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® Lecture notes:
http://www.lix.polytechnique.fr/ liberti/
Isic/isc612-07/linear _programming.pdf

# J.-B. Hiriart-Urruty, Optimisation et analyse convexe, PUF,
Paris 1998 (Ch. 5)

o C. Papadimitriou, K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Dover, New York, 1998
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Definitions

Mathematical programming formulation:
mine /() }[P] )

A point z* Is feasible In P if g(z*) < 0;
F(P) = set of feasible points of P

A feasible z* is a local minimum if 3B (x*, ¢) S.1.
Ve € F'(P)N B(x*,¢) we have f(z*) < f(x)

A feasible x* Is a global minimum If Vx € F'(P) we have

f(z*) < f(z)

Thm.: if f and F'(P) convex, any local min. is also global

If g;(z*) = 0 for some 1, g; is active at * o
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Canonical form

OLE
POLYTECHNIQUE

- N

® P Is a linear programming problem (LP) If f : R — R,
g : R" — R™ are linear forms

® LP In canonical form:

min, c'x )
st. Az <b |[C] (2)
x>0 )

# Can reformulate inequalities to equations by adding a
non-negative slack variable x,.1 > 0:

n

n
Zajilfj <b = Zajilij—‘rilfn_|_1:b N Tpy1 >0

o |
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Standard form

- N

# LP in standard form: all inequalities transformed to

eguations
min, (¢)'z )
st. Alz=10b ;|S] (3)
x>0 )
® where z = (z1,...,%n, Tntt, - Tntm),
A= (A1), d =(c0,...,0)
N——
m

# Standard form useful because linear systems of
equations are computationally easier to deal with than
systems of inequalities

# Used in simplex algorithm

|
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Diet problem |
-

Consider set M of m nutrients (e.g. sugars, fats,
carbohydrates, proteins, vitamins, ...)

Consider set N of n types of food (e.g. pasta, steak,
potatoes, salad, ham, fruit, ...)

A diet is healthy if it has at least b; units of nutrient: € M
Food j € N contains a;; units of nutrient ¢ € M

A unit of food j € N costs ¢;
Find a healthy diet of minimum cost

|
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Diet problem Il
-

Parameters: m x n matrix A = (a;;), b = (b1,...,bm),
c=(c1,...,Cn)

Decision variables: x; = quantity of food j in the diet

CjLy
1

Objective function: min
xr
J

n

n
Constraints: Vi € M ) a;;x; > b;
j=1

Limits on variables: Vj € N z; > 0
Canonical form: min{c'z | — Az < —b}

Standard form: add slack variables y; = surplus
quantity of i-th nutrient, get min{c'z | — Az + I,y = —b}J
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Geometry of LP

-

® A polyhedron IS the intersection of a finite number of
closed halfspaces. A bounded, non-empty polyhedron

IS a polytope
2 Canonical feas. polyhedron. F(C) =
{reR"| Az <b A z >0}
Qprrow 1 2y 4 < 2 L
R A( )’bT(2a2)
N 2 1

N

Standard feas. polyhedron. F(S) =
ow 2 {(z,y) € R"™™ | Az + I,y

B S 1 b A (xay) Z O}

® P=(0,0,22),Q=(0,1,0,1),R=(2,2,0,0),S = (1,0,1,0)

# Each vertex corresponds to an intersection of at least n
L hyperplanes = > n coordinates are zero J
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Basic feasible solutions

-

Consider polyhedron in “equation form”
K={zxeR"| Ax=bAx >0}. Aism x n of rank m
(N.B. n hereis like n + m in last slide!)

A subset of m linearly independent columns of A Is a
basis of A

If 5 1s the set of column indices of a basis of A,
variables r; are basic for ; € 3 and nonbasic for ¢ ¢

Partition A In a square m x m nonsingular matrix B
(columns indexed by () and an (n — m) x m matrix N

Write A = (B|N), xp € R™ basics, xy € R"™" nonbasics

Given a basis (B|N) of A, the vector x = (zp,zy) IS @
basic feasible solution (bfs) of K with respect to the given
basisif Ax =b, zg >0and zny =0 J
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Fundamental Theorem of LP

-

Given a non-empty polyhedron K in “equation form”,

there is a surjective mapping between bfs and vertices
of K

For any ¢ € R", either there Is at least one bfs that

solves the LP min{c'z |x € K}, or the problem is
unbounded

Proofs not difficult but long (see lecture notes or
Papadimitriou and Steiglitz)

Important correspondence between bfs’s and vertices

suggests geometric solution method based on exploring
vertices of K

|
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Simplex Algorithm: Summary

