape as in (34) be given. If θ is ai-free with respect to

a, then we call φ′ a taming of φ with respect to a, and write φ
tm→a φ

′.

Lemma 5.4.7. Let φ and φ′ be given with φ
tm→a φ

′, and let b be any atomic type. If φ is
weakly streamlined with respect to b, then so is φ′.

Proof. Immediate from (34).

Lemma 5.4.8. The relation
tm→a can be lifted to SKS.

Proof. Let a and Φ: A → B with fl(Φ) = φ (as shown on the left of (34)) be given. By
repeatedly applying (20) we get the derivation on the left below

A

{ai↓,=}

(a ∨ ā) ∧ · · · ∧ (a ∨ ā) ∧A

Θ

B ∨ (a ∧ ā) ∨ · · · ∨ (a ∧ ā)

{ai↑,=}

B

;

A
t↓
t ∧A

ai↓,t↓
(a ∨ ā) ∧A

{ac↑,=}

((a ∧ · · · ∧ a) ∨ (ā ∧ · · · ∧ ā)) ∧A

{m,=}

(a ∨ ā) ∧ · · · ∧ (a ∨ ā) ∧A

Θ

B ∨ (a ∧ ā) ∨ · · · ∨ (a ∧ ā)

{m,=}

B ∨ ((a ∨ · · · ∨ a) ∧ (ā ∨ · · · ∨ ā))

{ac↓,=}

B ∨ (a ∧ ā)
ai↑

B ∨ f
t↑

B

, (35)

with fl(Θ) = θ, from which we can obtain a derivation on the right above, whose flow is as
shown on the right of (34).

68

Exercise 5.4.9. Write the two derivations in (35) using open deduction.

Definition 5.4.10. On atomic flows, we define the path breaking relation
PB→ as follows. We

have φ
PB→ φ′ if and only if there is a flow φ′′ and an atomic type a, such that φ

tm→a φ
′′ pb→a φ

′

and φ is not weakly streamlined with respect to a.

Theorem 5.4.11. The relation
PB→ can be lifted to SKS.

Proof. Immediate from Lemmas 5.4.8 and 5.4.4.

Theorem 5.4.12. The relation
PB→ is terminating, and its normal forms are weakly stream-

lined.

Proof. Let φ be given. We proceed by induction on the number of atomic types occurring

in φ, with respect to which φ is not weakly streamlined. Whenever we have φ
PB→ φ′, this

number is decreased by one for φ′ (by Lemmas 5.4.2, 5.4.3, and 5.4.7). By the constructions
in (33) and (34), there is always such a φ′ if φ is not weakly streamlined.

5.5 Normalizing Derivations via Atomic Flows

In this section we put the results of the previous two sections together and show how SKS
derivations can be normalized using constructions on atomic flows. The basic idea is to
transform an arbitrary SKS derivation first into a weakly streamlined one, and then into a
strongly streamlined one, without changing premise and conclusion during the process. In
other words we are going to show the following:

Theorem 5.5.1. For every SKS derivation from A to B, there is a SKS-derivation from A
to B that is strongly streamlined.

Proof. For every SKS-derivation Φ: A→ B there exists a weakly-streamlined SKS-derivation
Φ′ : A → B by Theorem 5.4.12 and Theorem 5.4.11; for every weakly-streamlined SKS-
derivation Φ′ : A → B there exists a strongly streamlined SKS-derivation Φ′′ : A → B by
Theorem 5.3.5 and Theorem 5.3.1.

From this we get immediately the cut elimination theorem for SKS:

Corollary 5.5.2. For every SKS-proof of A, there is a cut-free SKS-proof of A.

Proof. By Theorem 5.5.1 and Proposition 5.2.6.

Exercise 5.5.3. State a version of the first decomposition theorem for the variant of SKS
shown in Figure 11, and prove it using atomic flows.

69

5.6 Atomic Flows as Categories

Atomic flows form a (strict) monoidal category, that we can denote by AF. In that category,
the flow types are the objects and the atomic flows p→ q are the morphisms from p to q.

We could add the relations

= and =

and their duals to the ones given in Figure 23, and this would equip every object in AF with
a monoid and a comonoid structure. However, the results in this paper do not rely on that,
and we decided to keep the set of relations minimal.

The category AF of atomic flows is strictly monoidal, but it is not compact closed, basically
because we do not have an equality between the two atomic flows shown below:

and (36)

More precisely, although we can for a given atomic flow φ : p | x → q | x define the atomic
flow Trx(φ) : p→ q as

φ ,

the category AF is not traced because it does not obey yanking:

6=

We use SKS to denote the category whose objects are the formulas and whose arrows are
the derivations of SKS. Then the translation from SKS-derivations to atomic flows defines
a forgetful functor fl : SKS → AF. Note that this functor is independent from the fact
whether the binary connectives ∧ and ∨ are bifunctors in SKS (with or without monoidal
structure), whether the inference rules s and m are natural transformation, and whether α↓,
α↑, etc., are isomorphisms in SKS or not. Note that Theorem 5.2.2 does not imply that
this functor is full.

5.7 Limits of Atomic Flows

We have seen that atomic flows can be very useful to get some insight into new tranformations
on SKS derivations. In Theorem 5.2.2 we have seen that every atomic flow comes from some
derivation. But we also have said that when we fix two formulas A and B, and have an
atomic flow φ : fl(A) → fl(B), then in general we do not have a SKS derivation Φ: A → B
with fl(Φ) = φ. When do we have such a derivation? Can this be decided? The answer is, of
course, yes. We simply can enumerate all derivations from A to B and check if one of them
has flow φ. The real question is:

70

Open Problem 5.7.1. Given two formulas A and B, and an atomic flow φ : fl(A)→ fl(B),
can we decide in time polynomial in the size of φ whether there is a derivation Φ: A → B
with fl(Φ) = φ?

The answer is “probably not”. Anupam Das has shown recently that there cannot be a
polynomial correctness criterion for atomic flows, unless integer factoring is in P/poly. This
leads to the question whether we can find a graphical representation for proofs which have
similar properties as atomic flows, but additionally enjoy a polynomial correctness criterion.
This is the motivation for Section 6.

5.8 Notes

Atomic flows have first been introduced by Guglielmi and Gundersen in [GG08] and in
Gundersen’s PhD thesis [Gun09] (from which we have taken the example in Figure 24).
In that presentation first presentation, atomic flows have been defined as directed graphs,
as done in Definition 5.1.1. Indeed, Gφ is the “canonical representative” of a class of flow
diagrams wrt. to the equalities in Figure 23. However, with that definition the order of
the input/output edges is lost, which makes the vertical composition and the mapping from
formal derivations (done in Section 5.2) more difficult to define. The presentation we used
here has been introduced in [GGS10]. The concept of two-dimensional diagram (that is the
basis for this presentation) is due to Lafont [Laf95]. He has also shown that the generator ae
together with the first two relations in Figure 23 defines the category of permutations. An
important consequence is that any atomic flow φ : p→ p containing only the generator ae is
equal to the identity idp.

The local transformations defined by
cw→ has been studied in [GG08] where also all proper-

ties that we have shown here have first been proved. The global transformations of Section 5.4
have been introduced in [GGS10]. In [GG08] a different method for removing cycles has been
used. Yet another method for eliminating cycles has recently been presented in [AGR17],
and will be discussed in Section 7 of these course notes.

For more insights into the category theoretical treatment of classical proofs, with focus on
medial and switch, see [Str07c] and [Lam07].

Das’ result on the (probable) non-existence of a polynomial correctness criterion for atomic
flows has been presented in [Das13]. More complexity related results using atomic flows can
be found in [Das12, Das15].

71

6 Combinatorial Proofs

Combinatorial proofs have been introduced by Dominic Hughes as a way to present proofs
of classical logic independent from a syntactic proof system.

6.1 Basic definitions

As before, we consider formulas (denoted by capital Latin letters A,B,C, . . .) in negation
normal form (NNF), generated from a countable set V = {a, b, c, . . .} of (propositional)
variables by the following grammar:

A,B ::= a | ā | A ∧B | A ∨B (37)

where ā is the negation of a. The negation can then be defined for all formulas using the De
Morgan laws:

¯̄A = A A ∧B = Ā ∨ B̄ (38)

An atom is a variable or its negation. We use A to denote the set of all atoms. Sometimes
we use A⇒B as abbreviation for Ā ∨B, and A⇔B as abbreviation for (A⇒B) ∧ (B ⇒A).
A sequent Γ is a multiset of formulas, written as a list separated by comma:

Γ = A1, A2, . . . , An (39)

We write Γ̄ to denote the sequent Ā1, Ā2, . . . , Ān. We define the size of a sequent Γ, denoted
by size(Γ), to be the number of atom occurrences in it. We write

∧
Γ (resp.

∨
Γ) for the

conjunction (res. disjunction) of the formulas in Γ.
Before we can discus the notion of combinatorial proof, we need some preliminary defini-

tions from graph theory.

Definition 6.1.1. A (simple) graph G = 〈VG, EG〉 consists of a set of vertices VG and a
set of edges EG which are two-element subsets of VG. If EG is not a set but a multiset, we
call G a multigraph. We omit the index G when it is clear from context. For v, w ∈ V we
write vw for {v, w}. The size of a graph G, denoted by size(G) is size(VG) + size(EG). A
graph homomorphism f : G → G′ is a function from VG to VG′ such that vw ∈ EG implies
f(v)f(w) ∈ EG′ . A simple graph G is called a cograph if it does not contain four distinct
vertices u, v, w, z with uv, vw,wz ∈ E and vz, zu, uw /∈ E. For a set L, a graph G is L-
labeled if every vertex of G is associated with an element L, called its label. For two graphs
G = 〈V,E〉 and G′ = 〈V ′, E′〉, we define the operations union G ∨G′ = 〈V ∪ V ′, E ∪ E′〉
and join G ∧G′ = 〈V ∪ V ′, E ∪ E′ ∪ {vv′ | v ∈ V, v′ ∈ V ′}〉. If G and G′ are L-label-led
graphs, then so are G ∨G′ and G ∧G′ where every vertex keeps its original label. For a
simple graph G = 〈V,E〉, also define its negation Ḡ = 〈V, {vw | v 6= w, vw /∈ E}〉. If G is
an A -labeled graph (where A is the set of atoms) then all labels are negated in Ḡ. For
two homomorphisms f1 : G1 → G′1 and f2 : G2 → G′2 such that VG1 ∩ VG2 = ∅, we define
f1 ∨ f2 : G1 ∨G2 → G′1 ∨G

′
2 to be the union of the two homomorphisms f1 and f2, and

f1 ∧ f2 : G1 ∧G2 → G′1 ∧G
′
2 to be their join.

Construction 6.1.2. If we associate to each atom a a single vertex labeled with a then
every formula A uniquely determines a graph G(A) that is constructed via the operations ∧

and ∨. For a sequent Γ = A1, A2, . . . , An, we define

G(Γ) = G(
∨

Γ) = G(A1) ∨G(A2) ∨ · · · ∨G(An) .

72

Note that this construction entails that G(A) = G(Ā).

Lemma 6.1.3. For two formulas A and B, we have G(A) = G(B) iff A and B are equivalent
modulo associativity and commutativity of ∧ and ∨:

A ∧ (B ∧ C) = (A ∧B) ∧ C A ∧B = B ∧A

A ∨ (B ∨ C) = (A ∨B) ∨ C A ∨B = B ∨A
(40)

Proof. Immediately from Construction 6.1.2.

Example 6.1.4. Let A = (a ∧ (b ∨ c̄)) ∨ (c ∧ d̄) then Ā = (ā ∨ (b̄ ∧ c)) ∧ (c̄ ∨ d). Below are the
two graphs G(A) and G(Ā) = G(A):

b c
a

c̄ d̄

b̄ c̄
ā

c d
(41)

Proposition 6.1.5. A graph G is a cograph iff it is constructed from a formula via Con-
struction 6.1.2.

An important consequence of this and Lemma 6.1.3 is that for each cograph G there is a
unique (up to associativity and commutativity) formula tree determining G. We denote this
formula tree by F (G).

Definition 6.1.6. Let G = 〈V,E〉 be a cograph, let V ′ ⊆ V , and let E′ be the restriction of
E to V ′. We say that G′ = 〈V ′, E′〉 is a subcograph of G iff for all v ∈ V ′ and w1, w2 ∈ V \V ′
we have vw1 ∈ E iff vw2 ∈ E. In this case we also say that V ′ induces a subcograph.

It follows immediately from the definition that any subcograph is indeed a cograph. Fur-
thermore, G′ is a subcograph of G iff F (G′) is a subformula of F (G).

Definition 6.1.7. Let G = 〈V,E〉 be a multigraph. A set B ⊆ E of edges is called a
matching if no two edges in B are adjacent. A matching B is perfect if every vertex v ∈ VG
is incident to an edge in B. An R&B-graph G = 〈V,R,B〉 is a triple such that 〈V,R]B〉 is
a multigraph such that B is a perfect matching and 〈V,R〉 is a simple graph (i.e., R is not
allowed to have multiple edges). We will use the notation G↓ for the simple graph 〈V,R〉.
An R&B-cograph is an R&B-graph G = 〈V,R,B〉 where G↓ = 〈V,R〉 is a cograph.

