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Another deep inference system

Formulas:
A,B ····= a | a⊥ | 1 | ⊥ | A�B | AOB

Negation:

a⊥⊥ = a 1⊥ = ⊥ (A�B)⊥ = A⊥ OB⊥

⊥⊥ = 1 (AOB)⊥ = A⊥ �B⊥

Rules:

1
ai↓

a⊥ O a
A�(BO C)

s
(A�B)O C

A
≡ (provided A ≡ B)
B

a⊥ � a
ai↑

⊥

where

(AOB)O C ≡ AO(BO C) AOB ≡ BO C AO⊥ ≡ A
(A�B)� C ≡ A�(B� C) A�B ≡ B� C A� 1 ≡ A
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This logic is multiplicative linear logic (MLL), and
we use the linear logic notation here

Jean-Yves Girard: “Linear Logic”. Theoretical
Computer Science, 1987

MLL can be thought of as classical logic without
contraction and weakening
≡ is the smallest congruence relation closed under
associativity, commutativity, and unit-laws for O
(called par) and � (called tensor)
Exercise 5.1: Show that A⊥⊥ = A for all formulas A.
We call this proof system SMLS. I.e.

SMLS = {ai↓, s,≡, ai↑}
MLS = {ai↓, s,≡}

SMLS↑ = {s,≡, ai↑}

Exercise 5.2: Show that the general forms of the
rules

1
i↓
A⊥ OA

and
A⊥ �A

i↑
⊥

are derivable in MLS (resp. SMLS↑). 2 / 23

Another deep inference system

Rules:
1

ai↓
a⊥ O a

A�(BO C)
s
(A�B)O C

A
≡ (provided A ≡ B)
B︸ ︷︷ ︸

MLS

a⊥ � a
ai↑

⊥

︸ ︷︷ ︸
SMLS

Theorem (Cut Elimination):
If a formula A is provable in SMLS then it is also provable in MLS.

How can we
prove this?

We could use the
sequent calculus for MLL

This course is not about
the sequent calculus!
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Exercise 5.3: Show that ai↑ can simulate the cut
(use the previous exercise).
The sequent calculus for MLL is:

id
⊢ a⊥, a

Γ
⊥

⊢ Γ,⊥
1

⊢ 1

Γ,A,B
O

⊢ Γ,AOB
⊢ Γ,A ⊢ ∆,B

�
⊢ Γ,∆,A�B

⊢ Γ,A ⊢ A⊥,∆
cut

⊢ Γ,∆

Exercise 5.4: Prove cut elimnation for the sequent
calculus for MLL.
Exercise 5.5: Use this to prove cut elimination in
deep inference: First show how to translate a
MLLDI derivation into the sequent calculus, and
second, show how a cut-free sequent proof in MLL
is translated into a ai↑-free MLLDI derivation.
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Splitting

Lemma (Splitting):

1. If there is a proof δ MLS

KO(A�B)
,

then there are formulas KA and KB and derivations

KA OKB
δK MLS

K
and δA MLS

KA OA
and δB MLS

KB OB
.

2. If there is a proof δ MLS

KO a
,

then there is a derivation

a⊥

δa MLS

K
.
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The idea of splitting is due to
Alessio Guglielmi: “A System of Interaction and
Structure”. ACM Transactions on
Computational Logic 1(8), 2007

The proof we present here is as in
Alessio Guglielmi and Lutz Straßburger: “A
System of Interaction and Structure V: The
Exponentials and Splitting”. Mathematical
Structures in Computer Science, 21(3),
pp.563–584, 2011
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Splitting (Proof of 1.)

Proof: By induction on the lexicographic pair ⟨|KO(A�B)| , |δ|⟩
Some cases:

(i)

δ′ MLS

K′
r
K

O(A�B)
(ii)

δ′ MLS

KO(
A′
r
A

�B)
(iii)

δ′ MLS

KO(A�
B′
r
B

)

In case (i), apply IH to δ′ and get:

KA OKB
δK′ MLS

K′
r

K

and δA MLS

KA OA
and δB MLS

KB OB
.