-

Solves LPs in form minc'x where K = {Az = b Az > 0}

reK
Starts from any vertex x

Moves to an adjacent improving vertex x’
(i.e. ' is s.t. Jedge {z,2'} in K and c'2’ < c'x)

Two bfs’s with basic vars indexed by sets 3, 5
correspond to adjacent vertices if [N G| =m — 1

Stops when no such 2z’ exists

Detects unboundedness and prevents cycling =
convergence

K convex = global optimality follows from local
optimality at termination

Operations researc

|
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Simplex Algorithm |
- _ —

® lLetz = (zy1,...,2,) bethe current bfs, write Az =0 as
Bxp+ Nxny =0

#® EXpress basics in terms of nonbasics:
rp = B~'b — B~!Nx (this system is a dictionary)

® EXpress objective function in terms of nonbasics:
cle = CEZEB + ey = cp(B~ W — B INzy) + CNTN =
= clx —CBB 1b—|—cNmN
(cl; = ¢l — ¢ BN are the reduced costs)
# Select an improving direction: choose a nonbasic

variable x; with negative reduced cost; increasing Its
value will decrease the objective function value

# |f no such & exists, no improving direction, local
L minimum =- global minimum =- termination J
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Simplex Algorithm |
f.o lteration start: z;, Is out of basis = its value Is zero T

# We want to increase its value to strictly positive to
decrease objective function value

#® ...corresponds to “moving along an edge”
# We stop when we reach another (improving) vertex
#® ...corresponds to setting a basic variable x; to zero

3 g
Q P:(o,q,2,2) Q. fow 1
R optimum R: optimum
00 /// /// //?\
increase x1 S x1 P z1 enters, x4 exits 7. §  x1

L.o z;, enters the basis, z; exits the basis J
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Simplex Algorithm Il

How do we determine [ and new positive value for x;? T
Recall dictionary x5 = B~'b — B~ ' Nz,

write b= B~'vand A = (a;;) = B"'N

For: e (3 (basics), Tr; = B@ — Zj%ﬁ ;T

Consider nonbasic index h of variable entering basis (all
the other nonbasics stay at 0), get «; = b; — a;pxp, Vi € 3

Increasing z;, may make z; < 0 (infeasible), to prevent
this enforce Vi € 3 (b; — a;pxp, > 0)

Require z;, < 2 fori € 3 and a;;, > 0: )
b b
l:argmln{_—z|z€BAdih>O}, CEh:_—l
aip, ap

If all a;;, <0, x;, can increase without limits: problem
unbounded J
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Simplex Algorithm IV

Suppose > n hyperplanes cross at vtx R (degenerate)

May get improving direction s.t. adjacent vertex is still R

Objective function value does not change

Seq. of improving dirs. may fail to move away from R

= SIm

Use B
variab

nlex algorithm cycles indefinitely
and’s rule: among candidate entering / exiting

es, choose that with least index

)
“.3x1 +3x2 < 4

Q 2x1 +x0 <2

N
<
N
N
N
N
N
N

N

N
N
N
N
N

A\
: I
N
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Example: Formulation
f.o Consider problem: j

max I+ I9
L1,T2

Sl 214219 <2 \
201 + 19 < 2
x>0

® Standard form:

—min, —I1 — I9
St. 21+ 229+ x3 =2
2r1 +x2 x4 =2
x>0 )

L.o Obj. fun.: max f = —min — f, simply solve for min f J
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Example, ith 1: start

# Obijective function vector ¢' = (—1,—1,0,0)
® Constraints in matrix form:

(1)

Cn[E]

#® Choose obvious starting basis with

1 0O 1 2
(1) (1)

L.o Corresponds to point P = (0,0, 2,2) J
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Example, itn 1: dictionary

",' G
i
o,
ECOLE
POLYTECHNIQUE

# Start the simplex algorithm with basis in P

L2

2r1422<2 VS

"R /

o x1 4 229 < 2

4/%
77007
7

P S \\\ ]

® Compute dictionary g = B~ '6— B~ 'Nay = b — Axy,
where

- =(3) =2 1) -
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Example, ith 1: entering var

# Compute reduced costs ¢y = ¢y — cpA: -

(51,52) = (—1, —1) — (0,0)A = (—1, —1)

# All nonbasic variables {z, 22} have negative reduced
cost, can choose whichever to enter the basis

# Bland’s rule: choose entering nonbasic with least index
in {1, 29}, i.e. pick h = 1 (move along edge PS)

Z2

Pz entersthebasis " S x J
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Example, itn 1: exiting var

