
From Proof Nets to Combinatorial Proofs
—

A New Approach to Hilbert’s 24th Problem

2. Lecture

Multiplicative Linear Logic:
Sequent proofs and Proof Nets

Willem Heijltjes and Lutz Straßburger

1 / 24 2 / 24

The Curry–Howard Isomorphism

Typed λ-terms are (isomporphic to) intuitionistic
natural-deduction proofs

[x : A]x....
M : B

λx.M : A ⊃ B
⊃I, x

M : A ⊃ B N : A
MN : B

⊃E

This includes pairs/products/conjunction

M : A M : B
〈M,N〉 : A ∧ B

∧I
M : A ∧ B
π1(M) : A

∧E, 1
M : A ∧ B
π2(M) : B

∧E, 2

2 / 24

The Curry–Howard isomorphism (or correspondence
where it is less strong) connects proof theory and com-
putation. It makes proof-theoretical constructions rele-
vant to typed functional programming, where they may
convey guarantees of termination, safety, or other good
properties.

Exercise 2.1: One case of the definition of (typed)
λ-terms is missing: the variable case. What should
it look like?
Exercise 2.2: The isomorphism also includes sums
(or coproduct, or disjuction). What are the term
constructors and typing rules for it?

3 / 24

Beta-reduction
For implication:

[x : A]x....
M : B

λx.M : A ⊃ B
⊃I, x

....
N : A

(λx.M)N : B
⊃E

[....
N : A

]
....

M[N/x] : B

For conjunction:

M : A N : B
〈M,N〉 : A ∧ B

∧I

π1〈M,N〉 : A
∧E, 1

M : A
M : A N : B
〈M,N〉 : A ∧ B

∧I

π2〈M,N〉 : B
∧E, 2

N : B

(⊃/∧)–Intuitionistic natural deduction is ideal:
Reduction is confluent and strongly normalizing
Normal forms represent the meaning of a term

3 / 24

The correspondence relates formulae to types, proofs to
programs, and here, normalization to computation (β-
reduction).

Exercise 2.3: Give also the reductions for
disjunction.
Exercise 2.4: The rules for disjunction give
permutations, and do not give unique normal
forms. Construct an example of this, or find one in
the literature.

4 / 24

Sequent calculus

x : A ` x : A
Ax

Γ ` M : B
Γ, x : A ` M : B

W
Γ, x : A, y : A ` M : B
Γ, x : A ` M[x/y] : B

C

Γ, x : A ` M : B
Γ ` λx.M : A ⊃ B

⊃R
Γ ` M : A x : B, ∆ ` N : C
Γ, f : A ⊃ B, ∆ ` N[f M/x] : C

⊃L

Γ, x : A ` M : C
Γ, y : A ∧ B ` M[π1(y)/x] : C

∧L,1
Γ, x : B ` M : C

Γ, y : A ∧ B ` M[π2(y)/x] : C
∧L,2

Γ ` M : A ∆ ` N : B
Γ, ∆ ` 〈M,N〉 : A ∧ B

∧R
Γ ` M : A x : A, ∆ ` N : B

Γ, ∆ ` N[M/x] : B
Cut

Not an isomorphism between terms and proofs
Builds terms in normal form (except the cut-rule)

4 / 24

This is a standard annotation of sequent proofs with λ-
terms. The implication and conjunctions are formulated
with multiplicative contexts, and weakening and contrac-
tion are explicit.

Exercise 2.5: Try to give an additive
(context-sharing) formulation of intuitionistic
sequent calculus. The annoying rule is the
implication-left one (⊃L). Test it by typing the
Church numeral three, λf .λx.f (f (f x)). Conclude
that the multiplicative formulation is nicer.

For the axiom and right-rules (Ax, ⊃R, ∧R) terms and
proofs are constructed correspondingly, as they are in
natural deduction. But for the left-rules (⊃L, ∧L), the
structural rules (w, c), and the cut-rule, term construc-
tion and proof construction are dissimilar.

