
Gaussian random projections for Euclidean membership
problems

Ky Vua, Pierre-Louis Poirionb, Leo Libertic

aITCSC, Chinese University of Hong Kong, P.R. China
bHuawei Research Center, Paris, France

cCNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

Abstract

We discuss the application of Gaussian random projections to the fundamental
problem of deciding whether a given point in a Euclidean space belongs to a
given set. In particular, we consider the two cases, when the target set is either
at most countable or of low doubling dimension. We show that, under a num-
ber of different assumptions, the feasibility (or infeasibility) of this problem is
preserved almost surely when the problem data is projected to a lower dimen-
sional space. We also consider the threshold version of this problem, in which
we require that the projected point and the projected set are separated by a
certain distance error. As a consequence of these results, we are able to improve
the bound of Indyk-Naor on the Nearest Neigbour preserving embeddings. Our
results are applicable to any algorithmic setting which needs to solve Euclidean
membership problems in a high-dimensional space.

Keywords: Johnson-Lindenstrauss lemma, Machine Learning, Euclidean
Distance Geometry, clustering.

1. Introduction

Random projections are useful dimension reduction techniques which are
widely used in many areas such as Machine Learning [4, 8], Computer Science
[12, 18], Numerical Linear Algebra [17, 23] and so on. In standard algorithmic
settings, assume we have an algorithm A acting on a data set X consisting
of n vectors in Rm, where m is large, and assume that the complexity of A
depends on m and n in a way that makes it impossible to run A sufficiently
fast. A random projection exploits the statistical properties of some random
distribution to construct a mapping which embeds X into a lower dimensional
space Rk (for some appropriately chosen k) while preserving distances, angles,
or other quantities used by A. Their simplicity notwithstanding, the perfor-
mance of random projections is comparable to more complicated methods such
as SVD and PCA [5]. One striking example of random projections is the famous
Johnson-Lindenstrauss lemma [14]:
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1.1 Theorem (Johnson-Lindenstrauss Lemma (JLL))
Let X be a set of n points in Rm and ε > 0. Then there is a map F : Rm → Rd

where d is O( logn
ε2 ), such that for any x, y ∈ X, we have

(1− ε)‖x− y‖22 ≤ ‖F (x)− F (y)‖22 ≤ (1 + ε)‖x− y‖22. (1)

Intuitively, this lemma claims that X can be projected into a much lower
dimensional space whilst keeping Euclidean distances approximately the same.
The main idea to prove Theorem 1.1 is to construct a random linear mapping T
(called JL random mapping onwards), sampled from certain distribution fami-
lies, so that for each x ∈ Rm, the event that

(1− ε)‖x‖22 ≤ ‖T (x)‖22 ≤ (1 + ε)‖x‖22 (2)

occurs with high probability. By Eq. (2) and the union bound, it is possible to
show the existence of a map F with the stated properties [1, 7]. The JLL is a
consequence of a general property of sub-gaussian random mappings T = 1√

d
U

[19]. Some of the most popular choices for U are:
Choices of random projection

1. U =
√
mP where P is the orthogonal projections on a random k-dimensional

linear subspace of Rm [14];

2. random d × m matrices with each entry independently drawn from the
standard normal distribution N (0, 1) [13];

3. random d ×m matrices with each entry independently taking values +1
and −1, each with probability 1

2 [1];

4. random d × m matrices with entries independently taking values +1, 0,
−1, respectively with probability 1

6 , 2
3 , 1

6 [1].

In this paper we employ random projections to study the following meta-
problem (parametrized on S):

Euclidean Set Membership Problem (ESMP). Given b ∈ Rm
and S ⊆ Rm, decide whether b ∈ S.

This problem is important and extensively studied in optimization as feasi-
bility problems. For example, any linear and integer programming problem can
be transformed easily (by bisection arguments) into feasibility problems:

Integer and Linear Feasibility Problems. Decide whether
the set {x ∈ X |Ax = b} is empty or not,

where X is either Rn+ or Zn+. This is exactly the membership problem where S
is the restricted linear span {Ax | x ∈ X}.

