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These are the slides an notes for the course “From Proof
Nets to Combinatorial Proofs — A New Approach to
Hilbert’s 24th Problem” given at ESSLLI 2021. The sum-
mer school was planned to be held in Utrecht, but due
the the Covid-19 crises it is being held online via Zoom.
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Overview

1. The problem of proof identity
2. MLL: sequent proofs and proof nets
3. Cographs and handsome proof nets
4. Deep inference
5. ALL: sequent proofs, proof nets, and deep inference
6. Fibrations and skew fibrations
7. Classical propositional combinatorial proofs
8. First-order combinatorial proofs
9. Intuitionistic combinatorial proofs
10. Normalization
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5 x 90 min =⇒ 10 x 45 min

MLL = multiplicative linear logic
ALL = additive linear logic
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From Proof Nets to Combinatorial Proofs
—

A New Approach to Hilbert’s 24th Problem

1. Lecture

The Problem of Proof Identity

Willem Heijltjes and Lutz Straßburger
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What is Proof Theory?

Group theory = theory of groups
- well-established definition of group
- two groups are the same if they are isomorphic

Graph theory = theory of graphs
- well-established definition of graph
- two graphs are the same if they are isomorphic

Proof theory = theory of (formal) proofs ???
- no well-established definition of formal proof
- no idea when two proofs are the same
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What is Proof Theory?

At the current state of the art,
Proof theory is not the theory of proofs but
the theory of proof systems.

All important results in proof theory are about proof systems:
soundness
completeness
cut elimination
focusing
p-equivalence
...

Can we make
proof theory a
theory of proofs?
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Can we make proof theory a theory of proofs?

1. What is a proof?
⇒ define proofs independently from the proof systems

2. When are two proofs the same?
⇒ define a notion of proof identity
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Hilbert’s 24th problem

As 24th problem in my Paris lecture, I wanted to ask the question: Find criteria of simplicity or rather prove the greatest
simplicity of given proofs. More generally develop a theory of proof methods in mathematics. Under given conditions
there can be only one simplest proof. And if one has 2 proofs for a given theorem, then one must not rest before one has
reduced one to the other or discovered which different premises (and auxiliary means) have been used in the proofs:
When one has two routes then one must not just go these routes or find new routes, but the whole area lying between
these two routes must be investigated. . .
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Hilbert was thinking about adding the problem of proof
identity as 24th problem to his famous lecture with the
famous 23 problems that was held in 1900. But proof
theory as a field was only established in 1928 with the
appearance of the Book “GrundzÃĳge der theoretischen
Logik” by Hilbert and Ackermann. So, the problem of
proof identity is older than proof theory itself.
Sources:

picture of Hilbert:
https://de.wikisource.org/wiki/David_
Hilbert?uselang=de#/media/Datei:
Hilbert.jpg

Notebook of Hilbert:
David Hilbert, Mathematische Notizbücher,
Niedersächsische Staats- und Universitätbibliothek,
Cod. Ms. D. Hilbert 600:3, S.25
(Scan from a hardcopy made by Rüdiger Thiele)
Translation: Lutz Straßburger

See also:
Rüdiger Thiele: “Hilbert’s Twenty-Fourth Problem”.
American Mathematical Monthly 110, pp 1–24,
2003
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When are two proofs the same?

Normalization?

Curry-Howard-Correspondence
formulas = types
proofs = programs
normalization = computation

fondations of functional programming languages
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Two proofs are the same iff they have the same normal
form.

propositional logic: exponential blow-up
predicate logic: elementary blow-up
Identify a proof on an A4-page with a proof of the
size of the universe
corresponds to removing lemmas from a proof.
But lemmas are important in mathematical proofs.
Example: Normalizing Fürstenberg’s proof of the
inifinity of primes yields Euklid’s proof
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When are two proofs (in normal form) the same?

Rule permutation?

` Γ,A,B, C ` D,∆
∧
` Γ,A,B, C ∧ D,∆

∨
` Γ,A ∨ B, C ∧ D,∆

?
=

` Γ,A,B, C
∨
` Γ,A ∨ B, C ` D,∆

∧
` Γ,A ∨ B, C ∧ D,∆

(1)

` Γ, C ` D,∆
∧
` Γ, C ∧ D,∆

weak
` Γ,A, C ∧ D,∆

?
=

` Γ, C
weak

` Γ,A, C ` D,∆
∧
` Γ,A ∨ B, C ∧ D,∆

(2)

` Γ,A,B, C ` Γ,A,B,D
∧

` Γ,A,B, C ∧ D
∨
` Γ,A ∨ B, C ∧ D

?
=

` Γ,A,B, C
∨
` Γ,A ∨ B, C

` Γ,A,B,D
∨
` Γ,A ∨ B,D

∧
` Γ,A ∨ B, C ∧ D

(3)
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Two proofs are the same iff they can be transformed into
each other via a sequence of rule permutation steps.

works only for sequent calculus like formalisms
PSPACE-hard if (2) is present
exponential blow-up of the size of the proof if (3)
is present
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When are two proofs (in normal form) the same?

