Shortest Paths Algorithms

Giacomo Nannicini

LIX, École Polytechnique

giacomon@lix.polytechnique.fr

15/11/2007
1. Problem definition
2. Network Flows
3. Dijkstra’s Algorithm
4. A*
5. Bidirectional Search
6. State Of The Art For Road Networks
7. Exercises
1 Problem definition

2 Network Flows

3 Dijkstra’s Algorithm

4 A*

5 Bidirectional Search

6 State Of The Art For Road Networks

7 Exercises
Why shortest paths?

- Several real-life situations can be modeled as networks
 - Road networks
 - Telecommunications networks
 - Logistics
 - Etc...
Why shortest paths?

- Computing point-to-point shortest paths is of great interest to many users:
 - GPS devices with path computing capabilities
 - Many web sites provide users with route planners
We can formulate the problems as follows:

\[(SP) : \]

\[
z = \min \sum_{(i,j) \in A} c_{ij}x_{ij}
\]

\[
\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = 1 \text{ for } i = s
\]

\[
\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = 0 \text{ for } i \in V \setminus \{s, t\}
\]

\[
\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = -1 \text{ for } i = t
\]

\[x_{ij} \geq 0 \text{ for } (i,j) \in A
\]

\[x \in \mathbb{Z}^{|A|}
\]

where $x_{ij} = 1$ if (i,j) is in the shortest $s \to t$ path.
Complexity

- \((SP)\) is an integer program
- Should be very difficult to solve, but we know that it is very easy in practice
- This is not the only case where we are “lucky”
- Let us investigate the reason
1 Problem definition

2 Network Flows

3 Dijkstra’s Algorithm

4 A^*

5 Bidirectional Search

6 State Of The Art For Road Networks

7 Exercises
Consider the problem (IP):

$$\min \{cx : Ax \leq b, x \in \mathbb{Z}_+^n\}$$

with integral data A, b

We know that a BFS will have the form $x = (x_B, x_N) = (B^{-1}b, 0)$ where B is an $m \times m$ nonsingular submatrix of (A, I) and I is an $m \times m$ identity matrix.
Easy Integer Programs

Observation:
If the optimal basis B has $\det(B) = \pm 1$, then the linear programming relaxation solves (IP)

Proof: From Cramer’s rule, $B^{-1} = \text{adj}(B)/\det(B)$ where $\text{adj}(B)$ is the adjugate matrix $B_{ij} = (-1)^{i+j}M_{ij}$. $\text{adj}(B)$ is integral, and as $\det(B) = \pm 1$ we have B^{-1} integral $\Rightarrow B^{-1}b$ is integral for all integral b.
Totally Unimodular Matrices

Definition:
A matrix A is *totally unimodular* (TU) if every square submatrix of A has determinant $+1$, -1 or 0.

- If A is TU, $a_{ij} \in \{+1, -1, -\}$ for all i, j.
- Examples:

$$
\begin{pmatrix}
1 & -1 \\
1 & 1
\end{pmatrix}
\quad
\begin{pmatrix}
1 & -1 & -1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix}
$$
Proposition:

A is TU ⇔ \(A^T \) is TU ⇔ \((A, I)\) is TU.

Sufficient Condition:

A matrix \(A \) is TU if:

1. \(a_{ij} \in \{+1, -1, 0\} \ \forall i, j \).
2. Each column contains at most two nonzero coefficients.
3. There exists a partition \((M_1, M_2)\) of the set \(M \) of rows such that each column \(j \) containing two nonzero coefficients satisfies

\[
\sum_{i \in M_1} a_{ij} - \sum_{i \in M_2} a_{ij} = 0.
\]
Minimum Cost Network Flows

- Consider a digraph $G = (V, A)$ with arc capacities $h_{ij} \ \forall (i, j) \in A$, demands b_i (positive inflows or negative outflows) at each node $i \in V$, unit flow costs $c_{ij} \ \forall (i, j) \in A$.
- The minimum cost network flow problem is to find a feasible flow that satisfies all the demands at minimum cost.

\[(MCNF) : \]
\[
z = \min \sum_{(i,j) \in A} c_{ij}x_{ij}
\]
\[
\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = b_i \text{ for } i \in V
\]
\[
0 \leq x_{ij} \leq h_{ij} \text{ for } (i, j) \in A
\]

where x_{ij} denotes the flow in arc (i, j).

