
Linear Programming

Leo Liberti

LIX, École Polytechnique, F-91128 Palaiseau, France

(liberti@lix.polytechnique.fr)

November 11, 2007

Abstract

This paper is a short didactical introduction to Linear Programming (LP). The main topics are:
formulations, notes in convex analysis, geometry of LP, simplex method, duality, ellipsoid algorithm,
interior point methods.

Contents

1 Introduction 2

1.1 Canonical and Standard forms . 3

1.2 The notion of minimum . 4

1.3 Common reformulations . 4

2 Convexity 5

2.1 Convex sets . 5

2.2 Convex functions . 6

3 The Simplex method 7

3.1 Geometry of Linear Programming . 7

3.2 Moving from vertex to vertex . 9

3.3 Decrease direction . 10

3.4 Bland’s rule . 10

3.5 Simplex method in matrix form . 11

4 Duality 11

4.1 Equality constraints and Lagrange Multipliers method . 12

4.2 Inequality Constraints and Farkas’ Lemma . 13

4.3 Karush-Kuhn-Tucker necessary conditions . 15

4.4 Weak duality . 16

1 INTRODUCTION 2

4.5 The dual of an LP problem . 17

4.6 Economic interpretation of the dual . 18

4.7 Sensitivity analysis . 18

5 Simplex variants 18

5.1 Revised Simplex method . 18

5.2 Two-phase Simplex method . 18

5.3 Dual Simplex method . 19

5.4 Column generation . 19

6 Interior Point methods 19

6.1 Ellipsoid Algorithm and complexity of LP . 20

6.2 Karmarkar’s algorithm . 20

6.3 The Log-Barrier function . 21

6.3.1 Primal-Dual feasible points . 22

6.3.2 Optimal partitions . 23

6.3.3 A simple IPM for LP . 23

6.3.4 The Newton step . 24

7 Conclusion 24

1 Introduction

Linear Programming (LP) is in some sense the fundamental tool of Operations Research. The first
operations research programs have been modelled by using linear objective function and constraints,
and, to date, the Simplex Method for solving LPs is one of the most practically efficient and powerful
algorithms in Operations Research [Dan63].

The set of problems that can be modelled with LP techniques is large indeed, encompassing produc-
tion management, human resources, blending, marketing, transportation, distribution, porfolio selection.
Furthermore, LP is used to solve many sub-problems generated by complex algorithms.

1.1 Example
Diet Problem. A diet of m nutrients is healthy if it has at least quantities b = (b1, . . . , bm) of the
nutrients. In order to compose such a diet, we need to buy quantities x = (x1, . . . , xn) of n foods having
unit costs c = (c1, . . . , cn). Food j contains aij units of nutrient i. The solution of the following LP
problem yields an x that satisfies the requirements of a healthy diet at minimum cost [BV04].

minx

n
∑

i=1

c⊤x

Ax ≥ b
x ≥ 0.



















(1)

1 INTRODUCTION 3

1.2 Example
Transportation Problem. Consider a transportation network modelled by a weighted bipartite di-
rected graph B = (U, V,A, d) with a set of departure vertices U , a set of destinations V , a set of arcs
A = {(u, v) | u ∈ U, v ∈ V } weighted by a nonnegative distance function d : A→ R+. A certain amount
of material au is stored at each departure vertex u ∈ U , and we associate to each destination v ∈ V a
given demand bv of the same material. The cost of routing a unit of material from u ∈ U to v ∈ V is
directly proportional to the distance duv. We have to determine the transportation plan of least cost
satisfying the demands at the destinations. The variables xuv in the model below, associated to each arc
(u, v) ∈ A, denote the amount of material routed on the arc.

minx

∑

(u,v)∈A

duvxuv

∀u ∈ U
∑

v∈V

xuv ≤ au

∀v ∈ V
∑

u∈U

xuv ≥ bv

∀(u, v) ∈ A xuv ≥ 0.



























(2)

The above formulation correctly models the problem.

1.3 Example
Network Flow. Given a network on a directed graph G = (V,A) with a source node s, a destination
node t, and capacities uij on each arc (i, j). We have to determine the maximum amount of material
flow that can circulate on the network from s to t. The variables xij , defined for each arc (i, j) in the
graph, denote the quantity of flow units.

maxx

∑

i∈δ+(s)

xsi

∀ i ≤ V, i 6= s, i 6= t
∑

j∈δ+(i)

xij =
∑

j∈δ−(i)

xji

∀(i, j) ∈ A 0 ≤ xij ≤ uij .























(3)

The above formulation correctly models the problem.

The rest of this section is devoted to basic definitions, modelling tricks, and reformulations. We shall
then give some brief notes about the geometry of linear programming. Finally, we shall give an overview
of the most widely known methods for solving LPs.

1.1 Canonical and Standard forms

1.4 Definition
A linear programming problem (usually simply called LP) is a mathematical programming problem of the
form:

minx f(x)
s.t. g(x) ≤ 0,

}

(4)

where x ∈ R
n, f : R

n → R, g : R
n → R

m, such that f, g are linear forms.

An LP is in canonical form if it is modelled as follows:

minx c⊤x
s.t. Ax ≥ b

x ≥ 0







(5)

where x ∈ R
n are the decision variables, c ∈ R

n is a cost vector, A is an m × n matrix (assume
rank(A) = m), and b a vector in R

m.

1 INTRODUCTION 4

An LP is in standard form if it is modelled as follows:

minx c⊤x
s.t. Ax = b

x ≥ 0







(6)

again, x ∈ R
n are the decision variables, c ∈ R

n is a cost vector, A is an m × n matrix with (assume
rank(A) = m), and b a vector in R

m. An LP in canonical form can be put into standard form via the
introduction of slack variables (see section 1.3).

Formally, we only deal with minimization, as maximization can be reduced to minimization by the
following simple rule:

max
x∈X

f(x) = −min
x∈X
−f(x).

1.2 The notion of minimum

1.5 Definition
A point x∗ ∈ R

n is feasible with respect to a problem (4) if g(x∗) ≤ 0.

1.6 Definition
A feasible point x∗ ∈ R

n is a local minimum of problem (4) if there is a ball B centered at x∗ and with
radius r ∈ R+ such that for each feasible x ∈ B we have f(x∗) ≤ f(x).

1.7 Definition
A feasible point x∗ is a global minimum of problem (4) if there if for any feasible x ∈ R

n we have
f(x∗) ≤ f(x).

1.3 Common reformulations

In this section we report the most common reformulations that apply to linear problems.

1. Transforming an inequality to an equation. Ax ≤ b is equivalent to Ax + s = b with s ≥ 0
(introduction of slack variables).

2. Transforming unconstrained variables to constrained ones. An unconstrained variable x can be
replaced by the difference x1 − x2 with x1, x2 ≥ 0.

3. Piecewise linear minimization:

min
x∈X

max
i≤m
{ci

⊤x + di} = min{t ∈ R | ∀i ≤ m (ci
⊤x + di ≤ t), x ∈ X}.

4. Absolute values (let |x| = (|x1|, . . . , |xn|)):

A: min
x∈X

c⊤|x| = min{c⊤y | − y ≤ x ≤ y ∧ y ∈ R
n
+, x ∈ X}

B: min
x∈X

c⊤|x| = min{c⊤(x+ + x−) | x+ − x− = x ∧ x+, x− ∈ R
n
+, x ∈ X}.

5. Linear fractional programming:

min

{

c⊤x + d

f⊤x + g
| Ax = b, f⊤x + g > 0, x ≥ 0

}

.

We introduce variables y = x
f⊤x+g

and z = 1
f⊤x+g

, and the constraint f⊤y + gz = 1. Now the

objective function becomes c⊤y + dz, and the constraint Ax = b can be expressed in function of
y, z as Ay − bz = 0. It can be shown that these two formulations yield the same solutions.

2 CONVEXITY 5

2 Convexity

Convex problems have the fundamental property of global minimality, i.e. if a point is locally minimal
w.r.t. to a convex function f defined over a convex set X, then it is also globally minimal. LP problems
are a subclass of convex problems. In this section we shall introduce the basic notions of convex analysis.

2.1 Convex sets

2.1 Definition
A set S ⊆ R

n is convex if for any two points x, y ∈ S the segment between them is wholly contained in
S, that is, ∀λ ∈ [0, 1] (λx + (1− λ)y ∈ S).

A linear equation a⊤x = b where a ∈ R
n defines a hyperplane in R

n. The corresponding linear
inequality a⊤x ≤ b defines a closed half-space. Both hyperplanes and closed half-spaces are convex sets.
Since any intersection of convex sets is a convex set, the subset of R

n defined by the system of closed
half-spaces Ax ≥ b, x ≥ 0 is convex.