Select exiting basic index [ T
bi b1 bo
| = argmln{— i€ BAa; >0} = argmln{ }
Aih all a21
2 2 :
= argmln{1 5t = argmin{2,1} = 2

Means: “select second basic variable to exit the basis”,
l.e. T4

Select new value ;Tlh for x;, (recall h = 1 corrresponds to
1) ) )

b 2

aj, a1 2
r1 enters, x4 exits (apply swap (1,4) to 3) J
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# Start of new iteration: basisis g = {1,3}

Example, ith 2: start

1
s (11 g [0 3
2 0 ’ 1 —3

B~1b = (1,1), thus current bfs is

)=2S5
\xQ
é row 1 2y +xp <2 —Vf
R
//7/ //7/\\@\1\?% 2x2 < 2
/// /// row 2
P ' 1

Operations researc
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» Compute dictionary: b= B~16 = (1,1)",

1
ABlN<O 5)(
1 —1
2

# Compute reduced costs:

2 0
I 1

(

DO DO —

Example, ith 2: entering var

-

| DO —
DO =
\/

(627 64) — (_17 O) o (_17 O)"Zl — (_1/27 1/2)
#® Pick h = 1 (corresponds to zo entering the basis)
3
Q 20+ < -V f

" R
// \\\\x1—|—23:2§2
7

/ 7

xo enters basis

1

Operations researc

|
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Example, itn 2: exiting var

# Compute [ and new value for xs:

by by .11
| = argmln{&ll, &21} = argmln{l/z, 32

= argmin{2,2/3} = 2

| =

#® | = 2 corresponds to second basic variable z3
# New value for x5 entering basis: %

® 15 enters, zs exits (apply swap (2, 3) to )

o |
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Example, itn 3: start

%
)
R
ECOLE
POLYTECHNIQUE

# Start of new iteration: basisis g = {1, 2}

1 2
B — L2 . Bl = -3 3
2 1 ’ s —

W

® xp = (x1,72) = B~'b= (%, %), thus current bfs is
(%,2,0,0) = R
%)
é row 1 211 22 <2 —Vf
:131 + 2x9 < 2
//////// /

™

Operations research courses
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Example, itn 3: termination

-

Compute dictionary: b = B~'b = (2/3, 2/3)T,

1 2 1
A=B'N=| 3 3 POY (3
_ 0 1 % _

Compute reduced costs:

(637 (_:4) — (Ov O) o (_17 _1)A — (1/37 1/3)
No negative reduced cost: algorithm terminates
Optimal basis: {1, 2}

wIno

)

Wl

wlino
W=

Optimal solution: R = (2, 2)

Optimal objective function value f(R) = —3
Permutation to apply to initial basis {3,4}: (1,4)(2, 3) J
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Optimality Conditions |

~» If we can project improving direction —V f(z') on an
active constraint g, and obtain a feasible direction d,
point z’ is not optimal

2

\\ 92

h ~Vf(z)
%7 % d Va1 (z')
7 7®

e
g1 / X1
X C

Vagi(z')
® Implies —V f(2') € C (cone generated by active constraint

\_ gradients) J
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Optimality Conditions |

OLE
POLYTECHNIQUE

- N

# Geometric intuition: situation as above does not happen
when —V f(z*) € C, «* optimum

Z2

7
7

7

A
NN

.
Ay
A
.

NN

1

# Projection of —V f(2*) on active constraints IS never a
feasible direction

o |
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Optimality Conditions Il

1. z* is a local minimum of problem
P =min{ f(z) | g(x) < 0},

2. I 1s the index set of the active constraints at x*,
l.e. Vi e I (gi(z*) =0)

3. Vgr(x*) ={Vyg;(z*) | i € I} Is a linearly independent
set of vectors

# then —V f(2*) Is a conic combination of Vg;(z*),
i.e. 3\ € Rl such that

Operations research courses / LP theory — p. 29



Karush-Kuhn-Tucker Conditions

%
)
R
ECOLE
POLYTECHNIQUE

® Define
L(z,A) = f(z) + Y Nigi(z)
1=1

as the Lagrangian of problem P

o KKT: If z* is a local minimum of problem P and Vg(z*)
IS a linearly independent set of vectors, 3\ € R™ s.t.

Ve L(z,A\) = 0
Vi <m ( zgz( ) O)
\4) S m ()\z' O)

1V

o |
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Weak duality
fThm. T

Let L(\) = min L(z,)\) and z* be the global optimum
reF(P)

of P. ThenVA >0 L(\) < f(z¥).
Proof
Since A > 0, If x € F(P) then \g;(z) < 0, hence

L(x,\) < f(x); result follows as we are taking the mini-
mum over all z € F(P).

