Modelling and solution of Nonlinear Programs

Leo Liberti

LIX, École Polytechnique, France
The story so far

- **Mathematical program**: problem model consisting of parameters, variables, objective function, constraints

- **Parameters**: the problem input

- **Variables**: the problem output

- Variables may be continuous (∈ \(\mathbb{R} \)), integer (∈ \(\mathbb{Z} \)) or binary (∈ \{0, 1\}); they may also be bounded (∈ [\(L, U \)])

- **Objective and constraints** are expressed as mathematical functions of parameters and variables

- **Assumption**: objective and constraints are linear forms

- **Modelling software**: AMPL

- **Solution software**: CPLEX

- Many application examples
Nonlinear Programming

- Mathematical methods for modelling and solving nonlinear problems

⇒ NonLinear Programming (NLP)

- **Nonconvex NLPs** (NLPs with at least one nonconvex objective and/or constraint)

- **Mixed-Integer NLPs** (MINLPs — with at least one integer variable)

In practice, it is much more difficult to solve (MI)NLPs than (MI)LPs

- No truly standard software

- In general, no guarantee of optimality for nonconvex MINLPs

- Few successful general-purpose algorithms

 Can still use AMPL, though
Nonlinear Modelling

Linear assumption is not always valid

Logical “and” condition:
1. cost associated to conjunctive occurrence of two conditions \(\text{if } x_i \text{ is 1 and } x_j \text{ is 1 then add a cost } c_{ij} \)
2. a constraint is valid iff a certain binary variable has value 1 \(\text{if } y \text{ is 1 then } g(x) \leq 0 \)

Percentages and quantities: variables expressing percentage and variables expressing quantity must be multiplied together

Economies of scale: unit costs decrease with quantity

Problems involving 1-, 2- and \(\infty \)-norms

Nonlinear models of natural phenomena expressed in constraints
Canonical MINLP formulation

\[
\begin{align*}
\min_x & \quad f(x) \\
\text{s.t.} & \quad l \leq g(x) \leq u \\
& \quad x^L \leq x \leq x^U \\
\forall i & \in Z \subseteq \{1, \ldots, n\} \quad x_i \in \mathbb{Z}
\end{align*}
\]

\[[P] \quad (1) \]

where \(x, x^L, x^U \in \mathbb{R}^n; l, u \in \mathbb{R}^m; f: \mathbb{R}^n \to \mathbb{R}; g: \mathbb{R}^n \to \mathbb{R}^m \)

- \(F(P) = \) feasible region of \(P \), \(L(P) = \) set of local optima, \(G(P) = \) set of global optima
- Nonconvexity \(\Rightarrow G(P) \subsetneq L(P) \)

\[
\min_{x \in [-3,6]} \frac{1}{4}x + \sin(x)
\]
Reformulations

Defn.

Given a formulation P and a formulation Q, Q is a reformulation of P if there is a mapping $\varphi : F(Q) \rightarrow F(P)$ such that $\varphi(L(Q)) = L(P)$ and $\varphi(G(Q)) = G(P)$

This means: φ restricted to $L(Q)$ is onto $L(P)$ and φ restricted to $G(Q)$ is onto $G(P)$

- Reformulations are used to transform problems into equivalent forms
- “Equivalence” here means a precise correspondence between local and global optima via the same transformation

Basic reformulation operations:

1. adding / deleting variables / constraints
2. replacing a term with another term (e.g. a product xy with a new variable w)
Product of binary variables

Consider binary variables x, y and a cost c to be added to the objective function only of $xy = 1$

⇒ Add term cxy to objective

Problem becomes mixed-integer (some variables are binary) and nonlinear

Reformulate “xy” to MILP form (PRODBIN reform.):

- replace xy by z
- add $z \leq y$, $z \leq x$
- $z \geq 0$, $z \geq x + y - 1$
- $x, y \in \{0, 1\} \Rightarrow z = xy$
Product of bin. and cont. vars.

PRODBinCont reformulation

Consider a binary variable \(x \) and a continuous variable \(y \in [y^L, y^U] \), and assume product \(xy \) is in the problem.

Replace \(xy \) by an added variable \(w \).