In this paper, we consider the general case where the data set S has no
specific structure. We will use a random projection T = 1√

d
U (we assume in

the whole paper than d ≥ 3), where U is a Gaussian random projection, i.e., a
random d×m matrix with each entry independently drawn from the standard
normal distribution N (0, 1), in our arguments to embed both b and S to a lower
dimensional space, and solve its associated projected version:

Projected ESMP (PESMP). Given b ∈ Rm and S ⊆ Rm, and let
T : Rm → Rd be a random projection. Decide whether T (b) ∈ T (S).
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Our objective is to investigate the relationships between ESMP and PESMP.
It is easy to argue that b ∈ S implies T (b) ∈ T (S). In this paper, we are only
interested in the problematic case when b /∈ S. Since T is a random projec-
tion, we want to estimate Prob(T (b) /∈ T (S)), given that b /∈ S. Notice that the
probability does not change if we multiply T by some constant. Hence we could
simply consider a Gaussian random matrix U instead of T = 1√

d
U , however for

the sake of clarity in the proof, we will work with normalized Gaussian random
matrix, i.e., T , in the whole paper.

1.1. Our contributions

We concentrate on the use of Gaussian random projections as a tool for
dimension reduction in the general Euclidean membership problem. We consider
two special cases: S is at most countable (i.e. finite or countable) and S is of
low doubling dimension.

In the first case, using a straightforward argument, we prove that these
two problems (ESMP and PESMP) are equivalent almost surely regardless of
the projected dimension. However, this result is only of theoretical interest,
possibly due to round-off errors in floating point operations which make its
practical application difficult. We address this issue by introducing a threshold
τ > 0 and study the corresponding “threshold” problem:

Threshold ESMP (TESMP): Given b, S, T as above. Let τ > 0.
Decide whether ‖T (b)− T (S)‖ ≥ τ .

In the case when S may also be uncountable, we prove that ESMP and
PESMP are also equivalent if the projected dimension d is proportional to some
intrinsic dimension of the set S. In particular, we employ the notion of doubling
dimension (defined later) to prove that, if b /∈ S, then T (b) /∈ T (S) almost surely
as long as the projected dimension d ≥ C ddim(S), where ddim(S) is the doubling
dimension of S and C is some universal constant. We extend this result to the
threshold case, and obtain a more useful bound for d. It turns out that, as a
consequence of that result, we are able to improve a bound of Indyk-Naor on

the Nearest Neigbour preserving embeddings by a factor of log(1/δ)
ε .

1.2. Applicability

Although this paper only makes theoretical contributions, the applicability
of random projections is beyond doubt. They are routinely used in large-scale
problems arising in clustering, for example for images and text. We are ourselves
pursuing random projections in the context of linear and integer programming
[22].

2. Finite and countable sets

In this section, we assume that S is either finite or countable. Let U ∈ Rd×m
be a random matrix drawn from Gaussian distribution, i.e. each entry of U is
independently sampled from N (0, 1). It is well known that, for an arbitrary
unit vector a ∈ Sm−1, ‖Ua‖2 is a random variable with a Chi-squared distri-
bution χ2

d with d degrees of freedom [20]. Its corresponding density function is
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2−d/2

Γ(d/2)x
d/2−1e−x/2, where Γ(·) is the gamma function. By [7], for any 0 < δ < 1,

taking z = δ
d yields a cumulative distribution function (CDF)

Fχ2
d
(δ) ≤ (ze1−z)d/2 < (ze)d/2 =

(
eδ

d

)d/2
. (3)

Thus, we have

Prob(‖Ua‖ ≤ δ) = Fχ2
d
(δ2) < (

3

d
δ2)d/2 (4)

or, more simply, Prob(‖Ua‖ ≤ δ) < δd when d ≥ 3.
In the case of a normalized Gaussian random projection T = 1√

d
U , we have

Prob(‖Ta‖ ≤ δ) = Prob(‖Ua‖ ≤
√
dδ) < (3δ2)

d
2 (5)

Using this estimation, we immediately obtain the following result.

2.1 Proposition
Given b ∈ Rm and S ⊆ Rm, at most countable, such that b /∈ S. Then, for

any d ≥ 1 and for a normalized Gaussian random projection T : Rm → Rd
(T = 1√

d
U) , we have T (b) /∈ T (S) almost surely, i.e. Prob

(
T (b) /∈ T (S)

)
= 1.

