Introduction à la Programmation par Contraintes (PPC)

Ruslan Sadykov LIX, École Polytechnique

Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

Qu'est-ce que c'est la PPC

- Une autre façon de formuler et résoudre des problèmes combinatoires
- Spécificité de Programmation par Contraintes
 - On résout des problèmes de décision (dichotomie pour le problèmes d'optimisation)
 - Plus expressive que la PLNE (contraintes non-linéaires, logiques, explicites)
 - Utilisation des contraintes du problème de manière active pour limiter l'espace de recherche

Problèmes qu'on souvent résout avec PPC

- Ordonnancement
- Allocation des ressources
- Emplois du temps
- Conception de circuits
- Séquençage de l'ADN
- etc.

Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

Problème de satisfaction des contraintes (CSP) – I

- Réseau de contraintes P est un triplé (X, D, C) avec :
 - $\neg X=\{X_1, X_2, ..., X_n\}$ l'ensemble des variables
 - \square **D**={ $D_1, D_2, ..., D_n$ } l'ensemble des domaines finis
 - \Box **C**={ C_1 , C_2 , ..., C_e } l'ensemble des contraintes
- Chaque contrainte est un sous-ensemble du produit cartésien des domaines des variables sur lesquels elle porte.
- Les contraintes sont explicites (tuples de valeurs possibles) ou implicites (e.g. arithmétiques)

Problème de satisfaction des contraintes (CSP) – II

- Une solution est une affectation d'une valeur à chaque variable telle que les contraintes soient respectées (ou « pas de solution »)
- Un réseau de contraintes est binaire si toutes ses contraintes sont binaires (arité 2), pour chaque réseau de contraintes non-binaire, il y a un réseau binaire équivalent
- Variations : existence d'une solution, nombre de solutions, toutes les solutions

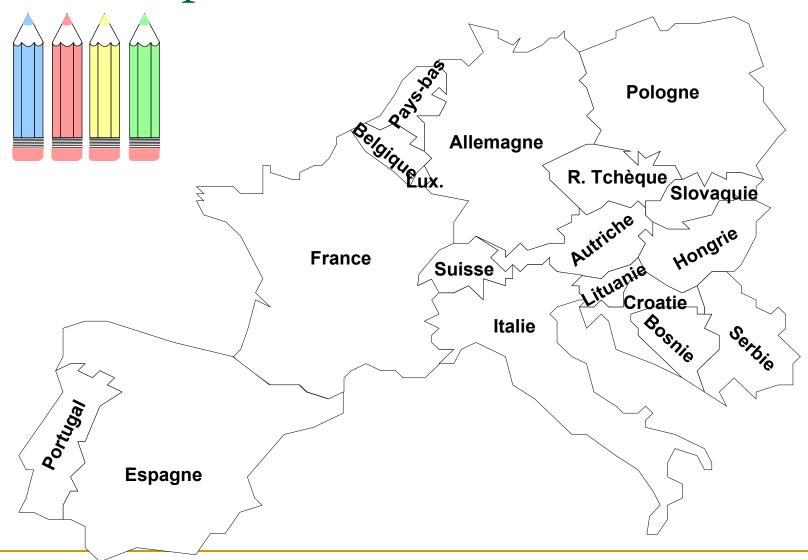
Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

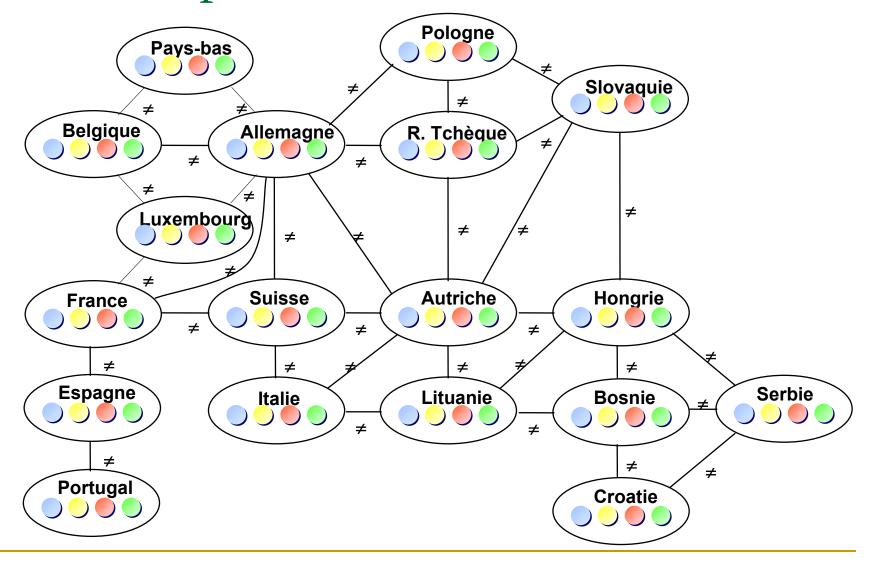
Un petit exemple de CSP

- Les variables x,y et z (entières).
- Les domaines $D_x = [1,3], D_y = [1,3], D_z = [1,3].$
- La contrainte x=y+z
- Les solutions sont (2,1,1), (3,1,2), (3,2,1).