In this presentation we will draw B-edges in blue/bold, and R-edges in red/regular. Below
are four examples:

• •
• •
• •

• •
• •
• •

• •
• •
• •

• •
• •
• •

(42)

Definition 6.1.8. A path (resp. cycle) in a graph is said to be elementary if it does not
contain two equal vertices (resp. but the first and last one). A path P in a graph with
a matching B is alternating if the edges of P are alternately in B and not in B. Let
G = 〈V,R,B〉 be an R&B-graph. An æ-path in G is an elementary alternating path in
〈V,R]B〉. An æ-cycle in G is an elementary alternating cycle of even length in 〈V,R]B〉,

73

so that when turning around the cycle, the edges are still alternately in B and not in B. A
chord of a path (resp. cycle) is an edge that is not part of the path (resp. cycle) but connects
two vertices of the path (resp. cycle). An æ-path (resp. æ-cycle) is called chordless iff it does
not have any chords.

Note that chords for æ-paths, resp. æ-cycles, are always R-edges because B is a perfect
matching. We are now ready to present a central concept for R&B-cographs:

Definition 6.1.9. An R&B-cograph G = 〈V,R,B〉 is critically chorded if 〈V,R] B〉 does
not contain any chordless æ-cycle, and any two vertices in V are connected by a chordless
æ-path.

In the examples in (42), the first one is not an R&B-cograph, the other three are. The
second one has a chordless æ-cycle, and the third one has no chordless æ-path between the
lowermost vertices. Only the last one is a critically chorded R&B-cograph.

Definition 6.1.10. Let C = 〈V,R,B〉 be an R&B-graph and f : C↓ → G be a graph-
homomorphism and let G be A -labeled (where A is the set of atoms). We say f is axiom-
preserving iff xy ∈ B implies that the labels of f(w) and f(v) are dual to each other.

Definition 6.1.11. A graph homomorphism f is a skew fibration, denoted as f : G� G′,
if for every v ∈ VG and w′ ∈ VG′ with f(v)w′ ∈ E′G there is a w ∈ VG with vw ∈ EG and
f(w)w′ /∈ E′G.

We are now ready to give the definition of a combinatorial proof together with their main
properties.

Definition 6.1.12. A combinatorial proof of a sequent Γ consists of a non-empty critically
chorded R&B-cograph C and an axiom-preserving skew-fibration f : C↓� G(Γ).

Theorem 6.1.13. A formula is a theorem of classical propositional logic iff it has a combi-
natorial proof.

We will later sketch a proof for this theorem. The point to make here is that this theorem
is the major distinctive feature between atomic flows and combinatorial proofs. Furthermore,
given a map f : C → G between graphs, it can be checked in time polynomial in the size
of the two graphs, whether f is a combinatorial proof. This makes combinatorial proofs an
proper proof system in the sense of Cook and Reckhow, and thus play in in the same ligue
as the proof systems we have seen in the first section of these lecture notes.

Definition 6.1.14. Let T be the set of all tautologies. A proof system is a surjective
PTIME function f : X∗ → T where X is some finite alphabet.

In the following sections we study cut elimination for combinatorial proofs and how they
are related to deep inference. But first we show how we can draw combinatorial proofs in a
way that they can be compared to atomic flows.

Given two sequents Γ and ∆, we write φ : Γ ` ∆, for a combinatorial proof of the sequent
Γ̄,∆. We write φ : ◦ ` ∆ (resp. φ : Γ ` ◦) if Γ (resp. ∆) is empty.6 Let φ be given by the
R&B-cograph C and skew fibration f : C↓� G(Γ̄,∆). Then the size of φ, denoted by size(φ),
is defined to be size(C↓) + size(Γ) + size(∆).

6Note that it cannot happen that both Γ and ∆ are empty.

74

• ∧ •, • ∧ •, •, •, • ∧ •, • ∧ •

ā ∧ c, (c̄ ∧ ā) ∨ b̄ ∨ c, (b ∨ b) ∧ a

c̄ ∨ a

• ∨ •

• ∧ •, •, •, • ∧ •, • ∧ •

(c̄ ∧ ā) ∨ b̄ ∨ c, (b ∨ b) ∧ a

c̄ ∧ b ∧ (a ∨ c), c̄ ∨ a

•, •, • ∨ •, • ∨ •

• ∧ •, • ∧ •

(b ∨ b) ∧ a

a ∨ c, c̄ ∨ a

• ∨ •, • ∨ •

•, •, • ∧ •, • ∧ •

b̄ ∨ c, (b ∨ b) ∧ a

Figure 27: Examples of the same combinatorial proof drawn in different ways

Lemma 6.1.15. Let C, G1, and G2 be cographs and let f : C� G1 ∨G2 be a skew fibration.
Then there are cographs C1 and C2 and graph homomorphisms f1 : C1 � G1 and f2 : C2 � G2

such that C = C1 ∨ C2 and f = f1 ∨ f2.

Proof. This follows immediately from f being a homomorphism. We can let VC1 and VC2 be
the inverse images of VG1 and VG2 , respectively, under f , and let C1 and C2 be the induced
subgraphs.

Notation 6.1.16. This lemma allows us to depict combinatorial proofs in the following way.
Let φ : Γ ` ∆ be given, let f : C↓ � G(Γ) ∨G(∆) be the defining skew fibration, and let CΓ

and C∆ be the cographs determined by Lemma 6.1.15 (i.e., C↓ = CΓ ∨C∆). If we write F (CΓ)
and F (C∆) for the formula trees corresponding to the cographs CΓ and C∆, respectively,
then we can write φ by writing Γ, F (CΓ), F (C∆), and ∆ above each other, draw the B-edges
and indicate the mapping f by thin (thistle) arrows. Figure 27 shows some examples. For
better readability, we allow in F (CΓ) outermost ∧ to be replaced by comma, and in F (C∆)
outermost ∨ to be replaced by comma. Note that the examples in Figure 27 are just “flipped
variants” of each other, i.e., are defined by the same R&B-cograph and skew fibration.

Schematically we can depict combinatorial proofs as follows:

Γ

∆

or

∆

or

Γ

where the middle and the right picture are used to indicate that Γ or ∆, respectively, are
empty.

Observation 6.1.17. For every formula A, we have a combinatorial proof 1A : A ` A, that
we call the identity and that is defined by the identity skew fibration G(A)∨G(A)� G(Ā, A)
where the matching is defined such that it pairs each vertex in VG(A) to itself in the copy

75

A1

A2

∧

B1

B2

→

A1 ∧B1

A2 ∧B2

A1

A2

∧

B1

B2

→

A1 ∧B1

A2 ∧B2

A1

A2

∧

B1

B2

→

A1 ∧B1

A2 ∧B2

Figure 28: Conjunction of combinatorial proofs

V
G(A)

. This can we written in the following three ways:

A

•·•

•·•

A

A ∧ Ā

•·• ∧ •·•

•·• ∨ •·•

Ā ∨A

(43)

6.2 Horizontal composition of combinatorial proofs

Lemma 6.2.1. Let φ : A1 ` A2 and ψ : B1 ` B2 be combinatorial proofs. Then there are
combinatorial proofs χ : A1 ∧B1 ` A2 ∧B2 and ξ : A1 ∨B1 ` A2 ∨B2, such that size(χ) ≤
size(φ) + size(ψ) and size(ξ) ≤ size(φ) + size(ψ).

Proof. Let C and D be the R&B-cographs for φ and ψ, respectively, and let f : C↓ �
G(Ā1) ∨G(A2) and g : D↓ � G(B̄1) ∨G(B2) be their defining skew fibrations. Then, let
C1 and C2 be the subgraphs of C↓, and f1 : C1 → G(Ā1) and f2 : C2 → G(A2) be the
corresponding restrictions of f , obtained via Lemma 6.1.15. Similarly, let D1 and D2 be the
corresponding subgraphs of D↓, and g1 and g2 the corresponding restrictions of g.

The combinatorial proof χ : A1 ∧B1 ` A2 ∧B2 can now be given by the R&B-cograph H
and skew fibration h : H↓� G(A1 ∧B1, A2 ∧B2) which are defined as follows:

• If C2 and D2 are both not empty, then we define H↓ = D1 ∨ C1 ∨ (C2 ∧D2), and
BH = BC] BD, and h = g1 ∨ f1 ∨ (f2 ∧ g2). To see that this is well-defined, note that
G(A1 ∧B1, A2 ∧B2) is the same as G(B̄1) ∨G(Ā1) ∨ (G(A2) ∧G(B2)).

• If C2 is empty then C1 = C↓ and we define H = C and let h behave as f does.

• If D2 is empty and C2 is not, then then D1 = D↓ and we define H = D and let h behave
as g does.

Then, H is an R&B-cograph (by construction) and it is critically chorded. It also triv-
ially follows that h is axiom preserving. Therefore it only remains to show that h is in-
deed a skew fibration. For this, observe that g1 ∨ f1 ∨ (f2 ∧ g2) fails to be a skew fibration
only if one of C2 or D2 is empty. On the other hand, f is a skew-fibration from C↓ to
G(B̄1) ∨G(Ā1) ∨ (G(A2) ∧G(B2)) if no vertex of C is mapped to G(A2), i.e., C2 is empty.

Dually, we can define ξ : A1 ∨B1 ` A2 ∨B2.

76

A1

A2

∨

B1

B2

→

A1 ∨B1

A2 ∨B2

A1

A2

∨

B1

B2

→

A1 ∨B1

A2 ∨B2

A1

A2

∨

B1

B2

→

A1 ∨B1

A2 ∨B2

Figure 29: Disjunction of combinatorial proofs

Remark 6.2.2. Note that it is crucial to check whether C2 or D2 are empty, whereas for C1

and D1, this is irrelevant. The difference is shown in Figure 28 (and dually in Figure 29).
Note also that there is an arbitrary choice to make when both C2 and D2 are empty.

6.3 Substitution for combinatorial proofs

Usually substitution means to replace in a formula a variable by another formula. With
combinatorial proofs, we can bring this to the next level: replacing inside a proof a variable
by another proof.

Definition 6.3.1. A substitution is a mapping σ from propositional variables to formulas
such that σ(a) 6= a for only finitely many a.

We write Aσ for the formula obtained from applying the substitution σ to the formula
A. If σ = {a1 7→ B1, . . . , an 7→ Bn} we also write A[a1/B1, . . . , an/Bn] for Aσ. This
normally means that not only is each occurrence of ai in A is replaced by Bi in A, but
also each occurrence of āi is replaced by B̄i. We also need a notation for substitutions in
which an variable a and its dual ā are not replaced by dual formulas. In this case we write
A[a1/B1, ā1/C1, . . . , an/Bn, ān/Cn] for the formula that is obtained fromA by simultaneously
replacing every ai by Bi and every āi by Ci for each i ∈ {1, . . . , n}.

Now we define the substitution φ[a/ψ] : Γ
[
a/C, ā/D̄

]
` ∆

[
a/D, ā/C̄

]
shown below

Γ

∆

a

/ C

D

(44)

The basic idea of the construction is as follows: The combinatorial proof φ : Γ ` ∆ consists
of simple paths , and each simple path in φ whose endpoints are occurrences of a or
ā are replaced according to Figure 30. To define this more formally, we first need the notion
of substitution in a graph.

Construction 6.3.2. Let C and D be disjoint graphs, and let x be a vertex in C. With
C[x/D] we denote the graph whose vertex set is V = VC \ {x} ∪ VD and whose edge set is
E = EC \ {xz | z ∈ VC} ∪ {yz | y ∈ VD, xz ∈ EC}. In other words, we remove x from C and
replace it by D, such that we have an edge from a remaining vertex y in C to all vertices in
D, whenever there was an edge from y to x in C before.

77

a

•

•

a

• •

a ā

ā

•

•

ā

a ā

• •

⇓ ⇓ ⇓ ⇓

C

D D C̄

D̄

C̄

C D̄

Figure 30: Substitution of combinatorial proofs

Lemma 6.3.3. If C and D are cographs and x ∈ VC, then C[x/D] is also a cograph.

Proof. If we take the formula tree for C, remove the leaf x, and replace it by the formula tree of
D, we obtain a formula tree for C[x/D], which is therefore a cograph by Proposition 6.1.5.

Construction 6.3.4. In Construction 6.3.2 we substituted graphs for vertexes in other
graphs. Now we use this to substitute R&B-graphs for B-edges in other R&B-graphs. Let
C and D be disjoint R&B-graphs, and let x, y ∈ VC with xy ∈ BC. Furthermore, let D↓ =
D1 ∨D2. We now define the R&B-graph H = C[xy/〈D1 ∨D2, BD〉] = 〈VH, RH, BH〉 as follows.
We let 〈VH, RH〉 = C↓[x/D1][y/D2], applying Construction 6.3.2 twice, and let BH = BC \
{xy} ∪BD. In other words, x is replaced by D1 and y by D2, and the B-edge xy is removed
an replaced by the matching BD.

Lemma 6.3.5. If C and D are R&B-cographs with xy ∈ BC and D↓ = D1 ∨ D2 then H =
C[xy/〈D1 ∨D2, BD〉] also is an R&B-cograph. Furthermore, if C and D are both critically
chorded, then so is H.

Proof. The graph H is a cograph for the same reason as in Lemma 6.3.3. Now assume by way
of contradiction that H is not critically chorded. First, assume there is a chordless æ-cycle
C . If all vertices of C are inside VC or all inside VD, we have immediately a contradiction to
C and D having no chordless æ-cycle. So, the cycle C must contain vertices from VC and VD.
Since by construction all B-edges are fully contained in C or in D, we must have an R-edge
participating in C and connecting a vertex u ∈ VC to a vertex z ∈ VD. Let v ∈ VC be the
unique vertex with uv ∈ BC. However, since uz ∈ RH, we must by construction also have
vz ∈ RH which is a chord for C . Contradiction. For showing that that any two vertices in
H are connected by a chordless path, we can proceed similarly.