# Important point: L()\) is a lower bound for P for all A > 0

# The problem of finding the tightest Lagrangian lower
bound

max min L(x,\)
A>0 xeF(P)

L IS the Lagrangian dual of problem P J

Operations research courses / LP theory — p. 31



Dual of an LP |

-

® L(x,s,y)=c'ov—s'z+y'(b— Ax) where s € R"?, y ¢ R™

# Consider LP P in form: min{c'z | Az > b Az > 0}

# Lagrangian dual:

in (yb+ (c' —s—yA
&rr;%ménﬁ}gj)(y (¢’ —s—yA)z)

# KKT: for a point = to be optimal,

T

¢ —s—yA 0 (KKT1)
Vi <n(sjz; =0), Vi <m (y;(b; — Aiz) 0) (KKT2)

L’ Consider Lagrangian dual s.t. (KKT1), (KKT3): J
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Dual of an LP Il

OLE
POLYTECHNIQUE

=

o Obtain:
.
max yb
S,y
st. yA+s = ¢' ¢
s,y > 0 )

# Interpret s as slack variables, get dual of LP:

min cx ) max yb

xr

st. Az > b ¢ |Pl— sit. yA < ¢! D]
r = 0 y 2

o |
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Strong Duality

Thm.

If  Is optimum of a linear problem and y is the optimum
of its dual, primal and dual objective functions attain the
same values at = and respectively y.

Proof
# Assume x optimum, KKT conditions hold

# Recall (KKT2) Vj < n(sjz; = 0),
Vi < m (y;(b; — Ajx) = 0)

® Gety(b— Ax) =sx = yb = (yA + s)x
By (KKT1) yA +s ="
# Obtain yb=c'z

°
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The dual of the Diet Problem
-

Recall diet problem: select minimum-cost diet of n
foods providing m nutrients

Suppose firm wishes to set the prices y > 0 for m
nutrient pills

To be competitive with normal foods, the equivalent in
pills of a food ; < n must cost less than the cost of the
food ¢;

Objective: max > b;y;
1<m
Constraints: Vj <n > a;;y; < ¢;

1<m

Economic interpretation:
at optimum, cost of pills = cost of diet J
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OLE
POLYTECHNIQUE

=

\
max Ii1 -+ X9
L1,T2

S.t. 1+ 219 <2 \ =
201 + 19 < 2
x>0

/

Example: Dual formulation

# Primal problem P and canonical form:

—min —I1 — X2
L1,X2

# Dual problem D and reformulation:

— INnax —2y1 — 2y2 )
Y1,Y2

St. —y; —2ys < —1
—2y1 —y2 < —1

o y >0 }

0

St. —x1— 229 > —2
—2x1 — L9 > —2
x>0

min 2y1 + 2y
Y1,Y2
= St. y1 +2y2 > 1
21 +y2 > 1
y =0

/

-

|
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Primal and Dual

g
)
oy
ECOLE
POLYTECHNIQUE

-

Primal Dual
min max
variables x constraints

constraints
objective coefficients c
constraint right hand sides b

A@'QS Z bz'
AiCIZ S bi
AZ'SL“ — bz'

:Ifj Z 0

xj § 0

z; unconstrained

constraint right hand sides ¢

variables y

objective coefficients b
y; = 0

Y <0
y; unconstrained
ij < Cj
ij > Cj

ij = Cj

LAi: i-th row of A

AJ: j-th column of AJ
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Example: Shortest Path

SHORTEST PATH PROBLEM.

Input:  weighted digraph G =
(V,A,c),and s,t € V.

Output: & minimum-weight path
In G from s to ¢.

I%lzl{)l (u%):EA CuvLuv
I v=s 1} | P]
VoeV 3 ww— Y T = § —1 v=1
(u,v)cA (v,u)eA 0 othw.
y
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Shortest Path Dual

cols | (1,2) (1,3) (4,1) o
rOWS | c19  c13 Ca1 b

1 1 1 -1 0 |

2 -1 0 0 0 | yo

3 0 -1 0 0 | y3

4 0 0 1 O | ys

S 0 0 0 1 | y,

t 0 0 0 1|y

L12 213 41
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SP Mechanical Algorithm

KKT2 0on [D] = V(u,v) € A(Tuw(Yo — Yu — Cuw) =0) =
V(u,v) c A (xuv =1 =y, —yy = Cuv)

o |
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Single-source SP

SINGLE-SOURCE SP.

Input: weighted digraph G =
(V,A,c),and s € V.

