
A Gentle Introduction to Deep Inference

Handout for

4. Lecture - Cut Elimination in Deep Inference

for Propositional Classical Logic

Victoria Barrett and Lutz Straßburger

July 2025

1 Recall:

1.1 Proof system SKS

The proof system SKS [2, 3] consists of the following inference rules:

• The structural rules:

atomic



⊤
ai↓

a ∨ ā

a ∨ a
ac↓

a

⊥
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

⊥
a

ac↑
a ∧ a

a
aw↑

⊤
cut cocontraction coweakening


• The logical rules:

A ∧ (B ∨ C)
s
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m
(A ∨ C) ∧ (B ∨D)

switch medial

• An equivalence on formulae, defined to be the minimal equivalence relation
generated by the following:

A ∧ ⊤ = A A ∧B = B ∧A

A ∨ ⊥ = A A ∨B = B ∨A

⊤ ∨⊤ = ⊤ A ∧ (B ∧ C) = (A ∧B) ∧ C

⊥ ∧⊥ = ⊥ A ∨ (B ∨ C) = (A ∨B) ∨ C

1

We write
A

=
B

whenever B can be reached from A via this equivalence

relation.

A proof in SKS is a derivation in SKS with premise ⊤. And a formula A is
provable in SKS if there is an SKS proof with conclusion A.

1.2 Proof system SKSg

The proof system SKSg relaxes the condition that the structural rules should
be atomic. It consists of the following inference rules:

• The structural rules:

⊤
i↓
A ∨ Ā

A ∨A
c↓

A

⊥
w↓

A
identity contraction weakening

A ∧ Ā
i↑

⊥
A

c↑
A ∧A

A
w↑

⊤
cut cocontraction coweakening

• The logical rule :
A ∧ (B ∨ C)

s
(A ∧B) ∨ C

switch

• The same equivalence relation as for SKS.

1.3 Proof system KS

The proof system KS is obtained from SKS by removing the up-rules; that is,
the cut, cocontraction, and coweakening rules.

We are going to show that any proof in SKS can be transformed to one in
KS.

2 Some transformations

2.1 Eliminating cocontraction and coweakening

Cocontraction and coweakening can both be derived from their dual rule, switch,
cut, identity, and =. The case for coweakening is as follows:

2

a
aw↑

⊤
7−→

a
=

a ∧
⊤

=
⊥ ∨⊤

s

a ∧
⊥

aw↓
ā

ai↑
⊥

∨⊤

=
⊤

Exercise 1: Show that ac↑ can be derived from ac↓, i↑, i↓, s and =.

2.2 Reducing the context around a cut

We can express a derivation in which a cut
a ∧ ā

ai↑
⊥

appears as

Φ =

Ψ
.............................

K

{
a ∧ ā

ai↑
⊥

}
.............................

Θ

We call K{ } a context, and it represents a formula with a hole, which can be
filled by a derivation. K{a ∧ ā} and K{⊥} are both formulae, and the cut rule
can be applied deep inside the formula. K{a ∧ ā} is the conclusion of Ψ and
K{⊥} is the premise of Θ; the dotted line composition is a meta-level notation
which allows us to focus on a particular part of a derivation.

To simplify our cut elimination procedure, we would like to transform this
into a derivation where the cut appears as shallowly as possible. That is, we
would like to transform this into a derivation

Φ′ =

Ψ
...................
K{a ∧ ā}

a ∧ ā
ai↑

⊥
∨ R

K{⊥}
............
Θ

for some formula R determined by K{ }. We say that the cut is shallow in
Φ′ and call { } ∨ C a shallow disjunctive context in Φ′. Note that we need to

3

mention the whole derivation Φ′ here: what is a shallow disjunctive context in
one derivation isn’t in another.

There are three inductive cases to consider:

1. K{ } = K ′{{ } ∧D}

2. K{ } = K ′{({ } ∨ C) ∧D}

3. K{ } = K ′{({ } ∨ C) ∨D}

In the first case, we perform the following local transformation:

a ∧ ā
ai↑

⊥
∧ D 7−→

(a ∧ ā) ∧
D

w↑
⊤

=
a ∧ ā

ai↑
⊥

=

⊥ ∧
⊥

w↓
R

Note that this produces a non-atomic weakening and coweakening; we will
need to continue by using w↑, i↑, i↓, s, and = to eliminate the coweakening,
and then use aw↓, ai↓, s, m, and = to eliminate the non-atomic weakenings,
identity, and cut. This transformation can be done locally, and (importantly
for our proof by induction) does not produce any further instances of ai↑ whose
parent connective is a ∧.