Lemma 6.3.6. Let φ : Γ ` ∆ and ψ : C ` D be combinatorial proofs. Then there is a
combinatorial proof φ′ : Γ[a/C, ā/D̄] ` ∆[a/D, ā/C̄].

78

Proof. Let φ and ψ as above and let Γ′ = Γ
[
a/C, ā/D̄

]
and ∆′ = ∆

[
a/D, ā/C̄

]
. For con-

structing φ′ : Γ′ ` ∆′, let C and D be the R&B-cographs for φ and ψ, respectively, and let
f : C↓� G(Γ̄,∆) and g : D↓� G(C̄,D) be their corresponding skew fibrations. For brevity,
we write G for G(Γ̄,∆), and G′ for G(Γ̄′,∆′). Next, let DC̄ and DD be the two cographs
obtained from D↓ via Lemma 6.1.15, and let x1, . . . , xn ∈ VC be the vertexes that f maps
to a vertex labeled ā in G, and and let y1, . . . , yn ∈ VC be all the vertexes that f maps to a
vertex labeled a in G — their number has to be identical, otherwise f could not be axiom
preserving. Without loss of generality, we can assume that {x1y1, . . . , xnyn} ⊆ BC. We can
now give the R&B-cograph C′ for φ′ as follows:

C′ = C[x1y1/〈DC̄ ∨DD, BD〉] · · · [xnyn/〈DC̄ ∨DD, BD〉]

applying Construction 6.3.4 for each B-edge in C connecting an a and an ā in G. Finally,
we define the map f ′ : C′ � G′ as follows: For every z ∈ VC \ {x1, . . . , xn, y1, . . . , yn}, we
have f ′(z) = f(z). For each xi that is mapped by f to a ā, we use g to map the substituted
copy of DC̄ in C′ to the corresponding substituted copy of G(C̄) in G′. We proceed similarly
for each yi. It is easy to see that the so defined f ′ is indeed a skew fibration and axiom
preserving.

6.4 Vertical composition of combinatorial proofs

In this section, we finally show what cuts in combinatorial proofs are, and how they can be
eliminated.

Theorem 6.4.1. Let φ : Γ ` A and ψ : A ` ∆ be combinatorial proofs. Then there is a
combinatorial proof χ : Γ ` ∆.

Before we can give the construction of χ, as indicated below:

Γ

A

∆

;

Γ

∆

(45)

we need first to establish some preliminary properties on skew fibrations and the composition
of R&B-cographs.

Lemma 6.4.2. Let C, D, G, H be cographs.

1. If f : C� G is an isomorphism, then it is also a skew fibration.

2. The map w : C� C ∨D, which behaves like the identity on C, is a skew fibration.

3. The map c : C ∨ C� C, which maps both copies of C in the domain like the identity to
the C in the codomain, is a skew fibration.

79

4. The map m : (C ∧D) ∨ (G ∧ H)� (C ∨G) ∧ (D ∨ H), which maps each C, D, G, H iden-
tically to itself, is a skew fibration.

5. If f : C� G and g : D� H are skew fibrations, then so are f ∨ g : C ∨D� G ∨ H and
f ∧ g : C ∧D� G ∧ H.

6. If f : C� G and g : G� H are skew fibrations, then so is g ◦ f : C� H.

Exercise 6.4.3. Prove this lemma.

Construction 6.4.4. Let C and D be R&B-cographs such that C↓ = G ∨H and D↓ = H̄ ∨K
for some cographs G, H, and K. We define the graph B = 〈VB, EB〉 with VB = VG]VH]VK
and EB = BC]BD. This allows us to define the R&B-cograph E = C �D as follows: We let
E↓ = G ∨ K, i.e., VE = VG ∪ VK and RE = EG ∪ EK, and we let xy ∈ BE iff there is a path
from x to y in B. Note that this indeed defines a perfect matching. For each x in VE there
is a unique y connected to x by a path in B because BC and BD are both perfect matchings.

Lemma 6.4.5. If in Construction 6.4.4 the R&B-cographs C and D are critically chorded,
then so is E = C �D.

Next, we define for a combinatorial proof φ : Γ ` B ∧ C the two projections φl : Γ ` B
and φr : Γ ` C that “forget” the information about the deleted subformula. Their existence
should not be surprising since from a proof of B ∧ C one should be able to recover proofs of
B and of C from the same premises.

Construction 6.4.6. Let φ : Γ ` B ∧ C be given by the R&B-cograph C and the skew
fibration f : C↓ � G(

∧
Γ̄) ∨ (G(B) ∧G(C)). Let UC ⊆ VC be the set of all vertices in C that

are mapped by f to atom occurrences in C, and let U⊥C ⊆ VC be the smallest set such that

• If x ∈ UC and xy ∈ BC and y /∈ UC then y ∈ U⊥C .

• If x ∈ U⊥C and xy ∈ BC and y /∈ UC then y ∈ U⊥C .

• If V ′, V ′′ ⊆ VC induce subcographs and V ′ ⊆ U⊥C and V ′ ∩ V ′′ = ∅ and V ′∪V ′′ induces
a subcograph such that for all v′ ∈ V ′ and v′′ ∈ V ′′ we have v′v′′ ∈ RC, then also
V ′′ ⊆ U⊥C .

Now let VCl
= V \ (UC ∪ U⊥C), and let RCl

and BCl
be the restrictions of RC and BC

(respectively) to VCl
. Finally, we can define φl : Γ ` B by Cl = 〈VCl

, RCl
, BCl
〉 and fl : C

↓
l �

G(
∧

Γ̄) ∨G(B) which is f restricted to VCl
.

It is easy to see that Cl is critically chorded: any chordless æ-cycle would already be
present in C, and any two vertices are connected by the same chordless æ-path as in C. We
also have that VCl

6= ∅ (otherwise there would be a chordless æ-cycle in C.). Finally, it is
easy to see that fl is axiom preserving and a skew fibration. Thus, φl : Γ ` B is indeed a

80

combinatorial proof. In the same way we can define the right projection φr : Γ ` C. Below
is an example of a combinatorial proof and its two projections:

b, (e ∧ c) ∨ ā, a

•

•

b ∨ (a ∧ b)

←

b, (e ∧ c) ∨ ā, a

•, •, (• ∧ •) ∨ •, •

• ∧ • ∧ •, • ∧ • ∧ •

(b ∨ (a ∧ b)) ∧ ((e ∧ ā) ∨ c)

→

b, (e ∧ c) ∨ ā, a

• ∨ •, •

•

(e ∧ ā) ∨ c

(46)

In a dual way, we can define for a combinatorial proof ψ : B ∨ C ` ∆ its left and right
projections ψl : B ` ∆ and ψr : C ` ∆.

Proof of Theorem 6.4.1. We proceed by induction on the formula A. First, assume A =
B ∧ C. Then, from φ : Γ ` B ∧ C we can obtain the two projections φl : Γ ` B and φr : Γ ` C,
and from ψ : B ∧ C ` ∆, we get ψ′ : B,C ` ∆:

Γ

B ∧ C

∆

;

Γ

B

Γ

C

B,C

∆

From ψ′ we can obtain ψ′′ : B ` ∆, C̄, which can be composed with φl to get, by induction
hypothesis, ξ : Γ ` ∆, C̄, from which we can get χ′ : C ` Γ̄,∆:

Γ

B

∆, C̄

IH
;

Γ

∆, C̄

;

C

Γ̄,∆

This can be composed with φr, which gives us by induction hypothesis a combinatorial proof
χ′′ : Γ ` Γ̄,∆, from which we get a χ′ : Γ,Γ ` ∆. Finally, we can apply Lemma 6.4.2 to get
the desired χ : Γ ` ∆:

Γ

C

Γ̄,∆

IH
;

Γ

Γ̄,∆

L.6.4.2
;

Γ

Γ,Γ

∆

81

If A = B ∨ C we proceed analogous. It remains to show the case when A is an atom, i.e., we
have the situation:

Γ

• ∨ · · · ∨ •

a

• ∧ · · · ∧ •

∆

(47)

Let f : C↓ � G(
∧

Γ̄, a) and g : D↓ � G(ā,
∨

∆) be the skew fibrations of the combinatorial
proofs φ : Γ ` a and ψ : a ` ∆, respectively. Let x1, . . . , xn be the vertices in C that are
mapped by f to the a in the conclusion of φ, and let y1, . . . , ym be the vertices in D that are
mapped by g to the occurrence of ā that represents the a in the premise of ψ.

Now we define the map f∗ : C↓ � G(
∧

Γ̄, a ∨ · · · ∨ a) where we replace a by a disjunction
of n copies of a, and let f∗ behave as f on VC \ {x1, . . . , xn} and map each xi to one copy
of a. This clearly also is a skew fibration, and in a similar way we define the skew fibration
g∗ : D↓ � G(ā ∨ · · · ∨ ā,

∨
∆) where we use m copies of ā. We let φ∗ : Γ ` a ∨ · · · ∨ a and

ψ∗ : a ∧ · · · ∧ a ` ∆ be the combinatorial proofs defined by f∗ and g∗, respectively.

We now apply the construction of Section 6.2 to form the conjunction of m copies of φ∗,
which yields a combinatorial proof φ̂ : Γ, . . . ,Γ ` (a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a), as indicated
below:

Γ

• ∨ · · · ∨ •

a

;

Γ, . . . ,Γ

(• ∨ · · · ∨ •) ∧ · · · ∧ (• ∨ · · · ∨ •)

(a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a)

Next, we substitute in ψ∗ all paths that start in the premise a ∧ · · · ∧ a by the identity
1 : a ∨ · · · ∨ a ` a ∨ · · · ∨ a (with m copies of a on each side) as done in Section 6.3. Then
we have a combinatorial proof ψ̂ : (a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a) ` ∆[a/a ∨ · · · ∨ a] as shown
below:

a

• ∧ · · · ∧ •

∆

;

(a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a)

(• ∨ · · · ∨ •) ∧ · · · ∧ (• ∨ · · · ∨ •)

∆
[
a/a ∨ · · · ∨ a

]
We now plug φ̂ and ψ̂ together and apply Lemma 6.4.5 to get χ′ : Γ, . . . ,Γ ` ∆[a/a ∨ · · · ∨ a],

82

A
ai↓
A ∧ (a ∨ ā)

(A ∨B) ∧ C
s
A ∨ (B ∧ C)

(ā ∧ a) ∨A
ai↑

A

a ∨ a
ac↓

a

a
ac↑

a ∧ a(A ∧ C) ∨ (B ∧D)
m

(A ∨B) ∧ (C ∨D)A
w↓
A ∨B

B ∧A
w↑

A

Figure 31: Deep inference system SKS

to which we apply Lemma 6.4.2

Γ

Γ, . . . ,Γ

(• ∨ · · · ∨ •) ∧ · · · ∧ (• ∨ · · · ∨ •)

(a ∨ · · · ∨ a) ∧ · · · ∧ (a ∨ · · · ∨ a)

(• ∨ · · · ∨ •) ∧ · · · ∧ (• ∨ · · · ∨ •)

∆
[
a/a ∨ · · · ∨ a

]
∆ = ∆

[
a/a
]

;

Γ

∆

to get the desired combinatorial proof χ : Γ ` ∆.

6.5 Relation to to deep inference proofs

Let us now show hoe combinatorial proofs are related to syntactic proofs given in a deep
inference formalism. For simplicity, we use here a variant of SKS without the units t and f,
as shown in Figure 31, and we work modulo the equivalence relation defined by associativity
and commutativity of ∧ and ∨, as given in (40).

Each rule in system SKS can straightforwardly be translated into a combinatorial proof, as
indicated in Figure 32, where the double lines indicate the identity (see Observation 6.1.17).
Note that for the m-rule there are two possible translations. Since whenever A = B modulo
associativity and commutativity (40) we have that G(A) = G(B), an equivalence step in an
SKS-proof can translated into the identity proof. This is enough to give a direct translation
from a SKS derivation Φ: A → B, to a sequence of combinatorial proofs composed by cut,
to which we have to apply Theorem 6.4.1 to get a combinatorial proof φ : A ` B.