Proof. First, note that for any a 6= 0, Ta 6= 0 holds almost certainly. Indeed,
without loss of generality we can assume that ‖a‖ = 1. Then for any 0 < δ < 1:

Prob
(
T (a) = 0

)
≤ Prob

(
‖Ta‖ ≤ δ

) (5)
< (3δ2)d/2 → 0 as δ → 0. (6)

It means that for any y 6= b, then T (y) 6= T (b) almost surely. Since the event
T (b) /∈ T (S) can be written as the intersection of at most countably many
“almost sure” events T (b) 6= T (y) (for y ∈ S), it follows that Prob

(
T (b) /∈

T (S)
)

= 1, as claimed. 2

Proposition 2.1 is simple, but it looks interesting because it suggests that we
only need to project the data points to a line (i.e. d = 1) and study an equivalent
membership problem on a line. This idea, stated somewhat differently in terms
of random aggregations of linear constraints, appears to be part of the folklore
of linear and integer programming.

It turns out that this result remains true for a large class of random projec-
tions.

2.2 Proposition
Let ν be a probability distribution on Rm with bounded Lebesgue density f .
Let S ⊆ Rm be an at most countable set such that 0 /∈ S. Then, for a random
projection T : Rm → R1 sampled from ν, we have 0 /∈ T (S) almost surely,
i.e. Prob

(
0 /∈ T (S)

)
= 1.

Proof. For any 0 6= s ∈ S, consider the set Es = {T : Rm → R1 | T (s) = 0}.
If we regard each T : Rm → R1 as a vector t ∈ Rm, then Es is a hyperplane
{t ∈ Rm| s · t = 0} and we have

Prob(T (s) = 0) = ν(Es) =

∫
Es
fdµ ≤ ‖f‖∞

∫
Es
dµ = 0
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where µ denotes the Lebesgue measure on Rm. The proof then follows by the
countability of S, similarly to Proposition 2.1. 2

Appealing as the idea may be, it does not seem to work in practice. We
tested it by considering the ESMP given by the Integer Feasibility Problem
(IPF) defined on the set {x ∈ Zn+∩[L,U ] | Ax = b}, where L,U ∈ Qn and, for all
i = 1, · · · , n, Li ≤ Ui. Numerical experiments indicate that the corresponding
PESMP {x ∈ Zn+ ∩ [L,U ] | T (A)x = T (b)}, with T consisting of a one-row
Gaussian projection matrix, is always feasible despite the infeasibility of the
original IPF. Since Prop. 2.1 assumes that the components of T are real numbers,
the reason behind this failure is possibly due to the round-off error associated to
the floating point representation used in computers. Specifically, when T (A)x
is too close (but not equal) to T (b), floating point operations will consider
them as a single point. In order to address this issue, we force the projected
problems to obey stricter requirements. In particular, instead of only requiring
that T (b) /∈ T (S), we ensure that

dist(T (b), T (S)) = min
x∈S

‖T (b)− T (x)‖ > τ, (7)

where dist denotes the Euclidean distance, and τ > 0 is a (small) given constant.
With this restriction, we obtain the following result.

2.3 Proposition
Given τ > 0, 0 < δ < 1 and b /∈ S ⊆ Rm, where S is a finite set. Let

R = min
x∈S

‖b − x‖ > 0 and T : Rm → Rd be a normalized Gaussian random

projection with d ≥ log(|S|/δ)
log(R/(

√
3τ))

. Then:

Prob
(

min
x∈S

‖T (b)− T (x)‖ > τ
)
> 1− δ.

Proof. For any x ∈ S, by the linearity of T , we have:

Prob
(
‖T (b− x)‖ ≤ τ

)
= Prob

(∥∥∥∥T ( b− x
‖b− x‖

)∥∥∥∥ ≤ τ

‖b− x‖

)
≤ Prob

(∥∥∥∥T ( b− x
‖b− x‖

)∥∥∥∥ ≤ τ

R

)
<

(
√

3τ)d

Rd
,

due to (5). Therefore, by the union bound,

Prob
(

min
x∈S

‖T (b)− T (x)‖ > τ
)

= 1− Prob
(

min
x∈S

‖T (b)− T (x)‖ ≤ τ
)

≥ 1−
∑
x∈S

Prob
(
‖T (b)− T (x)‖ ≤ τ

)
> 1− |S| (

√
3τ)d

Rd
.

