
A Gentle Introduction to Deep Inference

7. Lecture

Combinatorial Proofs

Victoria Barrett and Lutz Straßburger

1 / 33 1 / 33

What is Proof Theory?

Group theory = theory of groups
- well-established definition of group
- two groups are the same if they are isomorphic

Graph theory = theory of graphs
- well-established definition of graph
- two graphs are the same if they are isomorphic

Proof theory = theory of (formal) proofs ???
- no well-established definition of formal proof
- no idea when two proofs are the same
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What is Proof Theory?

At the current state of the art,
Proof theory is not the theory of proofs but
the theory of proof systems.

All important results in proof theory are about proof systems:
soundness
completeness
cut elimination
focusing
p-equivalence
...

Can we make
proof theory a
theory of proofs?
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Can we make proof theory a theory of proofs?

1. What is a proof?
ñ define proofs independently from the proof systems

2. When are two proofs the same?
ñ define a notion of proof identity
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Hilbert’s 24th problem

As 24th problem in my Paris lecture, I wanted to ask the question: Find criteria of simplicity or rather prove the greatest
simplicity of given proofs. More generally develop a theory of proof methods in mathematics. Under given conditions
there can be only one simplest proof. And if one has 2 proofs for a given theorem, then one must not rest before one has
reduced one to the other or discovered which different premises (and auxiliary means) have been used in the proofs:
When one has two routes then one must not just go these routes or find new routes, but the whole area lying between
these two routes must be investigated. . .
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Hilbert was thinking about adding the problem of proof
identity as 24th problem to his famous lecture with the
famous 23 problems that was held in 1900. But proof
theory as a field was only established in 1928 with the
appearance of the Book “Grundzüge der theoretischen
Logik” by Hilbert and Ackermann. So, the problem of
proof identity is older than proof theory itself.
Sources:

picture of Hilbert:
https://de.wikisource.org/wiki/David_
Hilbert?uselang=de#/media/Datei:
Hilbert.jpg

Notebook of Hilbert:
David Hilbert, Mathematische Notizbücher,
Niedersächsische Staats- und Universitätbibliothek,
Cod. Ms. D. Hilbert 600:3, S.25
(Scan from a hardcopy made by Rüdiger Thiele)
Translation: Lutz Straßburger

See also:
Rüdiger Thiele: “Hilbert’s Twenty-Fourth Problem”.
American Mathematical Monthly 110, pp 1–24,
2003
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When are two proofs the same?

Normalization?

Curry-Howard-Correspondence
formulas = types
proofs = programs
normalization = computation

fondations of functional programming languages
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If we assume to proofs to be the same iff they have the
same normal form, then proof identity is very expensive:

for propositional logic: exponential blow-up
for predicate logic: elementary blow-up
We would identify a proof on an A4-page with a
proof of the size of the universe
It would correspond to removing lemmas from a
proof. But lemmas are important in mathematical
proofs.
Example: Normalizing Fürstenberg’s proof of the
inifinity of primes yields Euklid’s proof. See also:

Matthias Baaz, Stefan Hetzl, Alexander
Leitsch, Clemens Richter, Hendrik Spohr:
“CERES: An analysis of Fürstenberg’s proof of
the infinity of primes”. Theoretical Computer
Science 403(2–3), pp.160–175, 2008
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When are two proofs (in normal form) the same?

Rule permutation?

$ Γ,A,B, C $ D,∆
^

$ Γ,A,B, C ^ D,∆
_
$ Γ,A_ B, C ^ D,∆

?
“

$ Γ,A,B, C
_
$ Γ,A_ B, C $ D,∆

^
$ Γ,A_ B, C ^ D,∆

(1)

$ Γ, C $ D,∆
^

$ Γ, C ^ D,∆
weak

$ Γ,A, C ^ D,∆

?
“

$ Γ, C
weak

$ Γ,A, C $ D,∆
^
$ Γ,A_ B, C ^ D,∆

(2)

$ Γ,A,B, C $ Γ,A,B,D
^

$ Γ,A,B, C ^ D
_
$ Γ,A_ B, C ^ D

?
“

$ Γ,A,B, C
_
$ Γ,A_ B, C

$ Γ,A,B,D
_
$ Γ,A_ B,D

^
$ Γ,A_ B, C ^ D

(3)
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Two proofs are the same iff they can be transformed into
each other via a sequence of rule permutation steps.

works only for sequent calculus like formalisms
PSPACE-hard if (2) is present
exponential blow-up of the size of the proof if (3)
is present
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When are two proofs (in normal form) the same?