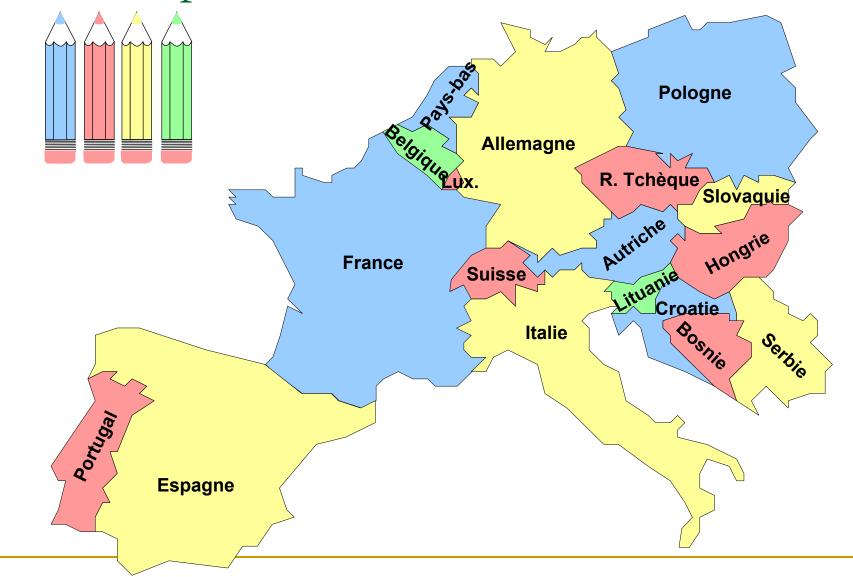
Un exemple : coloration d'une carte I



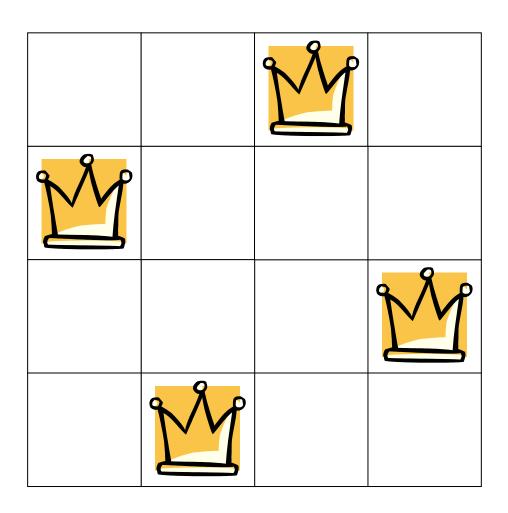
Un exemple : coloration d'une carte II



Un exemple : coloration d'une carte III



Un exemple: Les N reines



Soit un échiquier de *N*N* cases. Placer *N* reines de telle sorte qu'aucune reine ne puisse en capturer une autre.

- Variables : X_i position de la reine dans la colonne i
- •Domaines : $D_i = \{1, 2, ..., N\}$
- Les contraintes sont :
 - $X_i \neq X_j$, $1 \leq i \leq j \leq N$

 - $\exists X_i \neq X_j$ -(j-i), $1 \leq i \leq j \leq N$

Un exemple : carré magique

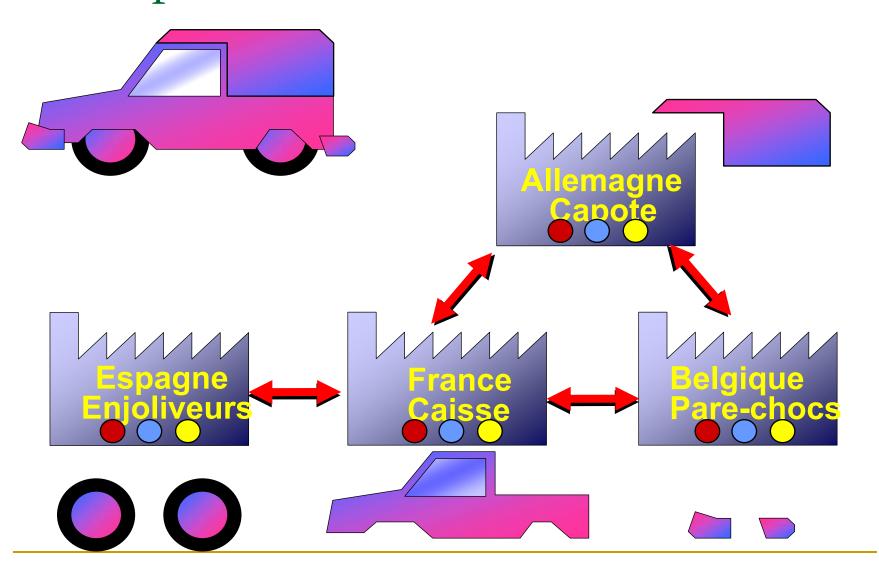
8	1	6
3	5	7
4	9	2

- Remplir une grille de N*N avec les nombres de 1 à N^2 de telle sorte que toutes les lignes, toutes les colonnes et les diagonales aient la même somme
- Modèle?