The RHS is greater than or equal to 1− δ if and only if Rd

(
√

3τ)d
≥ |S|δ , which is

equivalent to d ≥ log(
|S|
δ )

log( R√
3τ

)
, as claimed. 2

Note that R is often unknown and can be arbitrarily small. However, if both

b, S are integral and τ < 1, then R ≥ 1 and we can select d >
log
|S|
δ

log 1√
3τ

in the

above proposition.
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3. Sets with low doubling dimensions

In many real-world applications, the data set S is not finite or countable, but
it lies in some intrinsically low-dimensional space. There are many examples of
such sets, including human motion records, speed signals, image and text data
and more [6, 3]. Random projections can provide a tool to extract the full
information of the set, in spite of the (high) dimension of the ambient space
that it is embedded in.

In this section, we will use doubling dimension as a measure for the intrinsic
dimension of a set. Let denote by B(x, r) = {y ∈ S : ‖y − x‖ ≤ r}, i.e. the
closed ball centered at x with radius r > 0 (w.r.t S). We use the following
definition:

3.1 Definition
The doubling constant of a set S ⊆ Rm is the smallest number λS such that
any closed ball in S can be covered by at most λS closed balls of half the radius.
A set S ⊆ Rm is called a doubling set if it has a finite doubling constant. The
number log2(λS) is then called the doubling dimension of S and denoted by
ddim(S).

One popular example of doubling spaces is a Euclidean space Rm. In this
case, it is well-known that its doubling dimension is O(m) [21, 11]. However,
there are cases where the set S ⊆ Rm is of much lower doubling dimension. It is
also easy to see that ddim(S) does not depend on the dimension m. The doubling
dimension is therefore a powerful tool for reducing dimensions in several classes
of problems such as nearest neighbor [15, 13], low distortion embeddings [2],
and clustering [16].

In this section, we assume that ddim(S) is relatively small compared to m.
Note that, computing the doubling dimension of S is generally NP-hard [9],
although it can be approximated within a constant factor [10]. For simplicity,
we assume that λS is a power of 2, i.e. the doubling dimension of S is a positive
integer number.

We shall make use of the two following lemmas.

3.2 Lemma
For any b ∈ S and ε, r > 0, there is a set S0 ⊆ S of size at most λ

dlog2( rε )e
S such

that
B(b, r) ⊆

⋃
s∈S0

B(s, ε). (8)

Proof. By definition of the doubling dimension, B(b, r) is covered by at most
λS closed balls of radius r

2 . Each of these balls in turn is covered by λS balls of
radius r

4 , and so on: iteratively, for each k ≥ 1, B(b, r) is covered by λkS balls of
radius r

2k
. If we select k = dlog2( rε )e then k ≥ log2( rε ), i.e. r

2k
≤ ε. This means

B(b, r) is covered by λ
dlog2( rε )e
S balls of radius ε. 2

3.3 Lemma
Let S ⊆ {s ∈ Rm| ‖s‖ ≤ 1} be a subset of the m-dimensional Euclidean unit

ball. Let T : Rm → Rd be a normalized Gaussian random projection. Then
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there exist universal constants c, C > 0 such that for d ≥ C log λS and δ ≥ 6,
the following holds:

Prob(∃s ∈ S s.t. ‖Ts‖ > δ) < e−cdδ
2

. (9)

This lemma is proved in [13] using concentration estimations for sum of squared
gaussian variables (Chi-squared distribution). In particular, we recall an impor-
tant inequality, proved in [13] : for all a ∈ Rm of unit norm, all δ > 0 and a
mapping T as above,

Prob (|‖Ta‖ − 1| > δ) ≤ e−dδ
2/8 and (10)

For the sake of completeness, we will present the original proof [13] of the
above Lemma. Here, we use an additional requirement that δ ≥ 6 instead of
δ > 1, however the main argument is unchanged.
Proof. Choose b = 0 ∈ S, r = 1 and εk = 1

2k
in Lemma 3.2. By earlier

convention that B(x, r) = {y ∈ S : ‖y−x‖ ≤ r}, obviously we have S ⊆ B(0, 1).
Then there is a set Sk ⊆ S of size at most λkS such that

S ⊆
⋃
s∈Sk

B(s,
1

2k
). (11)