- The problem is feasible only if $\sum_{i \in V} b_i = 0$
Example

\[\begin{array}{cccccccccc}
 x_{12} & x_{14} & x_{23} & x_{31} & x_{32} & x_{35} & x_{36} & x_{45} & x_{51} & x_{53} & x_{65} \\
 1 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 = 3 \\
 -1 & 0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 = 0 \\
 0 & 0 & -1 & 1 & 1 & 1 & 1 & 0 & 0 & -1 & 0 & 0 = 0 \\
 0 & -1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 = -2 \\
 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 1 & 1 & 1 & -1 = 4 \\
 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & = -5 \\
\end{array} \]

\[0 \leq x_{ij} \leq h_{ij}. \]
Proposition:
The constraint matrix A arising in a minimum cost network flow problem is totally unimodular.

Proof: The matrix A is of the form \[
\begin{pmatrix}
C \\
I
\end{pmatrix},
\]
where C comes from the flow conservation constraints, and I from the capacity constraints. Therefore we only have to show that C is TU. This follows from the sufficient condition above, with the partition $M_1 = M$ and $M_2 = \emptyset$.
(MCNF) Is An Easy Problem

Corollary:
In a (MCNF) problem, if b_i and h_{ij} are integral, then each extreme point is integral.

- Each time that we have a network flow problem with the constraints in the form above, we know that the solution is integral.
- It is a situation that is frequently found when modeling problems on networks.
(SP) Is An Easy Problem

(SP):

\[z = \min \sum_{(i,j) \in A} c_{ij}x_{ij} \]

\[\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = 1 \quad \text{for } i = s \]

\[\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = 0 \quad \text{for } i \in V \setminus \{s, t\} \]

\[\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = -1 \quad \text{for } i = t \]

\[x_{ij} \geq 0 \quad \text{for } (i,j) \in A \]

\[x \in \mathbb{Z}^{|A|} \]

- It is clearly a (MCNF) \(\Rightarrow \) integral solution!
The Shortest Path Tree Problem

- Suppose we want to compute the shortest path from a source node \(s \) to all other nodes \(v \in V \).

- Formulation:

\[
(SPT) : \\
z = \min \sum_{(i,j) \in A} c_{ij} x_{ij} \\
\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = |V| - 1 \text{ for } i = s \\
\sum_{k \in \delta^+(i)} x_{ik} - \sum_{k \in \delta^-(i)} x_{ki} = -1 \text{ for } i \in V \setminus \{s\} \\
x_{ij} \geq 0 \text{ for } (i,j) \in A \\
x \in \mathbb{Z}^{|A|}
\]

where \(x_{ij} \geq 0 \) if \((i,j)\) is an arc of the SPT rooted at \(s \).
1. Problem definition
2. Network Flows
3. Dijkstra’s Algorithm
4. A*
5. Bidirectional Search
6. State Of The Art For Road Networks
7. Exercises
Dijkstra’s Algorithm

- The Shortest Path Problem can be solved with purely combinatorial algorithms.
- The most famous one: Dijkstra’s algorithm.
- Idea: explore nodes, starting from the nearest to the source node s, in a “ball” centered at s.

![Diagram of Dijkstra's Algorithm](image)
Dijkstra’s Algorithm

Let \(s \) be the source node, \(Q \) be the queue of explored nodes, \(d[v] \) be the tentative distance of \(v \) from \(s \), \(p[v] \) be the tentative parent node of \(v \) on the shortest \(s \rightarrow v \) path.

Initialize: \(Q \leftarrow \emptyset \), \(d[v] \leftarrow \infty \) \(\forall v \in V \setminus \{s\} \), \(p[v] \leftarrow NIL \) \(\forall v \in V \setminus \{s\} \), \(d[s] \leftarrow 0 \), \(p[s] \leftarrow s \). We say that nodes in \(Q \) are explored.