Cases (ii) and (iii) are similar.
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The size |A| of a formula A is the number of
symbols in it, and the size |δ| of a derivation δ is
the number of inference rule instances in it.
Exercise 5.6: Complete cases (ii) and (iii).
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Splitting (Proof of 1.)

Another case: (iv)

δ′ MLS

K1O
A1�B1�(K2O(A2�B2))
s
K2O(A1�A2�B1�B2)

By IH, there are L1 and L2 such that

L1O L2
δK1 MLS

K1
and

δ1 MLS

L1O(A1�B1)
and

δ2 MLS

L2OK2O(A2�B2)
.

Applying IH again to δ1 and to δ2:

KA1 OKB1
δL1 MLS

L1

δA1 MLS

KA1 OA1
δB1 MLS

KB1 OB1
and

KA2 OKB2
δL2 MLS

L2OK2

δA2 MLS

KA2 OA2
δB2 MLS

KB2 OB2

Putting things together: KA = KA1 OKA2 and KB = KB1 OKB2

(KA1 OKA2)O(KB1 OKB2)≡
KA1 OKB1
δL1 MLS

L1
O
KA2 OKB2
δL2 MLS

L2OK2
≡

L1O L2
δK1 MLS

K1
OK2

δA1 MLS

KA1 OA1
� δA2 MLS

KA2 OA2
s

KA1 O
A1�(KA2 OA2)
s
KA2 O(A1�A2)

δB1 MLS

KB1 OB1
� δB2 MLS

KB2 OB2
s

KB1 O
B1�(KB2 OB2)
s
KB2 O(B1�B2)
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Splitting (Proof of 1.)

Another case: (v)

δ′ MLS

K1O
K3�(K2OK4O(A�B))
s
K2O(K3�K4)O(A�B)

By IH, there are L1 and L2 such that

L1O L2
δK1 MLS

K1

δ1 MLS

L1OK3
δ2 MLS

L2OK2OK4O(A�B)

We apply the IH again to δ2:

KAOKB
δL2 MLS

L2OK2OK4

δA MLS

KAOA
δB MLS

KBOB
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Exercise 5.7: Complete this case by showing the
derivation

KAOKB
δK MLS

K1OK2OK3�K3

Exercise 5.8: Complete the proof of the first half of
the splitting lemma by either

showing the missing cases, or
arguing that there are no missing cases.
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Splitting (Proof of 2.)
There is only one non-trivial case:

δ′ MLS

K1 O
K3 �(K2 OK4 O a)

s
K2 O((K3 �K4)O a)

By Point 1., there are L1 and L2 and

L1 O L2
δK1

MLS

K1

δ1 MLS

L1 OK3

δ2 MLS

L2 OK2 OK4 O a

We apply the IH to δ2:

a⊥

δ3 MLS

L2 OK2 OK4

Putting everything together:

a⊥

δ3 MLS

L2 OK2 OK4
≡

L2 O
δ1 MLS

L1 OK3
�(K2 OK4)

s
L1 O(K3 �(K2 OK4))

s
L1 O L2
δK1

MLS

K1

O
K3 �(K2 OK4)
s
K2 O(K3 �K4)
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Exercise 5.9: Show the trivial case(s).
This completes the proof of the splitting lemma.
To use it for cut elimination, we have to be able to
use it in an arbitrary context F{ }. Contexts of
the form KO{ } are called shallow.
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Context Reduction

Lemma (Context Reduction): Let A be a formula and F{ } be a
context. If there is a derivation

δ MLS

F{A}

then there is a formula K, such that for all X , we have

KOX
δX MLS

F{X}
and

δA MLS

KOA
.

Proof: By induction on F{ }.
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Context Reduction (Proof)
By induction on F{ }.