Output. a shortest path tree in G
rooted in s.

min > CupTuw

z20 (u,v)eA [ ]
1 —n v=s (L

YVoeV > Tyw— >, Ty = {1 nvths

(u,v)€A (v,u)eA otnw. )
max (1 —n)ys+ > yu \
o (D
V(u,v) € A Yo—Yu < Cuv |
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Haverly’s Recursion Algorithm

-

# Heuristic for solving bilinear programming problems

o Formulation includes bilinear terms z;y; where
iel,jed

# Problem is nonconvex = many local optima

e

Fact: fix z;,7 € I, get LPy; fix y;,5 € J, get LPs

# Algorithm: solve LPq, get values for y, update and solve
LP-, get values for x, update and solve LP;, and so on

°

Iterate until no more improvement

# Warning: N0 convergence may be attained, and no
guarantee to obtain global optimum

o |
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POLYTECHNIQUE

-

1

2

Haverly’s pooling problem

. 3% Sulphur
J_$ 6

_ 1% Sulphur
" $16

2% Sulphur
12

Y21

Y11 »- $;92.5% Sulphur <100

= < 200

“$10

S.t.

6x11 + 16221 + 102190 —

—9(y11 + y21) — 15(y12 + y22)
11 + x21 — Y11 — y12 = O linear
x12 — Y21 — Y22 = Olinear
y11 + y21 < 100 linear
y12 + y22 < 200 linear
3x11 + 221 — p(y11 +y12) =0
py11 + 2y21 < 2.5(y11 + y21)
py12 + 2y22 < 1.5(y12 + y22)

< 1.5% Sulphur
Y22 > $15

|
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P

HRA Al

3. Repeat until solution does not change / iteration limit exceeded

min
x,y

S.t.

1. Solve LPq, find value for y11, y12, update LP,

HRA applied to HPP

fProbIem LP: fixing p

6x11 + 16221 + 1010 —

—9y11 — 9y21 — 15y12 — 15y22
11 + 221 — Y11 — Y12 =0
x12 —y21 —y22 =0
y11 + y21 < 100
y12 + y22 < 200
3z11 + 21 — pPY11 — py12 =0
(p —2.5)y11 — 0.5y21 <0

(p — 1.5)y12 + 0.5y22 <0
gorithm:

Problem LPs: fixing y11, y12

min
T,Y21,Y22,P

S.t.

2. Solve LP,, find value for p, update LP,

-

6x11 + 16221 + 10120 —

—(9(y11 +y21) + 15(y12 + y22))
T11 + 221 = y11 + Y12

x12 —y21 —y22 =20

y21 < 100 —y11

y22 < 200 — y12

3x11 + 221 — (y11 +y12)p =0
y11p — 0.5y21 < 2.5y11

y12p + 0.5y22 < 1.5y12

|
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History of LP |

1788; Optimality conditions for equality-constrained o
programs (Lagrange)

1826: Solution of a system of linear equations (Gauss)

1873: Solution of a system of linear equations with
nonnegative variables (Gordan)

1896. Representation of convex polyhedra (Minkowski)

1936: Solution of a system of linear inequalities
(Motzkin)

1939: Optimality conditions (Karush, Kuhn & Tucker)

1939-45: Blackett’s Circus, UK Naval Op. Res. , US Navy
Antisubmarine Warfare Op. Res. Group, USAF
Op. Res., Project RAND

1945: The diet problem (Stigler) J
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History of LP I

1947: The simplex method (Dantzig) T
1953: The revised simplex method (Dantzig)

1954:; Cutting planes applied to TSP (Dantzig,
Fulkerson, Johnson)

1954: Max flow / min cut theorem (Ford & Fulkerson),
declassified 1999

1954
1954
1955:
1956.
1958
1958.

Dual simplex method (Lemke)

Branch anc
Stochastic

Bound applied to TSP (Eastman)
programming (Dantzig & Beale)

Dijkstra’s a

gorithm (Dijkstra)

Cutting planes for integer programming (Gomory)

Dantzig-Wolfe decomposition (Dantzig & Wolfe) J
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History of LP Il

1962. Benders’ decomposition (Benders) T
1963: Linear programming and extensions (Dantzig)

1970: Lagrangian relaxation for integer programming
(Held & Karp)

1970: Ellipsoid method (Khachian)

1971. NP-completeness (Cook, Karp)

1972: Simplex method is not polynomial (Klee & Minty)
1977: Bland’s rule for simplex method (Bland)

1982: Average running time of simplex method
(Borgwardt)

1984: Interior point method for LP (Karmarkar)
1985 Branch-and-cut on TSP (Padberg& Grotschel) J
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