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1 What do we want from a proof formalism?

1.1 Normalisation

Proofs can be complex objects, and therefore difficult to study from a mathe-
matical perspective. One of the most important activities in structural proof
theory is normalisation, rewriting proofs into a normal form in order to facili-
tate proving properties about proof systems and logics. For example, we might
like a proof to not contain any propositional atoms that do not appear in its
conclusion, or we might like to separate the linear and non-linear parts of a
proof.

The formalism can help in normalisation, by allowing for useful normal forms
and simple normalisation procedures; we will see many examples of what we
mean by this throughout this course.

For now, very abstractly, we can imagine a situation where there is some
rewriting step that would make a proof more ‘normal’, but break some part of
the structure so that it is no longer a proof according to the formalism. A proof
formalism is good, according to this metric, if this doesn’t happen.

1.2 Semantics

One of the foundational questions in proof theory is, ‘when are two proofs the
same?’. By this, we don’t only mean when are they syntactically identical, nor
do we only mean when do they prove the same formula. The first would identify
too few proofs and the second too many.

Instead, to get a notion of ‘the same’, we might appeal to semantics. By
relating formulae to some objects and proofs to some maps between objects, we
might be able to inherit an appropriate idea of identity for proofs.

We have a pretty good idea for intuitionistic propositional logic (see star-
autonomous categories or their translation into the lambda calculus) and for
multiplicative linear logic (see proof nets), where we can abstract away the
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‘bureaucracy’ of proofs and retain only the ‘essential’ information, but it gets
difficult for proofs in other logics where we don’t have such good models.

The formalism can help here as well: a formalism which already reduces
the bureaucracy will make it easier to see from the syntactic side which proofs
should be identified. A formalism which admits as proofs better canonical forms
will also help in relating the syntax to a semantics.

1.3 Complexity

We would like our proof formalism to contain short proofs. Smaller proofs
are easier to check for correctness, which has benefits for both automated and
human reasoning.

Proof compression and proof normalisation can work in opposite directions
to one another, with the latter usually making proofs much larger. Nevertheless,
proof compression can allow for a clearer perception of the essential parts of a
proof, by conflating similar pieces of reasoning, whereas a normalised proof may
prove each part separately and from a minimal number of hypotheses.

The proof formalism can help in this by allowing for mechanisms by which
proofs can be compressed.

1.4 Proof Search

Given a formula, we would like it to be easy to find a proof of it and quick to
show when no proof can exist.

All of the previously listed virtues of proof formalisms may help in proof
search, for example if we know that we can restrict our search to good nor-
mal forms or canonical representatives, or if proofs will either be short or non-
existent. The formalism can restrict our choices in building a proof in such a
way that proof search is easier.

2 From sequent calculus to open deduction

We have seen that in the sequent calculus for propositional classical logic, for-
mulae can be constructed by the grammar:

A,B ::= a | ā | A ∨B | A ∧B | ⊥ | ⊤

and derivations are constructed from (a refinement of) the grammar:

Π ::=
Π1 . . . Πk

A1, . . . , Am ⊢ B1, . . . , Bn

where k,m, n ≥ 0, Π1, . . . ,Πk are derivations, and A1, . . . , Am, B1, . . . , Bn are
formulae.
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The comma means something different on the left and the right of the turn-
stile ⊢: on the left we read it as a conjunction and on the right as a dis-
junction, so that if all of the antecedents hold then at least one of the conse-
quents holds. There is also an implicit conjunction between the derivations in
the premise: every premise must be proven in order to prove the conclusion
A1, . . . , Am ⊢ B1, . . . , Bn.

We therefore have three kinds of conjunction and two kinds of disjunction,
with a distinction between what operates at the level of formulae and what
operates at the level of derivation.

Inference rules have access to the derivation-level connectives, but not to the
formula-level connectives. For example, the (two-sided) cut rule is

Γ ⊢ Θ, A A,∆ ⊢ Λ
cut

Γ,∆ ⊢ Θ,Λ

and not something like

Γ ⊢ Θ, A ∨B A ∧ C,∆ ⊢ Λ

Γ, C,∆ ⊢ Θ, B,Λ

In deep inference formalisms, we adopt a more liberal approach to the composi-
tion of derivations. We reject the distinction between formulae- and derivation-
level connectives, allowing inferences to operate deep inside formulae.

In this course, we are going to focus on the deep inference formalism open
deduction[3].

We build both formulae and derivations from the following grammar:

Π,∆ ::= a | ā | Π ∨∆ | Π ∧∆ | ⊥ | ⊤ |
Π

∆

Formulae are just those derivations which can be built without composition by

inference
Π

∆
.

