
Chapter 4

Easy modelling problems

4.1 Compact storage of similar sequences

One practical problem encountered during the DNA mapping process is that of compactly storing ex-
tremely long DNA sequences of the same length which do not differ greatly. We consider here a simplified
version of the problem with sequences of 2 symbols only (0 and 1). The Hamming distance between two
sequences a, b ∈ F

n
2 is defined as

∑n
i=1 |ai − bi|, i.e. the number of bits which should be flipped to

transform a into b. For example, on the following set of 6 sequences below, the distance matrix is as
follows:

1. 011100011101

2. 101101011001

3. 110100111001

4. 101001111101

5. 100100111101

6. 010101011100

1 2 3 4 5 6
1 0 4 4 5 4 3
2 - 0 4 3 4 5
3 - - 0 5 2 5
4 - - - 0 3 6
5 - - - - 0 5
6 - - - - - 0

As long as the Hamming distances are not too large, a compact storage scheme can be envisaged where
we only store one complete sequence and all the differences which allow the reconstruction of the other
sequences. Explain how this problem can be formulated to find a spanning tree of minimum cost in a
graph. Solve the problem for the instance given above. [E. Amaldi, Politecnico di Milano]

4.2 Communication of secret messages

Given a communication network the probability that a secret message is intercepted along a link con-
necting node i to j is pij . Explain how you can model the problem of broadcasting the secret message
to every node minimizing the interception probability as a minimum spanning tree problem on a graph.
[E. Amaldi, Politecnico di Milano]

19

Exercises Operations Research L. Liberti

4.3 Mixed production

A firm is planning the production of 3 products A1,A2,A3. In a month production can be active for 22
days. In the following tables are given: maximum demands (units=100kg), price ($/100Kg), production
costs (per 100Kg of product), and production quotas (maximum amount of 100kg units of product that
would be produced in a day if all production lines were dedicated to the product).

Product A1 A2 A3

Maximum demand 5300 4500 5400
Selling price $124 $109 $115

Production cost $73.30 $52.90 $65.40
Production quota 500 450 550

1. Formulate an AMPL model to determine the production plan to maximize the total income.

2. Change the mathematical program and the AMPL model to cater for a fixed activation cost on the
production line, as follows:

Product A1 A2 A3

Activation cost $170000 $150000 $100000

3. Change the mathematical program and the AMPL model to cater for both the fixed activation cost
and for a minimum production batch:

Product A1 A2 A3

Minimum batch 20 20 16

[E. Amaldi, Politecnico di Milano]

4.4 Production planning

A firm is planning the production of 3 products A1, A2, A3 over a time horizon of 4 months (january to
april). Demand for the products over the months is as follows:

Demand January February March April
A1 5300 1200 7400 5300
A2 4500 5400 6500 7200
A3 4400 6700 12500 13200

Prices, production costs, production quotas, activation costs and minimum batches (see Ex. 4.3 for
definitions of these quantities) are:

Product A1 A2 A3

Unit prices $124 $109 $115
Activation costs $150000 $150000 $100000
Production costs $73.30 $52.90 $65.40

Production quotas 500 450 550
Minimum batches 20 20 16

Production planning 20

Exercises Operations Research L. Liberti

There are 23 productive days in january, 20 in february, 23 in march and 22 in april. The activation
status of a production line can be changed every month. Minimum batches are monthly.

Moreover, storage space can be rented at monthly rates of $3.50 for A1, $4.00 for A2 and $3.00 for
A3. Each product takes the same amount of storage space. The total available volume is 800 units.

Write a mathematical program to maximize the income, and solve it with AMPL. [E. Amaldi, Po-

litecnico di Milano]

4.5 Transportation

An Italian transportation firm should carry some empty containers from its 6 stores (in Verona, Perugia,
Rome, Pescara, Taranto and Lamezia) to the main national ports (Genoa, Venice, Ancona, Naples, Bari).
The container stocks at the stores are the following:

Empty containers
Verona 10
Perugia 12
Rome 20

Pescara 24
Taranto 18
Lamezia 40

The demands at the ports are as follows:

Container demand
Genoa 20
Venice 15
Ancona 25
Naples 33
Bari 21

Transportation is carried out by a fleet of lorries. The transportation cost for each container is propor-
tional to the distance travelled by the lorry, and amounts to 30 euro / km. Every lorry can carry at most
2 containers. Distances are as follows:

Genoa Venice Ancona Naples Bari
Verona 290 km 115 km 355 km 715 km 810 km
Perugia 380 km 340 km 165 km 380 km 610 km
Rome 505 km 530 km 285 km 220 km 450 km

Pescara 655 km 450 km 155 km 240 km 315 km
Taranto 1010 km 840 km 550 km 305 km 95 km
Lamezia 1072 km 1097 km 747 km 372 km 333 km

Write a mathematical program to find the minimal cost transportation policy and solve it with AMPL.
[E. Amaldi, Politecnico di Milano]

4.6 Project planning with precedences

A project consists of the following 7 activities, whose length in days is given in brackets: A (4), B (3),
C (5), D (2), E (10), F (10), G (1). The following precedences are also given: A → G,D; E,G → F ;

Project planning with precedences 21

Exercises Operations Research L. Liberti

D,F → C; F → B. Each day of work costs 1000 euros; furthermore a special machinery must be rented
from the beginning of activity A to the end of activity B at a daily cost of 5000 euros. Formulate this as
an LP problem and suggest an algorithm for solving it. [F. Malucelli, Politecnico di Milano]

4.7 Museum guards

A museum director must decide how many guards should be employed to control a new wing. Budget cuts
have forced him to station guards at each door, guarding two rooms at once. Formulate a mathematical
program to minimize the number of guards. Solve the problem on the map below using AMPL.