Therefore, for any x ∈ S, there is a sequence (xn)n∈N that converges to x, with
∀n ∈ N, xn ∈ Sn and ‖xn − xn+1‖ ≤ 1

2n (this holds because each ball B(xn,
1

2n )
is itself covered by balls of radius 1

2n+1 with centers in Sn+1). We claim that, if
‖Tx‖ ≥ δ, then there must be some k ∈ N such that

‖T (xk − xk+1)‖ ≥ δ

3
(
3

2
)−k

Indeed, if no such k exists, then

δ ≤ ‖Tx‖ ≤
∞∑
k=0

‖T (xk − xk+1)‖ < δ

3

∞∑
k=0

(
3

2
)−k = δ, a contradiction.

Now, if we want to neglect x, we can treat xk and xk+1 (found above) as two
points u, v, in which u ∈ Sk and v ∈ B(u, 1

2k
) ∩ Sk+1. Then we have

‖Tu− Tv‖ ≥ δ

3
(
3

2
)−k ≥ ‖u− v‖

2−k
δ

3
(
3

2
)−k =

δ

3
(
4

3
)k‖u− v‖.

Therefore, we have

Prob
(
∃x ∈ S s.t ‖T (x)‖ > δ

)
≤ Prob

(
∃x ∈ S,∃k ≥ 0 s.t ‖T (xk − xk+1)‖ > δ

3
(
3

2
)−k
)

≤
∞∑
k=0

Prob

(
∃u ∈ Sk, ∃v ∈ B(u,

1

2k
) ∩ Sk+1 s.t ‖Tu− Tv‖ > δ

3
(
4

3
)k‖u− v‖

)

≤
∞∑
k=0

Prob

(
∃u ∈ Sk, ∃v ∈ B(u,

1

2k
) ∩ Sk+1 s.t ‖T (

u− v
‖u− v‖

)‖ > δ

3
(
4

3
)k
)

≤
∞∑
k=0

λ2k+1
S Prob

(
‖Tz‖ > δ

3
(
4

3
)k
)

for any unit z (by the union bound).
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Since δ ≥ 6, for any k ≥ 0 we have δ
3 ( 4

3 )k ≥ 1 + δ
6 ( 4

3 )k. Therefore, from the
inequality (10), the above expression is less than or equal to

∞∑
k=0

λ2k+1
S Prob

(
|‖Tz‖ − 1| ≥ δ

6
(
4

3
)k
)
≤
∞∑
k=0

λ2k+1
S e−d

δ2

8∗62 ( 4
3 )2k

≤ e−cdδ
2

(12)

as long as d ≥ C log(λS) for some universal constants c, C. 2

We now state one of the main results in this paper. It says that we can
maintain the equivalence between ESMP and its projected version by using
Gaussian random projections with d proportional to the doubling dimension of
S.

3.4 Theorem
Given b /∈ S ⊆ Rm where S is a closed doubling set. Let T : Rm → Rd be a
normalized Gaussian random projection. Then

Prob(T (b) /∈ T (S)) = 1 (13)

if d ≥ C log2(λS), for some universal constant C.

Proof. Let d ≥ C log2(λS) for some universal constant C (large). The proof
is divided in three steps: first we build a sequence of annuli, (Xk)k∈N that cover
S; then on each annulus, Xk, we estimate the probability that there exists an
element x ∈ Xk such that T (x) = T (b). Finally, we apply the union bound on
the whole set S and prove that the probability that there exists x ∈ S such that
T (x) = T (b) can be as small as needed. Assume that R > 0 is the distance
between b and the set S. Let εi,∆i, i ∈ N and R = r0 < r1 < r2 < . . . be
positive scalars (their values will be defined later). For each k ∈ N∗ we define
an annulus

Xk = S ∩B(b, rk) rB(b, rk−1).

Since Xk ⊆ S ∩ B(b, rk), by Lemma 3.2 we can find a point set Sk ⊆ S of

size |Sk| ≤ λ
dlog2(

rk
εk

)e
S such that

Xk ⊆
⋃
s∈Sk

B(s, εk).

Hence, for any x ∈ Xk, there is s ∈ Sk such that ‖x − s‖ < εk. Moreover, by
the triangle inequality, any such s satisfies rk−1 − εk < ‖s− b‖ < rk + εk (since
x is inside the annulus Xk). So without loss of generality we can assume that

Sk ⊆ B(b, rk + εk) rB(b, rk−1 − εk).