This has some immediate consequences. Derivations have a single premise
and a single conclusion. We can write

A

B

for a derivation whose premise is A and whose conclusion is B. A proof is a
derivation whose premise is ⊤.

We can compose two derivations horizontally by connective. If

A

B
and

C

D
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are derivations then so are

A

B
∧
C

D
and

A

B
∨
C

D

These derivations have premises A∧C and A∨C respectively, and conclusions
B ∧D and B ∨D respectively.

If we have two derivations

A

B
and

B

C

then we can glue these directly together to obtain

A

B

C

3 From LK to SKSg

In open deduction we have done away with the sequent notation entirely. We
translate a sequent

Γ ⊢ Λ

into a formula ∨
Γ̄ ∨

∨
Λ

where
∨

Γ̄ is a disjunction of the negation of every formula in Γ and
∨

Λ is a
disjunction of every formula in Λ. When Γ is empty, we can ignore the empty
disjunction and translate the sequent to

∨
Λ.

In order to check the correctness of an instance of the cut rule in LK, it is
necessary to check that the cut formulae match in both premises, and that the
lists of formulae in the conclusion have been correctly split without any dupli-
cation or omission. In deep inference proof systems, we are able to decompose
the cut rule into smaller steps, isolating these checks.

A deep inference proof system for propositional classical logic, SKSg, is
shown in Figure 1, and the translation of the (one-sided) LK cut rule into SKSg
is as follows:

⊢ Θ, A ⊢ Ā,Λ
cut

⊢ Θ,Λ
7→

(
∨
Θ ∨A) ∧

(
Ā ∨

∨
Λ
)

s

(
∨

Θ ∨A) ∧ Ā
s ∨

Θ ∨
A ∧ Ā

i↑
⊥

∨
∨
Λ

= ∨
Θ ∨

∨
Λ
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• The structural rules:

⊤
i↓
A ∨ Ā

A ∨A
c↓

A

⊥
w↓

A
identity contraction weakening

A ∧ Ā
i↑

⊥
A

c↑
A ∧A

A
w↑

⊤
cut cocontraction coweakening

• The logical rule:
A ∧ (B ∨ C)

s
(A ∧B) ∨ C

switch

• An equivalence on formulae, defined to be the minimal equivalence relation
generated by the following:

A ∧ ⊤ = A A ∧B = B ∧A

A ∨ ⊥ = A A ∨B = B ∨A

⊤ ∨⊤ = ⊤ A ∧ (B ∧ C) = (A ∧B) ∧ C

⊥ ∧⊥ = ⊥ A ∨ (B ∨ C) = (A ∨B) ∨ C

We write
A

=
B

whenever B can be reached from A via this equivalence

relation.

Figure 1: Proof system SKSg

Switches are used to bring the cut formulae together, and the structural rule i↑
annihilates them. Each instance of the switch rule corresponds to splitting the
context of the cut rule into the two premises.

In the case where a sequent calculus rule has no premise, we translate this
to ⊤, so that the identity rule is translated as follows:

id
⊢ A, Ā

7→
⊤

i↓
A ∨ Ā

In the case of the rule ⊤, both premise and conclusion are therefore trans-
lated to ⊤, and so we translate this to the formula ⊤, not an inference rule.

Exercise 1: Translate the other rules of LK into SKSg.1

1If you choose to translate the one-sided system, you won’t need to use w↑ or c↑, but you
will if you translate the two-sided system.
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Exercise 2: Show that there is an SKSg derivation
A

B
if and only if there

is an SKSg proof
Ā ∨B

.

4 Symmetry

Sequent calculus derivations do not have top-down symmetry: they can have
multiple premises but only one conclusion. Furthermore, although we can un-
derstand the identity rule and the cut rule as being dual, in the sense that one
creates a pair of formulae and the other annihilates, the formalism of the sequent
calculus obscures this.

Deep inference restores this: the cut rule and the identity rule can be ob-
tained the one from the other by negating both the premise and conclusion and
swapping them. The other rules of SKSg have their duals as well: contraction
and cocontraction form a dual pair, as do weakening and coweakening, and the
switch rule is its own dual.

This top-down symmetry and duality in the rule shape combine to allow us
to dualise entire derivations simply by flipping and negating. A proof of A can
immediately be transformed into a refutation of Ā, that is, a derivation whose
premise is Ā and whose conclusion is ⊥.

This is not to say that there is no symmetry present in the sequent calculus;
rather there we see a left-right symmetry in the rules of proof systems, which
can also be striking. For this reason, it may be more correct to see sequents

Γ ⊢ Λ as corresponding to deep-inference derivations

∧
Γ∨
Λ
. We take the approach

of translating sequent calculus inference rules into deep-inference derivations
because it makes it clearer to see which rules we will need in our proof system.