GH

I J
E

D
F

CB
A

Also solve the problem on the following map.

EU

R Q N
M H

F

CDW

Z

J

P

A
B

G

IO
K

LS

T

X

Y

[P. Belotti, Carnegie Mellon University]

4.8 Inheritance

A rich aristocrat passes away, leaving the following legacy:

• A Caillebotte picture: 25000$

• A bust of Diocletian: 5000$

• A Yuan dinasty chinese vase: 20000$

Inheritance 22

Exercises Operations Research L. Liberti

• A 911 Porsche: 40000$

• Three diamonds: 12000$ each

• A Louis XV sofa: 3000$

• Two very precious Jack Russell race dogs: 3000$ each (the will asserts that they may not be
separated)

• A sculpture dated 200 A.D.: 10000$

• A sailing boat: 15000$

• A Harley Davidson motorbike: 10000$

• A piece of furniture that once belonged to Cavour: 13.000$,

which must be shared between the two sons. What is the partition that minimizes the difference between
the values of the two parts? Formulate a mathematical program and solve it with AMPL. [P. Belotti,

Carnegie Mellon]

4.9 Carelland

The independent state of Carelland mainly exports four goods: steel, engines, electronic components
and plastics. The Chancellor of the Exchequer (a.k.a. the minister of economy) of Carelland wants
to maximize exports and minimize imports. The unit prices on the world markets for steel, engines,
electronics and plastics, expressed in the local currency (the Klunz) are, respectively: 500, 1500, 300,
1200. Producing 1 steel unit requires 0.02 engine units, 0.01 plastics units, 250 Klunz in other imported
goods and 6 man-months of work. Producing 1 engine unit requires 0.8 steel units, 0.15 electronics units,
0.11 plastics units, 300 Klunz in imported goods and 1 man-year. One electronics unit requires: 0.01 steel
units, 0.01 engine units, 0.05 plastics units, 50 Klunz in imported goods and 6 man-months. One plastics
unit requires: 0.03 engine units, 0.2 steel units, 0.05 electronics units, 300 Klunz in imported goods and
2 man-years. Engine production is limited to 650000 units, plastics production to 60000 units. The
total available workforce is 830000 each year. Steel, engines, electronics and plastics cannot be imported.
Write a mathematical program that maximizes the gross internal product and solve the problem with
AMPL. [G. Carello, Politecnico di Milano]

4.10 CPU Scheduling

10 tasks must be run on 3 CPUs at 1.33, 2 and 2.66 GHz (each processor can run only one task at a
time). The number of elementary operations of the tasks (expressed in billions of instructions (BI)) is as
follows:

process 1 2 3 4 5 6 7
BI 1.1 2.1 3 1 0.7 5 3

Schedule tasks to processors so that the completion time of the last task is minimized. Solve the problem
with AMPL.

CPU Scheduling 23

Exercises Operations Research L. Liberti

4.11 Dyeing plant

A fabric dyeing plant has 3 dyeing baths. Each batch of fabric must be dyed in each bath in the order:
first, second, third bath. The plant must colour five batches of fabric of different sizes. Dyeing batch i in
bath j takes a time sij expressed in hours in the matrix below:













3 1 1
2 1.5 1
3 1.2 1.3
2 2 2

2.1 2 3













.

Schedule the dyeing operations in the baths so that the ending time of the last batch is minimized.

4.12 Parking

On Dantzig Street cars can be parked on both sides of the street. Mr. Edmonds, who lives at number 1,
is organizing a party for around 30 people, who will arrive in 15 cars. The length of the i-th car is λi,
expressed in meters as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
λi 4 4.5 5 4.1 2.4 5.2 3.7 3.5 3.2 4.5 2.3 3.3 3.8 4.6 3

In order to avoid bothering the neighbours, Mr. Edmonds would like to arrange the parking on both sides
of the street so that the length of the street occupied by his friends’ cars should be minimum. Give a
mathematical programming formulation and solve the problem with AMPL.

How does the program change if on exactly one of the street sides the cars should not occupy more
than 15m?

Parking 24

Chapter 11

Easy modelling problems: solutions

11.1 Compact storage of similar sequences: Solution

Consider a complete undirected graph G = (V,E) where each vertex is a sequence and the weight of an
edge {i, j} ∈ E is given by the Hamming distance between sequence i and sequence j. To each edge
{i, j} ∈ E we also associate the sequence of bit flips necessary to transform sequence i into sequence j.
A minimum cost spanning tree in G provides the most economical way to recover all possible sequences
starting from only one of these sequences.

The instance in the exercise yields a minimum spanning tree having cost 15.