2.2 Definition
A polyhedron is the intersection of a finite number of closed halfspaces. A bounded, non-empty polyhedron
is a polytope.

2.3 Definition
Let S = {xi | i ≤ n} be a finite set of points in R

n.

1. The set span(S) of all linear combinations
∑n

i=1 λixi of vectors in S is called the linear hull (or
linear closure, or span) of S.

2. The set aff(S) of all affine combinations
∑n

i=1 λixi such that
∑n

i=1 λi = 1 of vectors in S is called
the affine hull (or affine closure) of S.

3. The set cone(S) of all conic combinations
∑n

i=1 λixi such that ∀i ≤ n (λi ≥ 0) of vectors in S is
called the conic hull (or conic closure, or cone) of S. A conic combination is strict if for all i ≤ n
we have λi > 0.

4. The set conv(S) of all convex combinations
∑n

i=1 λixi such that
∑n

i=1 λi = 1 and ∀i ≤ n (λi ≥ 0)
of vectors in S is called the convex hull (or convex closure) of S. A convex combination is strict if
for all i ≤ n we have λi > 0.

2.4 Definition
Consider a polyhedron P and a closed half-space H in R

n. Let H ∩ P be the affine closure of H ∩P and

d = dim(H ∩ P). If d < n then H ∩P is a face of P . If d = 0, H ∩P is called a vertex of P , and if d = 1,
it is called an edge. If d = n− 1 then H ∩ P is a facet of P .

2.5 Lemma
Let x∗ ∈ P = {x ≥ 0 | Ax ≥ b}. Then x∗ is a vertex of P if and only if for any pair of distinct points
x′, x′′ ∈ P , x∗ cannot be a strict convex combination of x′, x′′.

Proof. (⇒) Suppose x∗ is a vertex of P and there are distinct points x′, x′′ ∈ P such that there is a
λ ∈ (0, 1) with x∗ = λx′+(1−λ)x′′. Since x∗ is a vertex, there is a halfspace H = {x ∈ R

n | h⊤x ≤ d} such
that H ∩ P = {x∗}. Thus x′, x′′ 6∈ H and h⊤x′ > d, h⊤x′′ > d. Hence h⊤x∗ = h⊤(λx′ + (1− λ)x′′) > d,
whence x∗ 6∈ H, a contradiction. (⇐) Assume that x∗ cannot be a strict convex combination of any pair
of distinct points x′, x′′ of P , and suppose that x∗ is not a vertex of P . Since x∗ is not a vertex, there is
a ball S of radius ε > 0 and center x∗ wholly contained in P . Let x′ ∈ S such that ||x′ − x∗|| = ε

2 . Let
x′′ = (x∗ − x′) + x∗. By construction, x′′ is the point symmetric to x′ on the line passing through x′ and

2 CONVEXITY 6

x∗. Thus, ||x′′ − x∗|| = ε
2 , x′′ 6= x′, x′′ ∈ P , and x∗ = 1

2x′ + 1
2x′′, which is a strict convex combination of

x′, x′′, a contradiction. 2

2.2 Convex functions

2.6 Definition
A function f : X ⊆ R

n → R is convex if for all x, y ∈ X and for all λ ∈ [0, 1] we have:

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Note that for this definition to be consistent, λx + (1− λ)y must be in the domain of f , i.e. X must be
convex. This requirement can be formally relaxed if we extend f to be defined outside X.

The main theorem in convex analysis, and the fundamental reason why convex functions are useful,
is that a local minimum of a convex function over a convex set is also a global minimum, which we prove
in Thm. 2.7. The proof is described graphically in Fig. 1.

xx∗ x̄

S(x∗, ε)

Figure 1: Graphical sketch of the proof of Thm. 2.7. The fact that f(x∗) is the minimum in S(x∗, ε) is
enough to show that for any point x ∈ X, f(x∗) ≤ f(x).

2.7 Theorem
Let f : R

n ← R be a convex function and X ⊆ R
n be a convex set. Given a point x∗ ∈ X, suppose that

there is a ball S(x∗, ε) ⊂ X such that for all x ∈ S(x∗, ε) we have f(x) ≥ f(x∗). Then f(x∗) ≤ f(x) for
all x ∈ X.

Proof. Let x ∈ X. Since f is convex over X, for all λ ∈ [0, 1] we have f(λx∗ + (1 − λ)x) ≤ λf(x∗) +
(1− λ)f(x). Notice that there exists λ̄ ∈ (0, 1) such that λ̄x∗ + (1− λ̄)x = x̄ ∈ S(x∗, ε). Consider x̄: by
convexity of f we have f(x̄) ≤ λ̄f(x∗) + (1− λ̄)f(x). After rearrangement, we have

f(x) ≥ f(x̄)− λ̄f(x∗)

1− λ̄
.

Since x̄ ∈ S(x∗, ε), we have f(x̄) ≥ f(x∗), thus

f(x) ≥ f(x∗)− λ̄f(x∗)

1− λ̄
= f(x∗),

3 THE SIMPLEX METHOD 7

as required. 2

3 The Simplex method

The simplex method is the fundamental algorithm used in linear programming. Although all implemen-
tations of the simplex algorithm have exponential time complexity, in practice it has been shown that
the simplex algorithm performs as O(m + n) in most cases, so it is a very efficient algorithm. It was
invented by Dantzig in the late forties [Dan63]; rumour has it that the young Dantzig approached Von
Neumann to present his results, and met with the response that his algorithm was correct but not very
innovative. Dantzig himself, for the very same reason, chose not to immediately publish his algorithm
in a scientific journal paper, although, to date, the simplex algorithm is the most famous algorithm in
Operations Research and one of the most famous in the whole field of applied mathematics.

The simplex algorithms rests on four main observations.

• The LP (5) is equivalent to minimizing a linear form over a polyhedron.

• The minimum of a linear form over a polyhedron is attained at a vertex of the polyhedron (cf. Thm. 3.5):
since there are finitely many vertices in a polyhedron in R

n, the (continuous) LP problem can be
transformed into a finite search.

• Verifying whether a vertex of a polyhedron is a local minimum w.r.t. a linear form is easy, it suffices
to check that all adjacent vertices have higher associated objective function value.

• Polyhedra are convex sets and linear forms are convex functions, so any local minimum is also a
global minimum.

The simplex algorithm starts from a vertex of the feasible polyhedron and moves to an adjacent vertex
with lower associated objective function value. When no such vertex exists, the vertex is the minimum
and the algorithm stops.

3.1 Geometry of Linear Programming

The material in this section is taken from [PS98, Fis99]. Consider the LP problem (in standard form)

min
x∈P

c⊤x (7)

where P is the polyhedron {x ∈ R
n
+ | Ax = b} and c ∈ R

n.

3.1 Definition
A set {Ai | i ∈ β} of m linearly independent columns of A is a basis of A. The variables {xi | i ∈ β}
corresponding to the indices β of the basis are called basic variables. All other variables are called nonbasic
variables.

This suggests that we can partition the columns of A in (B|N) where B is the nonsingular, square
matrix of the basic columns and N are the nonbasic columns. Correspondingly, we partition the variables
x into (xB , xN).

3.2 Definition
Given a polyhedron P = {x ∈ R

n
+ | Ax = b}, the feasible vectors x having xB = B−1b ≥ 0 and xN = 0

are called basic feasible solutions (bfs) of P .

3 THE SIMPLEX METHOD 8

3.3 Lemma
Given a polyhedron P = {x ∈ R

n
+ | Ax = b} and a bfs x∗ for P , there exists a cost vector c ∈ R

n such

that x∗ is the unique optimal solution of the problem min{c⊤x | x ∈ P}.

Proof. Let cj = 0 for all j such that xj is a basic variable, and cj = 1 otherwise. 2

The most important result in this section states that bfs’s correspond to vertices of P .

3.4 Theorem
Given a polyhedron P = {x ∈ R

n
+ | Ax = b}, any bfs for P is vertex of P , and vice versa.

