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Graphs (directed and undirected)

An (undirected) graph is a pair G = 〈VG , EG〉 of a (finite) set VG
of vertices and a set EG of edges which are two-element
subsets of VG .

Example:
• •

• •

For x, y ∈ VG , we write xy ∈ EG for {x, y} ∈ EG .

A directed graph is a pair G = 〈VG , EG〉 of a (finite) set VG of
vertices and a set EG ⊆ VG × VG of edges which are
two-element subsets of VG .

Example:

• •

• •

For x, y ∈ VG , we write x G y for (x, y) ∈ EG .
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In this course, all directed and undirected graphs
are finite.
When we say graph, we always mean undirected
graph.
When we want to speak about directed graphs, we
say directed graph.
Observe the notation: {x, y} is the same as {y, x}.
But (x, y) is not the same as (y, x).
We often omit the index G, when it is clear from
context.
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Examples

undirected graph directed graph

u v

w z

u v

w z

V = {u, v,w, z} V = {u, v,w, z}

E = {uw, uv,wv, zv} w u, u v, v u, v w, v z, z z
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Graph Homomorphisms and Isomorphisms

A graph homomorphism h : G → H is
a map h : VG → VH such that
for all x, y ∈ VG we have that xy ∈ EG implies h(x)h(y) ∈ EH.

A graph isomorphism h : G → H is
a bijection h : VG → VH such that
h and h−1 are both homomorphisms.

A directed graph homomorphism h : G → H is
a map h : VG → VH such that
for all x, y ∈ VG we have that x G y implies h(x) H h(y).

A directed graph isomorphism h : G → H is
a bijection h : VG → VH such that
h and h−1 are both homomorphisms.
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Homomorphisms are structure preserving maps. In
the case of graphs, they are maps that preserve the
graph structure.
An isomorphism makes the two structures
“indistinguishable”.
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Paths and Cycles

A path p in a graph G is a sequence of vertices
x0, x1, . . . , xn ∈ VG such that x0x1, x1x2, . . . , xn−1xn ∈ EG . In
this the length of p is n. The path is elementary if all
x0, . . . , xn are pairwise distinct. A path is a cycle if x0 = xn.
The cycle is elementary if all x1, . . . , xn are pairwise distinct
(i.e., all vertices, except for x0 = xn).

Similarly for directed graphs.
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The length of the path is its number of edges.
The shortest possible cycle is an undirected graph
has length 3. In a directed graph, the shortest
possible cycle has length 1.
In the rest of the course, all paths and cycles are
elementary, but we won’t say it explicitely all the
time.
Exercise 3.1: Give the definition of (elementary)
path and cycle in directed graphs.
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Subgraphs and Induced Subgraphs

Let H = 〈VH, EH〉 and G = 〈VG , EG〉 be graphs. We say that H
is a subgraph of G if VH ⊆ VG and EH ⊆ EG .

We say that H is an induced subgraph of G if additionally

∀u, v ∈ VH. uv ∈ EG ⊃ uv ∈ EH

We say that G contains H as induced subgraph if there is an
injective homomorphism f : H → G such that f (H) is an
induced subgraph of G. If this is not the case, we say that G
is H-free.

Example: is a subgraph of

(but not an induced subgraph).
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Exercise 3.2: Give the definition of subgraph and
induced subgraph for directed graphs.
For the moment, we only consider undireced
graphs. Directed graphs return in Lectures 8,9,
and 10.

Exercise 3.3:We call P4 the graph
• •

• •
.

Which of the following 9 graphs is P4-free?

• •

• •

• •

• •

• • •

• •

•

• •

• •

• •

• •

• • •

• •

•

• •

• •

• •

• •

• • •

• •

•
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Operations on Graphs

Complement:

Ḡ = 〈VG , {xy | x 6= y and xy /∈ EG}〉

Disjoint Union:

G +H = 〈VG ] VH, EG ] EH〉

Join:

G ×H = 〈VG ] VH, EG ] EH ] {xy | x ∈ VG and y ∈ VH}〉

G +H :

G
•
...
•

H
•
...
•

G ×H :

G
•
...
•

H
•
...
•
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Exercise 3.4: Show that

G ×H = Ḡ + H̄ and ¯̄G = G
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Cographs

A cograph is a graph that can be constructed from single
vertex graphs using the operations + and ×.

A cotree is the term tree constructing the cograph.

Example: cograph cotree

a b

c d
×

c +

a b d

Theorem: A graph is a cograph if and only if it is P4-free.