1

2

4

3

4

4

5

5

4

6

3

4

3

4

5

5
2

5

3

6

5

11.2 Communication of secret messages: Solution

The communication network is represented by a directed graph G = (V,A). Each arc (i, j) is weighted
by its probability 1 − pij that the the message is not intercepted along the arc. In order to broadcast
the message to all nodes we want to find a subset of arcs which is connected, reaches all nodes, and has
no cycle (otherwise the interception probability might increase). In other words, a spanning tree. The
spanning tree T should maximize the chances that the message arrives at each node without interception,

71

Solutions Operations Research L. Liberti

i.e.:
max
all T

{
∏

{i,j}∈T

(1− pij) | T spanning tree}. (11.1)

Since the Prim (and Kruskal) algorithms for finding optimum spanning trees deal with the case when the
cost of the tree is the sum of the costs of the edges, we cannot use those algorithms to solve the problem.

However, we can reformulate the problem by requiring the spanning tree T which maximizes the
modified objective function log

∏

{i,j}∈T (1 − pij). This will change the value of the objective function
associated to the solution but not the solution itself, since the log function is monotonic increasing.

log max
all T

{
∏

{i,j}∈T

(1− pij) | T spanning tree} =

= max
all T

{log
∏

{i,j}∈T

(1− pij) | T spanning tree} =

= max
all T

{
∑

{i,j}∈T

log(1− pij) | T spanning tree}.

The latter is a “proper” minimum spanning tree problem on the graph G where each arc (i, j) ∈ A is
weighted by log(1− pij), and can be solved using either Prim’s algorithm.

11.3 Mixed production: Solution

11.3.1 Formulation

• Indicex: Let i be an index on the set {1, 2, 3}.

• Parameters:

– P : number of production days in a month;

– di: maximum market demand for product i;

– vi: selling price for product i;

– ci: production cost for product i;

– qi: maximum production quota for product i;

– ai: activation cost for the plant producing i;

– li: minimum batch of product i.

• Variables:

– xi: quantity of product i to produce (xi ≥ 0);

– yi: activation status of product i (1 if active, 0 otherwise).

• Objective function:

max
∑

i

((vi − ci)xi − aiyi)

• Constraints:

1. (demand): for each i, xi ≤ di;

2. (production):
∑

i
xi

qi
≤ P ;

3. (activation): for each i, xi ≤ Pqiyi;

4. (minimum batch): for each i, xi ≥ liyi;

Mixed production: Solution 72

Solutions Operations Research L. Liberti

11.3.2 AMPL model, data, run

mixedproduction.mod

set PRODUCTS;

param days >= 0;

param demand { PRODUCTS } >= 0;

param price { PRODUCTS } >= 0;

param cost { PRODUCTS } >= 0;

param quota { PRODUCTS } >= 0;

param activ_cost { PRODUCTS } >= 0; # activation costs

param min_batch { PRODUCTS } >= 0; # minimum batches

var x { PRODUCTS } >= 0; # quantity of product

var y { PRODUCTS } >= 0, binary; # activation of production lines

maximize revenue: sum {i in PRODUCTS}

((price[i] - cost[i]) * x[i] - activ_cost[i] * y[i]);

subject to requirement {i in PRODUCTS}:

x[i] <= demand[i];

subject to production:

sum {i in PRODUCTS} (x[i] / quota[i]) <= days;

subject to activation {i in PRODUCTS}:

x[i] <= days * quota[i] * y[i];

subject to batches {i in PRODUCTS}:

x[i] >= min_batch[i] * y[i];

mixedproduction.dat

set PRODUCTS := A1 A2 A3 ;

param days := 22;

param : demand price cost quota activ_cost min_batch :=

A1 5300 124 73.30 500 170000 20

A2 4500 109 52.90 450 150000 20

A3 5400 115 65.40 550 100000 16 ;

mixedproduction.run

model mixedproduction.mod;

data mixedproduction.dat;

option solver cplexstudent;

solve;

display x;

display y;

11.3.3 CPLEX solution

.

CPLEX 7.1.0: optimal integer solution; objective 220690

Mixed production: Solution 73

Solutions Operations Research L. Liberti

5 MIP simplex iterations

0 branch-and-bound nodes

ampl: display x;

x [*] :=

A1 0

A2 4500

A3 5400

;

ampl: display y;

y [*] :=

A1 0

A2 1

A3 1

;

11.4 Production planning: Solution

11.4.1 Formulation

• Indices:

– i: an index on the set π = {A1, A2, A3};

– j: an index on the set µ = {1, 2, 3, 4}.

• Parameters:

– Pj : number of production days in month j;

– dij : maximum demand for product i in month j;

– vi: selling price for product i;

– ci: production cost of product i;

– qi: maximum production quota of product i;

– ai: activation cost for production i;

– li: minimum batch for production i;

– mi: storage cost for product i;

– C: storage capacity in number of units.

• Variables:

– xij : quantity of product i produced during month j;

– wij : quantity of product i sold during month j;

– zij : quantity of product i stocked during month j;

– yij : activation status for production i: (1=active, 0=inactive).

All variables are constrained to be non-negative. yij are binary variables.

• Objective function:

max
3

∑

i=1



vi

4
∑

j=1

wij − ci

4
∑

j=1

xij −mi

4
∑

j=1

zij − ai

4
∑

j=1

yij



 .