Using the union bound, we have:

Prob
(
∃x ∈ S s.t. T (x) = T (b)

)
= Prob

(
∃x ∈

∞⋃
k=1

Xk s.t. T (x) = T (b)
)

≤
∞∑
k=1

Prob
(
∃x ∈ Xk s.t. T (x) = T (b)

)
.
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Now, we will try to estimate the individual probabilities inside this sum.
More precisely we will consider two cases according to the following event: for
each k ≥ 1, we denote by Ek the event that:

∃s ∈ Sk, ∃x ∈ Xk ∩B(s, εk) s.t. ‖Ts− Tx‖ > ∆k (with ∆k ≥ 6εk).

Then we have

Prob
(
∃x ∈ Xk s.t. T (x) = T (b)

)
≤ Prob

(
(∃x ∈ Xk s.t. T (x) = T (b)) ∧ Ēk

)
+ Prob(Ek) (14)

For the second term in (14), by the union bound, we have

Prob(Ek) ≤
∑
s∈Sk

Prob
(
∃x ∈ Xk ∩B(s, εk) s.t. ‖Ts− Tx‖ > ∆k

)
≤

∑
s∈Sk

e
−c1d(

∆k
εk

)2

(for c1 a univ. constant as in Lemma 3.3)

≤ λ
dlog2(

rk
εk

)e
S e

−c1d(
∆k
εk

)2

.

(Note that here we must choose ∆k ≥ 6εk in order to apply Lemma 3.3).
For the first term in (14), we have

Prob
(
(∃x ∈ Xk s.t. T (x) = T (b)) ∧ Ēk

)
≤ Prob

(
∃x ∈ Xk, s ∈ Sk ∩B(x, εk) s.t. T (x) = T (b) ∧ ‖T (s)− T (x)‖ ≤ ∆k

)
≤ Prob

(
∃s ∈ Sk s.t. ‖T (s)− T (b)‖ < ∆k

)
≤ λ

dlog2(
rk
εk

)e
S Prob

(
‖T (z)‖ < ∆k

rk−1 − εk
)

for some unit vector z

≤ λ
dlog2(

rk
εk

)e
S (

√
3∆k

rk−1 − εk
)d (by inequality 5).

Putting all the estimations, we have obtained, together, we have:

Prob
(
∃x ∈ S s.t T (x) = T (b)

)
≤
∞∑
k=1

λ
dlog2(

rk
εk

)e
S

(
e
−c1d(

∆k
εk

)2

+ (

√
3∆k

rk−1 − εk
)d
)
. (15)

Next, we will show that there are choices of εk,∆k, rk such that the RHS of (15)
can be as small as needed.

Choices of εk,∆k, rk: For some N > 1 large, we will choose εk,∆k, rk as
follows:

1. εk = ε, for some ε > 0.
2. ∆k = Nkε√

3

3. rk = (N2(k + 1)2 + 1)ε

Now the RHS of (15) can be rewritten as follows

∞∑
k=1

λ
dlog2(N2(k+1)2+1)e
S

(
e−c1d(Nk)2

+ (
1

Nk
)d
)

≤
∞∑
k=1

λ
3 log2(Nk)
S

(
e−c1d(Nk)2

+ (
1

Nk
)d
)

≤
∞∑
k=1

23 ddim(S) log2(Nk)

(
e−c1d(Nk)2

+ (
1

Nk
)d
)
. (16)
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Note that 23 ddim(S) log2(Nk) does not increase fast enough compared to the
decreasing speeds of both e−c1d(Nk)2

and ( 1
Nk )d when d ≥ Cddim(S) with C large

enough (and also independent of N). Therefore, there are universal constants
c2, c3 > 0 such that the value of (16) is less than or equal to

∞∑
k=1

e−c2(Nk)2

+

∞∑
k=1

(
1

Nk
)c3d (17)

Both the two infinite sums tend to 0 when N tends to ∞. This means that

Prob
(
∃x ∈ S s.t. T (x) = T (b)

)
= 0,

which proves our theorem. 2

Our next result in this section is an extension of Thm. 3.4 to the threshold
case.