Here is the main theorem on the relation between SKS and combinatorial proofs:

83

w↑ :

B ∧A

•·•

•·•

A

ac↑ :

a

• ∧ •

• ∧ •

a ∧ a

m :

(A ∧ C) ∨ (B ∧D)

(•·• ∨ •·•) ∧ (•·• ∨ •·•)

(•·• ∨ •·•) ∧ (•·• ∨ •·•)

(A ∨B) ∧ (C ∨D)

ai↓:

A

•·•

•·• ∧ (• ∨ •)

A ∧ (a ∨ ā)

ai↑:

(ā ∧ a) ∨A

(• ∧ •) ∨ •·•

•·•

A

s :

(A ∨B) ∧ C

(•·• ∨ •·•) ∧ •·•

•·• ∨ (•·• ∧ •·•)

A ∨ (B ∧ C)

w↓ :

A

•·•

•·•

A ∨B

ac↓ :

a ∨ a

• ∨ •

• ∨ •

a

m :

(A ∧ C) ∨ (B ∧D)

(•·• ∧ •·•) ∨ (•·• ∧ •·•)

(•·• ∧ •·•) ∨ (•·• ∧ •·•)

(A ∨B) ∧ (C ∨D)

Figure 32: Simple combinatorial flows for the rules in Figure 31

A

B

⇔

A
{w↑,ac↑,m} Φ1

A′

{ai↓,ai↑,s} Φ2

B′

{w↓,ac↓,m} Φ3

B

B

⇔

{ai↓,s} Ψ2

B′

{w↓,ac↓,m} Ψ3

B

Figure 33: Statements of Theorem 6.5.1

Theorem 6.5.1. Let A and B be formulas. There is a combinatorial proof φ : A → B iff
there are formulas A′ and B′ such that there are derivations

A

{w↑,ac↑,m} Φ1

A′
and

A′

{ai↓,ai↑,s} Φ2

B′
and

B′

{w↓,ac↓,m} Φ3

B

and such that size(φ) = O(size(Φ1) + size(Φ2) + size(Φ3)). Similarly, there is a combinatorial
proof ψ : ◦ ` B iff there are derivations

{ai↓,s} Ψ2

B′
and

B′

{w↓,ac↓,m} Ψ3

B

84

c̄ ∧ b ∧ (a ∨ c) ∧ (c̄ ∨ a)
aw↑

b ∧ (a ∨ c) ∧ (c̄ ∨ a)
ac↑

b ∧ b ∧ (a ∨ c) ∧ (c̄ ∨ a)
2·s
b ∧ b ∧ (a ∨ (c ∧ c̄) ∨ a)

ai↑
b ∧ b ∧ (a ∨ a)

2·s
(b ∧ a) ∨ (b ∧ a)

m
(b ∨ b) ∧ (a ∨ a)

ac↓
(b ∨ b) ∧ a

(a ∨ c) ∧ (c̄ ∨ a)
2·s

a ∨ (c ∧ c̄) ∨ a
ai↑

a ∨ a
2·ai↓

((b̄ ∨ b) ∧ a) ∨ ((b̄ ∨ b) ∧ a)
2·s

b̄ ∨ b̄ ∨ (b ∧ a) ∨ (b ∧ a)
m
b̄ ∨ b̄ ∨ ((b ∨ b) ∧ (a ∨ a))

aw↓,2·ac↓
b̄ ∨ c ∨ ((b ∨ b) ∧ a)

Figure 34: Examples for Theorem 6.5.1

such that size(ψ) = O(size(Ψ2) + size(Ψ3))

Both statements are indicated in Figure 33.

Exercise 6.5.2. Show how Theorem 6.1.13 can be proved using Theorem 6.5.1.

The proof of Theorem 6.5.1 essentially consists of the following two lemmas:

Lemma 6.5.3. Let A and B be formulas. There is a skew fibration f : G(A) � G(B) iff
there is a derivation Φ from A to B in {w↓, ac↓,m}.

Lemma 6.5.4. Let A and B be formulas. There is a critically chorded R&B-graph C with
C↓ = G(Ā) ∨G(B) iff there is a derivation Φ from A to B in {ai↓, ai↑, s}.

Proving these two lemmas would take us too far out of the scope of these course notes.
But we give some ideas in the notes below.

Proof of Theorem 6.5.1. First, assume we have an SKS derivation as shown on the left in
Figure 33. We let C↓ = G(Ā′) ∨G(B′). By Lemma 6.5.4 we have a matching BC such that
the R&B-graph C is critically chorded. Then we can form the SKS derivation using only
rules w↓, ac↓ and m from Ā′ ∨B′ to Ā ∨B by horizontally composing the dual of Φ1 with
Φ3. By Lemma 6.5.3 we get our skew fibration f : C↓ � G(Ā) ∨G(B). Conversely, let φ be
given, let f : C↓ � G(Ā, B) be its skew fibration, and let CĀ and CB be the two cographs
obtained via Lemma 6.1.15. If we add labels to CĀ and CB such that f is label-preserving,
we can let A′ and B′ be the formulas determined by CĀ and CB, respectively. We can now
apply Lemma 6.5.4 to get Φ2, and Lemma 6.5.3 to get Φ3 and (the dual of) Φ1.

Figure 34 shows two examples of derivations enriched with the “flow-graph” tracing the
atoms in the derivation. The corresponding combinatorial proofs are in Figure 27.

Exercise 6.5.5. Which combinatorial proofs in Figure 27 correspond to the derivations in
Figure 34? Find similar derivations for the others.

Exercise 6.5.6. Prove the second decomposition thereom (Theorem 4.1.8) using Theo-
rem 6.5.1 (and Theorem 6.4.1).

85

6.6 Notes

The original work on combinatorial proofs by Dominic Hughes is [Hug06a] and [Hug06b].
The notion of R&B-cograph goes back to Retoré’s PhD-thesis [Ret93, Ret03]. The relation
between cographs and formulas is even older and can already been found in [Duf65], see
also [Möh89].

Our presentation of the condition on the cograph in a combinatorial proof deters from
Hughes’ [Hug06a] and follows Retoré’s [Ret03] instead. The reason is that Retoré makes
the relation to proof nets of linear logic [DR89] explicit. Furthermore, the condition on the
cograph C↓ given by Hughes [Hug06a, Hug06b] is weaker than ours. It is equivalent to our
condition of C not containing any chordless æ-cycle. In terms of linear logic, this is equivalent
to the correctness condition for MLL proof nets with the mix-rule [Ret03]:

Γ ∆
mix

Γ,∆

In our presentation here we also add the connectedness via chordless æ-paths in order to
reject mix. A priori, for classical logic it is irrelevant whether mix (which says that A ∧ B
implies A∨B) is allowed or not since it is derivable using weakening. However, we can obtain
stronger results (in particular the Decomposition Theorem 6.5.1) if we reject mix.

You have seen in Exercise 6.5.2 that Theorem 6.5.1 entails soundness and completeness of
combinatorial proofs. The proof given in [Hug06a] is based on semantics, and it works equally
well with our stronger criterion. In [Hug06b], Hughes gives a syntactic proof: he shows how
a sequent calculus proof can be translated into a combinatorial proof, which immediately en-
tails completeness. Then, as mentioned above, a critically chorded R&B-cograph corresponds
to a proof in multiplicative linear logic [Ret03], and a skew-fibration corresponds to precisely
the maps that can be constructed from contraction and weakening [Hug06b, Str07a]. This
entails soundness.

Our cut elimination follows the presentation in [Str17]. An different procedure is given
in [Hug06b].

Our construction of the projection in Construction 6.4.6 essentially constructs the empire
of a proof nets via the method of [BvdW95].

The proof of Lemma 6.5.3 can be sketched as follows: First assume Φ is given. Then we
can obtain f by composing the maps that are induced by the rule applications in Φ. That
this is a skew fibration follows from Lemma 6.4.2. Conversely, assume f is given. Let us call
a vertex in B good if it is in the image of f , and otherwise bad. Observe that whenever a
vertex a in G(B) is bad it cannot be connected by an edge to a good vertex. Since there
is at least one good vertex, we have for every bad a a subformula C ∨ D in B such that
(i) a is inside D, (ii) C contains a good vertex, and furthermore (iii) all vertices in D are
bad. We can therefore apply w↓ deleting the D. Let B0 be the formula obtained from B by
repeating this process until no bad vertices remain. Then, for each atom in a define na be
the number of vertices in G(A) that f maps to a, and let B′ be the formula obtained from B0

by replacing each a by a ∨ · · · ∨ a where there are na copies. Then there is a derivation from
B′ to B0 using only the ac↓-rule. We can define the map f ′ : G(A) � G(B′) which takes
each vertex that f maps to a to one for the new copies of a such that f is now a bijection.
It is easy to see that f ′ is still a skew fibration. Now it follows from [Str07a, Theorem 5.1]
that there is a derivation from A to B′ using only m. Alternatively, this can also be shown

86

using [Hug06b, Theorem 3.2] and the fact that a general contraction can be decomposed into
ac↓ and m [BT01].

And Lemma 6.5.4 follows from the equivalence of critically chorded R&B-graphs to MLL−

proofs nets [Ret03] and the fact that {ai↓, ai↑, s} is sound and complete for MLL− (shown in,
e.g., [Ret93, Str03b, Str03a]). A direct translation from Φ into a critically chorded R&B-
graph can also be obtained via Lemma 6.4.5.

87

7 Subatomic Proof Theory

To study normalisation procedures with some generality is very difficult: cut-elimination
procedures for example are highly sensitive to variations on the form and structure of the
rules of a system, where a single change in one of the rules or the addition of another warrant
the need for a full new proof of cut-elimination in a new system. In this thesis we unveil
a common structure behind proof systems that will allow us to generalise and understand
normalisation in a simpler and more effective way. We provide a new approach within the
setting of deep inference, which we call subatomic because we look ’inside the atoms’. It
allows us to present a wide variety of propositional proof systems in such a way that every
rule is an instance of a single simple linear rule scheme. We exploit this generality to study
normalisation procedures and their complexity, and in particular to unveil the role played
by the interactions between the rules.

In traditional Gentzen-style cut-elimination procedures cut instances are eliminated from
proofs by moving upwards instances of the mix rule (Section 1.3). This rule conflates one
instance of cut and several instances of contraction and therefore by using this technique we
are in fact observing two different interactions between rules: the interactions of the cut with
other rules, and the interactions of contractions with other rules. This phenomenon becomes
more apparent when one considers the complexity of cut-elimination in different systems: in
purely linear systems such as multiplicative linear logic the procedure does not change the
size of proofs significantly, whereas as soon as contractions are introduced the size of proofs
can grow exponentially or more.

In what follows we present a generalised modular normalisation theory where the differ-
ent interactions between rules are dealt with separately, providing a tighter control over
complexity creation. We provide a generalised procedure for cut-elimination in a generali-
sation of linear systems, named splitting. Further, we present general proof rewriting rules
together with sufficient conditions for a system to be decomposable into phases containing
only atomic contractions/cocontractions and a linear phase. In this way we show that this
type of decomposition result holds for example for both classical logic and multiplicative
additive linear logic because of shared properties in the shape of their rules. Last, we use
the general reduction rules to design a local procedure to remove cycles, effectively proving
the independence of decomposition and cut-elimination.

7.1 Subatomic logic

As we have mentioned in these notes, making structural rules atomic provides a surprising
regularity in the inference rule schemes: it can be observed that in most deep inference
systems all rules besides the atomic ones can be expressed as

(A α B) β (C α′ D)

(A β C) α (B β′ D)
,

where A,B,C,D are formulae and α, β, α′, β′ are connectives. We call this rule shape a
medial shape. Following this discovery, we will achieve an even greater regularity on the
inference rules by looking even further, inside the atoms.

The main idea of subatomic logic is to consider atoms as self-dual non-commutative re-
lations. Subatomic formulae are built by freely composing constants by connectives and

88

(A ∨B) a (C ∨D)
sai↓

(A a C) ∨ (B a D)

(A a B) ∧ (C a D)
sai↑

(A ∧ C) a (B ∧D)

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∨D)

(A ∨B) ∧ (C ∧D)
∧↑

(A ∧ C) ∨ (B ∧D)

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

(A a B) ∨ (C a D)
sac↓

(A ∨ C) a (B ∨D)

(A ∧B) a (C ∧D)
sac↑

(A a C) ∧ (B a D)

Figure 35: System SAKS

atoms. For example, A ≡ ((f a t) ∨ t) ∧ (t b f) is a subatomic formula for classical logic. The
intuitive idea is to interpret f a t as a positive occurrence of the atom a, and ta f as a negative
occurrence of the same atom, denoted by ā. We can therefore interpret A as (a ∨ t) ∧ b̄. We
will show an underlying structure on the shape of the inference rules, using it to present all
the rules of a system as instances of a single rule scheme, including the atomic ones.

Consider for example system SKS for classical logic. We can derive the rule s from the
rule

(A ∨B) ∧ (C ∨D)

(A ∧ C) ∨ (B ∨D)
,

which has the same ‘shape’ as the rule m. In fact we will show that in many systems most
non-atomic rules can be made to fit this scheme as well. By using the subatomic methodology,
we are able to further extend this phenomenon to atomic rules in such a way that we can
present a system for classical logic where every rule of the system has the same shape. given
in Figure 35.

We can view subatomic formulae as a superposition of truth values. For example, f a t is
the superposition of the two possible assignments for the atom a, and taf is the superposition
of the possible assignments for ā: if we read the value on the left of the atom we assign f to
a and t to ā, and if we read the one on the right we assign t to a and f to ā.

Since we consider atoms as connectives, we will give a broad definition of what connectives
are, not assuming any logical characteristics or properties such as commutativity or asso-
ciativity. We will therefore encompass logics with both commutative and non-commutative,
associative and non-associative, dual and-self dual relations. This feature deserves to be
highlighted since expressing self-dual non-commutative connectives into proof systems that
enjoy cut-elimination is a challenge in Gentzen-style sequent calculi: it is impossible to have
a complete analytic system with a self-dual non-commutative relation (see Section 2.3).

Definition 7.1.1. Let U be a denumerable set of constants whose elements are denoted by
u, v, w, Let R be a denumerable partially ordered set of connectives whose elements are
denoted by α, β, γ, The set F of subatomic formulae (or SA formulae) contains terms
defined by the grammar

F ::= U | F R F .

