A Gentle Introduction to Deep Inference

5. Lecture

Splitting, Context Reduction, and
Decomposition
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Another deep inference system
Formulas:
AB:=ala' |1|L|A®B|A%B
Negation:
a-t=a 1t=1 (A®B)l=AlwBt:
1t=1 (AsB)t=4atw®Bt
Rules:
i 1 A®(B%C) A dA B _at®a
ai =_ ; = i
Py S(A®B)’8"C B(prowe ) ait T
where
(AeB)2C=A%B%C) A®B=B%C A9L=A
(ARB)®C=A®B®C) A®B=B®C AQl=A
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Another deep inference system

Rules:
o1 A®(B% () A at®a
alial@a S(A®B)§;C EE(providedAzB) ait n
MLS

SMLS

Theorem (Cut Elimination):
If a formula A is provable in SMLS then it is also provable in MLS.

How can we
prove this? a
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@ This logic is multiplicative linear logic (MLL), and

we use the linear logic notation here

o Jean-Yves Girard: “Linear Logic”. Theoretical
Computer Science, 1987

MLL can be thought of as classical logic without
contraction and weakening

= is the smallest congruence relation closed under
associativity, commutativity, and unit-laws for ’®
(called par) and ® (called tensor)

Exercise 5.1: Show that AL = A for all formulas A.
We call this proof system SMLS. I.e.

SMLS = f{ail,s, =,ait}
MLS {ail,s, =}
SMLST = {s,=aif}

Exercise 5.2: Show that the general forms of the
rules

1 4 i AL oA
—_ an i
ALpA 1

are derivable in MLS (resp. SMLS?).

il

Exercise 5.3: Show that aif can simulate the cut
(use the previous exercise).

The sequent calculus for MLL is:

r
id T 1 1—
Fa-,a T, L 1
rARB FILA FAB

"TAs8  C FrbA®B

FILLA FALA
FT,A

cut

Exercise 5.4: Prove cut elimnation for the sequent
calculus for MLL.

Exercise 5.5: Use this to prove cut elimination in
deep inference: First show how to translate a
MLLp, derivation into the sequent calculus, and
second, show how a cut-free sequent proof in MLL
is translated into a aif-free MLLp, derivation.



Splitting
Lemma (Splitting):

6HMLS

1. If there is a proof ,
K2(A®B)

then there are formulas K4 and Kz and derivations

KA ?KB
o« || MLS and 5AHMLS an 6EHMLS
K KA 2 A KB’?B
, 6HMLS
2. If there is a proof ,
sa

then there is a derivation

aJ,
dq || MLS
K
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Splitting (Proof of 1.)
Proof: By induction on the lexicographic pair (|K'2(A® B)|, |4|)
Some cases:
5'[[mis 5 [[mis 5 [[mis
(i) K (ii) A (i) /
r— 9(A®B) K=(r— ®B) KeA® r—)
K A B
In case (i), apply IH to ¢’ and get:
KA o3 KB
s || MLS 54 || MLS g || MLS
“ ”, and al and d|
K Kyo A Kg B
r P —
K
Cases (ii) and (iii) are similar.
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Splitting (Proof of 1.)
5[ mis
Another case:  (iv) A1 ® B1 ®(K;79(A ® By))
L K 9(A @A @B ®By)
By IH, there are Ly and L; such that
Lywl,
T |1 @E;\HESB ) L @Kéj(tj\w@B )
Ky 179(A1® By 22Ky 2(A ® By
Applying IH again to ¢; and to d;:
Ka, 7% K, R Ka, 7% Ks, R
5, || MLs I;‘lﬂM:S ;E1HM;S and o, |[ms K(SAIHM:S KOEZHM;S
i AT AL B, ¥ b1 LKy A, '8 A2 B, % B2
Putting things together: K4 = Ky, '8 K4, and Kg = Kp, 2 K3,
::(KAiﬁ’KAJ7?(K31§’KB£
Kas )ﬁ) Key  Kay T Ks, dag [ MLS 32y [ MLS dg, [[MLs 3s, [[MLs
o [MLs B a, |[MLs Ko A Ke oA Koo 2 K. 0B
Ly L9k, . A S AL A, A2 . B, ¥ b1 B, 8 B2
= A1 ®(Ka, 9 A7) B1 ®(Ks, % B1)
Lyl Kpy7®#0 s ———— Kg® s ———————
i[5 9K ! Ky, 2(A1 ® A7) ! Kg, ®(B1 ® By)
Ky
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@ The idea of splitting is due to

o Alessio Guglielmi: “A System of Interaction and
Structure”. ACM Transactions on
Computational Logic 1(8), 2007