Rule permutation?

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
C ` C

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−
A,¬A ∨ C ` C

axiom −−−−−−−
A ` A

axiom −−−−−−−
B ` B

→L −−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B ` B

∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C ` C ∧B

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

axiom −−−−−−−
A ` A

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
B ` B

axiom −−−−−−−
C ` C

∧R −−−−−−−−−−−−−−−−−−−−−−−−−
B,C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B,C,C ∧B → D ` D

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,B,¬A ∨ C,C ∧B → D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C,C ∧B → D ` D

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D
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Example.
These two are equivalent modulo rule permutations.
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When are two proofs (in normal form) the same?

???

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

¬(A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D))

D

¬A

¬(A → B)

¬(¬A ∨ C)

¬(C ∧B → D)

A

closed

¬B

A

closed

¬C

C ∧B

B

closed

C

closed

¬D
closed

[F ]
∧E −−−−−−−−−

¬A ∨ C

[F ]
∧E −−−

A [¬A]
¬E −−−−−−−−−−−

⊥
⊥E −−

C [C]
∨E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C

[F ]
∧E −−−

A

[F ]
∧E −−−−−−−−

A → B
→E −−−−−−−−−−−−−−−−−−

B
∧I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C ∧B

[F ]
∧E −−−−−−−−−−−−−−

C ∧B → D
→E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D
→I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

Goal A /\ (A -> B) /\ (~A \/ C) /\ (C /\ B -> D) -> D.

Proof.

intros h1. destruct h1 as [ha h2].

destruct h2 as [hab h3]. destruct h3 as [hac h4].

apply h4. split.

apply hab. exact ha.

destruct hac as [hna|hc]. elim hna. exact ha.

exact hc.

Qed.
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This is a semantic tableau, a natural deduction proof,
and a Coq script, all proving the same formula.

Are these proofs “the same”?
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Combinatorial Proof Identity

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

¬(A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D))

D

¬A

¬(A → B)

¬(¬A ∨ C)

¬(C ∧B → D)

A

closed

¬B

A

closed

¬C

C ∧B

B

closed

C

closed

¬D
closed

axiom −−−−−−−
A ` A

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
B ` B

axiom −−−−−−−
C ` C

∧R −−−−−−−−−−−−−−−−−−−−−−−−−
B,C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B,C,C ∧B → D ` D

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,B,¬A ∨ C,C ∧B → D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C,C ∧B → D ` D

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
C ` C

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−
A,¬A ∨ C ` C

axiom −−−−−−−
A ` A

axiom −−−−−−−
B ` B

→L −−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B ` B

∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C ` C ∧B

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

[F ]
∧E −−−−−−−−−

¬A ∨ C

[F ]
∧E −−−

A [¬A]
¬E −−−−−−−−−−−

⊥
⊥E −−

C [C]
∨E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C

[F ]
∧E −−−

A

[F ]
∧E −−−−−−−−

A → B
→E −−−−−−−−−−−−−−−−−−

B
∧I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C ∧B

[F ]
∧E −−−−−−−−−−−−−−

C ∧B → D
→E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D
→I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

Goal A /\ (A -> B) /\ (~A \/ C) /\ (C /\ B -> D) -> D.

Proof.

intros h1. destruct h1 as [ha h2].

destruct h2 as [hab h3]. destruct h3 as [hac h4].

apply h4. split.

apply hab. exact ha.

destruct hac as [hna|hc]. elim hna. exact ha.

exact hc.

Qed.

‚
‚ ‚ ‚ ‚ ‚ ‚

‚
‚ ‚

A^ pAÑ Bq ^ p A_ Cq ^ pC ^B Ñ Dq Ñ D

Two proofs are the
same if they corre-
spond to the same
combinatorial proof.
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Check out the notes for the ESSLLI 2021 course:
Willem Heijltjes and Lutz Straßburger: “From
Proof Nets to Combinatorial Proofs — A New
Approach to Hilbert’s 24th Problem”. https:
//inria.hal.science/hal-03316571

The term “combinatorial proof identity” does not
yet occur in the literature. It has been invented it
for that course, which is about the stuff that goes
into the yellow blob in the middle.
The technical details about “the yellow blob in the
middle” depend on the logic. In every logic
behaves differently when it comes to the strucure
of its proofs. This means that the answer to the
question of when two proofs are the same might be
different for every logic. In this course we look into
the following five logics:

classical propositional logic
classical first-order logic
intuitionistic propositional logic
multiplicative linear logic
additive linear logic
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Example of a combinatorial proof