Case 1: F{ } = LO{ } is a shallow context.
Then K = L and δA = δ and δX is trivial
Case 2: F{ } = L1O(L2� F′{ }) for some L1 and L2.
Apply splitting. Get:

L3O L4
δ1 MLS

L1

δ2 MLS

L3O L2
δ′ MLS

L4O F′{A}

Apply IH to δ′. Get:

KOX
δ′X MLS

L4O F′{X}
and

δA MLS

KOA

Put everything together.
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Exercise 5.10: Put everything together, to show the
derivation

KOX
δX MLS

F{X}
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Cut elimination for SMLS

Lemma (Reduction Lemma): If MLS

F{a� ā}
then MLS

F{⊥}
.

Proof: By context reduction we have:

KO⊥
δ1 MLS

F{⊥}
and δ2 MLS

KO(a� a⊥)

Apply splitting to δ2: and again:

Ka OKa⊥
δ3 MLS

K

δ4 MLS

Ka O a
δ5 MLS

Ka⊥ O a⊥

a⊥

δ6 MLS

Ka

a
δ7 MLS

Ka⊥

Put δ6, δ7, δ3, δ1 together to get a proof of F{⊥} □
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Exercise 5.11: Put δ6, δ7, δ3, δ1 together to get

MLS

F{⊥}
.
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Cut elimination for SMLS

Theorem (Cut ELimination): If
δ MLS+ai↑

A
then

δ′ MLS

A
.

Proof: By induction on the number of occurrences of ai↑ in δ′,
using the Reduction Lemma.

Q.E.D.

12 / 23 12 / 23



Yet another deep inference system

Formulas:

A,B ····= a | a⊥ | 1 | ⊥ | A�B | AOB | !A | ?A

Negation:

a⊥⊥ = a 1⊥ = ⊥ (A�B)⊥ = A⊥ OB⊥ (!A)⊥ = ?(A⊥)

⊥⊥ = 1 (AO b)⊥ = A⊥ �B⊥ (?A)⊥ = !(A⊥)

Equivalences:

(AOB)O C ≡ AO(BO C) AOB ≡ BO C AO⊥ ≡ A

(A�B)� C ≡ A�(B� C) A�B ≡ B� C A� 1 ≡ A
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The logic we present here is called Multiplicative
Exponential Linear Logic (MELL).
The sequent calculus for MELL is

id
⊢ a⊥, a

Γ
⊥

⊢ Γ,⊥
1

⊢ 1

Γ,A,B
O

⊢ Γ,AOB
⊢ Γ,A ⊢ ∆,B

�
⊢ Γ,∆,A�B

⊢ ?B1, . . . , ?Bn,A
!
⊢ ?B1, . . . , ?Bn, !A

⊢ Γ,A
dr

⊢ Γ, ?A

⊢ Γ
wk

⊢ Γ, ?A

⊢ Γ, ?A, ?A
ct

⊢ Γ, ?A

⊢ Γ,A ⊢ A⊥,∆
cut

⊢ Γ,∆

Exercise 5.12: (Hard) Prove cut elimination for the
sequent calculus for MELL.
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Yet another deep inference system

Rules:
1

ai↓
a⊥ O a

A
≡ (provided A ≡ B)
B

a⊥ � a
ai↑

⊥

!(AOB)
p↓

!AO ?B
A�(BO C)

s
(A�B)O C

?A� !B
p↑

?(A�B)

??A
g↓

?A
1

e↓
!1

?⊥
e↑

⊥
!A

g↑
!!A

?AOA
b↓

?A
⊥

w↓
?A

!A
w↑

1
!A

b↑
!A�A

System SELS: all rules

System ELS: all ↓-rules + {s,≡} Recall: Cut elimi-
nation means that
the up-fragment is
admissible
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We call this system SELS. The system consisting of
only the down rules (the ones with a ↓ in the
name) together with s and ≡ is called ELS. Both
have been studied in