Rule permutation?

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
C ` C

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−
A,¬A ∨ C ` C

axiom −−−−−−−
A ` A

axiom −−−−−−−
B ` B

→L −−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B ` B

∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C ` C ∧B

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

axiom −−−−−−−
A ` A

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
B ` B

axiom −−−−−−−
C ` C

∧R −−−−−−−−−−−−−−−−−−−−−−−−−
B,C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B,C,C ∧B → D ` D

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,B,¬A ∨ C,C ∧B → D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C,C ∧B → D ` D

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D
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Example.
These two are equivalent modulo rule permutations.
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When are two proofs (in normal form) the same?

???

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

¬(A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D))

D

¬A

¬(A → B)

¬(¬A ∨ C)

¬(C ∧B → D)

A

closed

¬B

A

closed

¬C

C ∧B

B

closed

C

closed

¬D
closed

[F ]
∧E −−−−−−−−−

¬A ∨ C

[F ]
∧E −−−

A [¬A]
¬E −−−−−−−−−−−

⊥
⊥E −−

C [C]
∨E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C

[F ]
∧E −−−

A

[F ]
∧E −−−−−−−−

A → B
→E −−−−−−−−−−−−−−−−−−

B
∧I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C ∧B

[F ]
∧E −−−−−−−−−−−−−−

C ∧B → D
→E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D
→I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

Goal A /\ (A -> B) /\ (~A \/ C) /\ (C /\ B -> D) -> D.

Proof.

intros h1. destruct h1 as [ha h2].

destruct h2 as [hab h3]. destruct h3 as [hac h4].

apply h4. split.

apply hab. exact ha.

destruct hac as [hna|hc]. elim hna. exact ha.

exact hc.

Qed.
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This is a semantic tableau, a natural deduction proof,
and a Coq script, all proving the same formula.

Are these proofs “the same”?
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Combinatorial Proof Identity

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

¬(A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D))

D

¬A

¬(A → B)

¬(¬A ∨ C)

¬(C ∧B → D)

A

closed

¬B

A

closed

¬C

C ∧B

B

closed

C

closed

¬D
closed

axiom −−−−−−−
A ` A

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
B ` B

axiom −−−−−−−
C ` C

∧R −−−−−−−−−−−−−−−−−−−−−−−−−
B,C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B,C,C ∧B → D ` D

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,B,¬A ∨ C,C ∧B → D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C,C ∧B → D ` D

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

axiom −−−−−−−
A ` A

¬L −−−−−−−−−
A,¬A `

axiom −−−−−−−
C ` C

∨L −−−−−−−−−−−−−−−−−−−−−−−−−−−
A,¬A ∨ C ` C

axiom −−−−−−−
A ` A

axiom −−−−−−−
B ` B

→L −−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B ` B

∧R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A,A→ B,¬A ∨ C ` C ∧B

con −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C ` C ∧B

axiom −−−−−−−
D ` D

→L −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A,A→ B,¬A ∨ C,C ∧B → D ` D

∧L(3×) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D) ` D

→R −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
` A ∧ (A→ B) ∧ (¬A ∨ C) ∧ (C ∧B → D)→ D

[F ]
∧E −−−−−−−−−

¬A ∨ C

[F ]
∧E −−−

A [¬A]
¬E −−−−−−−−−−−

⊥
⊥E −−

C [C]
∨E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C

[F ]
∧E −−−

A

[F ]
∧E −−−−−−−−

A → B
→E −−−−−−−−−−−−−−−−−−

B
∧I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C ∧B

[F ]
∧E −−−−−−−−−−−−−−

C ∧B → D
→E −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

D
→I −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

A ∧ (A → B) ∧ (¬A ∨ C) ∧ (C ∧B → D) → D

Goal A /\ (A -> B) /\ (~A \/ C) /\ (C /\ B -> D) -> D.

Proof.

intros h1. destruct h1 as [ha h2].

destruct h2 as [hab h3]. destruct h3 as [hac h4].

apply h4. split.

apply hab. exact ha.

destruct hac as [hna|hc]. elim hna. exact ha.

exact hc.

Qed.

