Introduction to Integer Linear
Programming

Leo Liberti, Ruslan Sadykov

LIX, Ecole Polytechnique
|1 berti @i X. pol yt echni que. fr
sadykov@ i x. pol yt echni que. fr

///////////////////////

liberti@lix.polytechnique.fr
sadykov@lix.polytechnique.fr

© o o o 0

Contents

IP formulations and examples
Total unimodularity

The Cutting Planes method
The Branch-and-Bound method
The Branch-and-Cut method

|

Lecture 7/12/2006 — p. 2/30

Definitions

Mathematical programming formulation: o

min,
S.1.

o+ dly
Arx+ By <b
r >0,y >0,
x e 2"

\

> | P (1)

/

The linear (Or continuous) relaxation Rp of P Is obtained by
P relaxing (i.e. removing) the integrality constraints

Let I'(P) be the feasible region of P: we have

F(P) C F(Rp)

Let (z*,y*) be the solution of P and (z, y) be the
solution of Rp;thenc'z +d'y < c'a* +d"y*: Rpis a
lower bounding problem w.r.t. P

|

Lecture 7/12/2006 — p. 3/30

Simple example

fC

onsider example:

min

15/8[-« _

—211 — 319
1+ 209 < 3
0x1 + 819 < 15
r1 € Ry, a0 € Z4

158« _

3/2

L \W§

\\\\&\\

1

\&\\&\\&\\\ \

1

o 1

52 3 (1

@

3/2 2

|

Lecture 7/12/2006 — p. 4/30

Maximum flow problem

-

Given a network on a directed graph G = (V, A) with a
source node s, a destination node t, and integer capacities
u;; on each arc (¢, 7). We have to determine the maximum

amount of integral material flow that can circulate on the
network from s to t. The variables z;; € Z, defined for each

arc (¢, 7) In the graph, denote the number of flow units.

(s,i)€A | \/
(9

Y < - $‘ . ..
(.)€ A (ji)EA / \
\V/(Z,]) c A OSZIZ?;]' §u7;j
L V(i,j) € A Ti; € L) Yy J

Lecture 7/12/2006 — p. 5/30

-

=
Qo
%
8
=~
c£

Transportation problem

et z;; be the (discrete) number of product units T
transported from plant : < m to customer 5 < n with
respective unit transportation cost ¢;; from plant : to
customer ;. We model the problem of determining x
minimizing the total cost, subject to production limits /; at
plant and demand d; at customer j, as follows:

\

1=1] 1 L
Vi<m ZCEZ'J < O %
j=1 > Ty
m L J
Vi<n Zazi] > d;

L \Y Z,] sz;zel Z+ J

Lecture 7/12/2006 — p. 6/30

Set Covering problem

- N

Let x; = 1 if a servicing facility will be built on geographical
region : < m and 0 otherwise. The cost of building a facility
onregion i is f;, and a;; = 1 If a facility on region ; can serve
town ;5 < n, and O otherwise. We need to determine

x € {0,1}"™ so that each town is serviced by at least one

facility and the total cost is minimum.

m)
min,, E Jix;
=1 Qs j 1

S >
V] S n Zaijxi 1
1=1

Vi<m xr; € Z_;_)

Vv

Lecture 7/12/2006 — p. 7/30

Good and ideal formulations

- N

The smaller is F(Rp), the
d o o o o o bigger (better) is the lower
bound produced by Rp.
O As F(Rp,) C F(Rp,) and
F(Rpl) C F(Rp2), the for-
mulation P; Is better than P
o and .

4Q))
3@

2
~ /7 \\

Here P; Is the best possible
(ideal) formulation.

N
N
N N AN
~
~
1
NN
Ny
NS

a®

Formally, Rp, defines the
convex hull of P.

P ={z', ..., 2!}, then conv(P) = {z :
\—w — Zfz:l Nzt 22:1 N=1, \>0,Vi=1,...,t}. J

Lecture 7/12/2006 — p. 8/30

Uncapacitated Faclility Location problem

. N

Similar to the Set Covering Problem, except for the addition
of the variable transportation costs c;;, which arise if the

demand of town j Is fully served by facility . Let y;; be the
fraction of demand of town ; served by facllity .

m m n)
I]ECHyHE fiwi + > Y cijyij

m
V) <n, Zyz’j =1
i=1

™m
Vi < m, g Yij < nx; y23 = 0.5
J=1

Vi < m,V] <n, Yij > 0, y33z = 0.5

L Vi<m, x;€{0,1}. J

Lecture 7/12/2006 — p. 9/30

UFL problem I
W

e can change constraints T
m
Vi < m, Zyij <nz; [R]
j=1

to constraints
Formulation Rs Is better than R, as F(R2) C F(R1). We can

verify it by showing F'(R2) C F(R;) and finding a point
(x,y) € F(R1) \ F(R2).

o |

Lecture 7/12/2006 — p. 10/30

Rounding heuristic

fThere IS a strong relation
between an integer pro-
gram and its linear relax-
ation.