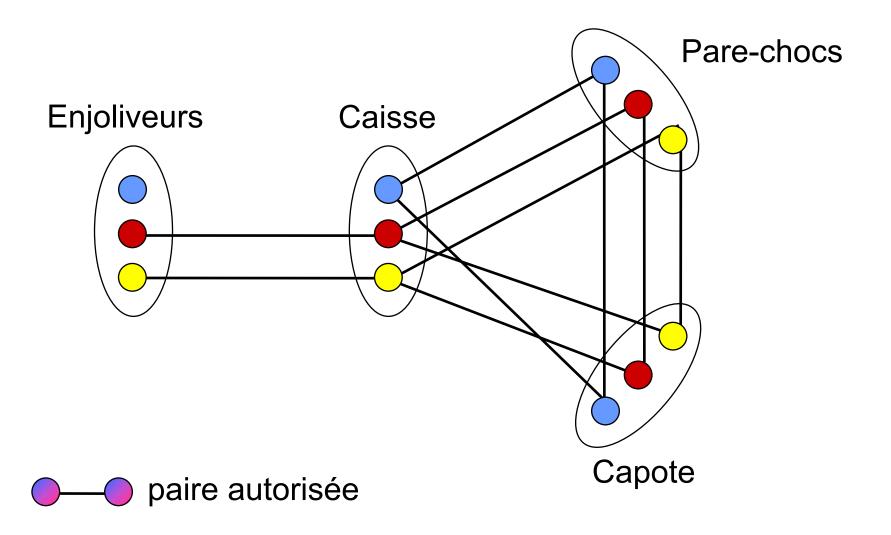
Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

Exemple trivial



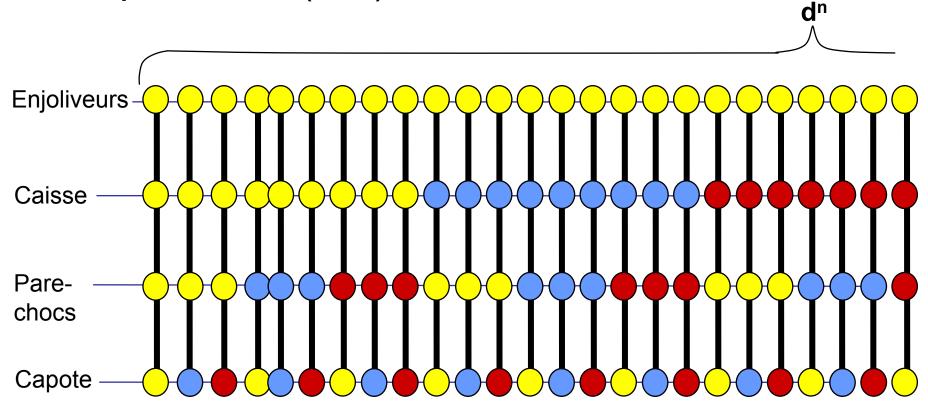
Exemple trivial : réseau de contraintes



Résolution naïve

On test toutes les combinaisons de valeurs.

Complexité : $O(ed^n)$.



Contenu

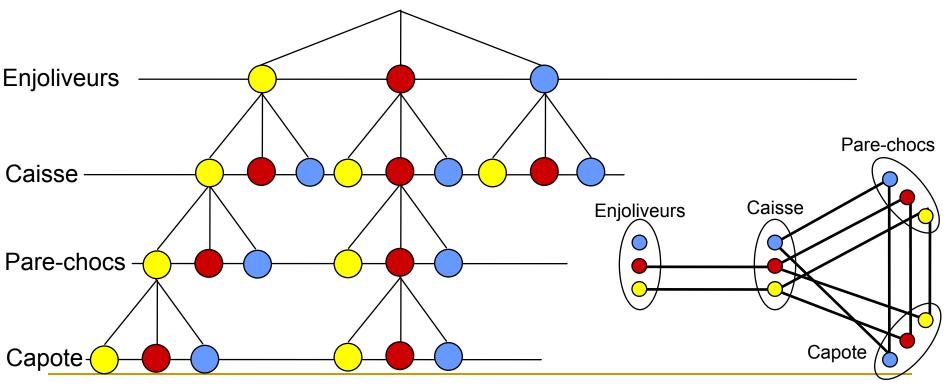
- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

Recherche arborescente

On teste successivement les valeurs possibles.