‚
‚ ‚ ‚ ‚ ‚ ‚

‚
‚ ‚

a^ paÑ bq ^ p␣a_ cq ^ pc ^ bÑ dqÑ d

MLL axiom linking
cograph

skew fibration
conclusion
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Overview

formulas without syntaxñ cographs

linear proofs without syntaxñ RB-cographs

contraction-weakening derivations without syntaxñ skew fibrations

decomposition theorems without syntaxñ combinatorial proofs

cut elimination without syntaxñ vertical composition of combinatorial proofs
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https://inria.hal.science/hal-03316571
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From formulas to graphs
operations on graphs:

G _H :

G
‚

...
‚

H
‚

...
‚

G ^H :

G
‚

...
‚

H
‚

...
‚

formulas: A,B ::“ a | ā | A^ B | A_ B

equivalence of formulas:

A^ pB^ Cq ” pA^ Bq ^ C A^ B ” B^ A

A_ pB_ Cq ” pA_ Bq _ C A_ B ” B_ A

from formulas to graphs:

JaK “ ‚a JāK “ ‚ā JA_ BK “ JAK_JBK JA^ BK “ JAK^JBK
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From formulas to graphs
Example:

ppa^ pb_ dqq _ cq ^ e ÐÑ

b
c

a
e

d

Definition:
A cograph is an undirected P4-free graph.
This mean that this configuration is forbidden:

‚ ‚

‚ ‚

Theorem:
An undirected graph is a cograph iff it is the graph of a formula.

Theorem:
JAK “ JBK ðñ A ” B.
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cographs have already been studied in the 1960s
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Overview

formulas without syntaxñ cographs

linear proofs without syntaxñ RB-cographs

contraction-weakening derivations without syntaxñ skew fibrations

decomposition theorems without syntaxñ combinatorial proofs

cut elimination without syntaxñ vertical composition of combinatorial proofs
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From MLL to RB-cographs

MLL sequent calculus (unit-free):

ax
a, ā

Γ,A,B
_

Γ,A_ B
Γ,A B,∆

^
Γ,A^ B,∆

System MLS (unit-free):

B
aiÓ

B^ pa_ āq
A^ pB_ Cq
s
pA^ Bq _ C

A
”
B

RB-cographs:
graphs with Red edges and Blue edges, such that

Red edges : cograph
Blue edges : perfect matching

Translating MLL sequent proof into and RB-cograph:
axiomsÑ Blue edges
cograph of conclusionÑ Red edges
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This work is due to Christian Retoré:
Christian Retoré: “Handsome proof-nets:
perfect matchings and cographs”. Theoretical
Computer Science 294 (2003) 473–488
Christian Retoré: “Handsome proof-nets:
R&B-graphs, perfect matchings and
series-parallel graphs”. Rapport de Recherche
RR-3652, INRIA
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From MLL to RB-cographs

Example:

ax
ā , a

ax
b̄, b

^
ā ^ b̄, b_ a

_
ā ^ b̄, b_ a

ax
d, d̄

ax
c, c̄

^
d, c, c̄ ^ d̄

_
d _ c, c̄ ^ d̄

^
ā ^ b̄, b^ c, a^ d, c̄ ^ d̄

aā

b

b̄

c c̄

d

d̄

Definition: An RB-cograph is critically chorded iff

there is no chordless æ-cycle, and

any two vertices are connected by a chordless æ-path.

Theorem:
An RB-cograph is the translation of a sequent proof iff it is critically chorded.
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Overview

formulas without syntaxñ cographs

linear proofs without syntaxñ RB-cographs

contraction-weakening derivations without syntaxñ skew fibrations

decomposition theorems without syntaxñ combinatorial proofs

cut elimination without syntaxñ vertical composition of combinatorial proofs
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Skew fibrations
Definition:
A skew fibration is a graph homomorphism f : G Ñ H
such that for all v P VG and w1 P VH, if tf pvq,w1u P EH
then there is a w with tv,wu P EG and tw1, f pwqu R EH.

H

G

f

‚v

‚
f pvq ‚w1

‚w

‚f pwq

Examples:

a
c
b

a b

✓

a b

a a
b

✓
a b

ā
b̄
ā
b̄ c

a b a b
ā
b̄
ā
b̄

✓

a
c
b

a b

✗

a b

a a
b

✗
a b

ā
b̄
ā
b̄ c

a
a
b
b

ā
b̄
ā
b̄

✓
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Skew fibrations
Recall the rules:

A_ A
cÓ

A
B

wÓ
B_ A

Theorem: Let A and B be (classical logic) formulas.