Production planning: Solution 74

Solutions Operations Research L. Liberti

• Constraints:

1. (requirement): for each i, j: wij ≤ dij ;

2. (production): per each j:
∑3

i=1
xij

qi
≤ Pj ;

3. (balance): for each i, j: zi,j−1 + xij = zij + wij ;

4. (capacity): for each j:
∑3

i=1 zij ≤ C;

5. (activation): for each i, j: xij ≤ Pjqiyij ;

6. (minimum batch): for each i, j: xij ≥ liyij ;

7. (december): for each i: zi0 = 0.

11.4.2 AMPL model, data, run

productionplan.mod

set PRODUCTS;

param Months;

set MONTHS := 1..Months;

set MONTHS0 := MONTHS union {0};

param days{MONTHS} >= 0;

param demand { PRODUCTS, MONTHS } >= 0;

param price { PRODUCTS } >= 0;

param cost { PRODUCTS } >= 0;

param quota { PRODUCTS } >= 0;

param activation { PRODUCTS } >= 0;

param batch { PRODUCTS } >= 0;

param storage { PRODUCTS } >= 0;

param capacity >= 0;

var x { PRODUCTS, MONTHS } >= 0;

var w { PRODUCTS, MONTHS } >= 0;

var z { PRODUCTS, MONTHS0 } >= 0;

var y { PRODUCTS, MONTHS } >= 0, binary;

maximize revenue:

sum {i in PRODUCTS}

(price[i] * sum {j in MONTHS} w[i,j] -

cost[i] * sum {j in MONTHS} x[i,j] -

storage[i] * sum {j in MONTHS} z[i,j] -

activation[i] * sum {j in MONTHS} y[i,j]) ;

subject to requirement {i in PRODUCTS, j in MONTHS}:

w[i,j] <= demand[i,j];

subject to production {j in MONTHS}:

sum {i in PRODUCTS} (x[i,j] / quota[i]) <= days[j];

subject to bilance {i in PRODUCTS, j in MONTHS}:

z[i,j-1] + x[i,j] = z[i,j] + w[i,j];

subject to capacitymag {j in MONTHS}:

sum {i in PRODUCTS} z[i,j] <= capacity;

Production planning: Solution 75

Solutions Operations Research L. Liberti

subject to active {i in PRODUCTS, j in MONTHS}:

x[i,j] <= days[j]*quota[i]*y[i,j];

subject to minbatch {i in PRODUCTS, j in MONTHS}:

x[i,j] >= batch[i]*y[i,j];

productionplan.dat

set PRODUCTS := A1 A2 A3 ;

param Months := 4 ;

param days :=

1 23

2 20

3 23

4 22 ;

param demand: 1 2 3 4 :=

A1 5300 1200 7400 5300

A2 4500 5400 6500 7200

A3 4400 6700 12500 13200 ;

param : price cost quota activation batch storage :=

A1 124 73.30 500 150000 20 3.5

A2 109 52.90 450 150000 20 4

A3 115 65.40 550 100000 16 3 ;

param capacity := 800 ;

let {i in PRODUCTS} z[i,0] := 0;

fix {i in PRODUCTS} z[i,0];

productionplan.run

model productionplan.mod;

data productionplan.dat;

option solver cplexstudent;

solve;

option display_round 4;

display revenue;

display x;

display y;

quit;

11.4.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 1581550

47 MIP simplex iterations

0 branch-and-bound nodes

guadagno = 1581550.0000

x :=

A1 1 6100.0000

A1 2 0.0000

A1 3 0.0000

Production planning: Solution 76

Solutions Operations Research L. Liberti

A1 4 0.0000

A2 1 0.0000

A2 2 3518.1818

A2 3 0.0000

A2 4 0.0000

A3 1 4400.0000

A3 2 6700.0000

A3 3 12650.0000

A3 4 12100.0000 ;

y :=

A1 1 1.0000

A1 2 0.0000

A1 3 0.0000

A1 4 0.0000

A2 1 0.0000

A2 2 1.0000

A2 3 0.0000

A2 4 0.0000

A3 1 1.0000

A3 2 1.0000

A3 3 1.0000

A3 4 1.0000 ;

11.5 Transportation: Solution

11.5.1 Formulation

• Indices:

– i: index on the set {1, . . . ,M} (stores);

– j: index on the set {1, . . . , P} (ports);

• Parameters:

– mi: availability (in number of containers) at i-th store;

– rj : demand at j-th port;

– dij : distance between store i and port j;

– C: unit transportation cost (per km).

• Variables:

– xij : number of containers sent from store i to port j;

– yij : number of lorries travelling from store i to port j;

All variables are constrained to be non-negative.

• Objective function:

min

M
∑

i=1

P
∑

j=1

Cdijyij

• Constraints:

1. (store availability) for each i ≤ M :
∑P

j=1 xij ≤ mi;

2. (port demand) for each j ≤ P :
∑M

i=1 xij ≥ rj ;

3. (lorry capacity) for each i ≤M , j ≤ P , 2yij ≥ xij .