Add constraints:

\[
\begin{align*}
 w &\leq y^U x \\
 w &\geq y^L x \\
 w &\leq y + y^L (1 - x) \\
 w &\geq y - y^U (1 - x)
\end{align*}
\]

Exercise 1: show that \(\text{PRODBinCont} \) is indeed a reformulation

Exercise 2: show that if \(y \in \{0, 1\} \) then \(\text{PRODBinCont} \) is equivalent to \(\text{PRODBin} \).
Product of continuous variables

Suppose a flow is composed by \(m \) different materials

Let \(x_i \in [0, 1] \) indicate the unknown fraction of material \(i \leq m \) in the flow

Let \(y \) be the unknown total flow

Get terms \(x_i y \) in the problem to indicate the amount of each material \(i \leq m \) in the flow

Constraint \(\sum_{i \leq m} x_i = 1 \): all fractions sum up to 1

\[\Rightarrow \text{Nonconvex NLP} \]

No exact linear reformulation possible, but can be approximated by discretization

Best way to solve it directly is by dedicated algorithm (e.g. SLP or SQP)
Prod. cont. vars.: approximation

- **BILINAPPROX** approximation
- Consider $x \in [x^L, x^U], y \in [y^L, y^U]$ and product xy
- Suppose $x^U - x^L \leq y^U - y^L$, consider an integer $d > 0$
- Replace $[x^L, x^U]$ by a finite set

 $D = \{x^L + (i - 1)\gamma \mid 1 \leq i \leq d\}$, where $\gamma = \frac{x^U - x^L}{d-1}$
BILINAPPROX

- Replace the product xy by a variable w
- Add binary variables z_i for $i \leq d$
- Add assignment constraint for z_i's

$$\sum_{i \leq d} z_i = 1$$

- Add definition constraint for x:

$$x = \sum_{i \leq d} (x^L + (i - 1)\gamma)z_i$$

(x takes exactly one value in D)

- Add definition constraint for w

$$w = \sum_{i \leq d} (x^L + (i - 1)\gamma)z_i y$$

(2)

- Reformulate the products $z_i y$ via PROD_BINCONT
Conditional constraints

- Suppose \exists a binary variable y and a constraint $g(x) \leq 0$ in the problem
- We want $g(x) \leq 0$ to be active iff $y = 1$
- Compute maximum value that $g(x)$ can take over all x, call this M
- Write the constraint as:
 \[g(x) \leq M(1 - y) \]
- This sometimes called the “big M” modelling technique

Example:

Can replace constraint (2) in BILINAPPROX as follows:

\[\forall i \leq d \quad -M(1 - z_i) \leq w - (x^L + (i - 1)\gamma)y \leq M(1 - z_i) \]

where M s.t. $w - (x^L + (i - 1)\gamma)y \in [-M, M]$ for all w, x, y
Graph Partitioning Problem I

GPP: Given an undirected graph $G = (V, E)$ and an integer $k \leq |V|$, find a partition of V in k disjoint subsets V_1, \ldots, V_k (called clusters) of minimal given cardinality M s.t. the number (weight) of edges with adjacent vertices in different clusters is minimized.

Applications:
- telecom network planning
- sparse matrix factorization
- parallel computing
- VLSI circuit placement

Minimal bibliography:
- Battiti & Bertossi, *IEEE Trans. Comp.*, 1999 (heuristics);
- Boulle, *Opt. Eng.*, 2004 (formulations);
- Liberti *4OR*, 2007 (reformulations)
Graph Partitioning Problem II

- For all vertices $i \in V$, $h \leq k$:

 $x_{ih} = 1$ if vertex i in cluster h and 0 otherwise

- **Objective function:** $\min \frac{1}{2} \sum_{h \neq l \leq k} \sum_{\{i,j\} \in E} x_{ih} x_{jl}$

- **Assignment:** $\forall i \in V \sum_{h \leq k} x_{ih} = 1$

- **Cluster cardinality:** $\forall h \leq k \sum_{i \in V} x_{ih} \leq M$

- **nonconvex BQP:** reformulate or linearize to MILP, then solve with CPLEX
Pooling and blending I

Given an oil routing network with pools and blenders, unit prices, demands and quality requirements:

Find the input quantities minimizing the costs and satisfying the constraints: mass balance, sulphur balance, quantity and quality demands.
Pooling and blending II