But just rounding the so-
lution =z of the LP relax-
ation does not always pro-
duce good results. Con-
sider the integer program:

max 1.00x1 + 0.64x9
50x1 + 31xo < 250
3r1 — 2x9 > —4

_ xr1, T € Liy

z = (376/193,950/193)

Lecture 7/12/2006 — p. 11/30

Main algorithmic ideas

-

If we can say a priori that z € Z" then can solve P by
simply solving Rp (total unimodularity property).

Add constraints to get P’ such that 2’ € Z" (cutting planes
algorithm).

Solve by “smart” enumeration of all solutions
(Branch-and-Bound algorithm).

Combine adding constrants and enumeration
(Branch-and-Cut algorithm).

Modern Integer Programming solvers (like Cplex) use
the Branch-and-Cut algorithm.

|

Lecture 7/12/2006 — p. 12/30

Total unimodularity |

-

Consider system Bx = b where B = (b;;) IS Invertible
nxnSt b;eZforallij

Solve for z, get B~ b

1 .
WC with C

From inverse matrix formula, infer B=!
Integral

If |1B| € {1,-1} thenx = B~ 'b = +Cb c Z"

A square invertible matrix B s.t. |B| = =£1 IS unimodular

An m x n matrix A s.t. every square submatrix has
determinant in {—1,0, 1} IS totally unimodular (TUM)

Theorem: If A i1s TUM, then for all b € R™, every vertex
of the polyhedron {x € R"” | Az < b} Is integral. Intuititively,
every vertex can be written as B~ lbfor B square submatrix of A J

Lecture 7/12/2006 — p. 13/30

Total unimodularity I

f.o If Ais TUM, AT and (A|I) are TUM T

® TUM Sufficient conditions. AN m x n matrix A i1s TUM If:
1. forall i <m, j <n we have a;; € {0,1,—1};

2. each column of A contains at most 2 nonzero
coefficients;

3. there Is a partition R;, R, of the set of rows such that
for each column j, > . p aij — > ;cp aij = 0.

o Example: take Ry = {1,3,4}, Re = {2}

0 0)

1

I -1 1
-1 -1 0 0 0 1

0

-1 0 J

Lecture 7/12/2006 — p. 14/30

Total unimodularity Il

Consider digraph G = (V, A) and a nonnegative flow T
zi; € R4 on each arc; the flow conservation equations

VieV Z Tij — Z Xji = 0 yleld a TUM matrix
(i,7)€A (j,0)€A

(partition: R; = all rows, Ry = 0).

Maximum flow problem can be solved to integrality by
simply solving the continuous relaxation with the
simplex algorithm

Constraints of the transportation problem also form a
TUM matrix. Partition: R; = {2?;1 Tii < liti<m,

Ry = {32121 w5 = dj}tj<n.

Constraints of the set covering problem do not form a

TUM. To prove this, you just need to find a
counterexample. J

Lecture 7/12/2006 — p. 15/30

Cutting planes: definitions |

-

A constraint C = 7'z < 7 is valid for P if
Va' e F(P) (T2’ < mp)

x1

T

(2)

Cutting planes: definitions |

-

Let P’ be problem P with the added valid constraint C. C'is
a cutting plane for P if F(Rp/) C F(Rp)

-

SIS S
SN
\N\Qm\ﬁm

Lecture 7/12/2006 — p. 17/30

d
e
.
1]
0
N
S

C
u
tt
IN
gp
la
n
o
S

M
-
Ml %1
r_w r_m
nan w.
v 5
m E
e =
2 :
w Tm,w_
— n w r_VJ
2 - .. _ ..
+— ” .. .
3 m ”
9 M.
W Wu Q
.. __ 5
N —— \ \
/ / \w : | | / m
\\\\\\ \\ _x
\\\.\
IS x.mmwh.‘.‘.m (
. mmmmmm .
| : .,%%... s..
4 ““ %ﬂﬁ%ﬂﬂﬂ%ﬂ%ﬂ#&%& /
+““””%”g.,,.%..
%““gg.,.,",. S
b.““”““”"““””““”ﬁ.,.ﬂ. 3
1.,,.%..3,.*%%’. b ,
..””“““"gg... : <
a"“““ﬁ% H.“. ~
%.%..s.. %
,.“”“““"“ &,.s
&.. +.
+.“ b,
—

L
e
C
tu
re
7
/1
2/20
0
6
-p
1
8
/3
0

Convex hull

~» To have a description of the convex hull of F(P), we |
need a finite number of valid constraints for P.

2
S - o
A VN
\\\;\\\\\ 02 ‘
Q== '_\'\'_""'%_' T
\ \\
PSS X\ > - 1551
\/\ @ ()

o Computing the convex hull for F'(P) is in general harder
than solving P.

