

8. Lecture

What is Proof Complexity?

Victoria Barrett and Lutz Straßburger

1/6

How do we measure that?

- Spoiler: We don't know which Proof system has the shortest proofs.
- But we know how to measure "the length of a proof".

What is a proof system?

Notation: Σ^* = set of all finite words over an alphabet Σ

Definition: Let $L \subseteq \Sigma^*$. A *proof system* for L is a surjective function $f \colon \Upsilon^* \to L$, where Υ is another alphabet and f is computable in polynomial time by a deterministic Turing machine (i.e., $f \in \mathbf{P}$). Let $y \in L$. If $x \in \Upsilon^*$ and y = f(x), then x is a *proof* of y.

Definition: A proof system $f: \Upsilon^* \to L$ is polynomially bounded if there is a polynomial p such that for all $y \in L$, there is a proof $x \in \Upsilon^*$ with y = f(x) and $|x| \le p(|y|)$.

Theorem: Let TAUT be the set of all Boolean tautologies. If there is a polynomially bound proof system for TAUT, then coNP = NP.

- \bullet Here |z| is the length of the string z.
- Exercise 8.1: Prove the theorem (Hint: Note that SAT is NP-complete.)
- These definitions and theorems are due to
 - Stephen A. Cook and Robert A. Reckhow:
 "The Relative Efficiency of Propositional Proof Systems". The Journal of Symboloc Logic 44(1), 1979

3/6

2/6

How to compare proof systems?

Definition: Let $f_1: \Upsilon_1^* \to L$ and $f_2: \Upsilon_2^* \to L$ be two proof systems for L. We say that f_2 p-simulates f_1 if there is function $g: \Upsilon_1^* \to \Upsilon_2^*$ such that $g \in \mathbf{P}$ and $f_2(g(x)) = f_1(x)$ for all $x \in \Upsilon_1^*$.

Proposition: If a proof system f_2 for L p-simulates a proof system f_1 for L, and f_1 is polynomially bounded then f_2 is also polynomially bounded.

Definition: Two proof systems $f_1: \Upsilon_1^* \to L$ and $f_2: \Upsilon_2^* \to L$ are *p-equivalent* if f_1 p-simulates f_2 and f_2 p-simulates f_1 .

- g translates a proof x of y in the proof system f_1 into a proof g(x) of y in the proof system f_2 .
- **Exercise 8.2:** Prove this Proposition.

4/6

Frege Systems

Axioms:

$$\begin{array}{lll} A \rightarrow (B \rightarrow A) & (A \wedge B) \rightarrow A \\ (A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow B) \rightarrow A \rightarrow C & (A \wedge B) \rightarrow B \\ A \rightarrow (A \vee B) & A \rightarrow (B \rightarrow (A \wedge B)) \\ B \rightarrow (A \vee B) & \bot \rightarrow A \\ (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow ((A \vee B) \rightarrow C) & \neg \neg A \rightarrow A \end{array}$$

Rule:

$$\mathsf{mp}\,\frac{A\quad A\to B}{B}$$

Different Frege systems have different sets of axioms.

Theorem: All Frege systems are p-equivalent.

5/6

- \bullet Hilbert systems and Frege systems are the same.
- In proof theory they are usually called Hilbert systems, and in proof complexity they are called Frege systems.
- **Exercise 8.3:** Prove the theorem.