Transportation: Solution 77

Solutions Operations Research L. Liberti

11.5.2 AMPL model, data, run

transportation.mod

set STORES;

set PORTS;

param availability { STORES } >= 0;

param demand { PORTS } >= 0;

param distance { STORES, PORTS } >= 0;

param costkm >= 0;

var x { STORES, PORTS } >= 0;

var y { STORES, PORTS } >= 0, integer;

minimize cost:

sum {i in STORES, j in PORTS} costkm * distance[i,j] * y[i,j];

subject to avail {i in STORES}:

sum {j in PORTS} x[i,j] <= availability[i];

subject to request {j in PORTS}:

sum {i in STORES} x[i,j] >= demand[j];

subject to lorrycap {i in STORES, j in PORTS}:

2*y[i,j] >= x[i,j];

transportation.dat

set STORES := Verona Perugia Rome Pescara Taranto Lamezia;

set PORTS := Genoa Venice Ancona Naples Bari;

param availability :=

Verona 10

Perugia 12

Rome 20

Pescara 24

Taranto 18

Lamezia 40 ;

param demand :=

Genoa 20

Venice 15

Ancona 25

Naples 33

Bari 21 ;

param distance :

Genoa Venice Ancona Naples Bari :=

Verona 290 115 355 715 810

Perugia 380 340 165 380 610

Rome 505 530 285 220 450

Pescara 655 450 155 240 315

Taranto 1010 840 550 305 95

Lamezia 1072 1097 747 372 333 ;

param costkm := 300;

Transportation: Solution 78

Solutions Operations Research L. Liberti

transportation.run

model transportation.mod;

data transportation.dat;

option solver cplexstudent;

solve;

option display_round 4;

display cost;

display x;

display y;

11.5.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 4685100

70 MIP simplex iterations

0 branch-and-bound nodes

costo = 4685100.0000

x [*,*]

: Ancona Bari Genova Napoli Venezia :=

Lamezia 0.0000 4.0000 0.0000 26.0000 0.0000

Perugia 1.0000 0.0000 6.0000 0.0000 5.0000

Pescara 24.0000 0.0000 0.0000 0.0000 0.0000

Roma 0.0000 0.0000 14.0000 6.0000 0.0000

Taranto 0.0000 17.0000 0.0000 1.0000 0.0000

Verona 0.0000 0.0000 0.0000 0.0000 10.0000

;

y [*,*]

: Ancona Bari Genova Napoli Venezia :=

Lamezia 0.0000 2.0000 0.0000 13.0000 0.0000

Perugia 1.0000 0.0000 3.0000 0.0000 3.0000

Pescara 12.0000 0.0000 0.0000 0.0000 0.0000

Roma 0.0000 0.0000 7.0000 3.0000 0.0000

Taranto 0.0000 9.0000 0.0000 1.0000 0.0000

Verona 0.0000 0.0000 0.0000 0.0000 5.0000

;

11.6 Project planning with precedences: Solution

The precedence graph G = (V,A) (which associates to each arc an activity) is as follows.

1

3

2

4 6

5

7

A

E F

D

B

C

5

3
10

14

10
0 0

Project planning with precedences: Solution 79

Solutions Operations Research L. Liberti

To each vertex i ∈ V we associate a variable ti (the starting time of the activities represented by arcs in
δ̄+(i). The mathematical programming formulation of the problem is:

min t7 − t1 + 5000(t4 − t2)

ti + dij ≤ tj ∀ (i, j) ∈ A,

where dij is the cost of the arc (i, j).

11.7 Museum guards: Solution

The problem can be formalized by representing each museum room by a vertex v ∈ V of an undirected
graph G = (V,E). There is an edge between two vertices if there is a door leading from one room to
the other; this way, edges represent the possibility of there being a guard on a door. We want to choose
the smallest subset F ⊆ E of edges covering all vertices, i.e. such that for all v ∈ V there is w ∈ V with
{v, w} ∈ F .

GH

I J
E

D
F

CB
A

A

G

B

H

I J E

D

C

F

To each {i, j} ∈ E we associated a binary variable xij is assigned the value 1 if there is a guard on the
door represented by edge {i, j} and 0 otherwise.

11.7.1 Formulation

• Parameters. G = (V,A): graph description of the museum topology.

• Variables. xij : 1 if edge {i, j} ∈ E is to be included in F , 0 otherwise.

• Objective function

min
∑

{i,j}∈E

xij

• Constraints. (Vertex cover):
∑

j∈V :{i,j}∈E

xij ≥ 1 ∀i ∈ V .

11.7.2 AMPL model, data, run

museum.mod

param n >= 0, integer;

set V := 1..n;

set E within {V,V};

var x{E} binary;

Museum guards: Solution 80

Solutions Operations Research L. Liberti

minimize cost : sum{(i,j) in E} x[i,j];

subject to vertexcover {i in V} :

sum{j in V : (i,j) in E} x[i,j] + sum{j in V : (j,i) in E} x[j,i] >= 1;

museum.dat

param n := 10;

set E :=

1 2

1 3

1 6

1 7

2 8

3 4

4 5

7 9

8 9

9 10 ;

museum.run

model museum.mod;

data museum.dat;

option solver cplexstudent;

solve;

display cost;

display x;

11.7.3 CPLEX solution

CPLEX 7.1.0: optimal integer solution; objective 6

2 MIP simplex iterations

0 branch-and-bound nodes

cost = 6

x :=

1 2 0

1 3 1

1 6 1

1 7 1

2 8 1

3 4 0

4 5 1

7 9 0

8 9 0

9 10 1

;

Museum guards: Solution 81

Solutions Operations Research L. Liberti

11.8 Inheritance: Solution

The problem may be formalized as follows: given a set A of n elements each with an evaluation function
v : A → R, we want to find a partition of A in A1, A2 such that

|v(A1)− v(A2)| = |
∑

a∈A1

v(a)−
∑

a∈A2

v(a)|

is minimum. This is known as the Subset-Sum problem.