Alessio Gugliemi and Lutz Straßburger:
“Non-commutativity and MELL in the Calculus
of Structures”. CSL 2001
Lutz Straßburger: “Linear Logic and
Noncommutativity in the Calculus of
Structures”. PhD Thesis, 2003
Lutz Straßburger: “MELL in the Calculus of
Structures”. TCS 2003

Exercise 5.13: Use the previous exercise is to prove
cut elimination for SELS: First show how to
translate an SELS derivation into the sequent
calculus for MELL, and second, show how a cut-free
sequent proof in MELL is translated into a
ELS-derivation.
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Properties of SELS and ELS

Theorem:

The rules
1

i↓
A⊥ OA

and
A⊥ �A

i↑
⊥

are derivable in SELS.

Theorem:
Every rule r↑ is derivable in {r↓, i↓, i↑, s,≡}.
Every rule r↓ is derivable in {r↑, i↓, i↑, s,≡}.

Theorem:

A
SELS

B
iff

B⊥

SELS

A⊥
iff

ELS

A⊥ OB
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These properties hold for every well-designed deep
inference system. And the proofs are essentially
the same for all systems.
Exercise 5.14: Prove these three theorems.
(Hint: Cut elimination is not needed.)
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Cut elimination for SELS

Theorem: Systems SELS and ELS are equivalent.

Theorem: The i↑ is admissible for ELS.

Theorem: All ↑-rules of SELS are admissible for ELS.

Three different ways of
saying the same thing.

But how to prove it?
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Exercise 5.15: Show that these three theorems
imply each other.
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Systems SELS and ELS
Rules:

1
ai↓

a⊥ O a
A

≡ (provided A ≡ B)
B

a⊥ � a
ai↑

⊥

!(AOB)
p↓

!AO ?B

A�(BO C)
s
(A�B)O C

?A� !B
p↑

?(A�B)

??A
g↓

?A

1
e↓

!1

?⊥
e↑

⊥
!A

g↑
!!A

?AOA
b↓

?A

⊥
w↓

?A

!A
w↑

1

!A
b↑

!A�A

System SELS: all rules

System ELS: all ↓-rules + {s,≡}

Core: first two lines + {e↓, e↑} 17 / 23 17 / 23

Splitting for ELS

Lemma (Splitting):

1. If there is a proof δ {e↓,ai↓,s,p↓,≡}

KO(A�B)
,

then there are formulas KA and KB and derivations

KA OKB
δK {e↓,ai↓,s,p↓,≡}

K
and δA {e↓,ai↓,s,p↓,≡}

KA OA
and δB {e↓,ai↓,s,p↓,≡}

KB OB
.

2. If there is a proof δ {e↓,ai↓,s,p↓,≡}

KO a
,

then there is a derivation

a⊥

δa {e↓,ai↓,s,p↓,≡}

K
.
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Splitting (and context reduction) holds exactly for
the core-fragment of the systems
And that’s why it’s called core-fragment.

18 / 23



Splitting for ELS (cont.)

3. If there is a proof δ {e↓,ai↓,s,p↓,≡}

KO !A
,

then there are formulas K1, . . . , Kn and derivations

?K1 O · · ·O ?Kn
δK {e↓,ai↓,s,p↓,≡}

K
and δA {e↓,ai↓,s,p↓,≡}

K1 O · · ·OKn OA
.

4. If there is a proof δ {e↓,ai↓,s,p↓,≡}

KO ?A
,

then there is a formula KA and derivations

!KA
δK {e↓,ai↓,s,p↓,≡}

K
and δA {e↓,ai↓,s,p↓,≡}

KA OA
.
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Exercise 5.16: Prove splitting for ELS.
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Context reduction for ELS

Lemma: Let A be a formula and F{ } be a context. If there is a
derivation

δ {e↓,ai↓,s,p↓,≡}

F{A}

then there is a formula K, such that for all X , we have

! · · · !(KOX)
δX {e↓,ai↓,s,p↓,≡}

F{X}
and

δA {e↓,ai↓,s,p↓,≡}

KOA

Proof: By induction on F{ }.
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The number of ! in front of the KOX is the
modality depth of F{ }.
Exercise 5.17: Prove context reduction for ELS.
Exercise 5.18: Use context reduction and splitting
to show that ai↑ and p↑ and e↑ are admissible for
{e↓, ai↓, s, p↓,≡}. (Hint: this is very similar to the
case of MLS.)
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Decomposition
Theorem: For every derivation