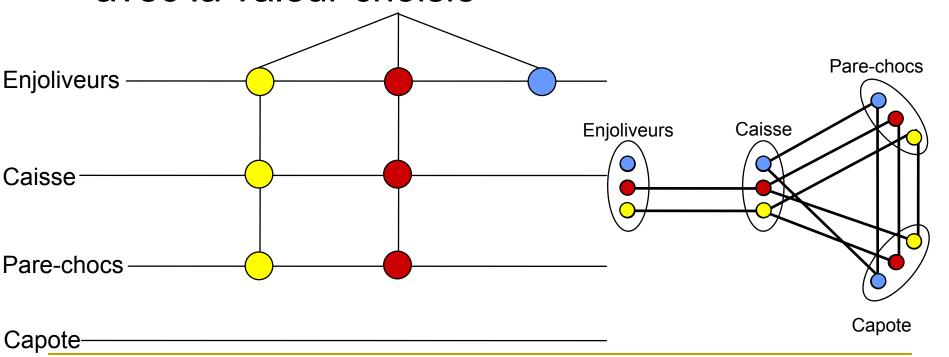
Si une solution partielle ne vérifie toutes les contraints, on revient à l'étape précédente

Complexité : $O(ed^n)$, mieux en pratique.

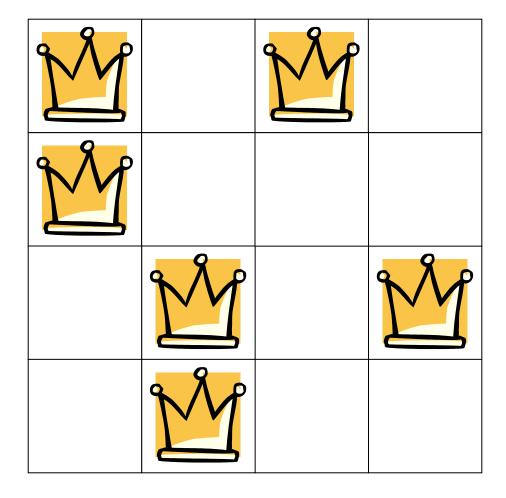


Forward Checking

On choisit une valeur et supprime des domaines toutes les valeurs incompatibles avec la valeur choisie



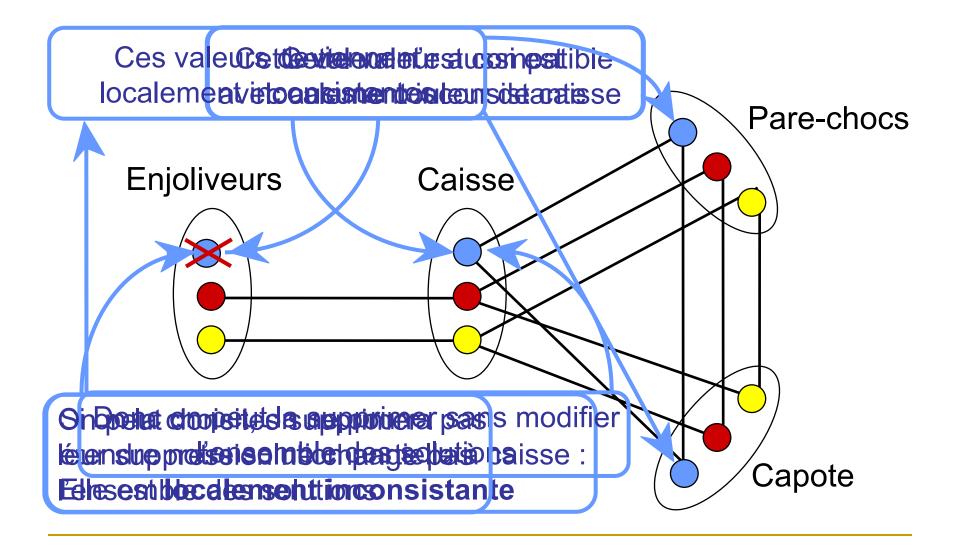
Forward Checking: les N reines



Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

Consistance locale I



Consistance locale I

On n'a pas changé l'ensemble des solutions : On a un réseau de contraintes **équivalent**