It can be modelled using mathematical programming by introducing binary variables xa, ya for each
a ∈ A, such that xa = 1 and ya = 0 if object a is assigned to brother x, and xa = 0 and ya = 1 if a is
assigned to y. We naturally need the constraint

∀a ∈ A (xa + ya = 1).

The objective function to be minimized is:

min |
∑

a∈A1

vaxa −
∑

a∈A2

vaya|,

which ensures that the inheritance is split between the two brothers as fairly as possible. Because of the
absolute value, this formulation is nonlinear.

Let V =
∑

a∈A v(a) be the total value of the inheritance. The Subset-Sum can also be described as
follows:

• maximize the inheritance assigned to one of the brothers with the constraint that it should not
exceed V/2;

• minimize the inheritance assigned to one of the brothers with the constraint that it should not be
less than V/2.

This interpretation gives us two integer linear programming formulations:

max
∑

a∈A

vaxa

s.t.
∑

a∈A

vaxa ≤ V
2

∑

a∈A

va

∀a ∈ A xa ∈ {0, 1}















min
∑

a∈A

vaxa

s.t.
∑

a∈A

vaxa ≥ V
2

∑

a∈A

va

∀a ∈ A xa ∈ {0, 1}















11.8.1 AMPL model, data, run

subsetsum.mod

param n;

param v {1..n};

param V := sum {i in 1..n} v [i];

var x {1..n} binary;

minimize cost: sum {i in 1..n} v[i] * x[i];

subject to limit: sum {i in 1..n} v [i]* x[i] >= 0.5 * V;

Inheritance: Solution 82

Solutions Operations Research L. Liberti

subsetsum.dat

param n := 13;

param: v :=

1 25000

2 5000

3 20000

4 40000

5 12000

6 12000

7 12000

8 3000

9 6000

10 10000

11 15000

12 10000

13 13000;

subsetsum.run

model subsetsum.mod;

data subsetsum.dat;

option solver cplexstudent;

solve;

display cost;

display x;

11.8.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 92000

7 MIP simplex iterations

0 branch-and-bound nodes

cost = 92000

x [*] :=

1 1

2 0

3 1

4 0

5 0

6 0

7 0

8 1

9 1

10 0

11 1

12 1

13 1

;

11.9 Carelland: Solution

Miximize the profits (exported quantities - produced quantities) subject to the constraints on production,
amount of work and balance between produced and exported products.

Carelland: Solution 83

Solutions Operations Research L. Liberti

11.9.1 Formulation

Parameters:

• P : set of products;

• H: total available amount of work (man-years);

• Mi maximum possible production for product i ∈ P ;

• pi market price for product i ∈ P ;

• mi amount of raw materials necessary to manufacture a unit of product i ∈ P ;

• hi amount of work required to manufacture a unit of product i ∈ P ;

Variabili:

• xa, xm, xp, xe: produced units of steel, engines, plastics and electronics

• ya, ym, yp, ye: exported units of steel, engines, plastics and electronics.

Model:

max
∑

i∈P

piyi −
∑

i∈P

mixi

∑

i∈P

hixi ≤ H

xi ≤ Mi ∀i ∈ P

ya + 0.8xm + 0.01xe + 0.2xp = xa

ym + 0.02xa + 0.01xe + 0.03xp = xm

ye + 0.15xm + 0.05xp = xe

yp + 0.01xa + 0.11xm + 0.05xe = xp

xi, yi ≥ 0 ∀i ∈ P

11.9.2 AMPL model, data, run

carelland.mod

set PRODUCTS;

param p {PRODUCTS} >= 0;

param HMan >=0;

param Max {PRODUCTS} >=0;

param m {PRODUCTS} >= 0;

param h {PRODUCTS} >= 0;

param a {PRODUCTS, PRODUCTS} >=0;

var x { PRODUCTS } >= 0;

var y { PRODUCTS } >= 0;

Carelland: Solution 84

Solutions Operations Research L. Liberti

maximize klunz:

sum {i in PRODUCTS} (p[i]*y[i] - m[i]*x[i]);

subject to limit{i in PRODUCTS}:

x[i] <= Max[i];

subject to work:

sum {i in PRODUCTS} h[i]*x[i]<=HMan;

subject to balance{i in PRODUCTS} :

y[i] + sum{j in PRODUCTS}(a[j,i]*x[j]) = x[i];

carelland.dat

set PRODUCTS := steel plastics electronics engines;

param HMan:= 830000;

param : p m h Max :=

steel 500 250 0.5 2000000

plastics 1200 300 2 60000

electronics 300 50 0.5 650000

engines 1500 300 1 2000000 ;

param a: steel plastics electronics engines :=

steel 0 0.01 0 0.02

plastics 0.2 0 0.05 0.03

electronics 0.01 0.05 0 0.01

engines 0.8 0.11 0.15 0 ;

carelland.run

model carelland.mod;

data carelland.dat;

option solver cplexstudent;

solve;

display profit;

display x;

display y;

11.9.3 CPLEX solution

CPLEX 8.1.0: optimal solution; objective 435431250

9 dual simplex iterations (6 in phase I)

klunz = 435431000

x [*] :=

electronics 74375

engines 475833

plastics 60000

steel 393958

;

Carelland: Solution 85

Solutions Operations Research L. Liberti

y [*] :=

electronics 0

engines 465410

plastics 0

steel 547.917

;

11.10 CPU Scheduling: Solution

• Indices:

– i, j: indices on a set P of tasks;

– k: index on a set C of CPUs.