3.5 Theorem
Let b /∈ S where S ⊆ Rm is a closed doubling set, T : Rm → Rd be a normalized
Gaussian random projection, and r = min

x∈S
‖b − x‖. Let κ < 1 be some fixed

constant. Then for all 0 < δ < 1 and 0 < τ < κr, we have

Prob(dist(T (b), T (S)) > τ) > 1− δ

if the projected dimension is d = Ω(
log(

λS
δ )

1−κ ).

Proof. We follow the same scheme, as in the proof of Theorem 3.4. Let

d ≥ C( log(
λS
δ )

1−κ ) for some universal constant C (large). As before, let εi,∆i, i ∈ N
and r = r0 < r1 < r2 < . . . be positive scalars whose values will be decided
later. The annuli Xk and point sets Sk are also defined similarly. Using the
union bound, now we have:

Prob
(
∃x ∈ S s.t. ‖T (x)− T (b)‖ < τ

)
= Prob

(
∃x ∈

∞⋃
k=1

Xk s.t. ‖T (x)− T (b)‖ < τ
)

≤
∞∑
k=1

Prob
(
∃x ∈ Xk s.t. ‖T (x)− T (b)‖ < τ

)
.

Now, we will try to estimate the individual probabilities inside this sum.
For each k ≥ 1, we denote by Ek the event that:

∃s ∈ Sk, ∃x ∈ Xk ∩B(s, εk) s.t. ‖Ts− Tx‖ > ∆k (with ∆k ≥ 6εk). (18)

Then we have

Prob
(
∃x ∈ Xk s.t. ‖T (x)− T (b)‖ < τ

)
≤ Prob

(
(∃x ∈ Xk s.t. ‖T (x)− T (b)‖ < τ) ∧ Ēk

)
+ Prob(Ek) (19)

For the second term in (19), from the previous proof, we already had:

Prob(Ek) ≤ λ
dlog2(

rk
εk

)e
S e

−c1d(
∆k
εk

)2

. (20)
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(Note that here we must choose ∆k ≥ 6εk in order to apply Lemma 3.3).
Now, for the first term in (19), we have

Prob
(
(∃x ∈ Xk s.t. ‖T (x)− T (b)‖ < τ) ∧ Ēk

)
≤ Prob

(
∃x ∈ Xk, s ∈ Sk ∩B(x, εk) s.t. ‖T (x)− T (b)‖ < τ ∧ ‖T (s)− T (x)‖ ≤ ∆k

)
≤ Prob

(
∃s ∈ Sk s.t. ‖T (s)− T (b)‖ < ∆k + τ

)
(by triangle inequality)

≤

 λ
dlog2(

rk
εk

)e
S Prob

(
‖T (z)‖ < ∆k+τ

rk−1−εk

)
for some unit vector z if k ≥ 2

λ
dlog2(

r1
ε1

)e
S Prob

(
‖T (z)‖ < ∆1+τ

r

)
for some unit vector z if k = 1

≤

 λ
dlog2(

rk
εk

)e
S ( ∆k+τ

rk−1−εk )d if k ≥ 2

λ
dlog2(

rk
εk

)e
S (∆1+τ

r )d if k = 1.

Putting all the estimations we have obtained together, we have:

Prob
(
∃x ∈ S s.t. ‖T (x)− T (b)‖ < τ

)
≤

( ∞∑
k=1

λ
dlog2(

rk
εk

)e
S e

−c1d(
∆k
εk

)2

+

∞∑
k=2

λ
dlog2(

rk
εk

)e
S (

∆k + τ

rk−1 − εk
)d
)

+ λ
dlog2(

r1
ε1

)e
S (

∆1 + τ

r
)d.

(21)

Here we separate one term out, and we will prove that the remaining expression
can be made as small as wanted by certain choices of parameters.

Choices of εk,∆k, rk: Let N > 0 be the number such that ( 7
N + 1) = r

τ .
From the assumptions, we have N = 7 τ

r−τ and 0 < τ < κr. Hence

N < 7κr
r−τ <

7κ
1− τr

< 7κ
1−κ <

7
1−κ . We will choose εk,∆k, rk as follows:

1. εk = ε = τ
N ,

2. ∆k = 6
√
kε,

3. rk = (6k + 7)ε+
√
k + 1 τ .

(Our purpose is to choose the parameters so that ∆k+τ
rk−1−εk = 1√

k
and ∆k ≥ 6εk).