Algorithm:
1. Extract \(i \leftarrow \arg \min_{v \in Q} \{d[v]\} \) (we say that \(i \) is settled).
2. For each \(j \in \delta^+(i) : d[i] + c_{ij} < d[j] \) set \(Q \leftarrow Q \cup \{j\} \), \(d[j] \leftarrow d[i] + c_{ij} \), \(p[j] \leftarrow i \).
3. Repeat until a stopping criterion is met.

Commonly used stopping criteria:
- As soon as a target node \(t \) is settled.
- When \(Q \) is empty.
Example
Example

Priority Queue:
- e ← 1
- a ← 2
- c ← 3
Example

Priority Queue:

- $a \leftarrow 2$
- $c \leftarrow 3$
- $f \leftarrow 7$
Example

Priority Queue:
- $c \leftarrow 3$
- $b \leftarrow 6$
- $f \leftarrow 7$
Example

Priority Queue:
- b ← 5
- f ← 5
- d ← 6
Example

Priority Queue:
- $f \leftarrow 5$
- $d \leftarrow 6$
- $t \leftarrow 9$
Example

Priority Queue:
- d ← 6
- t ← 9
Example

Priority Queue:

\[
\text{t} \leftarrow 7
\]
Example

Priority Queue: \emptyset
1 Problem definition

2 Network Flows

3 Dijkstra’s Algorithm

4 A*

5 Bidirectional Search

6 State Of The Art For Road Networks

7 Exercises
Goal Directed Search: A^*

- Same principle as Dijkstra’s algorithm: extract minimum from a queue, explore adjacent nodes, update labels, repeat.
- Main difference: add to the key of the priority queue a potential function $\pi(v)$ which estimates $d(v, t)$.

 If $\pi(v) \leq d(v, t)$ for all v then A^* computes shortest paths.

 If $\pi(v)$ is a good estimation of $d(v, t)$, A^* explores considerably fewer nodes than Dijkstra’s algorithm.
Goal Directed Search: A^*

Diagram:

- Nodes: s, a, b, c, d, e, f, t
- Edges and Weights:
 - s to a: 2
 - s to e: 1
 - a to b: 4
 - a to c: 3
 - b to t: 4
 - b to c: 2
 - c to d: 3
 - c to e: 3
 - d to f: 2
 - d to t: 1
 - e to f: 6
 - f to t: 2
Goal Directed Search: A*

Priority Queue:
- e ← 1
- a ← 2
- c ← 3
Goal Directed Search: A^*

Priority Queue:
- $e \leftarrow 1 + \pi(e)$
- $a \leftarrow 2 + \pi(a)$
- $c \leftarrow 3 + \pi(c)$
Goal Directed Search: A^*

Priority Queue:
- $c \leftarrow 7$
- $e \leftarrow 8$
- $a \leftarrow 10$
Goal Directed Search: \(A^* \)

Priority Queue:
- \(d \leftarrow 7 \)
- \(e \leftarrow 8 \)
- \(f \leftarrow 8 \)
- \(b \leftarrow 9 \)
- \(a \leftarrow 10 \)
Goal Directed Search: A^*

Priority Queue:
- $t \leftarrow 7$
- $e \leftarrow 8$
- $f \leftarrow 8$
- $b \leftarrow 9$
- $a \leftarrow 10$
Goal Directed Search: A^*

Priority Queue:
- $e \leftarrow 8$
- $f \leftarrow 8$
- $b \leftarrow 9$
- $a \leftarrow 10$
Goal Directed Search: A^*

Dijkstra’s algorithm

A^*
A Good Lower Bound

- The quality of $\pi(v)$ is critical for performances: the closer to $d(v, t)$, the better.
- On an Euclidean plane, we can use the standard Euclidean distance to compute potentials.
- Idea ([Goldberg and Harrelson, 2004]): use a few nodes as landmarks to compute distances within the graph.
- Then triangle inequality comes to our help.
A Good Lower Bound
A Good Lower Bound

- Suppose we have a set \(L \subset V \) of landmarks, i.e. we know \(d(v, \ell), d(\ell, v) \) \(\forall v \in V, \ell \in L \).
- Then we have \(d(v, \ell) \leq d(v, t) + d(t, \ell) \) and \(d(\ell, t) \leq d(\ell, v) + d(v, t) \) \(\forall v \in V, \ell \in L \).