Proof. (⇒) Let x∗ = (x∗
B , 0), with x∗

B ≥ 0, be a bfs for P . By Lemma 3.3 there is a cost vector c such
that for all x ∈ P , x∗ is the unique vector such that c⊤x∗ ≤ c⊤x for all x ∈ P . Thus, the hyperplane
c⊤(x−x∗) = 0 intersects P in exactly one point, namely x∗. Hence x∗ is a vertex of P . (⇐) Assume now
that x∗ is a vertex of P and suppose, to get a contradiction, that it is not a bfs. Consider the columns Aj

of A such that j ∈ β = {j ≤ n | x∗
j > 0}. If Aj are linearly independent, we have immediately that x∗ a

bfs for P , which contradicts the hypothesis. Thus, suppose Aj are linearly dependent. This means that
there are scalars dj , not all zero, such that

∑

j∈β djAj = 0. On the other hand, since x∗ satisfies Ax = b,
we have

∑

j∈β xjAj = b. Thus, for all ε > 0, we obtain
∑

j∈β(xj−εdj)Aj = b and
∑

j∈β(xj +εdj)Aj = b.
Let x′ have components xj − εdj for all j ∈ β and 0 otherwise, and x′′ have components xj + εdj for all
j ∈ β and 0 otherwise. By choosing a small enough ε we can ensure that x′, x′′ ≥ 0. Since Ax′ = Ax′′ = b
by construction, both x′ and x′′ are in P . Thus, x∗ = 1

2x′ + 1
2x′′ is a strict convex combination of two

points of P , hence by Lemma 2.5 it cannot be a vertex of P , contradicting the hypothesis. 2

By the following theorem, in order to solve an LP all we have to do is compute the objective function
at each vertex of the feasible polyhedron.

3.5 Theorem
Consider problem (7). If P is closed and bounded, there is at least one bfs that solves the problem.
Furthermore, if x′, x′′ are two distinct solutions, any convex combination of x′, x′′ also solves the problem.

Proof. Since the polyhedron P is closed and bounded, the function f(x) = c⊤x attains a minimum on
P , say at x′ (and by convexity of P , x′ is the global minimum). Since x′ ∈ P , x′ is a convex combination

of the vertices v1, . . . , vp of P , say x′ =

p
∑

i=1

λivi with λi ≥ 0 for all i ≤ p and

p
∑

i=1

λi = 1. Thus,

c⊤x′ =

p
∑

i=1

λic
⊤vi.

Let j ≤ p be such that c⊤vj ≤ c⊤vi for all i ≤ p. Then

p
∑

i=1

λic
⊤vi ≥ c⊤vj

p
∑

i=1

λi = c⊤vj ,

whence c⊤x′ ≥ c⊤vj . But since c⊤x′ is minimal, we have c⊤x′ = c⊤vj , which implies x′ = vj , a vertex of
P . For the second part of the theorem, consider a convex combination x = λx′ + (1− λ)x′′ with λ ≥ 0.
We have c⊤x = λc⊤x′ + (1− λ)c⊤x′′. Since x′, x′′ are solutions, we have c⊤x′ = c⊤x′′, and hence

c⊤x = c⊤x′(λ + (1− λ)) = c⊤x′,

3 THE SIMPLEX METHOD 9

which shows that x is also a solution of the problem. 2

Theorem 3.5 states that P should be closed and bounded, so it requires that P should in fact be a
polytope (polyhedra may be unbounded). In fact, this theorem can be modified1 to apply to unbounded
polyhedra by keeping track of the unboundedness directions (also called extreme rays).

3.2 Moving from vertex to vertex

Unfortunately, polyhedra may be defined by a number of vertices exponential in the size of the instance,
so the above approach is not practical. However, it is possible to look for the optimal vertex by moving
from vertex to vertex along the edges of the polyhedron following the direction of decreasing cost, and
checking at each vertex if an optimality condition is satisfied. This is a summary description of the
simplex method. Since vertices of a polyhedron correspond to bfs’s by Theorem 3.4, and a bfs has at
most m nonzero components out of n, there are at worst (nm) vertices in a given polyhedron. Thus,
this algorithm has worst-case factorial complexity. However, its average performance is very good, as has
been confirmed by more than 50 years of practice. In order to fully describe this method, we need an
efficient way of moving along a path of vertices.

Consider a bfs x∗ for P = {x ≥ 0 | Ax = b} and let β be the set of indices of the basic variables. Let
Ai be the i-th column of A. We have:

∑

i∈β

x∗
i Ai = b. (8)

Now, fix a j 6∈ β; Aj is a linear combination of the Ai in the basis. Thus, there exist multipliers xij such
that for all j 6∈ β,

∑

i∈β

xijAi = Aj . (9)

Multiply Eq. (9) by a scalar θ and subtract it from Eq. (8) to get:

∑

i∈β

(x∗
i − θxij)Ai + θAj = b. (10)

Now suppose we want to move (by increasing θ from its initial value 0) from the current bfs to another
point inside the feasible region. In order to move to a feasible point, we need x∗

i − θxij ≥ 0 for all i ∈ β.
If xij ≤ 0 for all i, then θ can grow indefinitely (this means the polyhedron P is unbounded). Assuming
a bounded polyhedron, we have a bounded θ > 0. This means

θ = min
i∈β

xij>0

x∗
i

xij
. (11)

If θ = 0 then there is i ∈ β such that x∗
i = 0. This means that the bfs x∗ is degenerate. We assume a

nondegenerate x∗. Let k ∈ β be the index minimizing θ in the expression above. The coefficient of Ak in
Eq. (10) becomes 0, whereas the coefficient of Aj is nonzero.

3.6 Proposition
Let x∗ be a bfs, j 6∈ β, xij be as in Eq. (10) for all i ∈ β and θ be as in Eq. (11). The point
x′ = (x′

1, . . . , x
′
n) defined by

x′
i =







x∗
i − θxij ∀i ∈ β\{k}

θ i = k
0 otherwise

is a bfs.

1See D. Bertsekas’ course notes on convexity at http://www.dim.uchile.cl/∼ceimat/sea/apuntes/Chapter1.pdf,

Prop. 1.6.6, p. 109.

3 THE SIMPLEX METHOD 10

Proof. First notice that x′ is a feasible solution by construction. Secondly, for all i 6∈ β, i 6= we have
x′

i = x∗
i = 0 and for all i ∈ β, i 6= k we have x′

i ≥ 0. By the definition of x′, we have x′
j ≥ 0 and

x′
k = 0. Thus, if we define β′ = β\{k} ∪ {j}, it only remains to be shown that {xi | i ∈ β′} is a set

of basic variables for A. In other words, if we partition the columns of A according to the index set β′,
obtaining A = (B′|N ′), we have to show that B′ is nonsingular. Notice (B|N) = A = (B′|N ′) implies
B−1A = (I|B−1N) = (B−1B′|B−1N ′) (here ’=’ is taken informally to mean: both matrices at each side
of the equality sign, taken as column sets, are equal). Eq. (9) can be stated in matrix form as BX⊤ = N
where X is the (n−m)×m matrix whose (p, q)-th entry is xpq, thus B−1N = X⊤. By construction of
B′ we have B′ = B\{Ak} ∪ {Aj}. Thus, B−1B′ = (e1, . . . , ek−1, B

−1Aj , ek+1, . . . , en), where ei is the
vector with i-th component set to 1 and the rest set to zero, and B−1Aj is the j-th column of X, i.e.

(x1j , . . . , xnj)
⊤

. Hence, |det(B−1B′)| = |xkj | > 0, since θ > 0 implies xkj 6= 0. Thus, detB′ 6= 0 and B′

is nonsingular. 2

Intuitively, Theorem 3.6 says that any column Aj outside the basis can replace a column Ak in the
basis if we choose k as the index that minimizes θ in Eq. (11). Notice that this implies that the column
Ak exiting the basis is always among those columns i in Eq. (9) which have multiplier xij > 0. In other
words, a column Aj can replace column Ak in the basis only if the linear dependence of Aj on Ak is
nonzero (Ak is a “nonzero component” of Aj). Informally, we say that xj enters the basis and xk leaves
the basis. In order to formalize this process algorithmically, we need to find the value of the multipliers
xij . By the proof of Prop. 3.6, xij is the (i, j)-th component of a matrix X satisfying X⊤ = B−1N .
Knowing xij makes it possible to calculate β′ and the corresponding partition B′, N ′ of the columns of A.
The new bfs x′ can be obtained as (B′)−1b, since Ax′ = b implies (B′|N ′)x′ = b and hence Ix′ = (B′)−1b
(recall N ′x′ = 0 since x′ is a bfs).

3.3 Decrease direction

All we need now is a way to identify “convenient” variables to enter into the basis. In other words, from
a starting bfs we want to move to other bfs’s (with the method described above) so that the objective
function value decreases. To this end, we iteratively select to enter the basis the variable xj having the
most negative reduced cost (the reduced costs are the coefficients of the objective function expressed in
terms of the current nonbasic variables). Writing c as (cB , cN) according to the current basic/nonbasic
partition, the reduced costs c̄⊤ are obtained as c⊤ − cBB−1A. The algorithm terminates when there is
no negative reduced cost (i.e. no vertex adjacent to the current solution has a smaller objective function
value). This criterion defines a local optimum. Since LP problems are convex, any local minimum is also
a global one by Theorem 2.7.

