From Proof Nets to Combinatorial Proofs

A New Approach to Hilbert’s 24th Problem

6. Lecture

Fibrations and Skew Fibrations
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What are Fibrations?

@ originate in topology as a generalization of fiber bundles:

fibre

base manifold

fibre bundle
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What are Fibrations?

@ fibrations in topology:
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Fibrations in Directed Graphs

Definition:

A fibration is a graph homomorphism f: G — H
such that forallv € Vg and w' € Vy, if W -y f(v)

then there is a unique w € Vg with w —g v and f(w) = w'.
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Fibrations in Undirected Graphs
Definition:
A fibration is a graph homomorphism f: G — H
such that forallv € Vg and w' € Vg, if {wW/,f(v)} € Ex
then there is a unique w € Vg with {w, v} € Eg and f(w) = w'.
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Skew Fibrations in Undirected Graphs

Definition:

A skew fibration is a graph homomorphism f: G — H
such that forallv € Vg and w’ € Vy, if {W,f(v)} € Ey
then there is a w with {w, v} € Eg and {W,f(w)} ¢ Ex.
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@ In skew fibrations, two conditions that hold in
fibrations are dropped:

1. uniqueness of w is not demanded anymore,
only existence

2. we no longer demand that f(w) = w’ but only
that there is no edge between the two.

@ Note that in an undirected graph there are no
reflexive edges. That means that f(w) = w’ is
allowed, and a fibrations is indeed a special case of
a skew fibration.

@ The term skew fibration is due to Hughes:

o Dominic Hughes: “Proofs Without Syntax”.
Annals of Mathematics, vol. 164, no. 3, pp.
1065-1076, 2006



Skew Fibrations in Undirected Graphs

A skew fibration is a graph homomorphism f: G — # such that forallv € Vg
and W’ € Vy, if {W',f(v)} € E3 then there is a w with {w, v} € Eg and

W, f(w)} ¢ Ex.
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. . . @ For details on SKS consult:
SKSg: A Deep Inference System for Classical Logic o Kai Brinnler and Alwen Tiu: *A Local System
for Classical Logic™. LPAR 2001, pp. 347-361
T AN o Kai Briinnler: “Deep Inference and Symmetry
il =—— it for Classical Proofs™. Ph.D. thesis, Technische
AVA L Universitat Dresden, 2003
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rewriting modulo
ANB=BAA AN(BAC)=(AAB)AC ANT =A
AVB=BVA AV(BAC)=(AVB)VC AvVL=A
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SKSg: A Deep Inference System for Classical Logic

T (CVAYAB _AANA
il = S ——— it
AVA CV(ANB) 1
AV A 1 A A
< W wh= Sy

Theorem: (Decomposition and Interpolation)
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Decomposition for the Down-Fragment
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Theorem: (Decomposition)
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Decomposition for the Down-Fragment (without units)
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Theorem: (Decomposition)

(st this is unit-free MLL
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First Skew Fibration Theorem

Theorem: Let A and B be (classical logic) formulas.
A
Then there is a skew fibration f: [A] — [B] iff {clwi}|
B

Examples:

(anb)v(anb)v ((@Vb)A(avb))
(anb)v(aab)v((@vb)a(@vb)vc
(anb)v ((@Vb)A(@vb))Vc
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@ Recall from earlier this week, that proofs in
unit-free MLL can be described by proof nets and
critically chorded RB-cographs.

@ This theorem has first been observed by Hughes:

o Dominic Hughes: “Towards HilbertaAZs 24th
Problem: Combinatorial Proof
Invariants:(preliminary version)”. Electronic
Notes in Theoretical Computer Science, vol.
165, pp. 37-63, 2006

An alternative proof using deep inference can be
found here:

o Lutz StraA§burger: “A Characterization of
Medial as Rewriting Rule”. in International
Conference on Rewriting Techniques and
Applications (RTA 2007), pp. 344-358, 2007



ALL Proof Nets and Skew Fibrations
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Another ALL Proof Net
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Second Skew Fibration Theorem

Theorem: Let A and B be formulas. Then the following are

equivalent:

1. There is an ALL proof net for A+ B.

2. There is a formula C sgch tha_t there are skew fibrations
f:[C] — [B] and g: [C] — [A].
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o Exercise 6.1: Show that every skew fibration
defines an ALL proof net.

@ Obviously not every ALL proof net is a skew
fibration.

@ Exercise 6.2: (Difficult) Prove the theorem.



Summary (Multiplicative Part)

sequent calculus:
FT,AB (deep inference:
Fa,at )S)FI',A’?B J 1 A® (B® ()
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MLL proof nets
- switching criterion handsome proof nets

(exponential) J ‘ critically chorded RB-cographs

- contraction criterion (polynomial)
(polynomial)
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Summary (Additive Part)

sequent calculus: l deep inference:
FT,A FT,B L AVA
*taat & Fraas W YT
FT,A ] A A
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ALL proof nets

- switching criterion

(exponential) J

skew fibrations
homomorphisms on cographs

with skew lifting property

- coalescence criterion (polynomial)

(polynomial)
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