The proof we present here is as in

o Alessio Guglielmi and Lutz Straburger: “A
System of Interaction and Structure V: The
Exponentials and Splitting”. Mathematical
Structures in Computer Science, 21(3),
pp.563-584, 2011

@ The size |A| of a formula A is the number of
symbols in it, and the size |§] of a derivation § is
the number of inference rule instances in it.

o Exercise 5.6: Complete cases (ii) and (iii).



Splitting (Proof of 1.)

5'[[MLs
Kz ® (K72 Ks 2(A® B))

Another case: (V) S
Ky ’?(K; ® K4) ’S’(A ® B)

By IH, there are L; and L, such that

Liwl,
51 [[MLs 5 [ MLs
5, || MLs
Ky L1792 Ks3 LKy 2Ks2(A®B)
We apply the IH again to d;:
Kae Kp
54| MLs 5 | MLS
iy | MLS Ky9 A Kg®B
Ly 9 Ky 9 Ky A 8
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Splitting (Proof of 2.)
There is only one non-trivial case:
‘5'HMLS Putting everything together:
K3 ®(K2 78 K4 72 a)
Kie s ——— —— L
Ky 2((K3 ® K4) 2 a) 4
53 ”MLS
Ly 2 Ky 79 Ky
By Point 1., there are L; and L, and =
Ll JlnMLS ® (K279 Ka)
s ” uLs 51HMLS 52HMLS Ly®  L19Ks
“ LigKs Ly9KyoKiwa g—
Ki ! L1°9(Ks ®(Ky 79 Ka))
s
We apply the IH to 6;: 5L1 >|E>|”:Lzs . SK3 & (K275 Ke)
at i Kz 9(Ks Q@ Ka)
K1
53 ” MLS
Ly Ky 9 Ka
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Context Reduction

Lemma (Context Reduction): Let A be a formulaand F{ } be a
context. If there is a derivation

s][mLs
F{A}

then there is a formula K, such that for all X, we have

Ko X
5 || MLs and ;ZAH'\:I:S
FiX} ®

Proof: By induction on F{ }.
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o Exercise 5.7: Complete this case by showing the
derivation
K478 Kg
5 || mis
K12 Ky 9 Kz Q@ Kz

@ Exercise 5.8: Complete the proof of the first half of
the splitting lemma by either

o showing the missing cases, or
e arguing that there are no missing cases.

@ Exercise 5.9: Show the trivial case(s).
@ This completes the proof of the splitting lemma.

@ To use it for cut elimination, we have to be able to
use it in an arbitrary context F{ }. Contexts of
the form K2{ } are called shallow.



Context Reduction (Proof)
By induction on F{ }.

@ Case 1: F{ } = L»{ } is ashallow context.
Then K=L and d4=09 and dJy is trivial

o Case 2: F{ } =L1®9(L, ® F/{ }) for some Ly and L,.
Apply splitting. Get:

Lz Ly

5[ MLs §'[mes
51 || MLs )
Ly Lz L, L4792 F {A}
Apply IH to ¢'. Get:
Ko X
s |ms and I?HFTL\LS
Lyw FI{X) ®
Put everything together.
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Cut elimination for SMLS
Lemma (Reduction Lemma):  If HMES th [ras
{a®a} F{L}

Proof: By context reduction we have:

K L
& [ms
5 | s and « |
F{L} pa®ar)
Apply splitting to §;: and again:
Koo Koo at a
64HMLS 65HMLS
55 || Ms K N 5 || MLS & || MLS
K a®ad  Re7wd Kq K,
Put de, 07, 03, 01 together to get a proof of F{L} O
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Cut elimination for SMLS
Theorem (Cut ELimination):  If 511““”” then ° EMLS .