89

Example 7.1.2. The set Fcl of subatomic formulae for classical logic is given by the set of
constants U = {f, t} and the set of relations R = {∧, ∨} ∪A where A is a denumerable set
of atoms, denoted by a, b, . . . with A ∩ {∧, ∨} = ∅. Two examples of subatomic formulae
for classical logic are

A ≡ ((f a t) ∨ (t a t)) ∧ (t b f) and B ≡ ((t b f) ∧ t) ∨ (f a f) .

Example 7.1.3. The set Fll of subatomic formulae for multiplicative linear logic is given
by the set of constants U = {⊥, 1} and the set of relations R = {O,�} ∪ A where A is
a denumerable set of atoms, denoted by a, b, . . . with A ∩ {O,�} = ∅. Two examples of
subatomic formulae for linear logic are

C ≡ ((1 O⊥) a 1) �⊥ and D ≡ ((⊥ O 1) b 1) � (1 a⊥) .

Given a propositional logic with certain connectives and constants, its subatomic coun-
terpart is therefore composed of an extended language of formulae, made up from the same
connectives and atoms. We can translate subatomic formulae constructed in this natural way
into the ‘usual’ formulae by defining a simple interpretation map. Further, we can easily
endow subatomic formulae with an equational theory and an involutive negation, matching
that of the ‘usual’ formulae.

Definition 7.1.4. Let G be the set of formulae of a propositional logic L , and let F be
the set of subatomic formulae with constants U and connectives R. A surjective partial
function I : F → G is called interpretation map. The domain of definition of I is the set of
interpretable formulae and is denoted by F i. If F ≡ I(A), we say that F is the interpretation
of A, and that A is a representation of F .

Example 7.1.5. A natural interpretation for the set of subatomic formulae for classical
logic defined in example 7.1.2 is given by considering the assignments:

− I(t) ≡ t ; − I(f) ≡ f ;

− ∀a ∈ A . I(f a f) ≡ f ; − ∀a ∈ A . I(t a t) ≡ t ;
− ∀a ∈ A . I(f a t) ≡ a ; − ∀a ∈ A . I(t a f) ≡ ā ;

− I(A ∨B) ≡ I(A) ∨ I(B) ; − I(A ∧B) ≡ I(A) ∧ I(B) ;

where A,B ∈ F i, and extending it in such a way that AaB is interpretable iff A = u,B = v
with u, v ∈ {f, t} and then I(A a B) ≡ I(u a v).

For example, if A ≡ (((f ∧ t) a t) ∨ t) ∧ (t b f), its interpretation is I(A) = (a ∨ t) ∧ b̄.

Note that the set F i of interpretable formulae is composed by all formulae equal to a
formula where an atom does not occur in the scope of another atom. Every other formula is
not interpretable, such as B ≡ ((t b f) ∧ t) a f.

Exercise 7.1.6. Define an interpretation for the set of subatomic formulae defined in ex-
ample 7.1.3.

90

The useful properties of subatomic formulae become apparent when we extend the principle
to atomic inference rules. Let us consider, for example, the usual contraction rule for an
atom. We could obtain this rule subatomically by reading f a t as a and t a f as ā, as follows:

we read
(f a t) ∨ (f a t)

(f ∨ f) a (t ∨ t)
as
a ∨ a

a
and we read

(t a f) ∨ (t a f)

(t ∨ t) a (t ∨ t)
as
ā ∨ ā

ā
.

These rules are therefore generated by the linear scheme

(A a B) ∨ (C a D)

(A ∨ C) a (B ∨D)
, where A,B,C,D are formulae.

The non-linearity of the contraction rule has been pushed from the atoms to the units.
Similarly, we can consider the atomic identity rule. It can be obtained subatomically as

follows:

we read
(f a t) ∨ (t a f)

(f ∨ t) a (t ∨ f)
as

t

a ∨ ā
.

Similarly to the contraction rule, it is generated by the linear scheme

(A ∨B) a (C ∨D)

(A a C) ∨ (B a D)
, where A,B,C,D are formulae.

It is quite plain to see that both the subatomic contraction rule and the subatomic intro-
duction rule have the same medial shape, typical of logical rules in deep inference. We have
therefore uncovered an underlying structure behind the shape of inference rules, that we will
exploit to obtain a general characterisation of rules.

To make use of the general characterisation, we will impose some restrictions on α, ν, β, γ.
These conditions strike a balance between being general enough to encompass a wide va-
riety of logics and being explicit enough to enable us to generalise procedure such as cut-
elimination and decomposition. To do so, we exploit the dualities present in the inference
rules, and we introduce a notion of polarity in the pairs of dual relations. The idea behind it
is rather to assign which of the relations in the pair is ‘stronger’ than the other. Intuitively, it
loosely corresponds to assigning which relation of the pair will imply the other. For example,
in classical logic A ∧ B implies A ∨ B, and thus we will assign ∧ to be strong and ∨ to be
weak.

Definition 7.1.7. For each pair of connectives {α, α}, we give a polarity assignment: we
call one connective of the pair strong and the other one weak.

If α is strong and α is weak, we will write αM =αM= α and αm =αm=α. Self-dual
connectives are both strong and weak.

Definition 7.1.8. A subatomic proof system SA with set of formulae F is

• a collection of inference rules of the shape
(A β B) α (C β D)

(A α C) β (B αm D)
, α, β ∈ R, called

down-rules,

• a collection of inference rules of the shape
(A β B) α (C βM D)

(A α C) β (B αD)
, α, β ∈ R, called up-

rules,

91

(A OB) a (C OD)
sai↓

(A a C) O (B a D)

(A a B) � (C a D)
sai↑

(A � C) a (B �D)

(A OB) � (C OD)
�↓

(A � C) O (B OD)

(A OB) � (C �D)
�↑

(A � C) O (B �D)

Figure 36: System SAMLLS

• a collection of rules
A

=
B

and
A

=
B

, for every axiom A = B of the equational theory =

on F , called equality rules.

Example 7.1.9. We consider ∧ as strong and ∨ as weak in classical logic. The subatomic
proof system SAKS is given by the inference rules in Figure 35, together with the equality

rules given by
A

=
B

for every equality in the equational theory for classical logic formulae.

Example 7.1.10. We consider � as strong and O as weak in multiplicative linear logic. The
subatomic proof system SAMLLS is given by the inference rules in Figure 36 together with
the equality rules given by the equational theory of MLL.

We can straightforwardly build deep inference derivations as is usual in the literature,
by vertical composition through an inference rule and horizontal composition by logical
relations, and the interpretation map is easily extended from formulae to derivations. The
notion of proof is generalised as well.

Definition 7.1.11. Let 1 ∈ U be a distinguished constant. A proof of A is a derivation Π

whose premiss is 1. We denote proofs by
Π

A
.

7.2 Splitting

There are many different cut-elimination techniques in the deep inference literature, exploit-
ing different aspects of the proof systems they work on. In this assortment, a particular
methodology does however stand out for its generality: cut-elimination via splitting (see
Section 4.2. The generality of this procedure points towards the fact that it exploits some
properties that are common to all these systems.

Splitting is based on a simple idea: to show that an atomic cut involving a and ā is
admissible, we trace a and ā to the top of the proof to find two independent subproofs, the
premiss of one containing the dual of a and the other one containing the dual of ā. In this
way we obtain two independent ‘pieces’ that we can rearrange to get a new cut-free proof.

Proofs of cut-elimination by splitting therefore rely on two main properties of a proof
system: the dualities present in it to ensure that each of the independent subproofs contains
the dual of an atom involved in the cut, and the shape of the linear rules ensuring that the
two proofs remain independent above the cut. It is precisely a formal characterisation of
these properties that we will provide, enabling us to understand why they are enough to
guarantee cut-elimination.

92

As we saw in Section 4.2, to trace a connective through the proof from the bottom to the
top, we need its scope to widen. Accordingly, we will consider systems where the shape of
the rules ensures the widening of the scope. In what follows, we will characterise splittable
systems, i.e., systems with sufficient conditions to ensure cut-elimination through a splitting
procedure.

Definition 7.2.1. A system SA↓ is splittable if:

1. There is a distinguished associative and commutative strong connective × with unit 1
and dual + with unit 0,

2. SA is uniquely composed of down-rules of the form

(A+B) α (C +D)
α↓

(A α C) + (B αm D)
,

for every connective α ∈ R.

3. The equality u+ ū = 1 holds for every unit u ∈ U ,

4. The equality 1 αM 1 = 1 holds for every α ∈ R.

Example 7.2.2. SAMLLS↓ is splittable, and the distinguished connective + introducing
dualities is O.

A difficulty of splitting is finding the right induction measure for every system. In the
literature, each splitting theorem for each proof system uses a different induction measure
tailored specifically for it. By providing a general splitting theorem, we not only give a formal
definition of what a splitting theorem is, but also give a one-size-fits-all induction measure
based on the length of the proof that works for every splittable system, taking the search
for an induction measure out of the process for designing a proof system. The following
theorems hold for splittable systems.

Definition 7.2.3. Given a derivation φ, we define the length of φ as the number of rules
in φ different from the equality rules for the associativity and commutativity of +, the unit
rule for + and the unit assignments for +. We denote it by |φ|+.

Theorem 7.2.4 (Shallow Splitting). If SA↓ is splittable, for every formulae A, B, C, for
every connective α 6= +, for every proof

Π SA↓

(A α B) + C

there exist formulae Q1, Q2 and derivations

Q1 α Q2

Φ SA↓

C

,
Π1 SA↓

A+Q1

and
Π2 SA↓

B +Q2

.

with |Π1|+ + |Π2|+ ≤ |Π|+ .

93

Theorem 7.2.5 (Context Reduction). Let SA↓ be a splittable system. For any formula A

and for any context S{ }, given a proof
Π SA↓

S{A}
, there exist a formula K, a provable context

H{ } and derivations

Θ SA↓

A+K
and

H{{ }+K}
χ SA↓

S{ }
.

We can easily see that the theorems above are generalisations of those we presented in
Section 4.2. They can be proved with the same proof scheme. However, for this result to
straightforwardly hold in the original non-subatomic systems, we will need to show that the
cut-free proofs obtained from proofs of the non-subatomic original system via this procedure
are interpretable themselves, and therefore correspond to proofs in the original system. For
that, we will pay particular attention to tame proofs, in which no inference rule occurs in the
scope of an atom. If the interpretation I is built in a natural way, every proof of the original
system will be represented by a tame proof in SA. The interpretability of tame proofs is
preserved by splitting as long as interpretability is preserved by duals. In that case, as a
corollary, interpretability will be preserved by splitting.

Definition 7.2.6. We say that a system SA with a natural interpretation I, negation · and
an equational theory = is preservable when:

1. If A is interpretable and A =+ B, then B is interpretable ;

2. If A α B is interpretable, α ∈ R, then A and B are interpretable ;

3. If A a B is interpretable and A+ A′ = 1, B + B′ = 1 then A′ a B′ is interpretable for
a ∈ A ;

4. If A is interpretable, then A is interpretable ;

5. The atoms of A are non-commutative, non-associative and non-unitary.

We can now add the following details about the preservation of interpretability:

Lemma 7.2.7. Let SA↓ be preservable and

Π SA↓

(A α B) + C

be a tame proof. Then the derivations Π1,Π2 and Φ obtained from Theorem 7.2.4 are tame.
Furthermore, if α is an atom then Π1 and Π2 are equalities.

Lemma 7.2.8. Let SA↓ be preservable and
Π SA↓

S{A}
be a tame proof. Then the derivation Θ

obtained from Theorem 7.2.5 is tame.

Furthermore, if { } is not in the scope of an atom in S{ } and Π is tame, then the
derivation χ obtained from Theorem 7.2.5 is tame.

94

The proof scheme is identical to the one we showed in Section 4.2. Here, we will only
sketch the proofs.

Lemma 7.2.9. If SA↓ is splittable, then for every proof

Π SA↓

u+ C

where u ∈ U , there is a derivation

ū

Φ SA↓

C

.

Furthermore, if SA↓ is preservable, then if Π is tame we have that Φ is tame.

Proof. We take

Φ ≡
(ū+ 0)× Π

u+ C
×↓

ū× u
=

0
+ 0 + C

.

Sketch of proof of Theorem 7.2.4 and Lemma 7.2.7. We define =+ as the equivalence rela-
tion on formulae defined by the axioms for the associativity, commutativity, unit of + and
constant assignments for +. We will proceed by induction on |Π|+.

If |Π|+ = 1, then A =+ v,B =+ w and v α w =+ u, with u + C =+ 1. By Lemma 7.2.9,

there is a derivation

ū

Φ′ SA↓

C

and we take:

Φ ≡

v̄ α w̄
=

ū

Φ′

C

, Π1 ≡
1

=+

v
=+

A
+ v̄

and Π2 ≡
1

=+

w
=+

B
+ w̄

.

Φ′ is tame and v̄ α w̄ is interpretable, and therefore Φ is tame. Furthermore, Π1 and Π2

are tame and equalities.

If |Π|+ > 1, we prove the inductive step for all the possible cases of the bottom inference
rule ρ of φ.