5 Bureaucracy

Open deduction is designed to reduce syntactic bureaucracy ; specifically, it elim-
inates what is called bureaucracy of type A in [5] (and indeed in earlier notes
about deep inference).

This is the syntactic bureaucracy of independent processes being obliged by
the formalism to occur in sequence, instead of in parallel. Consider, for example,
the sequent calculus derivations

⊢ A,A,B,C
cont

⊢ A,B,C
exch

⊢ A,C,B

and

⊢ A,A,B,C
exch

⊢ A,A,C,B
cont

⊢ A,C,B

The formalism obliges us to distinguish these derivations, but the contraction
and exchange applied are independent of each other. In open deduction, both
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• The structural rules:

atomic



⊤
ai↓

a ∨ ā

a ∨ a
ac↓

a

⊥
aw↓

a
identity contraction weakening

a ∧ ā
ai↑

⊥
a

ac↑
a ∧ a

a
aw↑

⊤
cut cocontraction coweakening


• The logical rules:

A ∧ (B ∨ C)
s
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m
(A ∨ C) ∧ (B ∨D)

switch medial

• An equivalence on formulae, defined to be the minimal equivalence relation
generated by the following:

A ∧ ⊤ = A A ∧B = B ∧A

A ∨ ⊥ = A A ∨B = B ∨A

⊤ ∨⊤ = ⊤ A ∧ (B ∧ C) = (A ∧B) ∧ C

⊥ ∧⊥ = ⊥ A ∨ (B ∨ C) = (A ∨B) ∨ C

We write
A

=
B

whenever B can be reached from A via this equivalence

relation.

Figure 2: Proof system SKS

are translated to
A ∨A

c↓
A

∨
B ∨ C

=
C ∨B

Other forms of bureaucracy still remain in open deduction (for example,
what is called bureaucracy of type B in [5]); we aren’t yet able to identify in the
syntax all of the proofs that we would like.
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6 Locality

Suppose that we have an object that was built from the grammar

Π,∆ ::= a | ā | Π ∨∆ | Π ∧∆ | ⊥ | ⊤ |
Π

∆

and we want to check whether it is a proof in the proof system SKSg. In order
to verify this, we need to check that every inference step in this object is an
instance of an inference rule in SKSg.

This means that we need to compare formulae of unbounded size: to check

whether
A ∨B

C
really is a contraction, we need to compare A, B, and C and

verify that they are identical formulae.
In order to do this, we need to have access to a global view of the formulae,

but we can imagine a situation where they are too large to be held in local
memory on a single processor, and so our procedure to check them needs to
traverse between the locations where they’re stored. This problem can be solved
at the level of the implementation, but we are interested in using the formalism
to solve it at the level of the proof system.

With deep inference, we are able to decompose the general contraction rule
A ∨A

c↓
A

into an atomic contraction rule and a linear rule called the medial :

a ∨ a
ac↓

a

(A ∧B) ∨ (C ∧D)
m
(A ∨ C) ∧ (B ∨D)

Then contractions can be checked locally, replacing one global procedure with
many local procedures.

The decomposition of the cut rule i↑ into the switch rule and the atomic
cut is shown in the lecture slides, and the local proof system SKS is shown in
Figure 2.

Exercise 3: Decompose the other structural rules into their atomic forms.
More precisely:

• Derive i↓ from ai↓, s, and =

• Derive c↓ from ac↓, m, and =

• Derive c↑ from ac↑, m, and =

• Derive w↓ from aw↓ and =

• Derive w↑ from aw↑ and =
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7 Conclusion

Open deduction is a generalisation of the sequent calculus. By admitting a larger
collection of objects as proofs, we hope that within those proofs we will find
better canonical representatives, better normalisation procedures, and smaller
proofs. However, we have also disrupted existing results from the sequent cal-
culus, and we need to put them back together.

Tomorrow, we will start to talk about normalisation, and see how the atom-
icity of the structural rules helps in giving good normalisation procedures. The
day after, we will apply atomicity to the problem of reducing syntactic bureau-
cracy in the representation of proofs.

8 Further Reading

Introductions to open deduction can be found in the paper [3] and the thesis
[4]; deep inference papers before this used a formalism called the calculus of
structures, which doesn’t allow for the same parallelism as described in Section 5.
These papers also introduce atomic flows, which we will see on Wednesday.

The paper [2] gives a full translation between SKS (in the calculus of struc-
tures) and a sequent calculus presentation of propositional classical logic and
the thesis [1] explores SKS in detail.
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