Proof: By induction on the number of occurrences of ait in &,
using the Reduction Lemma.
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@ Exercise 5.10: Put everything together, to show the
derivation
KX
o | mLs
F{X3

@ Exercise 5.11: Put dg, d7, d3, 01 together to get

[mLs
F{L}



Yet another deep inference system

Formulas:

AB:u=ala-|1|L|A®RB|A9B|IA|?A

Negation:

att=a 1t=1 (A®B)t=AtwBt (1At =741

Equivalences:

(AeB)wC=A%(B%() A9B=BoC Agl=A
(A®B)®@C=A®(B® () ARB=B®C ARl=A
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Yet another deep inference system
Rules:
| A tedA g o at®a
| = — i =
a =y 3 (provide ) ETN
I(A9 B) A®(B () 7A® 1B
PL a8 *A®B)®C P heB)
77A 1 71 1A
gl A el It et T gt A
AR A €L 1A 1A
Y W WMt "asa
System SELS: all rules
System ELS: all |-rules + {s, =} Ezfi)lrl; mc:;nsl,'(?;;
the up-fragment is
admissible %
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Properties of SELS and ELS

Theorem:
1

are derivable in SELS.

1
The rules i] —— and i
iAL@A T

Theorem:
@ Every rule rt is derivable in {rl,il,it,s,=}.
@ Every rule r} is derivable in {r1,il,it,s,=}.

Theorem:
A BL
[|seLs iff || seLs iff ALHEL;
B AL (3
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@ The logic we present here is called Multiplicative
Ezponential Linear Logic (MELL).
@ The sequent calculus for MELL is

r
id 1 1—
Fal,a Fr,L 1
r,AB FT,LA FAB
® ®
FT,A®B FILAAQB
| F?B1,... 7B, A g FT,A
! r
b 7By,..., 7B, A FT,724
Fr FT,74,7A
wk ct
T, 74 FT,74A

FILA FALA
FT,A

cut

@ Exercise 5.12: (Hard) Prove cut elimination for the
sequent calculus for MELL.

@ We call this system SELS. The system consisting of
only the down rules (the ones with a | in the
name) together with s and = is called ELS. Both
have been studied in

o Alessio Gugliemi and Lutz Straburger:
“Non-commutativity and MELL in the Calculus
of Structures”. CSL 2001

o Lutz StraBburger: “Linear Logic and
Noncommutativity in the Calculus of
Structures”. PhD Thesis, 2003

o Lutz StraBburger: “MELL in the Calculus of
Structures”. TCS 2003

@ Exercise 5.13: Use the previous exercise is to prove
cut elimination for SELS: First show how to
translate an SELS derivation into the sequent
calculus for MELL, and second, show how a cut-free
sequent proof in MELL is translated into a
ELS-derivation.

@ These properties hold for every well-designed deep
inference system. And the proofs are essentially
the same for all systems.

o Exercise 5.14: Prove these three theorems.

(Hint: Cut elimination is not needed.)



Cut elimination for SELS

Theorem: Systems SELS and ELS are equivalent.
Theorem: The i1 is admissible for ELS.

Theorem: All 1-rules of SELS are admissible for ELS.

n QBut how to prove ita

Three different ways of
saying the same thing. %2
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Systems SELS and ELS
Rules:
. A at®a
=— i A=B
ail Tea 3 (provided ) ait n
i!(A@B) A®(B7® () R 7AQ B
S e — —
A% 7B (A®B)®C Pl 2teB)
77A 1 [N IA
9l A el 1 et I gt A
by A0 A . 1 1A bt IA
2 Waa W A®A
System SELS: all rules
System ELS: all |-rules + {s,=}
Core: first two lines + {e], et} T

Splitting for ELS

Lemma (Splitting):

2. If there is a proof 5H{ei’aii’s’pl’z} ,
Kwa

then there is a derivation
al

Oa

{el,ail,s,pl,=}
K

1. If there is a proof 6H{ei’au’s’pi’z} ,
K2(A®B)
then there are formulas K4 and Kz and derivations
Ka’® Kp . _ , _
. ” (elailspl=) and JAH{eL,aIi,s,P%:} BTl ésn{ewli,s,vi,:}
K Kag A Kg’® B

@ Exercise 5.15: Show that these three theorems
imply each other.