From this choice, it is obvious r0 = r. Now the RHS of (21) can be rewritten
as follows:( ∞∑

k=1

λ
dlog2(6k+7+N

√
k+1)e

S e−c1d(36k) +

∞∑
k=2

λ
dlog2(6k+7+N

√
k+1)e

S (
1√
k

)d
)

+

+ λ
dlog2(13+N

√
2)e

S ((
6

N
+ 1)

τ

r
)d ≤

≤
( ∞∑
k=1

λ
c3 log2(N(k+1))
S e−c1d(36k) +

∞∑
k=2

λ
c3 log2(N(k+1))
S (

1√
k

)d
)

+

+ λc2S ((
6

N
+ 1)

τ

r
)d (22)

for some universal constants c1, c2, c3.
It is easy to show that the expression in the big bracket is bounded above

by e−c4d as long as d ≥ C log2(λS) log( 7
1−κ ) > C log2(λS) log(N) (for some large

constants c4, C). Moreover,

e−c4d ≤ δ

2
if and only if d ≥ 1

c4
log(

2

δ
) (23)
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and λc2S (( 6
N + 1) τr )d ≤ δ

2 if and only if

d ≥
c2 log(λS) + log( 2

δ )

log(( N
6+N ) rτ )

. (24)

However, log(( N
6+N ) rτ ) = log( 7r

6r+τ ) ≥ log( 7
6+κ ) ≥ log(1 + 1−κ

7 ) ≥ 1−κ
7 , from the

Taylor series of the logarithm function. Therefore, (24) holds if we select

d ≥ C
log(λSδ )

1− κ
(25)

for some universal constants C. The proof follows immediately from (23) and
(25) by an application of the union bound. 2

One of the interesting consequence of Theorem 3.5 is the following applica-
tion to the Approximate Nearest Neighbour problem.

3.6 Corollary
For T : Rm → Rd be a normalized Gaussian random projection, X ⊆ Rm,
ε ∈ (0, 1/2) and δ ∈ (0, 1/2), we can choose

d = max

{
O(

log( 1
δ )

ε2
), O(

log(λSδ )

ε
)

}
such that for every x0 ∈ X, with probability at least 1− δ,

1. dist (Tx0, T (X \ {x0})) ≤ (1 + ε)dist (x0, X \ {x0}),
2. Every x ∈ X with ‖x0 − x‖ ≥ (1 + 2ε)dist (x0, X \ {x0}) satisfies

‖Tx0 − Tx‖ > (1 + ε)dist (x0, X \ {x0}).

Note that, this result improves the bound provided by Indyk-Naor in [13].
In that paper, the authors give the bound for the projected dimension to be

d = O

(
log(2/ε)

ε2
log(

1

δ
) log(λS)

)
,

which is significantly larger than our bound. Proof. Similar as the proof of

Theorem 4.1 in [13], we have: for d ≥ C log( 1
δ )

ε2 with some large constant C:

Prob [dist (Tx0, T (X \ {x0})) ≤ (1 + ε)dist (x0, X \ {x0})] <
δ

2
. (26)

Now, assume that dist (x0, X \ {x0}) = 1. Set b = x0 and S = {x ∈ X :
‖x − x0‖ ≥ 1 + 2ε} and τ = 1 + ε as in Theorem 3.5. We then have r :=
minx∈S ‖x−b‖ ≥ 1+2ε, which implies τ

r ≤
1+ε
1+2ε = 1− ε

1+2ε < 1− ε
2 . Therefore,

we can choose κ = 1− ε/2. Applying Theorem 3.5, we have:

Prob(dist(T (b), T (S)) ≤ τ) ≤ δ

2
(27)

if the projected dimension d = Ω(
log(

λS
δ )

1−κ ) = Ω(
log(

λS
δ )

ε ).
From (26) and (27), we conclude that the two required conditions hold for

some

d = max

{
O(

log( 1
δ )

ε2
), O(

log(λSδ )

ε
)

}
,

as claimed. 2
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4. Conclusion

In this paper we discussed the possibility of applying random projections
of the type used in Johnson-Lindenstrauss lemma to a very general class of set
membership problems in Euclidean spaces. Our results are directly applicable,
as it suffices to pre-multiply the input vectors by a randomly generated matrix,
and yield the correct answer with high probability.
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