> On a réduit l'espace de recherche! Pare-chocs **Enjoliveurs** Caisse Capote

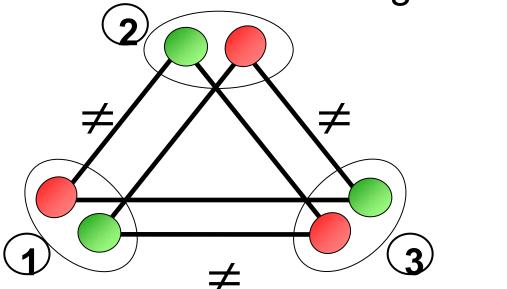
Consistance locale II

- Ce qu'on vient de faire c'est réaliser la fermeture arc-consistante
- La valeur a de la variable i est arc-consistante ssi elle possède au moins une valeur compatible (un support) dans chaque domaine voisin :

 $\forall C_{ij} \exists b \in D_j \text{ tel que } C_{ij}(a,b)$

Consistance locale III

- Meilleur algorithme pour réaliser la fermeture arc-consistante est AC6 :
 - □ complexité temporelle est O(ed²)
 - complexité spatiale est O(ed)
- Arc-consistance ≠ Consistance globale

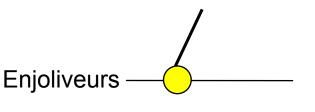


Consistance locale IV: variations

- Arc-consistance
- Path-consistance extension d'arcconsistance à k variables
- Max RPC : path-consistance restreinte
- NI-consistance
- Singleton-consistance
- etc.

Maintenance de l'arc-consistance (MAC)

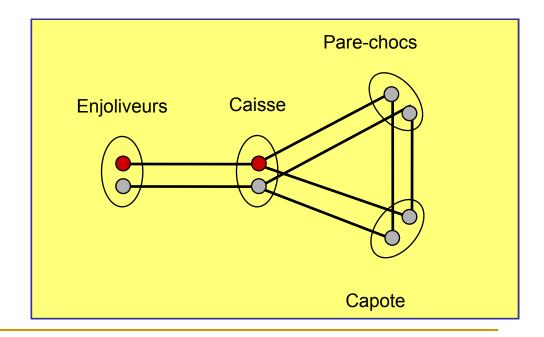
On choisit une variable et une valeur pour elle, supprime toutes les autres valeurs dans son domaine et toutes les valeurs qui ne sont pas arc-consistantes (propagation)



Caisse———

Pare-chocs —

Capote-----



Options de l'algorithme

- Quelle consistance locale maintenir pendant la recherche?
 - bon rapport coût/puissance
- Quelle variable à instancier d'abord?
 - petit domaine
 - celle qui est impliquée dans de nombreuses contraintes ou les contraintes les plus dures
- Quelle valeur à affecter d'abord?
 - celle qui a le plus de supports

Problèmes de satisfaction des contraintes non-binaires

Comment faire?

- Les transformer en CSP binaires
 - pas très efficace en pratique
- Développer des techniques de propagation spécifiques
 - contraintes arithmétiques
 - contraintes « globales »

Contraintes arithmétiques

- Représentation implicites des contraintes
- Les domaines sont représentés par des intervalles : $D_X = [\min(X), \max(X)]$
- L'arc-B-consistance (arc-consistance restreinte aux bornes de l'intervalle) :

 $C(X_1,...,X_n)$ est arc-B-consistante ssi

 $\forall X_i \forall a_i \in \{\min(X_i), \max(X_i)\} \exists a_j \in D_j, j \neq i, \text{ tq } C(a_1, ..., a_n) \}$ (plus faible que l'arc-consistance mais facile à implémenter)

Contraintes arithmétiques : exemple (X=Y+Z)

- Z ≥ min(X) + min(Y) et donc min(Z) = max{min(Z), min(X) + min(Y)}
 Règle : Quand le minimum de X ou de Y change, recalculer le minimum de Z.
- De même, Z ≤ max(X) + max(Y)
 X ≥ min(Z) max(Y)
 X ≤ max(Z) min(Y)
 Y ≥ min(Z) max(X)
 Y ≤ max(Z) min(X)

Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

Contraintes « globales »

Contrainte global est une union des contraintes simples. Les avantages d'utilisation :

- facilitent la modélisation
 - librairies des contraintes
 - moins de contraintes nécessaires
- accélèrent la résolution
 - « on voit plus » si on tient compte de plusieurs contraintes simples au même temps
 - des algorithmes efficaces de propagation

Contrainte « all-different »

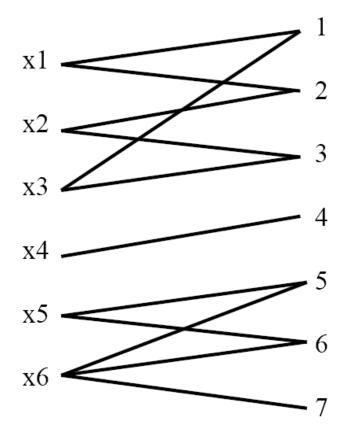
- all-different($X_1,...,X_n$) variables $X_1,...,X_n$ doivent prendre des valeurs différents (remplace $n^2/2$ contraintes binaires)
- très souvent utilisée en pratique
- algorithme de propagation polynôme est efficace (rappel : algorithme qui élimine des domaines des variables des valeurs localement inconsistantes avec la contrainte)