@ Splitting (and context reduction) holds exactly for
the core-fragment of the systems

@ And that’s why it’s called core-fragment.
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Splitting for ELS (cont.)

5] tev.ait.spr=)

3. If there is a proof
K 1A

then there are formulas K4, ..., K, and derivations

K19 -9 7K,
5 || evaitspr=)  and
K

5[ {ebaivspt=)
Kig- 2K, 0 A

o] tevaiL.spi=}

4. If there is a proof
K ?A

then there is a formula K, and derivations

K4
) ,ail,s,pl,=
O ” {elails,pl.=} and A"{% S
K KA A
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Context reduction for ELS
Lemma: Let A be a formula and F{ } be a context. If there is a
derivation
g H{ei,aii,s,pi,z}
F{A}
then there is a formula K, such that for all X, we have
L (K9 X) I
) 4 || {ed-ail.s,pd,=}
o | fel.ait.spl=y  and K2 A
F{X}
Proof: By induction on F{ }.
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Decomposition
A
Theorem: For every derivation 5H SELs there are derivations
B

A A A A

[l ter [l <ot} [l ety [l <t}
Py X1 F G

[l {1} [| o1} [l {1} [| o1}
Py X2 F G

|| o3 [l ety [| o1 [| owty
Ps X3 F3 G

[ @iy [ sy [l owy [l ety
Py b A (@

[ wsy [ taivy [| taivy [ €aisy
Ps Xs Fs Gs
[[{psspr.=} and [[{pssp1.=} and [[{pssp1.=} and [[tprspt.=}
0s Ys Gs Ds

[l owty [| faity [| aity [| ity
(o) Ya Gy Dy

[| taity [| wty [| owiy [l tery
03 Y3 Gs Ds

[| o3 || ety [l 013 [l owsy
Q; Y2 G, D,
(Fen [| o1y ([en [| sy
01 Y1 Gy Dy

| ety (e | ety (fen!
B B B B
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@ Exercise 5.16: Prove splitting for ELS.

@ The number of ! in front of the K9 X is the
modality depth of F{ }.

@ Exercise 5.17: Prove context reduction for ELS.

@ Exercise 5.18: Use context reduction and splitting
to show that ai? and pt1 and e are admissible for
{el,ail,s,pl,=}. (Hint: this is very similar to the
case of MLS.)

@ These four theorems have been investigated in
o Alessio Gugliemi and Lutz Straburger:
“Non-commutativity and MELL in the Calculus
of Structures”. CSL 2001

o Lutz StraBburger: “Linear Logic and
Noncommutativity in the Calculus of
Structures”. PhD Thesis, 2003

o Lutz StraBburger: “MELL in the Calculus of
Structures”. T'C'S 2003

o Alessio Gugliemi and Lutz Strafburger: ‘A
System of Interaction and Structure IV: The
Exponentials and Decomposition”. ACM ToCL
12(4:23), 2011



Decomposition theorems

A
[l ety
Py G
[l et
P, G
[l o1}
Ps A G A
F‘;L{am creation < ,> destruction G 4l non-core (up)
H Wi} s H {gt.btwi} 3
Ps Cs G
|tprspr=y  ~ shufﬂing}[ H SELSC ~ | core (up and down)
0s Ds D3
0 D.
& ; T
Q destruction creation Dy B non-core (down)
[| i}
Qs B D3 B
[| sy
Q, D,
(fen
%} Dy
[| et}
B
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Cut elimination for SELS (finally)
SELS ELS
Theorem: If H then H .
A A
Proof:
1
[| ot ot wty 1 1
1 A// ” SELSc ” {el,ail,s,pl, =} 1
|| SELS  ~» || SELSc ~ A A ~ || ELs
A A || {gl.bd,wl} || {g4.bl,wl} A
|| {gl.blwi} A A
A
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o

The first step is decomposition.

Then, inspecting the rules ef, g1, bt shows that
A" =1.

Now we have a derivation of A’ in SELSc, and we
can eliminate ef, pt, and aif using context
reduction and splitting.

Exercise 5.19: If you did not yet do the previous
exercise, do it now.

Finally, we habe a derivation of A’ in
{el,ail,s,pl,=}, and therefore a derivation of A in
ELS.



