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Definitions

Mathematical programming formulation: o

min,
S.1.
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Arx+ By <b
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The linear (Or continuous) relaxation Rp of P Is obtained by
P relaxing (i.e. removing) the integrality constraints

Let I'(P) be the feasible region of P: we have

F(P) C F(Rp)

Let (z*,y*) be the solution of P and (z, y) be the
solution of Rp;thenc'z +d'y < c'a* +d"y*: Rpis a
lower bounding problem w.r.t. P
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Simple example

fC

onsider example:

min
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—211 — 319
1+ 209 < 3
0x1 + 819 < 15
r1 € Ry, a0 € Z4
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Maximum flow problem

-

Given a network on a directed graph G = (V, A) with a
source node s, a destination node t, and integer capacities
u;; on each arc (¢, 7). We have to determine the maximum

amount of integral material flow that can circulate on the
network from s to t. The variables z;; € Z, defined for each

arc (¢, 7) In the graph, denote the number of flow units.

(s,i)€A | \/
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L V(i,j) € A Ti; € L ) Yy J
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Transportation problem

et z;; be the (discrete) number of product units T
transported from plant : < m to customer 5 < n with
respective unit transportation cost ¢;; from plant : to
customer ;. We model the problem of determining x
minimizing the total cost, subject to production limits /; at
plant  and demand d; at customer j, as follows:

\

1=1 ] 1 L
Vi<m ZCEZ'J < O %
j=1 > Ty
m L J
Vi<n Zazi] > d;

L \Y Z,] sz;zel Z+ J
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Set Covering problem

- N

Let x; = 1 if a servicing facility will be built on geographical
region : < m and 0 otherwise. The cost of building a facility
onregion i is f;, and a;; = 1 If a facility on region ; can serve
town ;5 < n, and O otherwise. We need to determine

x € {0,1}"™ so that each town is serviced by at least one

facility and the total cost is minimum.
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Good and ideal formulations

- N

The smaller is F(Rp), the
d o o o o o bigger (better) is the lower
bound produced by Rp.
O As F(Rp,) C F(Rp,) and
F(Rpl) C F(Rp2), the for-
mulation P; Is better than P
o and .
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Here P; Is the best possible
(ideal) formulation.
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Formally, Rp, defines the
convex hull of P.

P ={z', ..., 2!}, then conv(P) = {z :
\—w — Zfz:l Nzt 22:1 N=1, \>0,Vi=1,...,t}. J
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Uncapacitated Faclility Location problem

. N

Similar to the Set Covering Problem, except for the addition
of the variable transportation costs c;;, which arise if the

demand of town j Is fully served by facility . Let y;; be the
fraction of demand of town ; served by facllity .

m m n )
I]ECHyHE fiwi + > Y cijyij

m
V) <n, Zyz’j =1
i=1

™m
Vi < m, g Yij < nx; y23 = 0.5
J=1

Vi < m,V] <n, Yij > 0, y33z = 0.5

L Vi<m, x;€{0,1}. J
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UFL problem I
W

e can change constraints T
m
Vi < m, Zyij <nz; [R]
j=1

to constraints
Formulation Rs Is better than R, as F(R2) C F(R1). We can

verify it by showing F'(R2) C F(R;) and finding a point
(x,y) € F(R1) \ F(R2).

o |
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Rounding heuristic

fThere IS a strong relation
between an integer pro-
gram and its linear relax-
ation.

But just rounding the so-
lution =z of the LP relax-
ation does not always pro-
duce good results. Con-
sider the integer program:

max 1.00x1 + 0.64x9
50x1 + 31xo < 250
3r1 — 2x9 > —4

\_ xr1, T € Liy

z = (376/193,950/193)
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Main algorithmic ideas

-

If we can say a priori that z € Z" then can solve P by
simply solving Rp (total unimodularity property).

Add constraints to get P’ such that 2’ € Z" (cutting planes
algorithm).

Solve by “smart” enumeration of all solutions
(Branch-and-Bound algorithm).

Combine adding constrants and enumeration
(Branch-and-Cut algorithm).

Modern Integer Programming solvers (like Cplex) use
the Branch-and-Cut algorithm.

|
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Total unimodularity |

-

Consider system Bx = b where B = (b;;) IS Invertible
nxnSt b;eZforallij

Solve for z, get B~ b

1 .
WC with C

From inverse matrix formula, infer B=!
Integral

If |1B| € {1,-1} thenx = B~ 'b = +Cb c Z"

A square invertible matrix B s.t. |B| = =£1 IS unimodular

An m x n matrix A s.t. every square submatrix has
determinant in {—1,0, 1} IS totally unimodular (TUM)

Theorem: If A i1s TUM, then for all b € R™, every vertex
of the polyhedron {x € R"” | Az < b} Is integral. Intuititively,
every vertex can be written as B~ lbfor B square submatrix of A J
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Total unimodularity I

f.o If Ais TUM, AT and (A|I) are TUM T

® TUM Sufficient conditions. AN m x n matrix A i1s TUM If:
1. forall i <m, j <n we have a;; € {0,1,—1};

2. each column of A contains at most 2 nonzero
coefficients;

3. there Is a partition R;, R, of the set of rows such that
for each column j, > . p aij — > ;cp aij = 0.

o Example: take Ry = {1,3,4}, Re = {2}

0 0)

1

I -1 1
-1 -1 0 0 0 1

0

-1 0 J
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Total unimodularity Il

Consider digraph G = (V, A) and a nonnegative flow T
zi; € R4 on each arc; the flow conservation equations

VieV Z Tij — Z Xji = 0 yleld a TUM matrix
(i,7)€A (j,0)€A

(partition: R; = all rows, Ry = 0).