Contrainte « all-different » : propagation

$$D_{x1} = \{1,2\}, \qquad D_{x2} = \{2,3\}$$

 $D_{x3} = \{1,3\}, \qquad D_{x4} = \{3,4\}$
 $D_{x5} = \{2,4,5,6\}, \quad D_{x6} = \{5,6,7\}$

- On trouve un couplage maximum
- On établit les arrêtes qui n'appartiennent pas à aucun chemin ou circuit alternant et qui n'appartiennent pas au couplage
- En éliminant les valeurs correspondantes on obtient l'arc-consistance
- Complexité : O(nd)

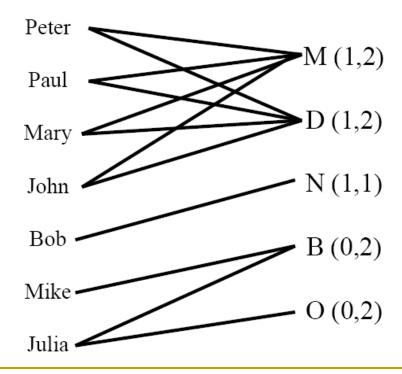


Contrainte GCC

 $GCC(X_1,...,X_m,\{v_j,l_j,u_j\}_{j\in N})$ – le nombre de fois chacune valeur v_j est prise par les variables $X_1,...,X_m$ doit être dans l'intervalle $[l_j,u_j]$

M et D doivent être pris par une ou deux personnes, N doit être pris par exactement une personne, B et O doivent être pris par au plus deux personnes

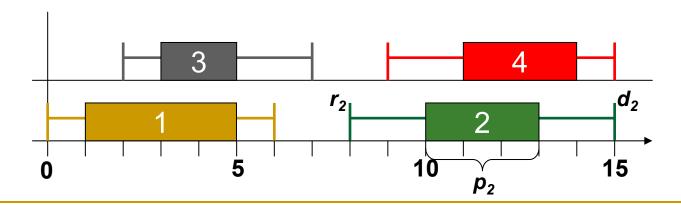
Algorithme de propagation similaire à celui de la contrainte « all-different »



Contrainte « disjunctive »

disjunctive $(X_1,...,X_n,p_1,...,p_n)$ – remplace $n^2/2$ contraintes binaires : $X_i + p_i \le X_j$ ou $X_j + p_j \le X_i$

Équivalent à : n tâches avec $\{r_i, p_i, d_i\}_{i \le n}$ comme les dates du début, les temps d'exécution, et les dates de fin doivent être exécutées sans chevauchement, domaine de X_i est $[r_i, d_i - p_i]$

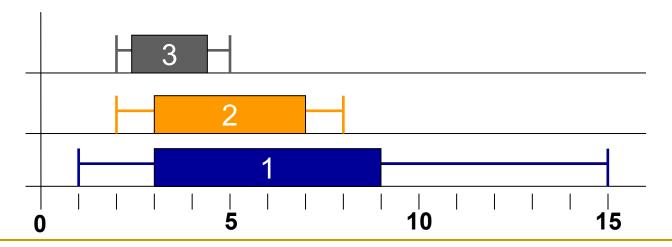


Contrainte « disjunctive » : la propagation « Edge-Finding »

 Si la tâche j ne peut être exécutée que après toutes les tâche d'un ensemble Ω, alors

$$X_{j} \ge \max_{\Omega' \subseteq \Omega} \{r_{\Omega'} + d_{\Omega'}\}$$

 On peut faire toutes les propagations possibles de ce type en temps O(nlogn)



Recherche arborescente: cas non-binaire

```
<u>Nœud</u>(S, i, a)
  S=S\cup\{(i, a)\}
 supprimer \{(i, b) \mid b \neq a\}
  Faire
       pour chaque contrainte C faire
           propager(C)
 Tant que il y a une réduction des domaines
  Si il n'existe pas de domaine vide alors
       Choisir j∉S
       pour tout b \in D_i faire Nœud(S, j, b)
       restaurer les domaines
```

Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

Modèle: Sudoku

- Variables : X_{ij}, i,j ∈ {1,...,n×n}
- Domaines : $D_{ij} = \{1, ..., n \times n\}$
- Contraintes:
 - □ all-different($X_{k1},...,X_{k,n\times n}$), $k \in \{1,...,n\times n\}$
 - □ all-different($X_{1k},...,X_{n\times n,k}$), $k \in \{1,...,n\times n\}$
 - □ all-different($X_{kn+1, ln+1}, ..., X_{kn+n, ln+n}$), $k \in \{0, ..., n-1\}, l \in \{0, ..., n-1\}$
- Que des contraintes « all-different » !