‚
‚ ‚ ‚ ‚ ‚ ‚

‚
‚ ‚

A^ pAÑ Bq ^ p A_ Cq ^ pC ^B Ñ Dq Ñ D

Two proofs are the
same if they corre-
spond to the same
combinatorial proof.
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The term “combinatorial proof identity” does not
yet occur in the literature. We invented it for this
course.
This course is about the stuff that goes into the
yellow blob in the middle.
The technical details about “the yellow blob in the
middle” depend on the logic. In every logic
behaves differently when it comes to the strucure
of its proofs. This means that the answer to the
question of when two proofs are the same might be
different for every logic. In this course we look into
the following five logics:

classical propositional logic
classical first-order logic
intuitionistic propositional logic
multiplicative linear logic
additive linear logic
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Classical Propositional Logic (CPL)

Formulas: A ····= a | ā | A ∧ B | A ∨ B

Negation: ¯̄a = a A ∧ B = Ā ∨ B̄ A ∨ B = Ā ∧ B̄

Implication: A⊃ B = Ā ∨ B

Sequents: Γ ····= A1,A2, . . . ,Ak

Inference rules (sequent calculus):

ax
` a, ā

` Γ,A,B
∨
` Γ,A ∨ B

` Γ,A ` ∆,B
∧
` Γ,∆,A ∧ B

` Γ,A,A
cont

` Γ,A

` Γ
weak

` Γ,A
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We are using formulas in negation normal form
(NNF) because we need only half as many
inference rules.
We don’t have the constants truth and falsum in
the language to avoid unnecessary complications in
later parts of the course. Note that in classical
logic we can pick a fresh proposional variable a0
and define truth as a0 ∨ ā0 and falsum as a0 ∧ ā0.
Sequents are multisets of formulas. The meaning is
the disjunction of the formulas.
In this course, we always consider the comma in
the sequent notation to be associative and
commutative.
Sequent derivations are formally trees whose nodes
are the instances of the inference rules, and whose
edges are the sequents. (Sequent) proofs are
derivations where all leaves are axioms.
Exercise 1.1: Prove Pierce’s law ((a⊃ b)⊃ a)⊃ a in
this sequent calculus.
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First-Order Classical Logic (FOL) — Formulas

Terms: t ····= x | f (t1, . . . , tn)

Atoms: a ····= p(t1, . . . , tm) | p(t1, . . . , tm)

Formulas: A ····= a | A ∧ A | A ∨ A | ∃x.A | ∀x.A

Sequents: Γ ····= A1,A2, . . . ,Ak

Negation: a = a p(t1, . . . , tm) = p(t1, . . . , tm)

p(t1, . . . , tm) = p(t1, . . . , tm)

A ∧ B = A ∨ B ∃x.A = ∀x.A
A ∨ B = A ∧ B ∀x.A = ∃x.A

14 / 21

As in the propositional case, we consider formulas
in NNF.
We do not discuss semantics in this course.
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First-Order Classical Logic (FOL) — Sequent Calculus

ax
` a, ā

` Γ,A,B
∨
` Γ,A ∨ B

` Γ,A ` B,∆
∧
` Γ,A ∧ B,∆

` Γ,A[x/t]
∃
` Γ, ∃x.A

` Γ,A
∀ (x not free in Γ)
` Γ, ∀x.A

` Γ,A,A
cont

` Γ,A

` Γ
weak

` Γ,A
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We only need to add the rules for the quantifiers
to the propositional system.
We also do not discuss the cut rule

` Γ,A ` ∆, Ā
cut

` Γ,∆

All sequent systems we discuss in this course
admit cut elimination.
Exercise 1.2: Prove the drinker’s formula
∃x.(px ⊃ ∀y.py) in the sequent calculus. ‘
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Additive vs. Multiplicative

multiplicative additive

` Γ,A,B
∨
` Γ,A ∨ B

` Γ,A
∨
` Γ,A ∨ B

` Γ,B
∨
` Γ,A ∨ B

disjunction ↓ ↓

` Γ,A,B
O
` Γ,AO B

` Γ,A
�
` Γ,A� B

` Γ,B
�
` Γ,A� B

` Γ,A ` ∆,B
∧
` Γ,∆,A ∧ B

` Γ,A ` Γ,B
∧

` Γ,A ∧ B

conjunction ↓ ↓

` Γ,A ` ∆,B
�
` Γ,∆,A� B

` Γ,A ` Γ,B
N

` Γ,AN B
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When contraction and weakening are in the
system, additive and multiplicative formulations of
the and-rule (resp. or-rule) are equivalent. But
when contraction and weakening are absent, they
define different connectives.
Exercise 1.3: Show that with contraction and
weakening AO B and A� B imply each other, and
similarly for A� B and AN B. Which implications
hold when only weakening is present, and which
when only contraction is present?
The terminology “additive/multiplicative” is due
to Girard. Same for the choice of symbols.