3.4 Bland’s rule

When a bfs is degenerate, an application of the simplex algorithm as stated above may cause the algorithm
to fail to converge. This happens because a reduced cost in the objective function identifies a variable
xj to enter the basis, replacing xk, with degenerate value x′

j = θ = 0. This results in a new basis
having exactly the same objective function value as before; at the next iteration, it may happen that
the selected variable to enter the basis is again xk. Thus, the current basis alternatively includes xk and
xj without any change to the objective function value. It can be shown that the following simple rule
entirely avoids these situations: whenever possible, always choose the variable having the lowest index
for entering/leaving the basis.

4 DUALITY 11

3.5 Simplex method in matrix form

Here we give a summary of the algebraic operations involved in a generic simplex algorithm step applied to
a linear programming problem in standard form min{c⊤x | Ax = b∧x ≥ 0}. Suppose we are given a cur-
rent bfs x ordered so that variables xB = (x1, . . . , xm, 0, . . . , 0) are basic and xN = (0, . . . , 0, xm+1, . . . , xn)
are nonbasic. We write A = B + N where B consists of the basic columns 1, . . . m of A and 0 in the
columns m+1, . . . n, and N consists of 0 in the first m columns and then the nonbasic columns m+1, . . . n
of A.

1. Express the basic variables in terms of the nonbasic variables. From Ax = b we get BxB +NxN = b.
Let B−1 be the inverse of the square submatrix of B consisting of the first m columns (i.e. the
basic columns). We pre-multiply by B−1 to get:

xB = B−1b−B−1NxN . (12)

2. Select an improving direction. Express the objective function in terms of the nonbasic variables:
c⊤x = c⊤BxB + c⊤NxN = c⊤B(B−1b−B−1NxN) + c⊤NxN , whence:

c⊤x = c⊤BB−1b + c̄⊤NxN , (13)

where c̄⊤N = c⊤N − c⊤BB−1N are the reduced costs. If all the reduced costs are nonnegative there
is no nonbasic variable which yields an objective function decrease if inserted in the basis, since
the variables must also be nonegative. Geometrically speaking it means that there is no adjacent
vertex with a lower objective function value, which in turn, by Thm. 2.7, means that we are at an
optimum, and the algorithm terminates. Otherwise, select an index h ∈ {m+1, . . . n} of a nonbasic
variable xh with negative reduced cost (or, as in Section 3.4, select the least such h). We now
wish to insert xh in the basis by increasing its value from its current value 0. Geometrically, this
corresponds to moving along an edge towards an adjacent vertex.

3. Determine the steplength. Inserting xh in the basis implies that we should determine an index l ≤ m
of a basic variable which exits the basis (thereby taking value 0). Let b̄ = B−1b, and let āij be the

(i, j)-th component of B−1N (notice āij = 0 for j ≤ m). By (12) we can write xi = b̄i−
n
∑

j=m+1

āijxj

for all i ≤ m. Since we only wish to increase the value of xh and all the other nonbasic variables
will keep value 0, we can write xi = b̄i− āihxh. At this point, increasing the value of xh may impact
on the feasibility of xi only if it becomes negative, which can only happen if āih is positive. Thus,
we get xh ≤ b̄i

āih
for each i ≤ m and āih > 0, and hence:

l = argmin{ b̄i

āih
| i ≤ m ∧ āih > 0} (14)

xh =
b̄l

ālh
. (15)

The above procedure fails if āih ≤ 0 for all i ≤ m. Geometrically, it means that xh can be increased
in value without limit: this implies that the value of the objective function becomes unbounded. In
other words, the problem is unbounded.

4 Duality

Every mathematical programming problem has a dual form. The original problem is sometimes called
the primal problem. It can be shown that the optimal solution of the dual of any convex problem is
exactly the same as the solution of the primal problem (this is true for LP problems also, since they are
convex problems). For nonconvex problems, the solution of the dual yields a lower bound to the solution
of the primal problem. In this section, we shall derive the dual of an LP problem as a special case of a
much more general setting.

4 DUALITY 12

4.1 Equality constraints and Lagrange Multipliers method

Some material for this section has been taken from [Pug02]. For a scalar function f : R
n → R we

define the function vector ∇f as (∇f)(x) =
(

∂f(x)
∂x1

, . . . , ∂f(x)
∂xn

)⊤

, where x = (x1, . . . , xn)
⊤

. We denote

by ∇f(x′) the evaluation of ∇f at x′. If g is a vector-valued function g(x) = (g1(x), . . . , gm(x)), then ∇g
is the set of function vectors {∇g1, . . . ,∇gm}, and ∇g(x′) is the evaluation of ∇g at x′.

Consider the following nonlinear, possibly nonconvex programming problem with continuous variables
defined over R

n:
min
x∈Rn

f(x)

s.t. g(x) = 0,

}

(16)

where f : R
n → R and g : R

n → R
m are C1 (i.e., continuously differentiable) functions.

A constrained critical point of problem (16) is a point x∗ ∈ R
n such that ∇f(x∗) = 0 and g(x∗) = 0.

It is easy to show that such an x∗ is a maximum, or a minimum, or a saddle point of f(x).

4.1 Theorem (Lagrange Multiplier Method)
If x∗ is a constrained critical point of problem (16), m ≤ n, and ∇g(x∗) is a linearly independent set of
vectors, then ∇f(x∗) is a linear combination of the set of vectors ∇g(x∗).

Proof. Suppose, to get a contradiction, that ∇g(x∗) and ∇f(x∗) are linearly independent. In the case
∇f(x∗) = 0, the theorem is trivially true, so assume ∇f(x∗) 6= 0. Choose vectors wm+2, . . . , wn such
that the set J = {∇g1(x

∗), . . . ,∇gm(x∗),∇f(x∗), wm+2, . . . , wn} is a basis of R
n. For m + 2 ≤ i ≤ n

define hi(x) = 〈wi, x〉. Consider the map

F (x) = (F1(x), . . . , Fn(x)) = (g1(x), . . . , gm(x), f(x), hm+2(x), . . . , hn(x)).

Since the jacobian of F evaluated at x∗ is J , and J is nonsingular, by the inverse function theorem F
is a local diffeomorphism of R

n to itself. Thus, the equations yi = Fi(x) (i ≤ n) are a local change of
coordinates in a neighbourhood of x∗. With respect to coordinates yi, the surface S defined by g(x) = 0
is the coordinate hyperplane 0×R

n−m. Notice that the (k + 1)-st coordinate, yk+1 = f(x), cannot have
a critical point on the coordinate plane 0 × R

n−m, so x∗ is not a constrained critical point, which is a
contradiction. 2

In the proof of the above theorem, we have implicitly used the fact that the criticality of points is
invariant with respect to diffeomorphism (this can be easily established by showing that the derivatives
of the transformed functions are zero at the point expressed in the new coordinates).

By Theorem (4.1) there exist scalars λ1, . . . , λm, such that

∇f(x∗) +

m
∑

i=1

λi∇gi(x
∗) = 0.

The above condition is equivalent to saying that if x∗ is a constrained critical point of f s.t. g(x∗) = 0,
then x∗ is a critical point of the following (unconstrained) function:

L(x, λ) = f(x) +

m
∑

i=1

λigi(x). (17)

Function (17) is called the Lagrangian of f w.r.t. g, and λ1, . . . , λm are called the Lagrange multipliers.
Intuitively, when we are optimizing over a subspace defined by Ax = b, the optimization direction must
be a linear combination of the vectors which are normal to the hyperplane system Ax = b. The situation
is depicted in Fig. 2.

4 DUALITY 13

∇g1 ∇g2

−∇f

−∇f ′

g1 = 0

g2 = 0

feasible descent direction

Figure 2: If ∇f is linearly dependent on the constraint gradients, there is no feasible descent direction.
∇f ′, which does not have this property, identifies a feasible descent direction when projected on the
feasible space.

Hence, in order to find the solution of problem (16), by Theorem 4.1, one should find all critical points
of L(x, λ) and then select the one with minimum objective function value. In view of Theorem 3.5 and
the fact that polyhedra have an exponential number of vertices, this approach is of limited use on all but
the simplest problems. It does, however, provide at least necessary conditions for the characterization of
a constrained minimum.