		2	4		6			
8	6	5	1			2		
	1				8	6		9
9				4		8	6	
	4	7				1	9	
	5	8		6				3
4		6	9				7	
		9			4	5	8	1
			3		2	9		

Modèle: ordonnancement sportif I

- n équipes, n-1 semaines, n/2 périodes
- chaque paire d'équipes joue exactement 1 fois
- chaque équipe joue un match chaque semaine
- chaque équipe joue au plus deux fois dans la même période

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3

source : Jean-Charles Régin

Modèle: ordonnancement sportif II

- Pour chaque case, il y a 2 variables qui représentent les équipes : Tpwh et Tpwa, p∈[1,...,n/2], w∈[1,...,n-1], D_{Tpwh}={1,...,n}, D_{Tpwa}={1,...,n}, Tpwh<Tpwa</p>
- Pour chaque case, il y a une variable représentant le match : Mpw, p∈[1,...,n/2], w∈[1,...,n-1], D_{Mpw} = {1,...,n(n-1)/2}, Mpw = n×Tpwh+Tpwa.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7
Period 1	M11	M12	M13	M14	M15	M16	M17
Period 2	M21	M22	M23	M24	M25	M26	M27
Period 3	M31	M32	M33	M34	M35	M36	M37
Period 4	M41	M42	M43	M44	M45	M46	M47

Modèle: ordonnancement sportif III

- all-different({Mpw}_{p≤n/2,w≤n})₁)
- all-different({Tpwh,Tpwa} $_{p \le n/2}$), $w \in [1,...,n]1$
- gcc({Tpwh,Tpwa} $_{w \le n-1}$,{k,Q,Q} $_{k \le n-1}$), $p \in [1,...,n/2]$
- symétrie (très important!)

				*				
	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Dummy
Period 1	0 vs 1	0 vs 2	4 vs 7	3 vs 6	3 vs 7	1 vs 5	2 vs 4	5 vs 6
Period 2	2 vs 3	1 vs 7	0 vs 3	5 vs 7	1 vs 4	0 vs 6	5 vs 6	2 vs 4
Period 3	4 vs 5	3 vs 5	1 vs 6	0 vs 4	2 vs 6	2 vs 7	0 vs 7	1 vs 3
Period 4	6 vs 7	4 vs 6	2 vs 5	1 vs 2	0 vs 5	3 vs 4	1 vs 3	0 vs 7

Modèle: ordonnancement sportif IV

- En utilisant PPC, on peut trouver un ordonnancement pour 40 équipes (dans 6h)
- Taille réelle!
- Aujourd'hui, les ordonnancements pour MLB (centaines des contraintes) sont produits en

utilisant la Recherche Opérationnelle (PLNE, PPC, heuristiques)

source: Michael A. Trick

Modèle : emplois du temps I

- II y a 3 équipes : jour (D), soir (E), nuit (N)
- Variables : Jik, D_{Jik} = {D,E,N,-}
- Variables : Lik, D_{I ik} = {1.0,0.8,0.5,0.0}
- Contrainte : Jik=D ⇒ Lik=1.0, ...
- Contrainte : gcc({Jik}_{∀i},{D_{Jik},0,1}), ∀k
- Contrainte : $\Sigma_{\forall k}$ Lik \geq 3.0, $\forall i$

M. Green Mrs. Blue M. Red M. Yellow

Mon	Tue	Wed	Thu	Fri	Sat	Sun
О	ı	D	-	D	-	О
ı	Ν	Ν	Ν	N	N	Ν
Ν	D	-	D	Е	D	-
Ш	Е	Е	Е	-	Е	Е

source : Jean-Charles Régin

Modèle: emplois du temps II

- Longueur de série : stretch({Jik}_{∀k},{2,2,2,2},{4,4,4,4}), ∀i,
- Pas de changement d'équipe sans un repos, rotation en avant (D... E... N... D) regular({Jik}_{∀k},MOTIF)
- Préférences individuelles, congés, formations,...

M. Green
Mrs. Blue
M. Red
M. Yellow

Mon	Tue	Wed	Thu	Fri	Sat	Sun
D	D	-	Е	Е	Е	Е
Е	Е	Е	-	Ν	Ν	Ν
N	N	Ν	N	-	D	D
-	-	D	D	D	-	_

Emplois du temps, instances réelles

```
23796
603042 D D D D E - - - D D D D - D D D D
               - - - - - - D D D -
                 D D - D D D - -
           E E E - - - - - E E E - - E E E -
603230 - D D D D - D D D - D D - - D D D D - D D -
               D - - D D D - - D D D D -
511104 - R R R R R R - - R R R R R - - - E E -
34108 - D D D D - D D D D - - - - R R R R R D
                   E - - D - - - D - D D
                           - - E E E E -
                     D - - - D D D -
512281 - E - D D - D D E - - - - E - D D - D D E -
511066 - D D - - - D D - - - - D - - - -
602576 D D - D D D - - - - - D D D - D D
511865 - - - -
```

Pour quels problèmes il faut choisir la PPC?