Inspection of the rules provides us with the following possible cases:

95

(1) Π =+

Π′ SA↓

(A α B) + C ′
ρ

(A α B) + C

;

(2) Π =+

Π′ SA↓

(((A α B) + C1)× (C2 + C3)) + C4
×↓

(A α B) + C2 + (C1 × C3) + C4

;

(3) Π =+

Π′ SA↓

(((A α B) + C1) β uβ) + C2
=

(A α B) + C1 + C2

;

(4) Π =+

Π′ SA↓

(uβ β ((A α B) + C1)) + C2
=

(A α B) + C1 + C2

;

(5) Π =+

Π′ SA↓

(A′ α B) + C
ρ

(A α B) + C

;

(6) Π =+

Π′ SA↓

(A α B′) + C
ρ

(A α B) + C

;

(7) Π =+

Π′ SA↓

((A+ C1) α (B + C2)) + C3
α↓

((A α B) + (C1 α C2)) + C3

if α is strong ;

(8) Π =+

Π′ SA↓

((A+ C1) α (B + C2)) + C3
α↓

((A α B) + (C1 α C2)) + C3

if α is weak ;

(9) Π =+

Π′ SA↓

((A+ C1) α (B + C2)) + C3
α↓

((A α B) + (C1 α C2)) + C3

if α is weak ;

(10) Π =+

Π′ SA↓

(B α A) + C
=

(A α B) + C

if α is commutative ;

96

(11) Π =+

Π′ SA↓

((A α B1) α B2) + C
=

(A α (B1 α B2)) + C

if α is associative ;

(12) Π =+

Π′ SA↓

(A1 α (A2 α B)) + C
=

((A1 α A2) α B) + C

if α is associative ;

(13) Π =+

Π′ SA↓

A+ C
=

(A α uα) + C

if α is unitary, with B =+ uβ ;

(14) Π =+

Π′ SA↓

B + C
=

(uα α B) + C

if α is unitary, with A =+ uβ ;

(15) Π =+

Π′ SA↓

u+ C
=

(v α w) + C

with A =+ v and B =+ w .

We will describe only a few of the induction cases.

(1) There are derivations

Φ =+

Q1 α Q2

Φ′ SA↓

C ′
ρ
C

,
Π1 SA↓

A+Q1

and
Π2 SA↓

B +Q2

,

with size(Π1) + size(Π2) ≤ size(Π′) < size(Π) .

If Π is tame, then ρ and Π1,Π2 and Π′ are tame. Hence Φ is tame.

Furthermore, if α is an atom then by the induction hypothesis Π1 and Π2 are equalities.

(7) There are derivations

H1 α H2

Φ′ SA↓

C3

,
Π1 SA↓

A+ C1 +H1

and
Π2 SA↓

B + C2 +H2

,

with size(Π1) + size(Π2) ≤ size(Π′) < size(Π).

97

We take Q1 ≡ C1 +H1, Q2 ≡ C2 +H2 and

Φ =+

(C1 +H1) α (C2 +H2)
α↓

(C1 α C2) +

H1 α H2

Φ′

C3

.

If Π is tame, then Π′ is tame and by induction hypothesis Π1, Π2 and Φ′ are tame.

If α is an atom, then by the induction hypothesis Π1 and Π2 are equalities. Then
(C1 + H1) α (C2 + H2) is interpretable by condition 3 of preservability. Therefore, Φ
is tame.

If Π is tame and α is not an atom, then Φ is trivially tame since C1, H1, C2, H2 are
interpretable and Φ′ is tame.

(9) There are derivations

H1 α H2

Φ′ SA↓

F3

,
Π1 SA↓

A+ C1 +H1

and
Π2 SA↓

B + C2 +H2

,

with size(Π1) + size(Π2) ≤ size(Π′) < size(Π).

We take Q1 ≡ C1 +H1, Q2 ≡ C2 +H2 and

Φ =+

(C1 +H1) α (C2 +H2)
αm↓

(C1 α C2) +

H1 α H2

Φ′

C3

.

If Π is tame, then Π′ is tame and by induction hypothesis Π1, Π2 and Φ′ are tame.

If α is an atom, then by the induction hypothesis Π1 and Π2 are equalities. Then
(C1 + H1) α (C2 + H2) is interpretable by condition 3 of preservability. Therefore, Φ
is tame.

If Π is tame and α is not an atom, then Φ is trivially tame since C1, H1, C2, H2 are
interpretable and Φ′ is tame.

Exercise 7.2.10. Finish the missing induction cases.

98

Proof of Theorem 7.2.5 and Lemma 7.2.8. We proceed by induction on the number of rela-
tions α 6= + that { } is in the scope of in S{ }. We denote it by |S|+.

If |S|+ = 0, then S{A} =+ A+K and we take Θ =+ φ and H{ } = { }.

If S{A} =+ (S′{A} β B) + C with β 6= +, we apply Theorem 7.2.4 to Π. There exist
derivations

Q1 β Q2

Φ SA↓

C

,
Π1 SA↓

S′{A}+Q1

and
Π2 SA↓

B +Q2

such that Π1, Π2 and Φ are tame if Π is tame.

We apply the induction hypothesis to Π1 since |S′|+ < |S|+. There are derivations

Θ SA↓

A+K
,

H ′{{ }+K}
χ′ SA↓

S′{ }+Q1

,

with H ′ a provable context, such that Θ is tame if φ1 is tame.

We take H{ } = H ′{ } βM 1 . We have H{1} = H ′{1} βM 1 = 1 βM 1 = 1, and we can
build in SA↓

χ ≡

H ′{{ }+K}
χ′

S′{ }+Q1

βM
Π2

B +Q2

β↓

S′{ } β B +

Q1 β Q2

Φ

C

.

If { } is not in the scope of an atom in S{ } and Π is tame, then by the induction hypothesis
χ′ is tame and { } is not in the scope of an atom in H ′{ }. Since β is not an atom, { } is
not in the scope of an atom in H{ } and χ is tame.

We proceed likewise if S{A} =+ (B β S′{A}) + C.

As a corollary of shallow splitting and context reduction we can show the admissibility
of a class of up-rules. The main idea is that through splitting we can separate a proof
into “building blocks” that are independently provable. We can then easily combine these
building blocks differently to obtain a new proof with the same conclusion.

Since tameness is preserved by splitting, cut-free proofs obtained from tame proofs will
be tame themselves. The cut-free proofs obtained from non-subatomic proofs will therefore
be interpretable, and we can ensure that this cut-elimination result corresponds to cut-
elimination in the original system.

When designing a proof system that enjoys cut-elimination, we will therefore only have
to ensure that the interpretation map is preservable. This is quite an easy task, since the
conditions for an interpretation map to be natural are very lenient, and therefore there is
much freedom to design an interpretation to suit many needs.

99

Definition 7.2.11. Rules of the form
(A α B)× (C αM D)

α↑
(A× C) α (B ×D)

are cuts.

Corollary 7.2.12 (Admissibility of cuts). Let SA be a splittable proof system.

For any formulae A,B,C,D, any context S, any connective α 6= +, given a proof

Π ≡
Π′ SA↓

S

{
(A α B)× (C αM D)

α↑
(A× C) α (B ×D)

}
,

there is a proof

Ψ SA↓

S{(A× C) α (B ×D)}
,

i.e., cuts are admissible.

Furthermore, if Π is tame and α is not an atom, Ψ is tame.

Proof. We apply Theorem 7.2.5 to Π.

There are derivations

Θ SA↓

((A α B)× (C αM D)) +K
and

H{{ }+K}
χ SA↓

S{ }
,

with H{1} = 1.

We apply Theorem 7.2.4 to Θ. There exist derivations

Q1 +Q2

Φ SA↓

K

,
Π1 SA↓

(A α B) +Q1

and
Π2 SA↓

(C αM D) +Q2

.

We apply Theorem 7.2.4 to Π1 and Π2 and we obtain

QA α QB

Φ1 SA↓

Q1

,
Π3 SA↓

QA +A
and

Π4 SA↓

QB +B
,

QC α
m QD

Φ2 SA↓

Q2

,
Π5 SA↓

QC + C
and

Π6 SA↓

QD +D
.

100

We can then build the following proof in SA↓

Ψ =

H

Π3

A+QA
× Π5

C +QC
×↓

(A× C) +QA +QC

αM
Π4

B +QB
× Π6

D +QD
×↓

(B ×D) +QB +QD
αM↓

((A× C) α (B ×D)) +

(QA +QC) α (QB +QD)
α↓

QA α QB

Φ1

Q1

+

QC α
m QD

Φ2

Q2

Φ

K

χ

S{(A× C) α (B ×D)}

.

If Π is tame, then { } is not in the scope of an atom in S{ } and Π3,Π4,Π5,Π6,Φ1,Φ2

and χ are tame. Therefore, if α is not an atom, Ψ is tame.

We have shown that splitting hinges only on the shape of rules and on dualities. The
general splitting methodology is very robust: it is based on properties that are present in
systems with very different expressiveness and therefore it can be expanded to include an
extremely wide variety of relations as long as they are introduced by rules of non-contractive
shape.

7.3 Decomposition

Splitting allows us to understand the interactions of the cut with splittable linear rules, but
how about contractions? It is known that we can decompose classical logic and multiplicative
additive linear logic proofs into a linear phase and a phase made-up only of contractions via
decomposition results. We study this phenomenon, providing general rewriting rules that
encompass the reductions presented in both systems. We thus show that both decomposition
results are a consequence of precisely the same properties.

Additionally, it has long been conjectured that it is possible to achieve a further decom-
position of these systems, permuting not only the atomic contraction but a whole family of
contractive rules towards the bottom of a derivation. The generalised rewriting rules that
we present allow us to permute medial rules with linear rules, including cuts. The regularity
provided by subatomic systems is a big simplification for the study of these interactions: by
having a single shape we only have to consider two non-trivial permutation cases.

The first step in the generalisation is to characterise the family of rules that will be
permuted. Unsurprisingly, the rules that we will be able to permute downwards/upwards
in a derivation correspond to the rules involved in making contraction atomic. We will call
them contractions as well.

101

We define ν-contractive systems, which correspond to those systems where we can recover
general contractions

A ν A

A
.

Definition 7.3.1. Let ν be a distinguished relation with unit O, and ν its dual with unit
M. A ν-contractive system SA is a subatomic proof system where:

• For every relation α there is a down rule of the form

(A α B) ν (C α D)
αc

(A ν C) α (B ν D)
,

that we call contraction for α and its dual up rule that we call cocontraction for α.

• For every constant u ∈ U there are equalities of the form u ν u = u and ū ν ū = ū.

We call the equality rules
u ν u

=
u

the contraction equality rule for u and
ū

=
ū ν ū

the

cocontraction equality rule for ū.

• For every constant u ∈ U ,
O

w
u

and its dual
ū

w̄
M

are derivable in SA. We call these

unitary instances of (co)contraction rules weakening and coweakening respectively.

• For every relation α there are equalities O α O = O and M α M=M.

Complexity is created by the duplication of atomic contractions when they are permuted
through other rules. It is our goal to understand this phenomenon in the best possible
generality, i.e. to keep track of the creation and duplication of atoms when any contraction
rule is permuted downwards in a derivation. However, when permuting contraction rules we
may create an unbounded number of other contractive and cocontractive rules.

By observing the subatomic form of known rewriting rules that permute atomic contrac-
tions downwards in derivations, a novel way of controlling this phenomenon arises: we will
show that it is possible to move ‘blocks’ of nested contraction rules together, in such a
way that we are no longer concerned by the number of (co)contraction rules created by the
procedure.

Consider this reduction, corresponding to permuting an atomic contraction through an
atomic cut:

(f a t) ∨ (f a t)
ac

f ∨ f

f
a
t ∨ t

t

∧ (t a f)

a↑
(f ∧ t) a (t ∧ f)

−→

((f a t) ∨ (f a t)) ∧

t

t ∧ t
a

f

f ∧ f
ac̄

(t a f) ∧ (t a f)
∧↑

(f a t) ∧ (t a f)
a↑

(f ∧ t) a (t ∧ f)
∨

(f a t) ∧ (t a f)
a↑

(f ∧ t) a (t ∧ f)
ac

(f ∧ t) ∨ (f ∧ t)
∧c

f ∨ f

f
∧
t ∨ t

t

a

(t ∧ f) ∨ (t ∧ f)
∧c

t ∨ t

t
∧
f ∨ f

f

102

In this reduction, we move a block of nested contractions (in purple) by creating another
block of nested contractions lower in the proof and a block of nested cocontractions (in
purple as well). The structure that we are therefore interested in studying is that of recursive
nestings of contraction rules. For convenience and readability, we will represent these nestings
in the form of a hyper-rule named merge contraction, which will be defined recursively in
order to capture the nested structure.

Definition 7.3.2. In a ν-contractive system SA, a merge contraction is an SA derivation
defined recursively as follows:

• A formula A ν B is a merge contraction ;

• A contraction equality rule is a merge contraction ;

• A derivation
(A α B) ν (C α D)

c

A ν C

Φ1

R

α

B ν D

Φ2

S

is a merge contraction if c is a contraction and Φ1 and Φ2 are merge contractions.

Definition 7.3.3. A ν-merge of two formulae is defined as follows:

• A ν B is a ν-merge of A and B that we call a trivial merge;

• u is a ν-merge of u and u, where u ∈ U is a constant;

• C1 α C2 is a ν-merge of A1 α A2 and B1 α B2 for α ∈ R if C1 is a ν-merge of A1 and
B1 and C2 is a ν-merge of A2 and B2. In this case we say that α is the main relation
of the merge.

If C is a ν-merge of A and B, by an abuse of language we will sometimes refer to the triple
(A,B,C) as a ν-merge.

ν-merges of two formulae are defined dually.

It can be easily seen that each merge contraction corresponds to a ν-merge, and each
ν-merge corresponds to a merge contraction.

Proposition 7.3.4. Given a merge contraction

A ν B

φ

C

, C is a ν-merge of A and B.