( where P4 is the graph • •• • )
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The cographs is the smallest class of graph
containing the the singletons, and being closed
under complement and disjoint union.
Exercise 3.5:Which of these graphs are cographs?
Give the corresponding cotrees.

a b

c d

a b

c d

e a b

c d

e

a b

c d

a b

c d

e a b

c d

e

a b

c d

a b

c d

e a b

c d

e
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Graphs of Formulas

Mapping J·K from MLL formulas to (labelled) graphs:
JaK = •a (single vertex labelled a)

Ja⊥K = •a⊥ (single vertex labelled a⊥)

JAO BK = JAK + JBK

JA� BK = JAK× JBK

Example: J c � ((aO b) O d) K = c
a b d

Equivalence of formulas:

AO B ≡ BO A (AO B) O C ≡ AO (BO C)
A� B ≡ B� A (A� B) � C ≡ A� (B� C)

Theorem: JAK = JBK iff A ≡ B
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Exercise 3.6: Draw the graphs of the following
formulas:

(aO a⊥) � (bO b⊥)
(a� b) O (a⊥ � b⊥)
(aO (a⊥ � (bO b⊥))
(a� a⊥) O ((aO a⊥) � (aO a⊥)) O (a� a⊥)

Exercise 3.7: Prove the theorem.
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Perfect Matchings

A matching M in a graph G = 〈VG , EG〉 is subset M ⊂ EG of
pairwise disjoint edges, i.e., no two edges in M are adjacent
(share a common vertex).

A matching M is perfect if for all v ∈ VG there is a w ∈ VG
such that vw ∈ EG (i.e., every vertex is incident to a matching
edge).

Example:

• •

• •

•

•
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Attention: In the textbook definition of matching
(the one we give here), the matching is part of the
graph, i.e., every matching edge is also an edge in
the graph. But in this course, we often consider
cases where the matching not part of a certain
graph, i.e., formally, we have two graphs with the
same vertex set: one is a graph with a certain
property, very often a cograph, and the other is a
perfect matching, i.e., a graph in which every edge
participates in the matching.
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RB-graphs and RB-cographs

An RB-graph is a triple G = 〈VG ,RG ,BG〉, where 〈VG ,RG〉 is a
graph and BG is a perfect matching in the graph 〈VG ,BG〉.

An RB-cograph is an RB-graph G = 〈VG ,RG ,BG〉, where
〈VG ,RG〉 is a cograph.

Examples:

• •

• •

• •

• •
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An RB-graph can also be seen as a multigraph
G = 〈VG ,RG ] BG〉 (i.e., a graph which can have
more than one edge between two vertices), in
which BG is a perfect matching.
Following the work of Christian Retoré, we draw
the R-edges of RB-graphs in red/regular and the
B-edges in blue/bold.

Christian Retoré: “Handsome proof-nets:
perfect matchings and cographs”. Theoretical
Computer Science 294 (2003) 473–488

Christian Retoré: “Handsome proof-nets:
R&B-graphs, perfect matchings and
series-parallel graphs”. Rapport de Recherche
RR-3652, INRIA
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Æ-Paths and Æ-Cycles

An alternating elementary path (or æ-path) in an RB-graph
G = 〈VG ,RG ,BG〉 is an elementary path in 〈VG ,RG ] BG〉, such
that the edges of the path are alternating in RG and BG .
An alternating elementary cycle (or æ-cycle) in an RB-graph
G = 〈VG ,RG ,BG〉 is an elementary cycle in 〈VG ,RG ] BG〉, such
that the edges of the cycle are alternating in RG and BG .
A chord in an æ-path v0v1, . . . , vn (or in an -cycle v0v1, . . . , vn
with v0 = vn) is an edge vivj ∈ RG (with 0 ≤ i 6= j ≤ n) that is
not part of the æ-path (or æ-cycle). An æ-path (æ-cycle) in
an RB-graph is chordless if it has no chord.
An RB-graph is æ-connected if any two vertices are connected
by a chordless æ-path.
An RB-graph is æ-acyclic if it has no chordless æ-cycle.
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These definitions come from Christian Retoré’s
work.
Observe that an æ-cycle always has even length.
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What does all this have to do with proof nets?

a b
⊗

b⊥

&

c

⊗

c⊥ a⊥

&

d

⊗

d⊥

Terminology:
prenet = graph constructed from the sequent forest Γ and
axiom edges `; denoted as π(Γ, `)
proof net = a prenet that is correct, i.e., every switching is
acyclic and connected
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Recall: MLL-proof net is a formula tree with a
linking on the atoms, such that a correctness
criterion is obeyed
Today we see two ways to translate an MLL-proof
net into an RB-graph
In both cases we obtain an RB-cograph
In both cases we get the same correctness criterion:
An RB-cograph G is the translation of a proof net
if and only if it is æ-connected and æ-acyclic.
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Translating MLL-Prenets into RB-graphs (Method 1)

Let a sequent Γ and an axiom linking ` be given.