- Contraintes complexes
- Grand nombre de contraintes (pas beaucoup de solutions réalisables)
- Problèmes de décision
- Problèmes avec fonction objective « simple »
- Problèmes issu des domaines où PPC était réussi

Contenu

- Introduction
- Modélisation
 - Problèmes de satisfaction des contraintes
 - Exemples des modèles PPC simples
- Méthodes de résolution
 - Recherche arborescente
 - Consistance locale
- Les contraintes globales
- Quelques modèles PPC pratiques
- Solveurs PPC

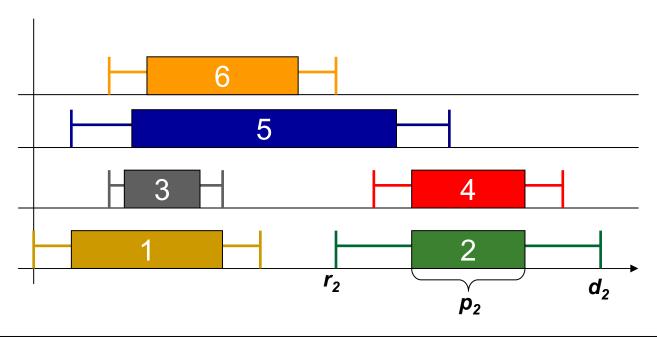
Solveurs PPC

- Gratuites
 - Choco (http://choco.sourceforge.net/)
 - Gecode (http://www.gecode.org)
 - **...**
- Payants
 - ILOG CP (http://www.ilog.com/products/cp/)
 - Xpress Kalis (http://www.dashoptimization.com)
 - **...**

TD: affectation des tâches sur des machines hétérogènes (ATMH)

- n tâches, m machines
- chaque tâche j a une date de disponibilité r_j , un deadline d_j , des temps de procession p_{ij} , et des coûts de procession c_{ij} .
- chaque machine peut exécuter au plus une tâche à la fois, les interruptions sont interdites
- il faut trouver une affectation réalisable des tâches sur les machines de coût minimum

ATMH: une solution réalisable



1 4 5	M1
2 3 6	M2

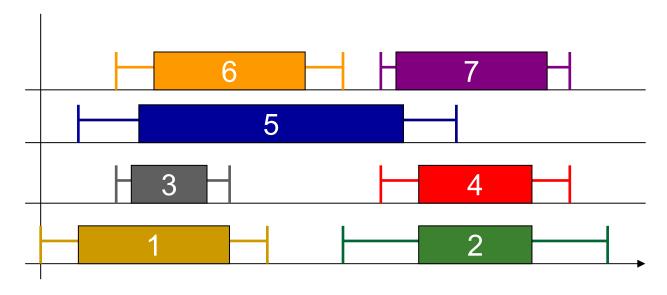
Coût: $c_{11} + c_{14} + c_{15} + c_{22} + c_{23} + c_{26}$

ATMH: une formulation PLNE

 X_{ij} = 1 ssi la tâche j est affectée sur la machine i

$$\begin{aligned} & \min \quad \sum_{i \in M} \sum_{j \in N} c_{ij} X_{ij} \\ & \sum_{i \in M} X_{ij} = 1, \quad \forall j \in N, \\ & \sum_{i \in M} p_{ij} X_{ij} \leq \max_{j \in N} d_j - \min_{j \in N} r_j \quad \forall i \in M, \\ & \sum_{j \in N} X_{ij} \leq |S| - 1, \quad \forall i \in M, \ S \text{ est non-réalisable sur } i \\ & X_{ij} \in \{0,1\}, \quad \forall i \in M, \forall j \in N. \end{aligned}$$

ATMH : génération des contraintes



1627 M1

Contrainte additionelle:

$$X_{11} + X_{12} + X_{16} + X_{17} \le 3$$

ATMH: l'algorithme

- On élimine toutes les contraintes de réalisabilité
- Faire
 - On résout le PLNE
 - □ Pour chaque machine i ∈ M faire
 - S est un sous-ensemble des tâches affectées sur i par PLNE
 - On vérifie si il y a un ordonnancement réalisable pour S sur i
 (PPC : une seule contrainte disjunctive({r_i}_{i∈S},{p_{ii}}_{i∈S},{d_i}_{i∈S}))
 - Si il n'y en a pas alors
 - □ on ajoute la contrainte $\sum_{i \in S} X_{ii} \le |S|$ -1 au PLNE
 - fin-si
 - fin-pour
- Tant que il y a des contraintes ajoutées