Jean-Yves Girard: “Linear logic”. Theoret.
Comput. Sci. 50 (1), pp.1–102, 1987
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Multiplicative Linear Logic (MLL)

Formulas: A ····= a | a⊥ | A� B | AO B

Negation: a⊥⊥ = a, (A� B)⊥ = A⊥ O B⊥, (AO B)⊥ = A⊥ � B⊥

Implication: A( B = A⊥ O B

Sequents: Γ ····= A1,A2, . . . ,Ak

Inference rules (sequent calculus):

ax
` a, a⊥

` Γ,A,B
O
` Γ,AO B

` Γ,A ` ∆,B
�
` Γ,∆,A� B
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Exercise 1.4: Find a formula that is provable in
classical logic but not in MLL. What about the
other way around?
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Multiplicative Additive Linear Logic (MALL)

Formulas: A ····= a | a⊥ | A� B | AO B | AN B | A� B

Negation: a⊥⊥ = a, (A� B)⊥ = A⊥ O B⊥, (AO B)⊥ = A⊥ � B⊥

(AN B)⊥ = A⊥ � B⊥, (A� B)⊥ = A⊥ N B⊥

Implication: A( B = A⊥ O B

Sequents: Γ ····= A1,A2, . . . ,Ak

Inference rules (sequent calculus):

ax
` a, a⊥

` Γ,A,B
O
` Γ,AO B

` Γ,A ` ∆,B
�
` Γ,∆,A� B

` Γ,A ` Γ,B
N

` Γ,AN B
` Γ,A

�
` Γ,A� B

` Γ,B
�
` Γ,A� B
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Additive Linear Logic (ALL)

Formulas: A ····= a | a⊥ | AN B | A� B

Negation: a⊥⊥ = a (AN B)⊥ = A⊥ � B⊥, (A� B)⊥ = A⊥ N B⊥

Sequents: Γ ····= A1,A2, . . . ,Ak

Inference rules (sequent calculus):

ax
` a, a⊥

` Γ,A ` Γ,B
N

` Γ,AN B
` Γ,A

�
` Γ,A� B

` Γ,B
�
` Γ,A� B
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Observe that every provable sequent in ALL has
exactly two formulas.
Exercise 1.5: Find a two-formula sequent that is
provable in classical logic but not in ALL. What
about the other way around?
Exercise 1.6: Find a two-formula sequent that is
provable in MLL but not in ALL. What about the
other way around?
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Intuitionistic Propositional Logic (IPL)

Formulas: A ····= a | A ∧ B | A⊃ B

Sequents: A1,A2, . . . ,Ak ` B

Inference rules (sequent calculus):

ax
a ` a

Γ,A,A ` B
cont

Γ,A ` B
Γ ` B

weak
Γ,A ` B

Γ,A,B ` C
∧L

Γ,A ∧ B ` C
Γ ` A ∆ ` B

∧R
Γ,∆ ` A ∧ B

Γ ` A B,∆ ` C
⊃L

Γ,A⊃ B,∆ ` C
Γ,A ` B

⊃R
Γ ` A⊃ B
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In this course we only consider the disjunction-free
fragment of intuitionistic logic (∨ and ⊥ are
absent).
Note that implication is now a primitive.
Negation can be recovered by fixing a fresh
propositional variable a0 and define ¬A = A⊃ a0.
We need two-sided sequents, and there is exactly
one formula on the right.
Each logical connective has a left-rule and a
right-rule.
Exercise 1.7: Can you prove Pierce’s law
((a⊃ b)⊃ a)⊃ a in intuitionistic logic?
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Intuitionistic Multiplicative Linear Logic (IMLL)

Formulas: A ····= a | A� B | A( B

Sequents: A1,A2, . . . ,Ak ` B

Inference rules (sequent calculus):

ax
a ` a

Γ,A,B ` C
�L

Γ,A� B ` C
Γ ` A ∆ ` B

�R
Γ,∆ ` A� B

Γ ` A B,∆ ` C
(L

Γ,A( B,∆ ` C
Γ,A ` B

(R
Γ ` A( B
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Recall that in classical logic we can encode A⊃ B
as Ā ∨ B. So, every formula in IPL can be seen as a
formula in CPL.
In the same way we have in linear logic that A( B
is the same as A⊥ O B. Hence, every formula of
IMLL is also a formula of MLL.
Exercise 1.8: Find an IPL formula that is provable
in CPL but not in IPL (or prove that such a
formula does not exist).
Exercise 1.9: Find an IMLL formula that is
provable in MLL but not in IMLL (or prove that
such a formula does not exist).
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