Then there is a skew fibration f : JAKÑ JBK iff
A
cÓ,wÓ,”

B

Example:

a b
ā
b̄
ā
b̄ c

a b a b
ā
b̄
ā
b̄

pa^ bq _ pa^ bq _ ppā _ b̄q ^ pā _ b̄qq
wÓ
pa^ bq _ pa^ bq _ ppā _ b̄q ^ pā _ b̄qq _ c

cÓ
pa^ bq _ ppā _ b̄q ^ pā _ b̄qq _ c
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This theorem has been proved independently by
Dominic Hughes: “Towards Hilbert’s 24th
Problem: Combinatorial Proof Invariants:
(Preliminary version)”. ENTCS 165, 37–63,
2006

and
Lutz Straßburger: “A Characterisation of
Medial as Rewriting Rule”. Proceedings of RTA
2007

by very different proofs.
Exercise 7.1: Prove that

A
cÓ,wÓ,”

B
iff

A
acÓ,m,wÓ,”

B

(this holds in the system with units as well as in
the system without units.)
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formulas without syntaxñ cographs

linear proofs without syntaxñ RB-cographs

contraction-weakening derivations without syntaxñ skew fibrations

decomposition theorems without syntaxñ combinatorial proofs

cut elimination without syntaxñ vertical composition of combinatorial proofs
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Yesterday: Decomposition theorems
unit-free variant of System SKS:

B
aiÓ

B^ pa_ āq
A^ pB_ Cq
s
pA^ Bq _ C

A
”
B

B_ pa^ āq
aiÒ

B

B
wÓ

B_ A
a_ a

acÓ
a

pA^ Cq _ pB^ Dq
m
pA_ Bq ^ pC _ Dq

a
acÒ

a^ a
B^ A

wÒ
B

Theorem:

If
A
SKS

B
then

A
wÒ,acÒ,m

A1

aiÓ,s,aiÒ

B1

wÓ,acÓ,m

B

for some A1,B1.
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Combinatorial proofs (finally)

Definition:
A combinatorial proof of a formula A is a skew fibration f : C Ñ JAK from
a critically chorded RB-cograph C to the cograph of A, such that two
vertices that paired in C are mapped to dual atoms in JAK.

Example:

‚ ‚

‚ ‚

ā
b ā a

‚ ‚

‚ ‚

pp ā _ b q ^ ā q _ a

‚ ^ ‚ , ‚ , ‚

pp ā _ b q ^ ā q _ a

Theorem: Every combinatorial proof has a tautology as conclusion.

Theorem: Every tautology has a combinatorial proof.

Theorem: Deciding correctness of a combinatorial proof is linear.

‚ ‚

Ĳ Ĳ

ā
b ā a

‚
‚ Ĳ

Ĳ

pp ā _ b q ^ ā q _ a

‚‚ Ĳ Ĳ
pp ā _ b q ^ ā q _ a
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Soundness and completeness of combinatorial
proofs has been shown by

Dominic Hughes: “Proofs Without Syntax”.
Annals of Mathematics 164(3), pp.
1065–1076, 2006
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Combinatorial proofs and decomposition theorems
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We can “flip” part of the conclusion.
For details on this see

Lutz Straßburger: “Combinatorial Flows and
Their Normalisation”. FSCD 2017
Lutz Straßburger: “Combinatorial Flows and
Proof Compression”. Inria RR-9048, 2017
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Combinatorial proofs and decomposition theorems

ô

ô
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We use here the calculus of structures notation, to
make the correspondence between derivations and
combinatorial proofs more visible.
Exercise 7.2: Redo the pictures using open
deduction.
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Overview

formulas without syntaxñ cographs

linear proofs without syntaxñ RB-cographs

contraction-weakening derivations without syntaxñ skew fibrations

decomposition theorems without syntaxñ combinatorial proofs

cut elimination without syntaxñ vertical composition of combinatorial proofs
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Substitution of combinatorial proofs

What is

?
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Substitution of combinatorial proofs
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Horizontal composition of combinatorial proofs
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Vertical composition of combinatorial proofs

Wanted:

Ñ obtained by induction on A
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Vertical composition of combinatorial proofs
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Exercise 7.3: Do the case for A “ B_ C.
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Vertical composition of combinatorial proofs
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Overview

formulas without syntaxñ cographs

linear proofs without syntaxñ RB-cographs

contraction-weakening derivations without syntaxñ skew fibrations

decomposition theorems without syntaxñ combinatorial proofs

cut elimination without syntaxñ vertical composition of combinatorial proofs

Questions?
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