Notice, however, that problem (16) only caters for equality constraints; in particular, the range of
each variable is R and there is no general way to reformulate an inequality constraint to an equation
constraint unless one takes into account nonnegative slack variables (see Section 1.3), i.e. other inequality
constraints. Furthermore, the proof of Theorem 4.1 is heavily based on the assumption that the only
constraints of the problem are equality constraints, so an extension of the proof to encompass inequality
constraints seems unlikely.

4.2 Inequality Constraints and Farkas’ Lemma

Material from this section has been taken from [BSS93, Lee04] In order to take into account inequality
constraints, we introduce the following simple example.

4.2 Example
Consider the problem min{−x1 − x2 | x1 − 1 ≤ 0, x2 − 1 ≤ 0}. The minimum is obviously at x∗ = (1, 1)
as depicted in Fig. 3 (the figure only shows the positive quadrant; the feasible region actually extends to
the other quadrants). By inspection, it is easy to see that at the point x∗ = (1, 1) any further movement
towards the direction of objective function decrease would take x∗ outside the feasible region, i.e. no
feasible direction decreases the objective function value. Notice that the descent direction at x∗ is in the
cone defined by the normal vectors to the constraints in x∗. In this particular case, the descent direction
of the objective function is the vector −∇f(x∗) = (1, 1). The normal vector to g1(x) = x1 − 1 at x∗ is
∇g1(x

∗) = (1, 0) and the normal vector to g2(x) = x2 − 1 at x∗ is ∇g2(x
∗) = (0, 1). Notice that we can

express −∇f(x∗) = (1, 1) as λ1(1, 0) + λ2(0, 1) with λ1 = 1 > 0 and λ2 = 1 > 0. In other words, (1, 1) is
a conic combination of (1, 0) and (0, 1).

If we now consider the problem of minimizing f̄(x) = x1 + x2 subject to the same constraints as
above, it appears clear that x∗ = (1, 1) cannot be a local minimum, as there are many feasible descent
directions. Take for example the direction vector y = (−1,−1). This direction is feasible w.r.t. the
constraints: ∇g1(x

∗)y = (1, 0)(−1,−1) = (−1, 0) ≤ 0 and ∇g2(x
∗)y = (0, 1)(−1,−1) = (0,−1) ≤ 0.

Moreover, it is a nonzero descent direction: −∇f̄(x∗)y = −(1, 1)(−1,−1) = (1, 1) > 0.

In summary, either the descent direction at x∗ is a conic combination of the gradients of the constraints

4 DUALITY 14

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����1

1

x1

x2

∇g1(x
∗)

∇g1(x
∗)

-∇f(x∗)

Figure 3: The problem of Example 4.2.

(and in this case x∗ may be a local minimum), or there is a nonzero feasible descent direction (and in
this case x∗ cannot be a local minimum).

The example above is an application of a well known theorem of alternatives called Farkas’ Lemma.
This will be useful in Section 4.3 to give necessary conditions for a point to be a constrained local
minimum of an inequality constrained problem.

4.3 Proposition
Given a non-empty, closed convex set S ⊆ R

n and a point x∗ 6∈ S, there exists a unique point x′ ∈ S
with minimum distance from x∗. Furthermore, x′ is the minimizing point if and only if for all x ∈ S we
have (x∗ − x′)

⊤
(x− x′) ≤ 0.

Proof. Let x′ ∈ S be the point minimizing f(x) = ||x∗ − x|| subject to x ∈ S (which exists by Weier-
straßTheorem). To show that it is unique, notice first that f is convex: for λ ∈ [0, 1] and x1, x2 ∈ S
we have f(λx1 + (1 − λ)x2) ≤ f(λx1) + f((1 − λ)x2) = λf(x1) + (1 − λ)f(x2) by triangular inequality
and homogeneity of the norm. Suppose now y ∈ R

n such that f(y) = f(x′). Since x′, y ∈ S and S

is convex, the point z = x′+y
2 is in S. We have f(z) ≤ f(x′)

2 + f(y)
2 = f(x′). Since f(x′) is minimal,

f(z) = f(x′). Furthermore, f(z) = ||x∗−z|| = ||x∗− x′+y
2 || = ||x

∗−x′

2 + x∗−y
2 ||. By the triangle inequality,

f(z) ≤ 1
2 ||x∗−x′||+ 1

2 ||x∗−y||. Since equality must hold as f(z) = f(x′) = f(y), vectors x∗−x′ and x∗−y
must be collinear, i.e. there is θ ∈ R such that x∗−x′ = θ(x∗−y). Since f(x′) = f(y), |θ| = 1. Supposing

θ = −1 we would have x∗ = x′+y
2 , which would imply x∗ ∈ S, contradicting the hypothesis. Hence θ = 1

and x′ = y as claimed. For the second part of the Proposition, assume x′ is the minimizing point in
S and suppose there is x ∈ S such that (x∗ − x′)

⊤
(x − x′) > 0. Take a point y 6= x′ on the segment

x, x′. Since S is convex, y ∈ S. Furthermore, since y − x′ is collinear to x − x′, (x∗ − x′)
⊤

(y − x′) > 0.
Thus, the angle between y − x′ and x∗ − x′ is acute. Choose y close enough to x′ so that the largest
angle of the triangle T having x∗, x′, y as vertices is the angle in y (such a choice is always possible). By
elementary geometry, the longest side of such a triangle is the segment x∗, x′ opposite to the angle in y.
This implies ||x∗ − y|| < ||x∗ − x′||, which is a contradiction, as x′ was chosen to minimize the distance

from x∗. Conversely, suppose for all x ∈ S we have (x∗ − x′)
⊤

(x − x′) ≤ 0. This means that the angle
in x′ is obtuse (and hence it is the largest angle of T), and consequently the opposite side x, x∗ is longer
than the side x′, x∗. 2

4.4 Proposition
Given a non-empty, closed convex set S ⊆ R

n and a point x∗ 6∈ S, there exists a separating hyperplane

h⊤x = d (with h ≥ 0) such that h⊤x ≤ d for all x ∈ S and h⊤x∗ > d.

4 DUALITY 15

Proof. Let x′ be the point of S of minimum (strictly positive, since x∗ 6∈ S) distance from x∗. Let

y = x′+x∗

2 be the midpoint between x′, x∗. The plane normal to the vector x∗ − y and passing through y
separates x∗ and S. 2

4.5 Theorem (Farkas’ Lemma)
Let A be an m × n matrix and c be a vector in R

n. Then exactly one of the following systems has a

solution: (a) Ax ≤ 0 and c⊤x > 0 for some x ∈ R
n; (b) µ⊤A = c⊤ and µ ≥ 0 for some µ ∈ R

m.

Proof. Suppose system (b) has a solution. Since µ⊤Ax = c⊤x for each x ∈ R
n, pick x such that Ax ≤ 0.

Since µ ≥ 0, we have c⊤x ≤ 0. Conversely, suppose system (b) has no solution. Let Im+(A⊤) = {z ∈
R

n | z⊤ = µ⊤A,µ ≥ 0}; Im+(A⊤) is convex, and c 6∈ Im+(A⊤). By Prop. (4.4), there is a separating
hyperplane h⊤x = d such that h⊤z ≤ d for all z ∈ Im+(A⊤) and h⊤c > d. Since 0 ∈ Im+(A⊤), d ≥ 0,
hence h⊤c > 0. Furthermore, d ≥ z⊤h = µ⊤Ah for all µ ≥ 0. Since µ can be arbitrarily large, µ⊤Ah ≤ d
implies Ah ≤ 0. Take x = h: x solves system (a). 2

Farkas’ Lemma has the following geometric interpretation: given A and c as in the statement of
Theorem 4.5, either there is a vector x that makes a non-acute angle with every row of A and an acute
angle with c, or c is in the conical hull of the rows of A (see Fig. 4).

Ai1Ai1

Ai2Ai2

Ai3 Ai3

c

c

x

α α

αα

γ

Figure 4: Geometric interpretation of Farkas’ Lemma. Since α = π/2 and γ < π/2, x makes non-acute
angles with the rows of A, and an acute angle with c, which is not in the cone spanned by the rows of A
(picture on the left). The alternative situation is that c is in the cone spanned by the rows of A, and an
x with the mentioned properties does not exist (picture on the right).

4.3 Karush-Kuhn-Tucker necessary conditions

Consider the following problem:
min
x∈Rn

f(x)

s.t. g(x) ≤ 0,

}

(18)

where f : R
n → R and g : R

n → R
m are C1 functions. A constrained minimum of problem (18) is a

minimum x∗ of f(x) such that g(x∗) ≤ 0. It can be shown that if x∗ is a constrained minimum then there
is no nonzero feasible descent direction at x∗ (see [BSS93], p. 141). We shall define a feasible direction at

x∗ as a direction vector y such that (∇g(x∗))
⊤

y ≤ 0, and a nonzero descent direction at x∗ as a direction

vector y such that (−∇f(x∗))
⊤

y > 0.

