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Formulas of First-Order Logic

Terms and formulas:

t ::= x | f (t1, . . . , tm)

A,B ::= > | ⊥ | p(t1, . . . , tn) | A ∧ B | A ∨ B | A⊃ B | ¬A | ∀x.A | ∃x.A

where
x is a first-order variable
f is an m-ary function symbol
p is an n-ary predicate symbol
∀x.A is read as “for all x, we have A”
∃x.A is read as “there exists a x, such that A”
∀ and ∃ are called quantifiers
they bind the first-order variable x.
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In the language od first-order logic, we have
a countable set X = {x, y, z, . . .} of first-order
variables,
a countable set F = {f , g, . . .} of m-ary
function symbols (for each m ≥ 0), and
a countable set P = {p, q, . . .} of n-ary
predicate symbols (for each n ≥ 0).
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Free and Bound Variables and Substitution

Definition: The free and bound variable occurrences in a formula are
defined inductively as follows.

x occurs free in an atomic formula A iff x occurs in A.
There are no bound variables in any atomic formula.

x occurs free in ¬A iff x occurs free in A.
x occurs bound in ¬A iff x occurs bound in A.

x occurs free in A ∧ B, A ∨ B, A⊃ B iff x occurs free in A or in B.
x occurs bound in A ∧ B, A ∨ B, A⊃ B iff x occurs bound in A or in B.

x occurs free in ∀y.A or ∃y.A, iff x occurs free in A and x is a
different variable symbol from y.
x occurs bound in ∀y.A or ∃y.A, iff x is y or x occurs bound in A.

Substitution:
A[x/t] is the result of replacing all free occurrences of x in A by t.
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In a formula, a variable may occur free or bound
(or both). A variable occurrence is bound in a
formula if it is quantified. Otherwise it is free.
Exercise 3.1:What are the free and bound
variables in the following formulas:
∀x. ∀y. (p(x)⊃ q(x, f (x), z))
p(x)⊃ ∀x. q(x)

Exercise 3.2: Let A = p(x)⊃ ∀x. q(x). What is
A[x/f (y)] ?
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Axioms for First-Order Logic
Axioms for propositional logic (for ⊃,⊥):
- A⊃ (B⊃ A)
- (A⊃ (B⊃ C))⊃ ((A⊃ B)⊃ (A⊃ C))
- ((A⊃⊥)⊃⊥)⊃ A

Axioms for ∀:
- (∀x. (A⊃ B))⊃ (A⊃ ∀x.B) (provided x is not free in A)
- (∀x.A)⊃ A[x/t]

The other connectives are defined via ⊥,⊃, ∀:
- ¬A ≡ A⊃⊥ ∃x.A ≡ ¬∀x. (¬A)
- A ∨ B ≡ ¬A⊃ B A ∧ B ≡ ¬(¬A ∨ ¬B)

Inference rules:

A A⊃ B
mp

B

A
gen
∀x.A

Definition: A formula is provable (or a theorem) if it is either (a
substitution instance of) an axiom, or can be derived via an
instance of a rule mp or gen from provable formulas.
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As for propositional logic, there are many different
Hilbert-style systems for first order logic.
We picked here one that defines only ∀, to keep the
list of axioms short. It can be found, for example,
in

Chang, C.C. and Keisler, H.J.: “Model
Theory”. North-Holland, Amsterdam, 1973

Exercise 3.3: Can you prove ∃x. ∀y. p(x)⊃ p(y) ?
Exercise 3.4: The formula above is also called the
Drinker’s formula. Can you figure out why?
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Semantics for First-Order Logic

Definition: A modelM of first order logic is a non-empty set D
(the domain ofM) together with an interpretation J·K:

for each m-ary function symbol f :
a function Jf K : Dm → D
for each n-ary predicate symbol p:
a function JpK : Dn → {true, false}

Definition: Given a modelM, a variable assignment µ is a
mapping assigning each variable x to an element µ(x) ∈ D.
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Semantics for First-Order Logic (cont.)
Given a modelM and a variable assignment µ, we can extend
the interpretation J·K to all terms:

JxK = µ(x)

Jf (t1, . . . , tm)K = Jf K(Jt1K, . . . , JtmK)

and to all formulas:
J⊥K = false
J>K = true
Jp(t1, . . . , tn)K = JpK(Jt1K, . . . , JtnK)

JA ∧ BK, JA ∨ BK, JA⊃ BK, J¬AK
as in truth tables for propositional logic
J∀x.AK = true iff JAK = true for every variable assignment µ′

with µ′(y) = µ(y) for all variable symbols y different from x.
J∃x.AK = true iff there is a variable assignment µ′ with
µ′(y) = µ(y) for all variable symbols y different from x, such
that JAK = true.
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The definition of J∀x.AK captures the idea that
∀x.A is true if every possible choice of a value for x
causes A to be true.
The definition of J∃x.AK captures the idea that
∃x.A is true if there is a possible choice of a value
for x such that A is true.
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Soundness and Completeness for First-Order Logic

We writeM, µ � A iff JAK = true for modelM and assigment µ.