Maximum flow problem can be solved to integrality by
simply solving the continuous relaxation with the
simplex algorithm

Constraints of the transportation problem also form a
TUM matrix. Partition: R; = {2?;1 Tii < liti<m,

Ry = {32121 w5 = dj}tj<n.

Constraints of the set covering problem do not form a

TUM. To prove this, you just need to find a
counterexample. J
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Cutting planes: definitions |

-

A constraint C = 7'z < 7 is valid for P if
Va' e F(P) (T2’ < mp)

x1

T

(2)



Cutting planes: definitions |

-

Let P’ be problem P with the added valid constraint C. C'is
a cutting plane for P if F(Rp/) C F(Rp)

-
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Convex hull

~» To have a description of the convex hull of F(P), we |
need a finite number of valid constraints for P.

2
S - o
A VN
\\\;\\\\\ 02 ‘
Q== '\_\'\'\_""'%_' T
\ \\
PSS X\ > - 1551
\/\ @ ()

o Computing the convex hull for F'(P) is in general harder
than solving P.

# The idea of the cutting plane algorithm is to add valid
cuts progressively and resolve the LP relaxation each
L time until we obtain an integer solution. Doing this way, J
we add only those cuts we need.
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Cutting Plane Algorithm
-

Overall strategy:

1. Solve Rp, get relaxed solution z

2. If z € Z™ problem is solved, exit

3. Use solution z of Rp to construct a valid cut C for P
4. Add the constraint C to the formulation of P

5. Go backto 1

The most important step of the algorithm: step 3
(separation problem).

Cutting Plane algorithms may depend on the particular
problem structure or be completely general.

Independent of problem structure: Gomory cutting planes.
Problem structure: Row generation for the TSP. J
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Branch-and-Bound |

-

Here we use the “divide and conguer” approach. If we
cannot solve a problem, we break it into easier
subproblems. We do it using an enumeration tree.

U B, (heuristic)

optimality bound infeasibility o \ _

-
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fl.
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Branch-and-Bound ||

Initialize list problem L = { P}, best objective function value T
f* = 00, 2* = “Infeasible”

If L = (), terminate with solution x*

Select a subproblem () from L and remove it from L
(Bound) Solve R, to find solution z with objective value f
If R Is infeasible, back to 2 (prune by infeasibility)

If f> f*, Q cannot contain optimal solution, back to 2 (prune
by bound)

If z is integral and f < f*: update z* = z, f* = f, back to 2
(prune by optimality)

(Branch) Select a fractional component z;, generate two
subproblems from @ with added constraints z; < |z, | and J
r; > |z;| respectively, add them to L, then back to 2
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Branch-and-Bound II|

How do we choose a subproblem @ from L (step 3)?

-

How do we select a fractionary component z; from z

(step 8)7
No “best answer”, depends on problem structure.

Choice of subproblem: associate LB = f to each
generated problem, then choose subproblem with
minimum LB.

Choice of fractionary component: choose the
component with fractionary value closest to 0.5.

|
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BB example |

fConsider simple example: T

min —2x1 — 3x9
1+ 2r9 <

0x1 +8xo < 15

xr1,T9 € L

Solution of Rp Is at
T = (3/2,3/4) with
f=-21/4

o
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BB example |

f:zi = solution of Rp,, f; = optimal objective value of Rp,, Vi T

15/8T ~ _ 'Vf

3/2]

3/4 54

3/8




o o

Branch-and-Cut
-

In the Branch-and-Bound algorithm, before branching,

we generate valid cuts for the current fractional solution
T.

The cuts are generated until there is no much progress
on the value f of the objective function.

Cuts can be general or problem specific.
Solvers, like Cplex generate cuts by default.

Most used classes of general cuts: Gomory cuts,
(flow) cover cuts.

|
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Gomory inequalities

-

Let X = PNZ" where P={zx ¢ R} : Az <D}, Alsan
m x n matrix with columns (a1, ..., a,), and v € R'".

n
Z ua;x; < ubis valid for P as u > 0;
j=1
n
ZLuajjmj < wubis valid for P, as z > 0;
j=1
n
> |uajlz; < |ub) is valid for X, as « is integer.
1=1
Using this procedure, we can generate all valid
Inequalities for an integer program.

|
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Cover inequalities

Let X = {$ S {O,l}n: 2?21 a;r; < b},
a; >0,¥j<n, b>0 N={1,2... nh

SetC' C Nisacoverif ) . .~a; > 0.

If C' C N Is a cover, then the cover inequality

d oz <O -1

jeC

IS valid for X.

|
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Course material

- N

# C. Papadimitriou, K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Dover, New York, 1998

#® L. Wolsey, Integer Programming, John Wiley & Sons, Inc,
New York, 1998.

o |
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