- Variables: input quantities x, routed quantities y, percentage p of sulphur in pool
- Bilinear terms arise to express sulphur quantities in terms of p, y
- Sulphur balance constraint: $3x_{11} + x_{21} = p(y_{11} + y_{12})$
- Quality demands:
 \[py_{11} + 2y_{21} \leq 2.5(y_{11} + y_{21}) \]
 \[py_{12} + 2y_{22} \leq 1.5(y_{12} + y_{22}) \]
- Continuous bilinear formulation \Rightarrow nonconvex NLP
Haverly’s pooling problem

\[
\begin{align*}
\min_{x,y,p} & \quad 6x_{11} + 16x_{21} + 10x_{12} - 9(y_{11} + y_{21}) - 15(y_{12} + y_{22}) \\
\text{s.t.} & \quad x_{11} + x_{21} - y_{11} - y_{12} = 0 \\
& \quad x_{12} - y_{21} - y_{22} = 0 \\
& \quad y_{11} + y_{21} \leq 100 \\
& \quad y_{12} + y_{22} \leq 200 \\
& \quad 3x_{11} + x_{21} - p(y_{11} + y_{12}) = 0 \\
& \quad py_{11} + 2y_{21} \leq 2.5(y_{11} + y_{21}) \\
& \quad py_{12} + 2y_{22} \leq 1.5(y_{12} + y_{22})
\end{align*}
\]
Successive Linear Programming

- Heuristic for solving bilinear programming problems
- Formulation includes bilinear terms $x_i y_j$ where $i \in I, j \in J$
- Problem is nonconvex \Rightarrow many local optima
- Fact: fix $x_i, i \in I$, get LP$_1$; fix $y_j, j \in J$, get LP$_2$
- Algorithm: solve LP$_1$, get values for y, update and solve LP$_2$, get values for x, update and solve LP$_1$, and so on
- Iterate until no more improvement
- **Warning**: no convergence may be attained, and no guarantee to obtain global optimum
SLP applied to HPP

Problem LP₁: fixing p

$$\begin{align*}
\min_{x,y} & \quad 6x_{11} + 16x_{21} + 10x_{12} - 9y_{11} - 9y_{21} - 15y_{12} - 15y_{22} \\
\text{s.t.} & \quad x_{11} + x_{21} - y_{11} - y_{12} = 0 \\
& \quad x_{12} - y_{21} - y_{22} = 0 \\
& \quad y_{11} + y_{21} \leq 100 \\
& \quad y_{12} + y_{22} \leq 200 \\
& \quad 3x_{11} + x_{21} - py_{11} - py_{12} = 0 \\
& \quad (p - 2.5)y_{11} - 0.5y_{21} \leq 0 \\
& \quad (p - 1.5)y_{12} + 0.5y_{22} \leq 0
\end{align*}$$

SLP Algorithm:

1. Solve LP₁, find value for y_{11}, y_{12}, update LP₂
2. Solve LP₂, find value for p, update LP₁
3. Repeat until solution does not change / iteration limit exceeded

Problem LP₂: fixing y_{11}, y_{12}

$$\begin{align*}
\min_{x,y_{21},y_{22},p} & \quad 6x_{11} + 16x_{21} + 10x_{12} - (9(y_{11} + y_{21}) + 15(y_{12} + y_{22})) \\
\text{s.t.} & \quad x_{11} + x_{21} = y_{11} + y_{12} \\
& \quad x_{12} - y_{21} - y_{22} = 0 \\
& \quad y_{21} \leq 100 - y_{11} \\
& \quad y_{22} \leq 200 - y_{12} \\
& \quad 3x_{11} + x_{21} - (y_{11} + y_{12})p = 0 \\
& \quad y_{11}p - 0.5y_{21} \leq 2.5y_{11} \\
& \quad y_{12}p + 0.5y_{22} \leq 1.5y_{12}
\end{align*}$$
Problem proposed by Newton

Determine maximum number K of non-overlapping balls of radius 1 adjacent to a central ball of radius 1 in \mathbb{R}^D

- In \mathbb{R}^2: $K = 6$
- In \mathbb{R}^3: $K = 12$ (13 spheres prob.)
- In \mathbb{R}^4: $K = 24$ (recent result)
- Next open case: $D = 5$ ($40 \leq K \leq 45$)
Reduce to a decision problem (can \(N \) spheres be arranged in a kissing configuration?)

- Variables: let \(x^i \in \mathbb{R}^D \) be the center of the \(i \)-th ball

- Continuous quadratic formulation:

\[
\begin{align*}
\text{max} & \quad \alpha \\
\forall i \leq N & \quad ||x^i||^2 = 4 \\
\forall i < j \leq N & \quad ||x^i - x^j||^2 \geq 4\alpha \\
\alpha & \geq 0 \\
\forall i \leq N & \quad x^i \in \mathbb{R}^D,
\end{align*}
\]

- If global optimum has \(\alpha \geq 1 \), then \(N \) balls can be arranged, otherwise they cannot

- [Kucherenko et al., DAM 2007]
Consider the time-independent non-relativistic Schrödinger equation $H_{el} \Psi = E_{el} \Psi$ for the electrons in a molecule.