4 DUALITY 16

4.6 Theorem (Karush-Kuhn-Tucker Conditions)
If x∗ is a constrained minimum of problem (18), I is the maximal subset of {1, . . . ,m} such that gi(x

∗) = 0
for all i ∈ I, and ∇ḡ is a linearly independent set of vectors (where ḡ = {gi(x

∗) | i ∈ I}), then ∇f(x∗) is
a conic combination of the vectors in ∇ḡ, i.e. there exist scalars λi for all i ∈ I such that the following
conditions hold:

∇f(x∗) +
∑

i∈I

λi∇gi(x
∗) = 0 (19)

∀i ∈ I (λi ≥ 0). (20)

Proof. Since x∗ is a constrained minimum and ∇ḡ is linearly independent, there is no nonzero feasible
descent direction at x∗ such that (∇ḡ(x∗))

⊤
y ≤ 0 and −∇f(x∗)y > 0. By a direct application of Farkas’

Lemma (4.5), there is a vector λ ∈ R
|I| such that ∇(ḡ(x∗))λ = −∇f(x∗) and λ ≥ 0. 2

The Karush-Kuhn-Tucker (KKT) necessary conditions (19), (20) can be reformulated to the following:

∇f(x∗) +

m
∑

i=1

λi∇gi(x
∗) = 0 (21)

∀i ≤ m (λigi(x
∗) = 0) (22)

∀i ≤ m (λi ≥ 0). (23)

This is easily verified by defining λi = 0 for all i 6∈ I. Conditions (22) are called complementary slackness
conditions, and they express the fact that if a constraint is not active at x∗ then its corresponding
Lagrange multiplier is 0.

4.4 Weak duality

Consider now a general NLP with both inequality and equality constraints:

min
x∈Rn

f(x)

s.t. g(x) ≤ 0
h(x) = 0,











(24)

where f : R
n → R, g : R

n → R
m and h : R

n → R
p are C1 functions. A constrained minimum of problem

(24) is a minimum x∗ of f(x) such that g(x∗) ≤ 0 and h(x) = 0.

By applying theorems 4.1 and 4.6, we can define the Lagrangian of problem (24) by the following:

L(x, λ, µ) = f(x) +

m
∑

i=1

λigi(x) +

p
∑

i=1

µihi(x), (25)

and the corresponding KKT conditions as:

∇f(x∗) +
m
∑

i=1

λi∇gi(x
∗) +

p
∑

i=1

µi∇hi(x
∗) = 0

λigi(x
∗) = 0 ∀i ≤ m
λi ≥ 0 ∀i ≤ m.















(26)

In order to derive the general KKT conditions (26), it is sufficient to sum Eq. (19) and (21) and then
divide the sum by the scalar 2.

4.7 Theorem (Weak duality)
Let S be the feasible region of problem (24) and x∗ be its global solution. For each λ ≥ 0 and µ,

L̄(λ, µ) = min
x∈S

L(x, λ, µ) ≤ f(x∗).

4 DUALITY 17

In other words, L̄(λ, µ) is a lower bound for the solution of (24).

Proof. Since x ∈ S and λ ≥ 0, λ⊤g(x) ≤ 0 and µ⊤h(x) = 0. The result follows by Eq. (25). 2

In view of Theorem 4.7, it makes sense to look for the greatest lower bound given by duality; this is
defined as

max
λ≥0,µ

L̄(λ, µ).

4.5 The dual of an LP problem

Consider now an LP in standard form (6). The Lagrangian is:

L(x, λ, µ) = c⊤x + λ⊤(−x) + µ⊤(Ax− b).

Its duality bound is given by:
max
λ≥0,µ

min
x∈S
−b⊤µ + x⊤(c− λ + A⊤µ).

The KKT conditions (26) are:

c− λ + A⊤µ = 0

λixi = 0 ∀i ≤ n

λi ≥ 0 ∀i ≤ n.

By considering λ as slack variables (see Section 1.3), the first and third conditions above can simply be
reformulated to:

A⊤µ + c ≥ 0.

The KKT conditions ensure (c − λ + µA) = 0, hence the duality bound can be obtained by solving the
following dual problem in the µ variables:

max
µ

−b⊤µ

s.t. A⊤µ + c ≥ 0.

}

(27)

4.8 Theorem (Strong duality for LP)
The objective function value at an optimum of the LP dual (27) is equal to the objective function value
at an optimum of the original LP (6).

Proof. Consider the following “inverse” reformulation of the dual (27):

min
µ

b⊤µ

s.t. −A⊤µ− c ≤ 0.

}

(28)

It is evident that if µ∗ is a solution of (28), then it also solves (27) with objective function value −b⊤µ∗.
The Lagrangian for problem (28) is L(µ, x) = b⊤µ+x⊤(−A⊤µ−c), where x ≥ 0 is the vector of Lagrange

multipliers. By rearranging terms, we get L(µ, x) = −(Ax− b)
⊤

µ−x⊤c. By the KKT conditions, we get
∇L = 0 (derivatives taken w.r.t. µ, not x), hence Ax− b = 0. The complementary slackness conditions
(22) read x⊤(−A⊤µ∗ − c) = 0, i.e. −b⊤µ∗ = c⊤x; thus, there exist a primal feasible point x such that
the objective function value of the primal problem evaluated at x is the same as the optimal objective
function value of the dual problem. Since by weak duality −b⊤µ∗ ≤ c⊤x′ for any primal feasible x′, this
implies that x is an optimal solution of the primal problem, and the theorem is proved. 2

5 SIMPLEX VARIANTS 18

4.6 Economic interpretation of the dual

Consider the diet problem of Example 1.1. Its dual, max{yb | yA ≤ c⊤ ∧ y ≥ 0}, can be interpreted as
follows. A megalomaniac pharmaceutical firm wishes to replace human food with nutrient pills: it wishes
to set the prices of the pills as high as possible, whilst being competitive with the cost of the foods. In
this setting, y are the prices of the m nutrient pills, b is the quantity of nutrients required, and c are the
costs of the food.

4.7 Sensitivity analysis

Material from this section has been taken from [Fis99]. We write the optimality conditions as follows:

b̄ = B−1b ≥ 0 (29)

c̄⊤ = c⊤ − c⊤BB−1A ≥ 0. (30)

Eq. (29) expresses primal feasibility and Eq. (30) expresses dual feasibility.

Suppose now we have a variation in b, say b → b + ∆b: Eq. (29) becomes B−1b ≥ −B−1∆b. This
system defines a polyhedron in ∆b where the optimal basis does not change. The variable values and
objective function obviously change. The variation of the objective function is (c⊤BB−1)∆b = y∗∆b, where
y∗ are the optimal dual variable values: these, therefore, can be seen to measure the sensitivity of the
objective function value to a small change in the constraint coefficients.

5 Simplex variants

In this section we briefly describe some of the most popular variants of the simplex algorithm. Material
in this section has been taken from [PS98, Fis99].

5.1 Revised Simplex method

The revised simplex mehod is basically a smart storage and update scheme for the data of the current
iteration of the simplex algorithm. In practice, we only need to store B−1, as the rest of the data can be
obtained via premultiplication by B−1. The disadvantages of this method reside in the high numerical
instability of updating B−1 directly. The instability problem is usually addressed by storing B−1 in
various factorized forms.

5.2 Two-phase Simplex method

If no starting bfs is available for (6), we can artificially look for one by solving the auxiliary problem:

minx,y 1y
s.t. Ax + yI = b

x ∈ R
n
+

y ∈ R
m
+















where 1 is the row vector consisting of all 1’s. Here, the bfs where B = I is immediately evident (all x
are nonbasics, all y are basics), and if (6) is feasible, the optimal objective function value of the auxiliary
problem will be 0 with y = 0, yielding a bfs in the x variables only. This solution can then be used as a
starting bfs for the original problem.

6 INTERIOR POINT METHODS 19

5.3 Dual Simplex method

Another way to deal with the absence of a starting bfs is to apply the dual simplex method. What
happens in the (primal) simplex algorithm is that we maintain primal feasibility by moving from vertex
to vertex, whilst trying to decrease the objective function until this is not possible anymore. In the dual
simplex algorithm, we maintain the optimality of the objective function (in the sense that the current
dual simplex objective function value is always a lower bound with respect to the primal optimal value)
whilst trying to achieve feasibility. We use the same notation as in Section 3.5.