Definition: A formula A is satisfiable if there is a modelM and a
variable assigment µ, such thatM, µ � A.

Definition: A formula A is valid iffM, µ � A for all modelsM and
variable assigments µ.

Theorem: (Soundness) Every formula that is provable is also valid.

Theorem: (Completeness) Every formula that is valid is also
provable.
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Exercise 3.5: Show that the formula
∀x.∀y. p(x) ∧ p(y) is not valid.
Exercise 3.6: Show that ∀x. p(x) ∨ ¬p(x) is valid.
Exercise 3.7: Is ∀x. ∀y. p(x) ∨ p(y) valid?
Exercise 3.8:What about ∀x. ∀y. p(x) ∨ ¬p(y) ?

For the exercises above work only with the models (don’t
use Soundness/Completeness).

Exercise 3.9: Prove soundness.
Completeness for first-order logic is more involved
than for modal logics. It has first been shown by
Gödel in his PhD thesis:

Kurt Gödel: “Die Vollständigkeit der Axiome
des logischen Funktionenkalküls”. Monatshefte
für Mathematik und Physik 37, 1930,
p.349–360

8 / 15

Sequent Calculus for First-Order Logic
Sequents:

A1, . . . ,Am ` B1, . . . ,Bn
Corresponding Formula:

(A1 ∧ · · · ∧ Am)⊃ (B1 ∨ · · · ∨ Bn)

if m = 0 then the corresponding formula is

B1 ∨ · · · ∨ Bn or >⊃ (B1 ∨ · · · ∨ Bn)

if n = 0 then the corresponding formula is

(A1 ∧ · · · ∧ Am)⊃⊥ or Ā1 ∨ . . . ∨ Ān

if m = 0 and n = 0 then the corresponding formula is falsum:

>⊃⊥ or ⊥
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A sequent is essentially a pair of finite lists of
formulas. This is how Gentzen introduced them:

Gerhard Gentzen: “Untersuchungen über das
logische Schließen. I”.Mathematische
Zeitschrift (39), 1935, p.176–210

Nowadays authors also often use multisets (the
order of the formulas is irrelevant) or sets (also the
number of occurrences of a formula is irrelevant).
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Sequent Calculus for First-Order Logic

Initial sequents / Axioms:

⊥
⊥ `

id
A ` A

>
` >

Structural rules:

Γ ` Θ
weakL A, Γ ` Θ

Γ ` Θ
weakR

Γ ` Θ,A

A,A, Γ ` Θ
conL A, Γ ` Θ

Γ ` Θ,A,A
conR

Γ ` Θ,A

∆,B,A, Γ ` Θ
exchL

∆,A,B, Γ ` Θ

Γ ` Θ,A,B,Λ
exchR

Γ ` Θ,A,B,Λ

Cut:
Γ ` Θ,A A,∆ ` Λ

cut
Γ,∆ ` Θ,Λ
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We use Capital Greek letters, like Γ,∆,Θ,Λ, . . . to
denote finite lists of formulas.
The structural rules are called like this because
they work on the structure of the sequent. When
multisets are used instead of lists, the exchange
rules exchL and exchR are not needed. And when
sets are used instead, the rules for weakening
(weakL and weakR) and contraction (conL and
conR) are not needed.
However, lists are used in order to have more
control over the structure of proofs.
The cut rule can be seen as generalisation of modus
ponens. The formula A in that rule is also called
the cut formula.
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Sequent Calculus for First-Order Logic

Logical rules:

A, Γ ` Θ B, Γ ` Θ
∨L A ∨ B, Γ ` Θ

Γ ` Θ,A
∨R

Γ ` Θ,A ∨ B
Γ ` Θ,B

∨R
Γ ` Θ,A ∨ B

A, Γ ` Θ
∧L A ∧ B, Γ ` Θ

B, Γ ` Θ
∧L A ∧ B, Γ ` Θ

Γ ` Θ,A Γ ` Θ,B
∧R

Γ ` Θ,A ∧ B

Γ ` Θ,A B, Γ ` Θ
⊃L A⊃ B, Γ ` Θ

A, Γ ` Θ,B
⊃R

Γ ` Θ,A⊃ B

Γ ` Θ,A
¬L ¬A, Γ ` Θ

A, Γ ` Θ
¬R

Γ ` Θ,¬A

A[x/t], Γ ` Θ
∀L ∀x.A, Γ ` Θ

Γ ` Θ,A
∀R x not free in Γ,Θ

Γ ` Θ,∀x.A

A, Γ ` Θ
∃L x not free in Γ,Θ
∃x.A, Γ ` Θ

Γ ` Θ,A[x/t]
∃R

Γ ` Θ,∃x.A
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The side condition that x must not be free in Γ
and Θ in the rules ∀R and ∃L is important to avoid
variable capturing. In these two rules, the variable
x is called Eigenvariable.
In the rules ∀L and ∃R, the term t is arbitrary. It
might or might not contain x.
Gentzen called this calculus LK.
Observe that while in Hilbert systems there are
many axioms and only a few rules, in the sequent
calculus we have only a few (trivial) axioms and
many rules. This is what allows us to eventually
get more control over the structure of proofs.
Exercise 3.10: Are the following fromulas provable
in the sequent calculus?
∀x. p(x) ∨ ¬p(x)
∀x. ∀y. p(x) ∨ p(y)
∀x. ∀y. p(x) ∨ ¬p(y)
∃x. ∀y. p(x) ∨ ¬p(y)
∀x. ∃y. p(x) ∨ ¬p(y)
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Soundness and Completeness of the Sequent Calculus

Definition: A formula A is provable in LK if the sequent ` A
is derivable with the rules shown in the previous two slides.

Definition: A formula A is cut-free provable in LK if the
sequent ` A is derivable without the use of the cut-rule.

Theorem: For every formula A, the following are equivalent:
1. A is a theorem of first-order logic.
2. A is valid.
3. A is provable in LK.
4. A is cut-free provable in LK.
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Exercise 3.11: Prove 1 =⇒ 3.
Exercise 3.12: Prove 3 =⇒ 2.
The implication 3 =⇒ 4 is Gentzen’s contribution,
proved in

Gerhard Gentzen: “Untersuchungen über das
logische Schließen. I”.Mathematische
Zeitschrift (39), 1935, p.176–210

(4 =⇒ 3 is trivial.)
With this theorem, completess is easier to show, as
it is shown via contrapositive: ¬4 =⇒ ¬2 is
simpler than ¬3 =⇒ ¬2 or ¬1 =⇒ ¬2.
The implication 3 =⇒ 4 is also known as cut
elimination.
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Cut elimination

Basic idea: permute instances of cut upwards in the proof until
they meet an axiom.

commutation cases:

Γ′ ` Θ′,A
r

Γ ` Θ,A A,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

 

Γ′ ` Θ′,A A,∆ ` Λ
cut

Γ′,∆ ` Θ′,Λ
r

Γ,∆ ` Θ,Λ

key cases:

Γ ` Θ,A Γ ` Θ,B
∧R

Γ ` Θ,A ∧ B
A,∆ ` Λ

∧L A ∧ B,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

 
Γ ` Θ,A A,∆ ` Λ

cut
Γ,∆ ` Θ,Λ
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Exercise 3.13:Write down all key cases.
Exercise 3.14:What would be the base case?
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Cut elimination (cont.)

cut meets structural rules:

cases for weakening:

Γ ` Θ
weakR

Γ ` Θ,A A,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

 

Γ ` Θ
weakR

Γ ` Θ,Λ
weakL

Γ,∆ ` Θ,Λ

cases for contraction:

Γ ` Θ,A,A
conR

Γ ` Θ,A A,∆ ` Λ
cut

Γ,∆ ` Θ,Λ

 

Γ ` Θ,A,A A,∆ ` Λ
cut

Γ,∆ ` Θ,A,Λ
exchR

Γ,∆ ` Θ,Λ,A A,∆ ` Λ
cut

Γ,∆,∆ ` Θ,Λ,Λ
conR

Γ,∆,∆ ` Θ,Λ
conL

Γ,∆ ` Θ,Λ
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Because of the contraction cases, this naive cut
elimination process is not terminating.
Exercise 3.15: To see this, write down the
reduction for this case:

Γ ` Θ,A,A
conR

Γ ` Θ,A

A,A,∆ ` Λ
conL A,∆ ` Λ

cut
Γ,∆ ` Θ,Λ
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Cut elimination (cont.)

the super-cut rule:

Γ ` Θ′ ∆′ ` Λ
scut

Γ,∆ ` Θ,Λ

where
Θ′ and ∆′ are list of formulas that both contain at least
once the cut formula A.
Θ and ∆ are obtained from Θ′ and ∆′, respectively, by
removing all occurrences of the cut formula A.
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Note that the cut rule is a special case of the scut
rule.
The scut rule and its variations have many
different names in the literature. Gentzen called it
Mischung. Therefore it is often called Mix or
Merge. Very common is also multi-cut because
multiple occurrences of the cut formula occur in
the premises.
Exercise 3.16:Write down the super-cut reduction
cases for the structural rules. What do you
observe?
Exercise 3.17:Write down the key cases for
super-cut. What do you observe?
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Undecidability

Most modal logics are decidable:
We can implement a terminating proof search using cut-free
sequent calculus.

First-order logic is undecidable:
Neither cut-free sequent calculus nor any other complete
proof system can give us a terminating proof search.
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