A
δ SELS

B
there are derivations

A
{e↓}

P1
{g↑}

P2
{b↑}

P3
{ai↓}

P4
{w↓}

P5
{p↓,s,p↓,≡}

Q5
{w↑}

Q4
{ai↑}

Q3
{b↓}

Q2
{g↓}

Q1
{e↑}

B

and

A
{g↑}

X1
{b↑}

X2
{e↓}

X3
{w↓}

X4
{ai↓}

X5
{p↓,s,p↓,≡}

Y5
{ai↑}

Y4
{w↑}

Y3
{e↑}

Y2
{b↓}

Y1
{g↓}

B

and

A
{e↓}

F1
{g↑}

F2
{b↑}

F3
{w↑}

F4
{ai↓}

F5
{p↓,s,p↓,≡}

G5
{ai↑}

G4
{w↓}

G3
{b↓}

G2
{g↓}

G1
{e↑}

B

and

A
{g↑}

C1
{b↑}

C2
{w↑}

C3
{e↓}

C4
{ai↓}

C5
{p↓,s,p↓,≡}

D5
{ai↑}

D4
{e↑}

D3
{w↓}

D2
{b↓}

D1
{g↓}

B
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These four theorems have been investigated in
Alessio Gugliemi and Lutz Straßburger:
“Non-commutativity and MELL in the Calculus
of Structures”. CSL 2001
Lutz Straßburger: “Linear Logic and
Noncommutativity in the Calculus of
Structures”. PhD Thesis, 2003
Lutz Straßburger: “MELL in the Calculus of
Structures”. TCS 2003
Alessio Gugliemi and Lutz Straßburger: “A
System of Interaction and Structure IV: The
Exponentials and Decomposition”. ACM ToCL
12(4:23), 2011
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Decomposition theorems

A
{e↓}

P1
{g↑}

P2
{b↑}

P3
{ai↓}

P4
{w↓}

P5
{p↓,s,p↓,≡}

Q5
{w↑}

Q4
{ai↑}

Q3
{b↓}

Q2
{g↓}

Q1
{e↑}

B

⇝

A

P5

Q5

B

creation destruction

shuffling

destruction creation

A
{g↑}

C1
{b↑}

C2
{w↑}

C3
{e↓}

C4
{ai↓}

C5
{p↓,s,p↓,≡}

D5
{ai↑}

D4
{e↑}

D3
{w↓}

D2
{b↓}

D1
{g↓}

B

⇝

A

{g↑,b↑,w↑}

C3
SELSc

D3
{g↓,b↓,w↓}

B

⇝

A

C4

D4

B

non-core (up)

core (up and down)

non-core (down)
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Cut elimination for SELS (finally)

Theorem: If
SELS

A
then

ELS

A
.

Proof:

1
SELS

A
⇝

1
{g↑,b↑,w↑}

A′′

SELSc

A′

{g↓,b↓,w↓}

A

⇝

1
SELSc

A′

{g↓,b↓,w↓}

A

⇝

1
{e↓,ai↓,s,p↓,≡}

A′

{g↓,b↓,w↓}

A

⇝

1
ELS

A

Q.E.D.
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The first step is decomposition.
Then, inspecting the rules e↑, g↑, b↑ shows that
A′′ = 1.
Now we have a derivation of A′ in SELSc, and we
can eliminate e↑, p↑, and ai↑ using context
reduction and splitting.
Exercise 5.19: If you did not yet do the previous
exercise, do it now.
Finally, we habe a derivation of A′ in
{e↓, ai↓, s, p↓,≡}, and therefore a derivation of A in
ELS.
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