We start with a (possibly infeasible) basic primal solution where all the reduced costs are nonnegative.
If b̄ = B−1b = xB ≥ 0 the algorithm terminates: if xB is primal feasible, then we have an optimal basis.
Otherwise, the primal problem is infeasible. If b 6≥ 0, we select l ≤ m such that b̄l < 0. We then find
h ∈ {m + 1, . . . , n} such that ālh < 0 and alh is minimum among { c̄j

|ālj |
| j ≤ n ∧ ālj < 0} (this ensures

that the reduced costs will stay nonnegative), and we swap xl with xh in the current basis. If ālj ≥ 0 for
all j ≤ n, then the primal problem is infeasible.

The advantage of the dual simplex method is that we can add cutting planes (valid inequalities) to
the simplex tableau during the execution of the algorithm. A valid cut should make the current optimal
solution infeasible, but since the dual simplex bases are not assumed to be primal feasible, this is not a
problem.

5.4 Column generation

It often happens that the number of variables in a problem is much larger than the number of constraints.
Consequently, whilst the basis is has acceptably small cardinality, the computational costs of running the
simplex algorithm on the problem are huge. If there exists an efficient procedure for finding the reduced
cost of minimum value, we can insert columns in the simplex tableau as the need arises, thus dispensing
from dealing with all variables at once. The problem of determining the reduced cost of minimum value
is called the pricing problem. Column generation techniques are only useful if the pricing problem can be
solved efficiently. The procedure stops when the pricing problem determines a minimum reduced cost of
non-negative value. One example of application of column generation is the multicommodity network flow
problem formulated so that each variable corresponds to a path on the network. There are exponentially
many paths, but the pricing problem is a shortest path problem, which can be solved very efficiently.

6 Interior Point methods

Material for this section (except for Subsection 6.1) has been taken from [BSS93, Fle91, Tah92, JRTV93,
BV04].

Kachiyan showed in 1979 that finding an optimal solution to a LP problem has polynomial worst-
case complexity. Even though Kachiyan’s Ellipsoid algorithm is of polynomial worst-case complexity, it
does not work well in practice. In 1984, Karmarkar presented another polynomial algorithm for solving
LP problems which was claimed to have useful practical applicability. Gill et al. showed in 1985 that
Karmarkar’s algorithm was in fact an Interior Point Method (IPM) with a log-barrier function applied
to an LP problem. IPMs had been applied to nonlinear problems with considerable success in the late
60’s (see Fiacco and McCormick’s 1968 book). This spawned considerable interest in IPMs applied to
LP problems; barrier optimizers for LP were incorporated in most commercial software codes (CPLEX,
XPressMP). Barrier optimizers compete well with Simplex-based implementations specially on large-scale
problems.

6 INTERIOR POINT METHODS 20

6.1 Ellipsoid Algorithm and complexity of LP

Material for this section has been taken from [NW88, KV00, PS98].

Any LP problem can be polynomially reduced to the problem of finding a feasible solution to a
system of strict linear inequalities in n variables with rational coefficients. Let Pε be the polyhedron
corresponding to the given system of strict linear inequalities, and let E0 be an ellipsoid such that
Pε ⊆ E0. The Ellipsoid algorithm either finds a feasible solution x∗ ∈ Pε or determines that Pε is empty;
we assume that the volume of Pε is strictly positive if Pε is nonempty, i.e. Pε 6= ∅ → Vol(Pε) > 0. Let v
be a number such that Vol(Pε) > v if Pε 6= ∅ and V = Vol(E0), and let

K = ⌈2(n + 1)(ln V − ln v)⌉.

Initially, k = 0.

1. Let x(k) be the centre of the ellipsoid Ek. If x(k) ∈ Pε, the algorithm terminate with solution x(k).
Otherwise, there exists a violated strict constraint Aix < bi such that Aix

(k) ≥ bi. The hyperplane
Aix = bi slices Ek through the centre; the half that does not contain P can be discarded.

2. Find the minimum volume ellipsoid Ek+1 containing the half of Ek containing P , and let x(k+1) be
the centre of Ek+1.

3. If k ≥ K, stop: Pε = ∅.

4. Repeat from 1.

An ellipsoid Ek with centre x(k) is described by {x ∈ R
n | (x− x(k))

⊤
D−1

k (x−x(k)) ≤ 1} where Dk is an
n× n positive definite symmetric matrix. We compute x(k+1) and Dk+1 as follows:

Γk =
DkAi

√

Ai
⊤DkAi

x(k+1) = x(k) +
Γk

n + 1

Dk+1 =
n2

n2 − 1

(

Dk −
2ΓkΓk

⊤

n + 1

)

.

It turns out that Ek+1 defined by the matrix Dk+1 contains the half-ellipsoid of Ek containing P , and
furthermore

Vol(Ek+1) ≤ e−
1

2(n+1) Vol(Ek). (31)

The volume of EK is necessarily smaller than v: by (31) we have

Vol(EK) ≤ e−
K

2(n+1) Vol(E0) ≤ V e−
K

2(n+1) ≤ V e− ln(V/v) = v,

hence by the assumption on v we must have Pε = ∅ if k ≥ K. Since it can be shown that K is polynomial
in the size of the problem instance (which depends on the number of variables, the number of constraints
as well as the bits needed to store A and b), the Ellipsoid algorithm is a polynomial algorithm which can
be used to solve linear programming problems. One last point to be raised is that in Eq. (31) we rely
on an irrational computation, which is never precise on a computer. It can be shown that computations
carried out to a certain amount of accuracy can still decide whether Pε is empty or not.

6.2 Karmarkar’s algorithm

Karmarkar’s algorithm is designed to solve a particular type of linear optimization problem; namely, one
where the objective function c⊤x is known a priori to have optimal objective function value f∗ = c⊤x∗ =

6 INTERIOR POINT METHODS 21

0, and whose constraints are Ax = 0, x ≥ 0 and e⊤x = 1; it is assumed that Ae = 0, so that x̄ = e/n is

an initial feasible point (where e = (1, . . . , 1)
⊤

and e/n = (1/n, . . . , 1/n)
⊤

). It can be shown that any LP

can be polynomially reduced to this special form. Let X = diag(x̄) and B =

(

AX
e

)

. The algorithm is

as follows:

1. Project Xc into the null space of B: c∗ = (I −B⊤(BB⊤)−1B)Xc.

2. Normalize the descent direction: d = γ c∗

||c∗|| . If c∗ = 0 terminate with optimal solution x∗.

3. Move in projected space: y = e/n− sd where s is a fixed step size.

4. Project back into x-space: x̄← Xy
e⊤Xy

.

5. Repeat from 1.

Taking γ = 1√
n(n−1)

and s = 1
4 guarantees that the algorithm has polynomial complexity.

Let us look at the first iteration of Karmarkar’s algorithm in more detail. The initial point x̄ is taken
to be the feasible point x̄ = e/n; notice e/n is also the centre of the simplex e⊤x = 1, x ≥ 0. Let
Sr = {x ∈ R

n | ||x − x∗|| ≤ r ∧ e⊤x = 1 ∧ x ≥ 0} be the largest sphere that can be inscribed in the
simplex, and let SR be the smallest concentric sphere that circumscribes the simplex. It can be shown
that R/r = n − 1. Let xr be the minimizer of c⊤x on Fr = Sr ∩ {x | Ax = 0} and xR the minimizer
on FR = SR ∩ {x | Ax = 0}; let fr = c⊤xr, fR = c⊤xR and f̄ = c⊤x̄. By the linearity of the objective

function, we have f̄−fR

f̄−fr
= n− 1. Since FR contains the feasible region of the problem, fR ≤ f∗ = 0, and

so (n− 1)f̄ − (n− 1)fr = f̄ − fR ≥ f̄ − f∗ = f̄ , whence

fr ≤
n− 2

n− 1
f̄ < e−

1
n−1 f̄ . (32)

Finally, we update x̄ with xr and repeat the process. If this reduction in objective function value could
be attained at each iteration, O(nL) iterations would be required to get within 2−L tolerance from
f∗ = 0, and the algorithm would be polynomial. The only trouble lies in the fact that after the first
iteration the updated current point xr is not the centre of the simplex anymore. Thus, we use a projective
transformation (step 4 of the algorithm) to reshape the problem so that the updated current point is again
at the centre of the simplex. The linearity of the objective function is not preserved by the transformation,
so a linear approximation is used (step 1 of the algorithm). Karmarkar showed that Eq. (32) holds for
the modified objective function too, thus proving the polynomiality of the algorithm.