Exercise 2.6: Prove that cut-free proofs construct
λ-terms in normal form.

5 / 24

Sequent calculus is a meta-calculus: it describes the
construction of natural-deduction proofs

Γ, x : A ` M : B
Γ ` λx.M : A ⊃ B

⊃R

[x : A]....
M : B

7→

[x : A]x....
M : B

λx.M : A ⊃ B
⊃I, x

5 / 24

The sequent rule above expresses that a natural deduc-
tion proof of B with open assumptions A, as below left,
can be transformed into one of A ⊃ B where the assump-
tions A are closed.
All sequent rules can be interpreted as constructing nat-
ural deduction proofs, in this way, and in fact Gentzen
explicitly introduced sequent calculus from this perspec-
tive in his 1934/1935 papers.

6 / 24

Γ ` M : A x : B, ∆ ` N : C
Γ, f : A ⊃ B, ∆ ` N[f M/x] : C

⊃L

....
M : A

+

[x : B]....
N : C

7→

f : A ⊃ B

....
M : A

f M : B
⊃E


....

N[f M/x] : C

Note: this may duplicate or delete M.
Possible exponential growth from sequent proof to λ-term

6 / 24

Sequent-calculus right-rules build up a natural deduction
proof at its conclusion, as ⊃R on the previous slide. Left-
rules build up a proof at its assumptions, as ⊃L here.

Exercise 2.7: Complete the demonstration of how
sequent rules construct natural deduction proofs
for the other rules. Include also disjunction if you
have given these rules previously. This makes the
translation from sequent calculus to natural
deduction explicit (it was implicit already in the
annotation with λ-terms).
Exercise 2.8: Give also a reverse translation, from
natural deduction to sequent calculus.

7 / 24

Permutations

The same λ-term can be constructed in multiple ways.
This gives rise to permutations in sequent proofs.

Γ ` M : A
x : B, ∆, y : C ` N : D
x : B, ∆ ` λy.N : C ⊃ D

⊃R

Γ, f : A ⊃ B, ∆ ` λy.N[f M/x] : C ⊃ D
⊃L

∼
Γ ` M : A x : B, ∆ ` N : D

Γ, f : A ⊃ B, ∆, y : C ` N[f M/x] : D
⊃L

Γ, f : A ⊃ B, ∆ ` λy.N[f M/x] : C ⊃ D
⊃R

....
M : A

+

[x : B] [y : C]....
N : D

7→

f : A ⊃ B

....
M : A

f M : B
⊃E

 [y : C]y

....
N[f M/x] : D

λy.N[f M/x] : C ⊃ D
⊃I, y

7 / 24

Exercise 2.9: Show three more permutations.
Exercise 2.10: Find a way to count, list, or
organize all permutations without having to
actually write them out fully.

8 / 24

Intuitionistic logic summary

Natural deduction:
Object-level calculus
Isomorphic with simply-typed λ-calculus
Does not need permutations (for ∧ and ⊃)

Sequent calculus:
Meta-level calculus
Describes construction of natural-deduction proofs
Needs permutations
Direct characterization of normal forms as cut-free

Natural deduction factors out the permutations of sequent calculus

8 / 24 9 / 24

Linear logic: the idea

In classical logic:
A ⊃ B = A ∨ B

But this breaks computational interpretations.

Enter linear logic:
A ⊃ B = ?A &B

A &B is a linear disjunction
?A non-linearizes A
A is an involutive (i.e. classical) negation

This is computational! (Or at least, not un-computational.)

9 / 24

The origins of linear logic are in its semantics of co-
herence spaces, which are an alternative by Girard to
Scott’s domains as a semantics of (untyped) λ-calculus.
However, what makes linear logic convincing is its sim-
ple and natural sequent calculus, the intuitive idea of
linearly-used resources, and its intriguing decomposition
of intuitionistic implication.
With the linear implication (, the encoding is

A ⊃ B = !A(B

where ! is the dual to ?.