In the second case, we perform the following local transformation:

(
a ∧ ā

ai↑
⊥

∨ C

)
∧D 7−→

((a ∧ ā) ∨ C) ∧D
s

a ∧ ā
ai↑

⊥
∨ (C ∧D)

=

C
=
⊥ ∨ C

∧D

In the third case, we simply apply the commutativity of ∨.
Exercise 2: Using the transformations given above, give a full proof that

any SKS proof can be transformed into one in which all of the cuts are shallow.

2.3 Propagating a new formula up through an atom

This transformation is essential to our procedure for eliminating the cuts. You
can refer to the lecture slides to see a further example of how this procedure
works.

Given a KS proof Π of a formula K{a}, we are able to trace the history
of that atom through the proof. This trace goes up through linear rules and

4

equality rules, branches out at contractions, and terminates at weakenings and
identities.

Moreover, we are able to replace every occurrence of the atom in that trace
by the unit ⊤ in such a way that the proof does not get broken. Note that it is
crucial here that we are not replacing every occurrence of a in Π, but only those
in the trace of the occurrence of a in the conclusion that we are focussing on.

The transformation is as follows:

K{a}
ρ
H{a}

7−→
K{⊤}
H{⊤}

⊤
ai↓

a ∨ ā
7−→

⊤
=

⊤ ∨
⊥

aw↓
ā

a ∨ a
ac↓

a
7−→

⊤ ∨ ⊤
=

⊤

⊥
aw↓

a
7−→

⊥
=

⊥ ∧
⊤

=
⊤ ∧⊤

s

⊥ ∧⊤
=

⊥
∨⊤

=
⊤

where ρ ∈ {m, s,=}
We can propagate formulae other than ⊤ up through proofs in this way;

however in general this breaks identity rules and so the resulting object is not
a proof. If we tried to propagate a formula C in the same way, the case for ai↓
would be:

⊤
ai↓

a ∨ ā
7−→

⊤
X
C ∨ ā

3 The Cut Elimination Procedure

We are given a proof Φ in SKS. We can transform this into a proof in KS as
follows:

1. Eliminate ac↑ and aw↑ by means of their dual rules, switch, ai↓, and ai↑.

2. Reduce the context around each cut so that each cut appears in a disjunc-
tive shallow context. Call the resulting SKS proof Ψ.

5

3. Isolate the top-most cut in Ψ to obtain a KS proof Π of (a ∧ ā) ∨ C, for
some atom a and formula C.

4. Duplicate Π. In one copy, choose the occurrence of a in the conclusion
which is to be cut, and replace it by ⊤ as described in Subsection 2.3 to
obtain a KS proof Πā of C ∨ ā. In the other copy, choose the occurrence
of ā in the conclusion which is to be cut, and similarly obtain a KS proof
Πa of C ∨ a.

5. Take the proof Πa, and replace the atom ā in its conclusion by C. Prop-

agate this up through the proof. Fix each broken identity
⊤

X
C ∨ ā

by

replacing it with the proof Πā. This results in a KS proof of C ∨ C, in
which there are as many copies of Πā as there are identities in the trace
of ā in Πa.

6. Contract C ∨C using ac↓, m, and = to obtain a KS proof Ξ of C. Replace
Π by Ξ, and continue from the next top-most cut.

4 Further Reading

The cut elimination procedure that we have seen today was first presented in
Kai Brünnler’s PhD thesis [2] and also in his paper [1].

Note that there the formalism used is the calculus of structures, not open
deduction as we have been using. However, they are both self-contained in
introducing the calculus of structures, and it should not be difficult to translate
between the two formalisms.

References

[1] Kai Brünnler. Atomic cut elimination for classical logic. In M. Baaz and J. A.
Makowsky, editors, CSL 2003, volume 2803 of Lecture Notes in Computer
Science, pages 86–97. Springer-Verlag, 2003.

[2] Kai Brünnler. Deep Inference and Symmetry for Classical Proofs. PhD
thesis, Technische Universität Dresden, 2003.

[3] Alessio Guglielmi, Tom Gundersen, and Michel Parigot. A Proof Calculus
Which Reduces Syntactic Bureaucracy. In Christopher Lynch, editor, 21st
International Conference on Rewriting Techniques and Applications (RTA),
volume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages
135–150. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2010.

6