1. Translate every formula A in Γ into an RB-tree TRB(A):

TRB(a) TRB(A� B) TRB(AO B)

TRB(A) TRB(B)

A� B

TRB(A) TRB(B)

AO B

2. For each linking edge in ` add a matching edge between the
corresponding atoms

The result is an RB-cograph and called the (tree-like) RB-prenet τ(Γ, `)
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Graph theoretically, TRB(A) is not a tree, but it
carries the structure of the formula tree.
Exercise 3.8: Show that if π(Γ, `) is a MLL-prenet,
then τ(Γ, `) is indeed an RB-cograph.
Exercise 3.9: Show that in τ(Γ, `), no æ-path or
æ-cycle has a chord.
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Example

a b
⊗

b⊥

&

c

⊗

c⊥ a⊥

&

d

⊗

d⊥

Theorem: π(Γ, `) is correct iff τ(Γ, `) is æ-acyclic and æ-connected.

In that case τ(Γ, `) is called a (tree-like) RB-proof net.
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Observe that in a tree-like RB-prenet, every
æ-path and every æ-cycle is chordless. Therefore,
checking for æ-acyclicity amounts to checking that
there is no æ-cycle.
Exercise 3.10: Prove the theorem. More precisely,
show the following:
1. τ(Γ, `) is æ-acyclic iff

every switching of π(Γ, `) is acyclic.
2. τ(Γ, `) is æ-connected iff

every switching of π(Γ, `) is connected.
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Translating MLL-Prenets into RB-graphs (Method 2)

Let a sequent Γ = A1,A2, . . . ,An and an axiom linking ` be given.

1. Mapping J·K from MLL formulas to (labelled) graphs:
JaK = •a (single vertex labelled a)

Ja⊥K = •a⊥ (single vertex labelled a⊥)

JAO BK = JAK + JBK

JA� BK = JAK× JBK
Let JΓK = JA1K + JA2K + · · ·+ JAnK

2. For each linking edge in ` add a matching edge between the
corresponding atoms

The result is an RB-cograph and called the handsome RB-prenet ρ(Γ, `)

Every RB-cograph can be obtained in this way from a sequent Γ
and an axiom linking `.
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Exercise 3.11: Show that if π(Γ, `) is a
MLL-prenet, then ρ(Γ, `) is indeed an RB-cograph.
Exercise 3.12: Prove the converse, i.e., prove that
every RB-cograph can be labelled such that it is a
handsome prenet ρ(Γ, `) for some sequent Γ and
some linking `.
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Example

a b
⊗

b⊥

&

c

⊗

c⊥ a⊥

&

d

⊗

d⊥

b a a⊥ d

b⊥ c c⊥ d⊥

Theorem:
π(Γ, `) is correct iff ρ(Γ, `) is æ-acyclic and æ-connected.

In that case, ρ(Γ, `) is called a handsome proof net.
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Observe that in handsome RB-prenets, æ-paths
and æ-cycles do have chords.
Exercise 3.13: Convince yourself of the need of the
“chordless” condition. For this, consider the
following two sequents:

` a� b, (a⊥ O b⊥) � (c⊥ O d⊥), c � d

` a� b, (a⊥ � c⊥) O (b⊥ � d⊥), c � d

Note that for both sequents there is a unique
axiom linking. Try to prove both in the sequent
calculus for MLL, and draw the handsome
RB-prenet for both. Both contain an æ-cycle, but
in only one it is chordless.
Exercise 3.14: (Difficult) Show the following:
1. ρ(Γ, `) is æ-acyclic iff τ(Γ, `) is æ-acyclic.
2. ρ(Γ, `) is æ-connected iff τ(Γ, `) is æ-connected.

The term RB-proof net is used for both, the
tree-like and the handsome proof nets.
Retoré also uses the term critically chorded for a
RB-cograph that is æ-acyclic and æ-connected. In
other words, a handsome proof net is a critically
chorded RB-cograph. And every RB-cograph is a
handsome prenet. 18 / 18

Folding and Unfolding

Folding Unfolding
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The folding and unfolding are performed by small
steps that preserve chordless æ-paths and
chordless æ-cycles. Details can be found here:

Christian Retoré: “Handsome proof-nets:
R&B-graphs, perfect matchings and
series-parallel graphs”. Rapport de Recherche
RR-3652, INRIA
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