• Parameters:

– bi: number of BI (billion instructions) in task i;

– sk: speed of CPU k in GHz;

– Wmax: upper bound for completion time of all tasks.

• Variables:

– xi ≥ 0: starting time of task i;

– yi ∈ Z+: CPU ID to which task i is assigned;

– zik = 1 if task i is assigned to CPU k, 0 otherwise;

– σij = 1 if task i ends before task j starts, 0 otherwise;

– εij = 1 if task i is executed on a CPU having lower ID than task j;

– Li ≥ 0: length of task i;

– W ≥ 0: completion time of all tasks.

• Objective function:

min W

• Constraints:

– (lengths) ∀i ∈ P (Li =
∑

k∈C

bi

sk
zik);

– (times) ∀i ∈ P (ti + Li ≤W)

– (assignment) ∀i ∈ P (
∑

k∈C

zik = 1);

– (cpudef) ∀i ∈ P (yi =
∑

k∈C

kzik)

– (horizontal non-overlapping) ∀i 6= j ∈ P (xj − xi − Li − (σij − 1)Wmax ≥ 0)

– (vertical non-overlapping) ∀i 6= j ∈ P (yj − yi − 1− (εij − 1)|P | ≥ 0)

– (at least one position) ∀i 6= j ∈ P (σij + σji + εij + εji ≥ 1)

– (horizontal: at most one) ∀i 6= j ∈ P (σij + σji ≤ 1)

– (vertical: at most one) ∀i 6= j ∈ P (εij + εji ≤ 1)

CPU Scheduling: Solution 86

Solutions Operations Research L. Liberti

11.10.1 AMPL model, data, run

cpuscheduling.mod

param p > 0, integer;

param c > 0, integer;

set P := 1..p;

set C := 1..c;

param b{P} >= 0;

param s{C} >= 0;

param Wmax default sum{i in P} b[i] / (min{k in C} s[k]);

var x{P} >= 0;

var y{P} >= 0;

var z{P,C} binary;

var sigma{P,P} binary;

var epsilon{P,P} binary;

var L{P} >= 0;

var W >= 0;

minimize makespan: W;

subject to lengths{i in P} : L[i] = sum{k in C} (b[i] / s[k]) * z[i,k];

subject to times{i in P} : x[i] + L[i] <= W;

subject to assignment{i in P} : sum{k in C} z[i,k] = 1;

subject to cpudef{i in P} : y[i] = sum{k in C} k * z[i,k];

subject to hnonoverlapping{i in P, j in P : i != j} :

x[j] - x[i] - L[i] - (sigma[i,j] - 1) * Wmax >= 0;

subject to vnonoverlapping{i in P, j in P : i != j} :

y[j] - y[i] - 1 - (epsilon[i,j] - 1) * p >= 0;

subject to atleastone{i in P, j in P : i != j} :

sigma[i,j] + sigma[j,i] + epsilon[i,j] + epsilon[j,i] >= 1;

subject to hatmostone{i in P, j in P : i != j} :

sigma[i,j] + sigma[j,i] <= 1;

subject to vatmostone{i in P, j in P : i != j} :

epsilon[i,j] + epsilon[j,i] <= 1;

cpuscheduling.dat

param p := 7;

param c := 3;

param : b :=

1 1.1

2 2.1

3 3.0

4 1.0

5 0.7

6 5.0

CPU Scheduling: Solution 87

Solutions Operations Research L. Liberti

7 3.0 ;

param : s :=

1 1.33

2 2.00

3 2.66 ;

cpuscheduling.run

model cpuscheduling.mod;

data cpuscheduling.dat;

option solver cplexstudent;

solve;

display makespan;

for{k in C} {

printf "CPU %d : ", k;

for{i in P : z[i,k] = 1} {

printf "[%d:%f] ", i, x[i];

}

printf "\n";

}

11.10.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 2.781954887

40175 MIP simplex iterations

8463 branch-and-bound nodes

makespan = 2.78195

CPU 1 : [5:0.000000] [7:0.526316]

CPU 2 : [1:1.731955] [3:0.000000] [4:2.281955]

CPU 3 : [2:0.000000] [6:0.789474]

11.11 Dyeing plant: Solution

• Indices:

– i, j: index on the set L of fabric batches;

– k: index on the set V = {1, . . . , v} of dyeing baths;

• Parameters:

– sik: time necessary to dye batch i in bath k;

– M : upper bound to completion time of last bath.

• Variables:

– tik ≥ 0: starting time for dyeing batch i in bath k;

– T ≥ 0: completion time for last batch;

– yijk = 1 if batch i is to be dyed before batch j in bath k, 0 otherwise.