10 / 24

Linear logic

` A, A
Ax

` Γ, A ` A, ∆

` Γ, ∆
Cut

Multiplicatives:

` Γ, A, B
` Γ, A &B

& ` Γ, A ` B, ∆

` Γ, A ⊗ B, ∆
⊗

Additives:

` Γ, A
` Γ, A ⊕ B

⊕,1
` Γ, B
` Γ, A ⊕ B

⊕,2
` Γ, A ` Γ, B
` Γ, A & B

&

Exponentials:

` ?Γ, A
` ?Γ, !A

!
` Γ, A
` Γ, ?A

?
` Γ

` Γ, ?A
w

` Γ, ?A, ?A
` Γ, ?A

c

10 / 24

The connectives are called: par &, tensor ⊗, plus ⊕, with
&, bang !, and why not ?.
The modality ? governs whether formulas can be weak-
ened and contracted or not. The rule ! for the bang
requires that the context ?Γ =?A1, . . . , ?An contains only
formulae that can be contracted. This is necessary for
cut-elimination to work.

Exercise 2.11: Investigate this by giving a
cut-reduction step for:

` ?Γ, !A

` ?A, ?A, ∆

` ?A, ∆
c

` ?Γ, ∆
Cut

Is the ? on the context ?Γ necessary here?

11 / 24

The dream of the 90s

New grounds in typed functional programming:
Linearity gives destructive updates (i.e. mutable state)
Multiplicatives ⊗ and &give deadlock-free concurrency

But:
The proof system is a sequent calculus!
What about natural deduction?

11 / 24

Linear logic led to a great diversification of research in
the areas around proof theory and computation in the
1990s, going into the 2000s and 2010s. Early new en-
trants were game semantics, interaction nets, and geom-
etry of interaction.
From the start, the hope was that linear logic could give
a proof-theoretic (and thus typed, and thus safe) account
of various computational phenomena, such as destructive
updates and concurrency. The programming language
Clean, developed independently and simultaneously with
linear logic, implements the former idea. Work towards
the latter continues in the area of session types.

12 / 24

Proof nets
Idea: remove the contexts Γ,∆ from the rules.

` A, A
Ax 7→

A A

` Γ, A ` B, ∆

` Γ, A ⊗ B, ∆
⊗ 7→

A B
A ⊗ B

` Γ, A, B
` Γ, A &B

& 7→
A B
A &B

` Γ, A ` A, ∆

` Γ, ∆
Cut 7→ A A

inferences become nodes, called links,
in a graph called a proof structure

12 / 24 13 / 24

Example

` a, a Ax
` b, b

Ax
` c, c Ax

` b, b ⊗ c, c
⊗

` a, a ⊗ b, b ⊗ c, c
⊗

7→

∼ a a b b c c
a ⊗ b b ⊗ c

7→

` a, a Ax ` b, b
Ax

` a, a ⊗ b, b
⊗

` c, c Ax

` a, a ⊗ b, b ⊗ c, c
⊗

13 / 24 14 / 24

Two perspectives

Graph–of–rules:
Nodes/links represent
inferences
Natural deduction–like
Focus: computation

Sequent + axioms:
Nodes represent
connectives
String diagram–like
Focus: canonicity

a a b b c c
a ⊗ b b ⊗ c

a a b
⊗

b c
⊗

c

a , a ⊗ b , b ⊗ c , c

14 / 24 15 / 24

Correctness

Which proof structures come from proofs?

correct: A A

&

incorrect: A A
⊗

All rules except

&

create connected acyclic graphs

` A, A
Ax

A A
A A ` Γ, A ` A, ∆

` Γ, ∆
Cut

` Γ, A ` B, ∆

` Γ, A ⊗ B, ∆
⊗
A B
⊗

A B

&

` Γ, A, B
` Γ, A &B

&

The premises of

&

must already be connected

15 / 24 16 / 24

MLL proof nets

Definition
A proof net is a sequent Γ with a correct linking, where:

A linking on a sequent Γ is a partitioning of its atoms into
dual, unordered pairs
A switching of Γ is a choice of left/right for each

&

A switching graph for a linking and a switching on Γ is the
undirected graph where nodes are connectives and atoms of
Γ and edges connect:

each ⊗ to both children
each

&

to the child indicated by the switching
each pair of atoms in the linking

A linking for Γ is correct if each switching graph is acyclic and
connected

16 / 24

This is the sequent + axioms definition.

Exercise 2.12: Give also the graph–of–rules
definition.
Exercise 2.13: Prove that the two definitions are
isomorphic.

17 / 24

Example

a b
⊗

b

&

c

⊗

c a

&

d

⊗

d

a b
⊗

b

&

c

⊗

c a

&

d

⊗

d a b
⊗

b

&

c

⊗

c a

&

d

⊗

d

a b
⊗

b

&

c

⊗

c a

&

d

⊗

d a b
⊗

b

&

c

⊗

c a

&

d

⊗

d

17 / 24 18 / 24

Contractibility

1. Start from an unlabelled graph with paired &-edges
2. Contract by:

• • • •

↓ ↓

• •

3. Correct ⇔ contracts to a single point

Implemented in linear time via union–find

18 / 24 19 / 24

a b
⊗

a b

&

&

•

•

•

•

•

•

•

7→

•

•

•

•

•

•

7→ •

•

•

• •

7→

•

•

• 7→

•

•

7→ •

20 / 24 21 / 24

a, a b, b
(a ⊗ b), a, b

(a ⊗ b), a &b

(a ⊗ b)

&a &b

a, a b, b
(a ⊗ b), a, b

(a ⊗ b), a &b

(a ⊗ b)

&a &b

•

•

•

•

•

•

•

7→

•

•

•

•

•

•

7→ •

•

•

• •

7→

a, a b, b
(a ⊗ b), a, b

(a ⊗ b), a &b

(a ⊗ b)

&a &b

a, a b, b
(a ⊗ b), a, b

(a ⊗ b), a &b

(a ⊗ b)

&a &b

a, a b, b
(a ⊗ b), a, b

(a ⊗ b), a &b

(a ⊗ b)

&a &b

•

•

• 7→

•

•

7→ •

21 / 24 22 / 24

Sequentialization: proof nets 7→ sequent proofs

De-sequentialization: sequent proofs 7→ proof nets

Theorem
Sequentialization and de-sequentialization are inverses (up to
permutations).

Theorem
A linking is correct if and only if it contracts, if and only if it
sequentializes.

Theorem
Two sequent proofs are equivalent under permutations if and only
if they translate to the same proof net.

23 / 24

The proofs of these theorems are a little tricky, but not
infeasible. You can attempt them yourself.

24 / 24

Bibliography
G. Gentzen, Untersuchungen über das logische Schließen I, II.
Mathematische Zeitschrift 39, 1934, 1935

W. A. Howard, The formulae-as-types notion of construction. In: To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, Eds. J. P. Seldin and J. R. Hindley, Academic Press, 1980

J.-Y. Girard, Linear Logic. Theoretical Computer Science 50(1), pp.
1–102, 1987

V. Danos & L. Regnier, The structure of multiplicatives. Archive for
Mathematical Logic 28(3), pp. 181–203, 1989

J.-Y. Girard, Y. Lafont & P. Taylor, Proofs and Types. Cambridge
University Press, 1989

V. Danos, La Logique Linéaire appliquée à l’étude de divers processus
de normalisation (principalement du Lambda-calcul), PhD Thesis,
Université Paris 7, 1990

24 / 24 25 / 24