The idea of the cutting plane algorithm is to add valid
cuts progressively and resolve the LP relaxation each
L time until we obtain an integer solution. Doing this way, J
we add only those cuts we need.

Lecture 7/12/2006 — p. 19/30

Cutting Plane Algorithm
-

Overall strategy:

1. Solve Rp, get relaxed solution z

2. If z € Z™ problem is solved, exit

3. Use solution z of Rp to construct a valid cut C for P
4. Add the constraint C to the formulation of P

5. Go backto 1

The most important step of the algorithm: step 3
(separation problem).

Cutting Plane algorithms may depend on the particular
problem structure or be completely general.

Independent of problem structure: Gomory cutting planes.
Problem structure: Row generation for the TSP. J

Lecture 7/12/2006 — p. 20/30

Branch-and-Bound |

-

Here we use the “divide and conguer” approach. If we
cannot solve a problem, we break it into easier
subproblems. We do it using an enumeration tree.

U B, (heuristic)

optimality bound infeasibility o \ _

-

Lecture 7/12/2006 — p. 21/30

fl.

S A

Branch-and-Bound ||

Initialize list problem L = { P}, best objective function value T
f* = 00, 2* = “Infeasible”

If L = (), terminate with solution x*

Select a subproblem () from L and remove it from L
(Bound) Solve R, to find solution z with objective value f
If R Is infeasible, back to 2 (prune by infeasibility)

If f> f*, Q cannot contain optimal solution, back to 2 (prune
by bound)

If z is integral and f < f*: update z* = z, f* = f, back to 2
(prune by optimality)

(Branch) Select a fractional component z;, generate two
subproblems from @ with added constraints z; < |z, | and J
r; > |z;| respectively, add them to L, then back to 2

Lecture 7/12/2006 — p. 22/30

Branch-and-Bound II|

How do we choose a subproblem @ from L (step 3)?

-

How do we select a fractionary component z; from z

(step 8)7
No “best answer”, depends on problem structure.

Choice of subproblem: associate LB = f to each
generated problem, then choose subproblem with
minimum LB.

Choice of fractionary component: choose the
component with fractionary value closest to 0.5.

|

Lecture 7/12/2006 — p. 23/30

BB example |

fConsider simple example: T

min —2x1 — 3x9
1+ 2r9 <

0x1 +8xo < 15

xr1,T9 € L

Solution of Rp Is at
T = (3/2,3/4) with
f=-21/4

o

Lecture 7/12/2006 — p. 24/30

BB example |

f:zi = solution of Rp,, f; = optimal objective value of Rp,, Vi T

15/8T ~ _ 'Vf

3/2]

3/4 54

3/8

o o

Branch-and-Cut
-

In the Branch-and-Bound algorithm, before branching,

we generate valid cuts for the current fractional solution
T.

The cuts are generated until there is no much progress
on the value f of the objective function.

Cuts can be general or problem specific.
Solvers, like Cplex generate cuts by default.

Most used classes of general cuts: Gomory cuts,
(flow) cover cuts.

|

Lecture 7/12/2006 — p. 26/30

Gomory inequalities

-

Let X = PNZ" where P={zx ¢ R} : Az <D}, Alsan
m x n matrix with columns (a1, ..., a,), and v € R'".

n
Z ua;x; < ubis valid for P as u > 0;
j=1
n
ZLuajjmj < wubis valid for P, as z > 0;
j=1
n
> |uajlz; < |ub) is valid for X, as « is integer.
1=1
Using this procedure, we can generate all valid
Inequalities for an integer program.

|

Lecture 7/12/2006 — p. 27/30

Cover inequalities

Let X = {$ S {O,l}n: 2?21 a;r; < b},
a; >0,¥j<n, b>0 N={1,2... nh

SetC' C Nisacoverif) . .~a; > 0.

If C' C N Is a cover, then the cover inequality

d oz <O -1

jeC

IS valid for X.

|

Lecture 7/12/2006 — p. 28/30

Course material

- N

C. Papadimitriou, K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Dover, New York, 1998

#® L. Wolsey, Integer Programming, John Wiley & Sons, Inc,
New York, 1998.

o |

Lecture 7/12/2006 — p. 29/30

	Contents
	Definitions
	Simple example
	Maximum flow problem
	Transportation problem
	Set Covering problem
	Good and ideal formulations
	Uncapacitated Facility Location problem
	UFL problem II
	Rounding heuristic
	Main algorithmic ideas
	Total unimodularity I
	Total unimodularity II
	Total unimodularity III
	Cutting planes: definitions I
	Cutting planes: definitions II
	Cutting planes: definitions III
	Convex hull
	Cutting Plane Algorithm
	Branch-and-Bound I
	Branch-and-Bound II
	Branch-and-Bound III
	BB example I
	BB example II
	Branch-and-Cut
	Gomory inequalities
	Cover inequalities
	Course material