• Objective function:
min T

• Constraints:

Dyeing plant: Solution 88

Solutions Operations Research L. Liberti

– (sequential) ∀i ∈ L, k ∈ V r {v} (tik + sik ≤ ti(k+1));

– (last bath) ∀i ∈ L (tiv + siv ≤ T);

– (non overlapping) ∀i, j ∈ L, k ∈ V, i 6= j (tik + sik ≤ tjk + M(1− yijk));

– (disjunction) ∀i, j ∈ L, k ∈ V, i 6= j (yijk + yjik = 1).

11.11.1 AMPL model, data, run

dyeing.mod

param l >= 1;

param v >= 1;

set L := 1..l;

set V := 1..v;

set V0 := 1..v-1;

param s{L,V} >= 0;

param M default sum{i in L, k in V} s[i,k] ;

var t{L,V} >= 0;

var T >= 0;

var y{L,L,V} binary;

minimize makespan : T;

subject to sequential{i in L, k in V0} : t[i,k] + s[i,k] <= t[i,k+1];

subject to lastbath{i in L} : t[i,v] + s[i,v] <= T;

subject to nonoverlap{i in L, j in L, k in V : i != j} :

t[i,k] + s[i,k] <= t[j,k] + M * (1 - y[i,j,k]);

subject to disjunction{i in L, j in L, k in V : i != j} :

y[i,j,k] + y[j,i,k] = 1;

dyeing.dat

param l := 5;

param v := 3;

param s : 1 2 3 :=

1 3.0 1.0 1.0

2 2.0 1.5 1.0

3 3.0 1.2 1.3

4 2.0 2.0 2.0

5 2.1 2.0 3.0 ;

dyeing.run

model dyeing.mod;

data dyeing.dat;

option solver cplexstudent;

solve;

display makespan;

for {i in L} {

Dyeing plant: Solution 89

Solutions Operations Research L. Liberti

printf "batch %d : ", i;

for {k in V} {

printf "[%f] ", t[i,k];

}

printf "\n";

}

11.11.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 14.1

1618 MIP simplex iterations

362 branch-and-bound nodes

makespan = 14.1

batch 1 : [9.100000] [12.100000] [13.100000]

batch 2 : [7.100000] [9.100000] [12.100000]

batch 3 : [4.100000] [7.100000] [8.300000]

batch 4 : [2.100000] [4.100000] [9.600000]

batch 5 : [0.000000] [2.100000] [4.100000]

11.12 Parking: Solution

• Indices:

– i: index on the set N = {1, . . . , n} of cars;

– j: index on the set M = {1, 2} of car lines (one per street side).

• Parameters:

– λi: length of car i;

– L: upper bound on the car line length;

– µ: upper bound for the sum of car lengths.

• Variables:

– xij = 1 if i is parked on line j and 0 otherwise;

– tj ≥ 0: length of car line j;

– yj = 1 if tj ≤ L and 0 otherwise.

• Objective function:

min max
j∈M

tj .

• Constraints:

– (car line length definition) ∀j ∈M (tj =
∑

i∈N

λixij);

– (assignment of cars to lines) ∀i ∈ N (
∑

j∈M

xij = 1);

– (constraint disjunction) ∀j ∈ M (tj − L ≤ µ(1− yj));

– (constraint on one line only) (
∑

j∈M

yj = 1).

Parking: Solution 90

Solutions Operations Research L. Liberti

11.12.1 AMPL model, data, run

parking.mod

param n > 0;

param m > 0;

set N := 1..n;

set M := 1..m;

param lambda{N} >= 0;

param mu := sum{i in N} lambda[i];

param L >= 0;

var x{N,M} binary;

var t{N} >= 0;

var y{M} binary;

var T >= 0;

minimize minmaxobj: T;

subject to minmax {j in M} : T >= t[j];

subject to carlinedef {j in M} :

t[j] = sum{i in N} lambda[i] * x[i,j];

subject to assignment {i in N} : sum{j in M} x[i,j] = 1;

subject to disjunction {j in M} : t[j] - L <= mu * (1 - y[j]);

subject to onelineonly : sum{j in M} y[j] = 1;

parking.dat

param n := 15;

param m := 2;

param L := 15;

param : lambda :=

1 4.0

2 4.5

3 5.0

4 4.1

5 2.4

6 5.2

7 3.7

8 3.5

9 3.2

10 4.5

11 2.3

12 3.3

13 3.8

14 4.6

15 3.0 ;

Parking: Solution 91

Solutions Operations Research L. Liberti

parking.run

model parking.mod;

data parking.dat;

option solver cplexstudent;

solve;

display minmaxobj;

for {j in M} {

printf "line %d (length = %f) : ", j, sum{i in N : x[i,j] = 1} lambda[i];

for {i in N : x[i,j] = 1} {

printf "%d ", i;

}

printf "\n";

}

11.12.2 CPLEX solution

CPLEX 8.1.0: optimal integer solution; objective 42.1

56 MIP simplex iterations

50 branch-and-bound nodes

minmaxobj = 42.1

line 1 (length = 42.100000) : 2 3 4 5 6 7 8 11 13 14 15

line 2 (length = 15.000000) : 1 9 10 12

Parking: Solution 92