Lower bounding function:

\[
\pi(v) = \max_{\ell \in L} \max \left\{ d(v, \ell) - d(t, \ell), d(\ell, t) - d(\ell, v) \right\}.
\]

is a lower bound to \(d(v, t) \) \(\forall v, t \in V \).
1. Problem definition
2. Network Flows
3. Dijkstra’s Algorithm
4. A*
5. Bidirectional Search
6. State Of The Art For Road Networks
7. Exercises
Bidirectional Search

- Suppose we want to compute a point-to-point shortest path.
- Main idea: explore nodes not only from the source, but also from target node, using the reverse graph $\bar{G} = (V, \bar{A})$ where $(i, j) \in \bar{A} \iff (j, i) \in A$.
- This will reduce the search space.
Balancing the search

- At each iteration, how do we choose between the forward and the backward search?
- Simple idea: alternate between the two searches at each iteration.
- This works very well in practice.
- Stopping criterion: stop as soon as there is a node \(v \) which has been settled by both searches.

Theorem:
During bidirectional Dijkstra’s algorithm, suppose that \(v \) is the first node that is settled by both searches. Then the shortest path from \(s \) to \(t \) passes through \(v \).
Bidirectional A^*

- In principle, we could bidirectionalize the A^* algorithm, and it should still work.
- We can't use the same stopping criterion! (Try to prove it)
- Conservative idea:
 - Keep the value β of the shortest $s \rightarrow t$ path found so far.
 - This may be updated each time that we obtain a new meeting point.
 - Suppose v_f is the minimum element of the forward search queue, and v_b is the minimum element of the backward search queue. If $\beta \leq d(s, v_f) + d(v_b, t)$ then we can stop the search, and β is optimal.
- We have to work on the potentials: we need $\pi_f(v) + \pi_b(v)$ to be constant $\forall v \in V$.

Giacomo Nannicini (LIX)
Shortest Paths Algorithms
15/11/2007 46 / 53
1 Problem definition
2 Network Flows
3 Dijkstra’s Algorithm
4 A^*
5 Bidirectional Search
6 State Of The Art For Road Networks
7 Exercises
Transit Node Routing

- We can make the following two observations:
 - The set of nodes such that at least one node appears on any sufficiently long shortest path (transit nodes) is very small.
 - For any s, t pair, the number of these “important” nodes that are involved in a shortest path computation (access nodes) is very small.

- Using these ideas, we can develop a very efficient algorithm.
Transit Node Routing

- Consider a set \(T \subseteq V \) of transit nodes, and an access mapping
 \(A : V \to 2^T \) that maps a vertex to its access nodes set.
- Consider a locality filter \(L : V \times V \to \{\text{true}, \text{false}\} \) that decides whether an \(s \to t \) query is local or not.

Property:

\[\neg L(s, t) \Rightarrow d(s, t) = \min_{u \in A(s), v \in A(t)} \{d(s, u) + d(u, v) + d(v, t)\}. \]
Transit Node Routing

- Assume we have precomputed $d(u, v) : u, v \in \mathcal{T}$.

- Algorithm:
 - If $\neg \mathcal{L}(s, t)$, compute $d(s, t)$ as
 $$d(s, t) = \min \{d(s, u) + d(u, v) + d(v, t) | u \in \mathcal{A}(s), v \in \mathcal{A}(t)\}.$$
 - Otherwise, use any other shortest paths algorithm.
A very efficient implementation [Sanders and Schultes, 2007] has been presented at the 9th DIMACS Computational Challenge (late 2006).

It is based on the Highways Hierarchies algorithm [Sanders and Schultes, 2005].

Average query times for the european road network: 5.6 microseconds, no more than a few hundreds microseconds in the worst case.
1 Problem definition

2 Network Flows

3 Dijkstra’s Algorithm

4 A^*

5 Bidirectional Search

6 State Of The Art For Road Networks

7 Exercises
Write model and data file for the SP problem for this network, with source node: a and target node: f (use CPLEX: option solver cplex;).

Write a run file that uses the model and data file to compute and display the shortest path for each node pair in the network.

Modify those files to compute the SP tree rooted at each node.