Solution to Schrödinger equation are products of n molecular orbitals ψ_i.

Each ψ_i is composed of a spatial orbital φ_i and a spin orbital ϑ_i.

Spatial orbitals approximated by suitable bases $\{\chi_s\}_{s=1}^b$:

$$\varphi_i = \sum_{s=1}^b c_{si} \chi_s \quad \forall i \leq n$$

where φ_i is the approximation of φ_i.
The Hartree-Fock problem II

- Given \(b \) and \(\{\chi_s\}_{s=1}^{b} \), determine the coefficients \(c_{si} \) such that the approximation is “best”
- Approximation is “best” when the energy \(E(c) \) (quartic polynomial in \(c \)) of approximated spatial orbitals \(\varphi_i \) is minimum
- Orthogonality constraints on \(\varphi_i \) (to enforce lin. ind.)
- Coefficients \(c \) vary over a known range \(c^L \leq c \leq c^U \)
- Continuous quartic formulation:

\[
\begin{align*}
\min_c & \quad E(c) \\
\text{s.t.} & \quad \langle \varphi_i | \varphi_j \rangle = \delta_{ij} \quad \forall i \leq j \leq n \\
& \quad c^L \leq c \leq c^U
\end{align*}
\]

- [Lavor et al., EPL 2007]
Molecular Distance Geometry

Known set of atoms V, determine 3D structure

Some inter-atomic distances d_{ij} known (NMR)

Find atomic positions $x^i \in \mathbb{R}^3$ which preserve distances

\Rightarrow given weighted graph $G = (V, E, d)$, find immersion in \mathbb{R}^3

Continuous quartic formulation:

$$\min_{x} \sum_{\{i,j\} \in E} (||x^i - x^j||^2 - d_{ij}^2)^2$$

[1] Lavor et al. 2006
Scheduling with delays I

- **T**: tasks of length L_i with precedences given by DAG $G = (V, A, c)$, where c_{ij} = amount of data passed from i to j

- **P**: homogeneous processors with distance d_{kl} between processors k, l in architecture

- Delays γ_{ij}^{kl} occur if dependent tasks i, j are executed on different processors k, l
Scheduling with delays II

- Idea: pack $L_j \times 1$ “task rectangles” into a $T_{\text{max}} \times |P|$ “total time” rectangle
- Use binary assignment variables $z_{jk} = 1$ if task $j \in T$ is executed on processor $k \in P$
- Use continuous scheduling variables $t_j =$ starting time of task j
- Model communication delays with quadratic constraints:
 \[
 t_j \geq t_i + L_i + \sum_{k,l \in P} \gamma_{ij}^k z_{ik} z_{jl} \quad \forall j \in V, i : (i, j) \in A
 \]
- Mixed-integer quadratic formulation
- [Davidović et al., MISTA Proc. 2007]
Variable Neighbourhood Search

- Applicable to discrete and continuous problems
- Uses any local search as a black-box
- In its basic form, easy to implement
- Few configurable parameters
- Structure of the problem dealt with by local search
- Few lines of code around LS black-box
VNS algorithm I

- Random 1
 - Local search 1
 - Local minimum 1,2
 - Random 2
 - Local search 2
 - Random 3
 - K = 1
 - K = 2
 - K = Kmax
- K = 1
 - Local minimum 3
VNS algorithm II

Input: max no. k_{max} of neighbourhoods

loop

Set $k \leftarrow 1$, pick random point \tilde{x}, perform a local search to find a local minimum x^*.

while $k \leq k_{\text{max}}$ do

Let $N_k(x^*)$ neigh. of x^* s.t. $N_k(x^*) \supset N_{k-1}(x^*)$

Sample a random point \tilde{x} from $N_k(x^*)$

Perform a local search from \tilde{x} to find a local minimum x'

If x' is better than x^*, set $x^* \leftarrow x'$ and $k \leftarrow 0$

Set $k \leftarrow k + 1$

Verify termination condition; if true, exit

end while

end loop
Neighbourhoods in continuous space

- Use hyper-rectangular neighbourhoods $N_k(x')$ proportional to the region delimited by the variable ranges.
- May also employ hyper-rectangular “shells” of size k/k_{max} of the original domain.