Proposition 7.3.5. If C is a ν-merge of A and B, there is a merge contraction

A ν B

C

.

Exercise 7.3.6. Prove the Propositions above.

103

The duals of the above propositions clearly hold for ν-contractions and merge cocontrac-
tions. Given the above characterisation of merge contractions as derivations whose conclusion
is a ν-merge of its premiss, for ease of notation we will represent nestings as a hyper-rule.

Definition 7.3.7. We denote merge contractions by
A ν B

mc↓
C

where C is a non-trivial

ν-merge of A and B.

We denote merge cocontractions by
C

mc↑
A ν B

where C is a non-trivial ν-merge of A and

B.

We will permute merge contractions downwards by creating other merge contractions lower
in the derivation. The main property allowing us to permute merge contractions through
other rules is the given in the following proposition:

Proposition 7.3.8. If C is a ν-merge of A and B, we can define projections

A

πA {=,w}

C

and

B

πB {=,w}

C

associated to the merge.

Exercise 7.3.9. Prove the proposition above.

With the projections associated to a merge as a tool, we will now show reduction rules
allowing us to permute merge (co)contractions downwards (upwards) in a proof.

Definition 7.3.10 (Reduction rule s). We define the following class of reduction rules:

sρ :

A ν B
mc↓

C

{
M

ρ
N

}
−→

A

πA

C

{
M

ρ
N

} ν

B

πB

C

{
M

ρ
N

}
mc↓

C{N}

where πA and πB are the projections associated to the merge (A,B,C).

Definition 7.3.11 (Reduction rule t). If the rule
(A ν B) β (C ν D)

µ
(A β C) ν (B β D)

is derivable in SA we

define the following family of rewriting rules:

tρ :

(A1 α A2) ν (B1 α B2)
mc↓

C α D
β (E α′ F)

ρ
(C β E) α (D β′ F)

−→

((A1 α A2) ν (B1 α B2)) β
E α′ F

mc↑
(E α′ F) ν (E α′ F)

µ

(A1 α A2) β (E α′ F)
ρ

(A1 β E) α (A2 β
′ F)

ν
(B1 α B2) β (E α′ F)

ρ
(B1 β E) α (B2 β

′ F)
mc↓

(C β E) α (D β′ F)

where C is a ν-merge of A1 and B1, and D is a ν-merge of A2 and B2.

104

In fact, the rewriting systems for classical logic and for multiplicative additive linear logic
that allow us to permute atomic (co)contractions through other rules are particular instances
of the generalised rewriting rules defined above.

Example 7.3.12. The reduction rule c↑−c↓ for atomic flows is an instance of reduction rule
s. Likewise, the equivalent rule to permute atomic contractions and atomic cocontractions
in linear logic is an instance of this reduction rule family:

(⊥ a 1) � (⊥ a 1)
mc↓

⊥ a 1
mc↑

(⊥ a 1) N (⊥ a 1)

−→
⊥ a 1

mc↑
(⊥ a 1) N (⊥ a 1)

�
⊥ a 1

mc↑
(⊥ a 1) N (⊥ a 1)

mc↓
(⊥ a 1) N (⊥ a 1)

or, written in terms of nestings:

((⊥ N⊥) a (1 N 1)) � ((⊥ N⊥) a (1 N 1))
ac

((⊥ N⊥) � (⊥ N⊥))
Nc

⊥ �⊥
⊥

N
⊥ �⊥
⊥

a

((1 N 1) � (1 N 1))
Nc

1 � 1

1
N

1 � 1

1

ac̄
(⊥ a 1) N (⊥ a 1)

−→

(⊥ N⊥) a (1 N 1)
ac̄

(⊥ a 1) N (⊥ a 1)
�

(⊥ N⊥) a (1 N 1)
ac̄

(⊥ a 1) N (⊥ a 1)
Nc

(⊥ a 1) � (⊥ a 1)
ac

⊥ �⊥
⊥

a
1 � 1

1

N

(⊥ a 1) � (⊥ a 1)
ac

⊥ �⊥
⊥

a
1 � 1

1

Example 7.3.13. The reduction rule c↓−i↑ for classical logic is an instance of this reduction
rule. Likewise, the equivalent reduction rule to permute atomic contractions and atomic cuts
in linear logic is an instance of this reduction rule family:

(⊥ a 1) � (⊥ a 1)
mc↓

⊥ a 1
� (1 a⊥)

a↑
(⊥ � 1) a (1 �⊥)

−→

((⊥ a 1) � (⊥ a 1)) �
1 a⊥

mc↑
(1 a⊥) N (1 a⊥)

�↑
(⊥ a 1) � (1 a⊥)

a↑
(⊥ � 1) a (1 �⊥)

�
(⊥ a 1) � (1 a⊥)

a↑
(⊥ � 1) a (1 �⊥)

mc↓
(⊥ � 1) a (1 �⊥)

.

or, written in terms of nestings:

(⊥ a 1) � (⊥ a 1)
ac

⊥ �⊥
⊥

a
1 � 1

1

� (1 a⊥)

a↑
(⊥ � 1) a (1 �⊥)

−→

((⊥ a 1) � (⊥ a 1)) �

1

1 N 1
a
⊥
⊥ N⊥

ac̄
(1 a⊥) N (1 a⊥)

�↑
(⊥ a 1) � (1 a⊥)

a↑
(⊥ � 1) a (1 �⊥)

�
(⊥ a 1) � (1 a⊥)

a↑
(⊥ � 1) a (1 �⊥)

ac

(⊥ � 1) � (⊥ � 1)

⊥ �⊥
⊥

�
1 � 1

1

a

(1 �⊥) � (1 �⊥)

1 � 1

1
�
⊥ �⊥
⊥

.

105

We have shown that these decomposition results for classical logic and for MALL are a
consequence of a wider phenomenon: both rewriting systems exploit the shape of atomic
contractions to be able to permute them with other rules. Furthermore, the termination
of these rewriting systems holds for the subatomic versions too: identically to the atomic
versions, the subatomic rewriting systems will terminate in the absence of cycles (see Section
5). We will rigorously define and tackle cycles in the next section.

Theorem 7.3.14. Rewriting system C′ for SAKS (Figure 35) is given by the reduction rules
s and t where the merge contraction being permuted has main relation a, and by the dual
reductions. C′ is terminating on the set of cycle-free derivations.

Furthermore, by being able to permute generic contractions together, we advance towards
proving a full decomposition theorem for classical logic and multiplicative additive linear
logic, by being able to confine all contraction rules to the bottom of a proof.

Theorem 7.3.15 (Not published yet). We define rewriting system D for SAKS as the system
given by the general reductions s, t, and the dual reductions for merge cocontractions. System
D is terminating.

7.4 Cycle elimination

Atomic contractions and atomic cocontractions can be permuted downwards/upwards in a
classical logic derivation only in the absence of cycles. Cycles are created when two atom
occurrences created in the same identity rule are eliminated by the same cut rule. We call
these atom occurrences the edges of a cycle. Identically, this result holds for multiplicative
additive linear logic.

Cycles are straightforwardly removed by cut-elimination. Our goal in this chapter however
is to take advantage of the reductions presented in the previous chapter to show that we can
remove cycles without recurring to cut-elimination, therefore proving the independence of
the decomposition and the cut-elimination procedures.

Cycles can only occur due to the presence of contractions. For a cycle to occur in classical
logic, two atom occurrences coming from the same introduction rule and therefore related by
∨ at the top of the flow have to be connected by ∧ at the bottom of the flow to be eliminated
by the same cut rule. Therefore, an instance of a rule that changes the relation between
formulae from ∨ to ∧ needs to occur, and it must contain the atoms involved in the cycle.
The only rule that does so in subatomic system SAKS for classical logic (Figure 35) is the
contraction rule m. Likewise, in multiplicative additive linear logic cycles can only occur if
there is a contraction rule between the introduction and the cut of the cycle. We call these
instances of contraction rules critical.

Definition 7.4.1. Let Φ be a derivation containing a cycle. The critical medial for this
cycle is the lowest instance of a rule

(A{a} ∧B) ∨ (C ∧D{ā})
m

(A{a} ∨ C) ∧ (B ∨D{ā})

in Φ where the occurrences of a and ā are the edes of the cycle.

A critical merge contraction is a maximal merge contraction that contains a critical medial.

106

The intuition behind our procedure is simple: by using the rewriting rules defined in the
previous section we can permute a critical contraction rules downward until it is below the
cut of its cycle. In this process derivations are significantly altered: cycles are removed
and edges are bifurcated. Termination of the procedure is easy to check: we show that
when permuting critical contractions downwards we do not create any additional critical
contractions.

Theorem 7.4.2. Let Φ be a derivation with n critical merge contractions. Then there exists
a derivation Ψ with the same premiss and conclusion with n− 1 critical merge contractions.

To eliminate all cycles from a derivation, one simply performs the procedure n times, once
for each critical merge contraction.

Corollary 7.4.3. Given a derivation Φ, there exists a derivation Ψ with the same premiss
and conclusion and without cycles.

7.5 Notes

The subatomic methodology is base on an idea by Alessio Guglielmi [Gug02]. Its formal
definition, and the splitting, decomposition and cycle-elimination results presented here are
taken from Andrea Aler Tubella’s thesis [Ale16]. A complete account of subatomic splitting
by Guglielmi and Aler Tubella can be found in [AG17].

Merge contractions have a lot of interesting and unusual properties, which are expanded
upon in Ben Ralph’s thesis in [Ral19], where another cycle-elimination procedure is shown
as well. Another procedure based on the same idea as the one we presented in these notes
is presented by Aler Tubella, Guglielmi and Ralph in [AGR17]. In fact, the phenomenon
of cycles has also been studied in the sequent calculus, where it has been shown that it is
possible to remove them through a procedure of quadratic-time complexity [Car02].

Subatomic logic is a recent advance, and the focus of ongoing research. Some recent work
by Guglelmi and Chris Barrett on applying subatomic methods to describe and operate with
decision trees can be found in [BG19]. New work by Luca Roversi on extending subatomic
logic in order to study systems with different SAT-complexities can be found in [Rov18].

107

8 Final Remarks

There are many exciting aspects of deep inference that have not been touched in this short
course. With only 5x90min lecture time, some selection had to be made. In this final section,
we will give a list of some topics that have been left out, and we also give references for the
interested student to get more information on these topics.

• First, it should be mentioned that deep inference systems exist not only for classical
and linear logic, but also for intuitionistic logic [Tiu06a, GS14], modal logics [SS05,
Sto07], hybrid logic [Str07b], the logic of bunched implications [Hor06], and first-order
logic [GS14, Ral18, Ral19]. Ralph’s PhD-thesis [Ral19] also investigates the relation
between deep inference decomposition theorems and Herbrand’s theorem.

• Another important aspect of deep inference is proof complexity, which studies the
size of proofs and compares proof systems with respect to the size of the proofs they
produce. Due to the flexiblity in the design of inference rules, deep inference systems
can outperform other formalisms with respect to the size of the produced proofs. This
has first been observed in [BG09]. Follow-up results on the proof complexity of deep
inference can be found in [Str12, NS15, Das11, Das12, Das15].

• We can also see (linear) inference rules of SKS as rewrite rules of a linear rewrite system
and study its properties. This has been done in [Das13], and has led to interesting
complexity results [DS15, DS16, BS17].

• Insights from deep inference can also help to study category theoretical aspects of
classical proof theory [Str07c, Lam07].

• An important recent development is the atomic λ-calculus [GHP13b, GHP13a] that is
in Curry-Howard correspondence with a deep inference proof system for intuitionistic
logic. This calculus has been extended to a typeable calculus with explicit sharing
which extends the Curry-Howard interpretation of open deduction [She19]. Similarly,
the atomic atomic λµ-calculus [He18] offers a Curry-Howard interpretation of a classical
deep inference proof system.

• Finally, deep inference proof systems can be used to describe process calculi, in such a
way that the proof of a formula corresponds to the trace of a process in the so-called
proof as process paradigm [Bru02, HTAC16, HT19, HTAC19].

An up-to-date list of references can also be found at the deep inference webpage

http://alessio.guglielmi.name/res/cos/index.html

maintained by Alessio Guglielmi.

108

http://alessio.guglielmi.name/res/cos/index.html

9 References

[AG17] Andrea Aler Tubella and Alessio Guglielmi. Subatomic Proof Systems: Splittable
Systems. ACM Transactions on Computational Logic, 19(1:5):1–33, mar 2017.

[AGR17] Andrea Aler Tubella, Alessio Guglielmi, and Benjamin Ralph. Removing Cycles
from Proofs. In 26th EACSL Annual Conference on Computer Science Logic
(CSL 2017), volume 82, sep 2017.

[Ale16] Andrea Aler Tubella. A study of normalisation through subatomic logic. Thesis,
University of Bath, dec 2016.

[BG09] Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference.
ACM Transactions on Computational Logic, 10(2):1–34, 2009. Article 14.

[BG19] C Barrett and A Guglielmi. A Subatomic Proof System for Decision Trees. Tech-
nical report, University of Bath, 2019.

[Bru02] Paola Bruscoli. A purely logical account of sequentiality in proof search. In Pe-
ter J. Stuckey, editor, Logic Programming, 18th International Conference, volume
2401 of Lecture Notes in Artificial Intelligence, pages 302–316. Springer-Verlag,
2002.