6.3 The Log-Barrier function

Gill et al. showed in 1985 that Karmarkar’s algorithm is a special case of a log-barrier function applied
to an LP problem, and also that various types of log-barrier methods yielded polynomial algorithms to
solve LP problems. We consider the LP problem (6) in standard form, and reformulate it as follows:

minx c⊤x− β
n
∑

j=1

lnxj

s.t. Ax = b
x > 0,















(33)

where β > 0 is a parameter. Notice that since − lnxj → ∞ as xj → 0+, minimizing the objective
function of (33) automatically implies that x > 0. Furthermore, as β decreases towards 0, (33) describes

6 INTERIOR POINT METHODS 22

a continuous family of optimization problems which converge to (6). This suggests a solution method
based on solving a discrete sequence of convex problems

minx(β) c⊤x(β)− β
n
∑

j=1

lnxj(β)

s.t. Ax(β) = b







(34)

for β = β1, . . . , βk, . . ., whose solutions x∗(βk) → x∗ as k → ∞, where x∗ is the solution of (6). The set
{x∗(β) | β > 0} is a path in R

n called the central path.

6.3.1 Primal-Dual feasible points

We show that each point x(β) on the central path yields a dual feasible point. The Lagrangian L1(x, λ, ν)
for problem (6) (where λ are the dual variables for the constraints −x ≤ 0 and ν for Ax = b) is:

L1(x, λ, ν) = c⊤x−
n
∑

j=1

λjxj + ν(Ax− b), (35)

while the Lagrangian L2(x, ν) for problem (34) is:

L2(x, ν) = c⊤x(β)− β

n
∑

j=1

lnxj(β) + ν(Ax− b).

Deriving the stationarity KKT condition (21) from L1 we get:

∀j ≤ n (cj − λj + νAj = 0),

where Aj is the j-th column of A. From L2 we get:

∀j ≤ n (cj −
β

xj
+ νAj = 0).

Therefore, by letting

λj =
β

xj
(36)

for all j ≤ n, we can show that each point x(β) on the central path gives rise to a dual feasible point
(λ, ν) for the dual of (6):

max
ν

b⊤ν

s.t. A⊤ν + λ = c
λ ≥ 0.







(37)

Notice that the dual problem (37) has been derived from (27) by setting ν = −µ and using λ as slack
variables for the inequalities in (27). Since λ, ν also depend on β, we indicate them by λ(β), ν(β). That
(λ(β), ν(β)) is dual feasible in (37) follows because (x(β), λ(β), ν(β)) satisfies (21) as shown above. Now,
notice that by definition λj(β) = β

xj(β) implies

∀j ≤ n (λj(β)xj(β) = β) (38)

which means that as β converges to 0, the conditions (38) above imply the KKT slack complementarity
conditions (23). Since λ(β) ≥ 0 by definition (36), we have that (x∗, λ∗, ν∗) = (x(0), λ(0), µ(0)) is an
optimal primal-dual pair solving (6) and (37).

6 INTERIOR POINT METHODS 23

6.3.2 Optimal partitions

In a linear problem there may be more than one optimal solution. If that is the case, all optimal solutions
are on one face of the polyhedron. When such a case arises in the simplex method, more than one bfs
may be optimal. The analysis of the IPM provides a unique characterization of the optimal solutions
even when there is no unique optimal solution. We show that the central path converges to a strictly
complementary optimal solution, i.e. an optimal solution for which (x∗)

⊤
λ∗ = 0 and x∗ + λ∗ > 0. These

solutions are used to construct the optimal partition, i.e. a partition of the n vector components in two
index sets B,N such that:

B = {j ≤ n | x∗
i > 0}

N = {j ≤ n | λ∗
i > 0}.

The partition obtained in this way is unique, and does not depend on the strictly complementary optimal
solution used to define it. Optimal partitions provide a unique and well-defined characterization of
optimal faces.

In the remainder of this section we write x = x(β) and λ = λ(β) to simplify notation. The proof of
the following theorem was taken from [JRTV93].

6.1 Theorem (Goldman-Tucker, 1956)
With the same notation of this section, (x∗, λ∗), the limiting point of the primal-dual central path
(x(β), λ(β)), is a strictly complementary primal-dual optimal solution for (6).

Proof. By (38) we have that x⊤λ = nβ, thus (x∗)
⊤

λ∗ converges to 0 as β → 0. Now, both x∗ and x
are primal feasible, so Ax∗ = Ax = b, hence A(x∗ − x) = 0. Furthermore, since both λ∗ and λ are dual
feasible, we have ν∗A + λ∗ = νA + λ = c, i.e. (ν − ν∗)A = λ∗ − λ. In other words, x∗ − x is in the null
space of A and λ∗ − λ is in the range of A⊤: thus, the two vectors are orthogonal. Hence we have:

0 = (x∗ − x)
⊤

(λ∗ − λ) = (x∗)
⊤

λ∗ + x⊤λ− (x∗)
⊤

λ− x⊤λ∗,

and thus
(x∗)

⊤
λ + x⊤λ∗ = nβ.

Dividing throughout by β = xjλj we obtain:

n
∑

j=1

(

x∗
j

xj
+

λ∗
j

λj

)

= n.

Since

lim
β→0

x∗
j

xj
=

{

1 if x∗
i > 0

0 otherwise

and similarly for the λ component, for each j ≤ n exactly one of the two components of the pair (x∗
j , λ

∗
j)

is zero and the other is positive. 2

6.3.3 A simple IPM for LP

The prototypical IPM for LP is as follows:

1. Consider an initial point x(β0) feasible in (34), a parameter α < 1 and a tolerance ε > 0. Let k = 0.

2. Solve (34) with initial point x(βk), to get a solution x∗.

7 CONCLUSION 24

3. If nβk < ε, stop with solution x∗.

4. Update βk+1 = αβk, x(βk+1) = x∗ and k ← k + 1.

5. Go to step 2.

By (35), L1(x, λ, ν) = c⊤x − nβk, which means that the duality gap is nβk. This implies that x(βk)
is never more than nβk-suboptimal. This is the basis of the termination condition in step (3). Each
subproblem in step 2 can be solved by using Newton’s method.

6.3.4 The Newton step

In general, the Newton descent direction d for an unconstrained problem min f(x) at a point x̄ is given
by:

d = −(∇2f(x̄))−1∇f(x̄). (39)

If ∇2f(x̄) is positive definite, we obtain

(∇f(x̄))
⊤

d = −(∇f(x̄))
⊤

(∇2f(x̄))−1∇f(x̄) < 0,

so d is a descent direction. In this case, we need to find a feasible descent direction such that Ad = 0.
Thus, we need to solve the system

(

∇2f(x̄) A⊤

A 0

)(

d
ν⊤

)

=

(

−∇f(x̄)
0

)

,

for (d, ν), where ν are the dual variables associated with the equality constraints Ax = b. Step 4 in the
IPM algorithm of Section 6.3.3 becomes x(βk+1) = x(βk) + γd, where γ is the result of a line search, for
example

γ = argmins≥0f(x̄ + sd). (40)

Notice that feasibility with respect to Ax = b is automatically enforced because x̄ is feasible and d is a
feasible direction.

7 Conclusion

In this didactical paper we have discussed some of the very basic theoretical notions and methods in linear
programming. Starting from some geometrical notions about convexity and polyhedra, we explained the
primal simplex algorithm. We then derived the dual of a linear program via the Lagrangian function;
next we briefly examined some well-known variants of the simplex algorithm. Finally, we gave some
sketchy notes about the Ellipsoid algorithm, Karmarkar’s algorithm, and Interior Point algorithms based
on the log-barrier function.

References

[BSS93] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory and Algo-
rithms. Wiley, Chichester, second edition, 1993.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge,
2004.

[Dan63] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
NJ, 1963.

REFERENCES 25

[Fis99] M. Fischetti. Lezioni di Ricerca Operativa (in Italian). Edizioni Libreria Progetto, Padova,
1999.

[Fle91] R. Fletcher. Practical Methods of Optimization. Wiley, Chichester, second edition, 1991.

[JRTV93] B. Jansen, C. Roos, T. Terlaky, and J.-Ph. Vial. Interior-point methodology for linear pro-
gramming: duality, sensitivity analysis and computational aspects. Technical Report 28, 1993.

[KV00] B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. Springer-Verlag,
Berlin, 2000.

[Lee04] J. Lee. A First Course in Combinatorial Optimization. Cambridge University Press, Cam-
bridge, 2004.

[NW88] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley, New York,
1988.

[PS98] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.
Dover, New York, 1998.

[Pug02] C.C. Pugh. Real Mathematical Analysis. Springer-Verlag, Berlin, 2002.

[Tah92] H.A. Taha. Operations Research: An Introduction. MacMillan, New York, 1992.