[Brü03] Kai Brünnler. Deep Inference and Symmetry for Classical Proofs. PhD thesis,
Technische Universität Dresden, 2003.

[Brü06] Kai Brünnler. Locality for Classical Logic. Notre Dame Journal of Formal Logic,
47(4):557–580, 2006.

[BS17] Paola Bruscoli and Lutz Straßburger. On the length of medial-switch-mix deriva-
tions. In Juliette Kennedy and Ruy J. G. B. de Queiroz, editors, Logic, Language,
Information, and Computation - 24th International Workshop, Proceedings, vol-
ume 10388 of Lecture Notes in Computer Science, pages 68–79. Springer, 2017.

[BT01] Kai Brünnler and Alwen Fernanto Tiu. A local system for classical logic. In
R. Nieuwenhuis and A. Voronkov, editors, LPAR 2001, volume 2250 of LNAI,
pages 347–361. Springer, 2001.

[BvdW95] Gianluigi Bellin and Jacques van de Wiele. Subnets of proof-nets in MLL−. In J.-
Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, volume
222 of London Mathematical Society Lecture Notes, pages 249–270. Cambridge
University Press, 1995.

[Car02] A. Carbone. The cost of a cycle is a square. Journal of Symbolic Logic, 67(1):35–
60, mar 2002.

[CGS11] Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger. The Focused Cal-
culus of Structures. In Marc Bezem, editor, Computer Science Logic (CSL),
volume 12 of Leibniz International Proceedings in Informatics (LIPIcs), pages
159–173. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.

109

[Das11] Anupam Das. On the proof complexity of cut-free bounded deep inference. In
Kai Brünnler and George Metcalfe, editors, Automated Reasoning with Ana-
lytic Tableaux and Related Methods - 20th International Conference, TABLEAUX
2011, volume 6793 of LNCS, pages 134–148. Springer, 2011.

[Das12] Anupam Das. Complexity of deep inference via atomic flows. In S. Barry Cooper,
Anuj Dawar, and Benedikt Löwe, editors, Computability in Europe, volume 7318
of LNCS, pages 139–150. Springer-Verlag, 2012.

[Das13] Anupam Das. Rewriting with linear inferences in propositional logic. In Femke
van Raamsdonk, editor, 24th International Conference on Rewriting Techniques
and Applications (RTA), volume 21 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 158–173. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, 2013.

[Das15] Anupam Das. On the relative proof complexity of deep inference via atomic flows.
Logical Methods in Computer Science, 11(1), 2015.

[DR89] Vincent Danos and Laurent Regnier. The structure of multiplicatives. Arch.
Math. Log., 28(3):181–203, 1989.

[DS15] Anupam Das and Lutz Straßburger. No complete linear term rewriting system for
propositional logic. In Maribel Fernández, editor, 26th International Conference
on Rewriting Techniques and Applications, RTA 2015, June 29 to July 1, 2015,
Warsaw, Poland, volume 36 of LIPIcs, pages 127–142, 2015.

[DS16] Anupam Das and Lutz Straßburger. On linear rewriting systems for boolean logic
and some applications to proof theory. Logical Methods in Computer Science,
12(4), 2016.

[Duf65] R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Anal-
ysis and Applications, 10(2):303 – 318, 1965.

[Gen35a] Gerhard Gentzen. Untersuchungen über das logische Schließen. I. Mathematische
Zeitschrift, 39:176–210, 1935.

[Gen35b] Gerhard Gentzen. Untersuchungen über das logische Schließen. II. Mathematische
Zeitschrift, 39:405–431, 1935.

[GG08] Alessio Guglielmi and Tom Gundersen. Normalisation control in deep inference
via atomic flows. Logical Methods in Computer Science, 4(1:9):1–36, 2008.

[GGP10] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A Proof Calculus Which
Reduces Syntactic Bureaucracy. In Christopher Lynch, editor, 21st International
Conference on Rewriting Techniques and Applications (RTA), volume 6 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 135–150. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

110

[GGS10] Alessio Guglielmi, Tom Gundersen, and Lutz Straßburger. Breaking paths in
atomic flows for classical logic. In Proceedings of the 25th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,
United Kingdom, pages 284–293. IEEE Computer Society, 2010.

[GHP13a] Tom Gundersen, Willem Heijltjes, and Michel Parigot. A Proof of Strong Nor-
malisation of the Typed Atomic Lambda-Calculus. In Ken McMillan, Aart Mid-
deldorp, and Andrei Voronkov, editors, Logic for Programming, Artificial Intel-
ligence, and Reasoning (LPAR-19), volume 8312 of Lecture Notes in Computer
Science, pages 340–354. Springer-Verlag, 2013.

[GHP13b] Tom Gundersen, Willem Heijltjes, and Michel Parigot. Atomic Lambda Calculus:
{A} Typed Lambda-Calculus with Explicit Sharing. In Orna Kupferman, editor,
28th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 311–
320. IEEE, 2013.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[Gir95] Jean-Yves Girard. Linear logic: its syntax and semantics. In Jean-Yves Girard,
Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, pages 1–42.
Cambridge University Press, 1995.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38:173–198, 1931.

[GS01] Alessio Guglielmi and Lutz Straßburger. Non-commutativity and MELL in the
calculus of structures. In Laurent Fribourg, editor, Computer Science Logic, CSL
2001, volume 2142 of LNCS, pages 54–68. Springer-Verlag, 2001.

[GS02] Alessio Guglielmi and Lutz Straßburger. A non-commutative extension of MELL.
In Matthias Baaz and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR 2002, volume 2514 of LNAI, pages 231–246.
Springer-Verlag, 2002.

[GS11] Alessio Guglielmi and Lutz Straßburger. A system of interaction and structure
V: the exponentials and splitting. Mathematical Structures in Computer Science,
21(3):563–584, 2011.

[GS14] Nicolas Guenot and Lutz Straßburger. Symmetric Normalisation for Intuitionis-
tic Logic. In Thomas Henzinger and Dale Miller, editors, Joint Meeting of the
23rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
45:1—-10. ACM, 2014.

[Gug02] Alessio Guglielmi. Subatomic Logic, 2002.

[Gug07] Alessio Guglielmi. A system of interaction and structure. ACM Transactions on
Computational Logic, 8(1):1–64, 2007.

[Gun09] Tom Gundersen. A General View of Normalisation through Atomic Flows. PhD
thesis, The University of Bath, 2009.

111

[HA28] David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik, vol-
ume XXVII of Die Grundlehren der Mathematischen Wissenschaften. Verlag von
Julius Springer, 1928.

[He18] Fanny He. The Atomic Lambda-Mu Calculus. PhD thesis, University of Bath,
2018.

[Hil22] David Hilbert. Die logischen Grundlagen der Mathematik. Mathematische An-
nalen, 88:151–165, 1922.

[Hor06] Benjamin Robert Horsfall. The Logic of Bunched Implications: {A} Memoir.
PhD thesis, University of Melbourne, 2006.

[Hor19] Ross Horne. The Sub-Additives: A Proof Theory for Probabilistic Choice ex-
tending Linear Logic. In FSCD, 2019.

[HT19] Ross Horne and Alwen Tiu. Constructing weak simulations from linear impli-
cations for processes with private names. Mathematical Structures in Computer
Science, 29(8):1275–1308, 2019.

[HTAC16] Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu. Private Names in
Non-Commutative Logic. In Josée Desharnais and Radha Jagadeesan, editors,
27th International Conference on Concurrency Theory (CONCUR), volume 59
of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:16.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

[HTAC19] Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu. De Morgan Dual
Nominal Quantifiers Modelling Private Names in Non-Commutative Logic. ACM
Trans. Comput. Logic, 20(4):22:1–22:44, July 2019.

[Hug06a] Dominic Hughes. Proofs Without Syntax. Annals of Mathematics, 164(3):1065–
1076, 2006.

[Hug06b] Dominic Hughes. Towards Hilbert’s 24th problem: Combinatorial proof invari-
ants: (preliminary version). Electr. Notes Theor. Comput. Sci., 165:37–63, 2006.

[Laf95] Yves Lafont. Equational reasoning with 2-dimensional diagrams, volume 909 of
LNCS, pages 170–195. 1995.

[Lam07] François Lamarche. Exploring the gap between linear and classical logic. Theory
and Applications of Categories, 18(18):473–535, 2007.

[Möh89] Rolf H. Möhring. Computationally tractable classes of ordered sets. In I. Rival,
editor, Algorithms and Order, pages 105–194. Kluwer Acad. Publ., 1989.

[NS15] Novak Novakovic and Lutz Straßburger. On the power of substitution in the
calculus of structures. ACM Trans. Comput. Log., 16(3):19, 2015.

[Pra65] Dag Prawitz. Natural Deduction, A Proof-Theoretical Study. Almquist and Wik-
sell, 1965.

112

[Ral18] Benjamin Ralph. A natural proof system for herbrand’s theorem. In Sergei N.
Artëmov and Anil Nerode, editors, Logical Foundations of Computer Science
- International Symposium, LFCS 2018, Proceedings, volume 10703 of Lecture
Notes in Computer Science, pages 289–308. Springer, 2018.

[Ral19] Benjamin Ralph. Modular Normalisation of Classical Proofs. PhD thesis, Uni-
versity of Bath, 2019.

[Ret93] Christian Retoré. Réseaux et Séquents Ordonnés. PhD thesis, Université Paris
VII, 1993.

[Ret03] Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theo-
retical Computer Science, 294(3):473–488, 2003.

[Rov18] Luca Roversi. Subatomic systems need not be subatomic. Preprint, 2018.

[SG11] Lutz Straßburger and Alessio Guglielmi. A system of interaction and structure
IV: The exponentials and decomposition. ACM Trans. Comput. Log., 12(4):23,
2011.

[She19] David Sherratt. A lambda-calculus that achieves full laziness with spine duplica-
tion. PhD thesis, University of Bath, 2019.

[SS05] Charles Stewart and Phiniki Stouppa. A systematic proof theory for several
modal logics. In R. A. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wans-
ing, editors, Advances in Modal Logic, Volume 5, pages 309–333. King’s College
Publications, 2005.

[Sto07] Phiniki Stouppa. A deep inference system for the modal logic S5. Studia Logica,
85(2):199–214, 2007.

[Str02a] Lutz Straßburger. A local system for linear logic. In Matthias Baaz and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
LPAR 2002, volume 2514 of LNAI, pages 388–402. Springer-Verlag, 2002.

[Str02b] Lutz Straßburger. A Local System for Linear Logic. In Matthias Baaz and Andrei
Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 2514 of Lecture Notes in Computer Science, pages 388–402.
Springer-Verlag, 2002.

[Str03a] Lutz Straßburger. Linear Logic and Noncommutativity in the Calculus of Struc-
tures. PhD thesis, Technische Universität Dresden, 2003.

[Str03b] Lutz Straßburger. MELL in the Calculus of Structures. Theoretical Computer
Science, 309(1–3):213–285, 2003.

[Str07a] Lutz Straßburger. A characterisation of medial as rewriting rule. In Franz Baader,
editor, Term Rewriting and Applications, RTA’07, volume 4533 of LNCS, pages
344–358. Springer, 2007.

113

[Str07b] Lutz Straßburger. Deep inference for hybrid logic. In International Workshop on
Hybrid Logic 2007 (Part of ESSLLI’07), 2007.

[Str07c] Lutz Straßburger. On the axiomatisation of Boolean categories with and without
medial. Theory and Applications of Categories, 18(18):536–601, 2007.

[Str12] Lutz Straßburger. Extension without cut. Annals of Pure and Applied Logic,
163(12):1995–2007, 2012.

[Str17] Lutz Straßburger. Combinatorial flows and their normalisation. In Dale Miller,
editor, 2nd International Conference on Formal Structures for Computation and
Deduction, FSCD 2017, September 3-9, 2017, Oxford, UK, volume 84 of LIPIcs,
pages 31:1–31:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[Tiu06a] Alwen Tiu. A local system for intuitionistic logic. In M. Hermann and
A. Voronkov, editors, LPAR 2006, volume 4246 of Lecture Notes in Artificial
Intelligence, pages 242–256. Springer-Verlag, 2006.

[Tiu06b] Alwen Tiu. A system of interaction and structure II: The Need for Deep Inference.
Logical Methods in Computer Science, 2(2):4:1—-24, 2006.

[TS00] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, second edition, 2000.

114

	What is this?
	What are proof formalisms, and why do we need them?
	Hilbert systems
	Natural deduction
	Sequent calculus
	Calculus of structures
	Notes

	Properties of deep inference
	Locality and atomicity
	Duality and Regularity
	Self-dual non commutative connectives
	Notes

	Formalisms, Derivations and Proofs
	The Calculus of Structures
	Open Deduction
	Operations with derivations
	From deep inference to the sequent calculus and back
	Derivations of switch and medial
	Notes

	Normalisation and cut elimination
	Decomposition
	Splitting
	Notes

	Atomic Flows
	Basic definitions and properties
	From formal derivations to atomic flows
	Local Flow Transformations
	Global Flow Transformations
	Normalizing Derivations via Atomic Flows
	Atomic Flows as Categories
	Limits of Atomic Flows
	Notes

	Combinatorial Proofs
	Basic definitions
	Horizontal composition of combinatorial proofs
	Substitution for combinatorial proofs
	Vertical composition of combinatorial proofs
	Relation to to deep inference proofs
	Notes

	Subatomic Proof Theory
	Subatomic logic
	Splitting
	Decomposition
	Cycle elimination
	Notes

	Final Remarks
	References

