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Chapter 1

Introduction

This exercise book is meant to go with the course INF561 given at École Polytechnique by Prof. D. Krob.
The current course edition is 1st semester 2006/2007. It contains a series of exercises in software modelling
and architecture.

1.1 Structure of this book

Software modelling and software architecture are concepts needed when planning complex software
systems. Consequently, it does not really make sense to concentrate on a sequence of self-contained,
modestly-sized and independent exercises as would be usual for an exercise book. The difficulty of this
discipline resides in the large size of the tasks at hand. We shall therefore pretend that the class is a team
in a small software engineering firm (called VirtualClass Ltd.) engaged in a job contract. We shall enforce
the more or less usual “real-life” constraints and impediments encountered in the business world, like
ambiguous customer requirements, lack of crucial technical information, over-inundation of unimportant
facts, and so on.

1.2 The setting

T-Sale is a large multinational firm which is often employed by national governments and other large in-
stitutions to provide very large-scale services. They will secure contracts by responding to the prospective
customers’ public tenders with commercial offers that have to be competitive. The upper management
of T-Sale noticed some inefficiencies in the way these commercial offers are put together, in that very
often the risk analysis are incorrect. They decided that they could improve the situation by trying to
use stored information about past projects. More precisely, T-Sale keeps a detailed project database
which allows one to see how an initial commercial offer became the true service that was eventually sold
to the customer. The management hope that the preliminary customer requirements contained in the
public tender may be successfully matched with the stored initial requirements to draw some meaningful
inference on how the project actually turned out in the past.

T-Sale wants to enter into a contract with VirtualClass to provide the following service, which was
expressed in very vague terms from one senior vice-president of T-Sale to VirtualClass.

We want a sort of “Google” for starting projects. We want to find all past projects which were

similar at the initial stage and we want to know how they developed; this should give us some

idea of future development of the current project.
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VirtualClass must estimate the cost and time required to complete this task, and make T-Sale a compet-
itive offer. Should T-Sale accept the offer, VirtualClass will then have to actually plan and implement
the system.

1.3 Aim

As was mentioned previously, we shall pretend that the class is the team of VirtualClass’ software en-
gineers that need to put together a meaningful and competitive offer for T-Sale, and then to plan the
system.

1.4 Tools

The software engineers are supposed to use the following tools to attain their aims:

• brainstorming meetings to jump-start a phase or to try to get around a dead point;

• normal meetings to agree on a plan;

• DBDesigner as a database design tool;

• Poseidon for UML as a UML modelling tool;

• oXygen as an XML modelling tool.

Notes, diagrams, documentation and specifications should be standardized, uniform, and consistent.

1.5 Roadmap

1. The commercial offer needs to be drawn quickly. The associated risks should be assessed. It should
be as close as possible to the delivered product.

2. In general, the software engineering team should follow the “V” development process (left branch)
for planning the system, as shown in Fig. 1.1.

Analysis of needs
Functional specs

Architecture
Technical specs

Implementation
Integration

Validation
Tests

Deployment
Maintenance

Figure 1.1: The “V” development process.
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Chapter 2

Initial offer

2.1 Kick-off meeting

Aims of the meeting:

1. Formalize the customer requirements as much as possible

(a) What is the deliverable, i.e. what is actually sold to the customer?

(b) What is the first coarse “common-sense” system breakdown?

2. What data is needed from T-Sale’s databases?

Length: 45 min.

2.1.1 Meeting output

1. Given some meaningful key-words or other well-defined indicators in the description of a new project,
we want to classify it by some quantitative indices and look in a project database for all projects
which were sufficiently similar at the initial stage and proceeded to completion with a uniform
degree of success; we should then display a list of such projects so that the user can immediately
glance at all important information concerning risk-assessment.

(a) The deliverable is a software module that must be plugged in the existing T-Sale back-office
network; it should have query access to some of the T-Sale databases and should be usable
through a web interface.

(b) At a first analysis, we shall need:

• I/O user interface through a web browser;

• a way to find meaningful indicators in the given project;

• a system to query the databases for those indicators and return information about initial,
intermediate and final cost, time and resources estimates.

2. We shall need T-Sales’ data concerning:

• project descriptions;

• project schedules;

• project costs;
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• teams involved;

• people involved;

• other resources involved.

T-Sale’s answer, as often happens, is rather vague.

Dear VirtualClass Team,
We are sorry to have to tell you that the structure of our databases is classified information,
and we will only be able to give it to you at a later stage when and if we choose to employ your
services. We can however describe the main features of what we think is useful to your job.
We have an HR database detailing the usual information (salary, rank,. . . ) abilities and skills.
We have a technical database with project information (nature and cost of project, teams,
people, schedule and associated changes). We naturally have a commercial database detailing
customers and payments. Unfortunately the database which details hardware resources and
costs may not be accessed as it contains some information classified at national level.
Best regards,
A. Smith

2.2 Brainstorming meeting

Aims of the meeting:

1. propose ideas for a system plan with sufficient details for a rough cost estimate;

2. collect these ideas in a formal document;

3. decide on a sexy project name.

Length: 45 min.

2.2.1 Meeting output

1. User will input project indicators known at early stage

2. Functionality: an input web form (user interface)

3. Which among these “early indicators” are quantitative, which qualitative?

4. What sort of clustering of the project space do they lead to?

5. According to what other indicators (“late indicators”) can project be clustered?

6. Functionality: cluster projects according to a given quantitative/qualitative indicator (computa-
tional engine)

7. Functionality: access the customer database (database module)

8. How do we assess the quality of a clustering?

9. How “clear-cut” is a clustering?

10. Functionality: clustering significance evaluator (computational engine)

11. How are the early/late clusterings used later on?

Brainstorming meeting 8
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12. Functionality: record a clustering (database module)

13. New projects must be classified according to early indicators: how do we use the information given
by the clusterings obtained with late indicators? More in general, how do we pick a set of significant
late clustering (which give the useful risk assessment information) given an early clustering?

14. Functionality: clustering compatibility evaluator (computational engine)

15. Literature review on clustering

16. How do we classify a new project according to the stored clusterings?

17. Functionality: query clusterings for

18. How do we present the output to the user?

19. Functionality: output form (user interface)

20. Name: how about “proogle” (the “project google”?)

The Proogle system will require the following functionalities:

• input/output web user interface;

• a computational engine for clustering according to a quantitative or qualitative indicator;

• a computational engine for evaluating clustering significance;

• a database module for storing clusterings;

• a computational engine for evaluating clustering compatibility;

• a database module for querying the stored clusterings.

Computational engines will require expertise in clustering techniques; database modules should be
sufficiently straightforward; presenting output in a meaningful way will likely pose problems.

2.3 Formalization of a commercial offer

Aims of the meeting:

1. write a document (for internal use) which gives a rough overview of the system functionalities and
of the system breakdown into sub-systems and interdependencies;

2. write a document (for internal use) with projected sub-system costs (complexity) and a rough risk
assessment;

3. write a commercial offer to be sent to T-Sale with functionalities and the total cost.

Length: 1h.

Formalization of a commercial offer 9
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2.3.1 Meeting output

Rough system breakdown:

Formalization of a commercial offer 10



Exercises Software Modelling and Architecture L. Liberti

Risks:

1. Failure to obtain necessary data/clearance from T-Sale — catastrophic, low probability

2. Not enough specific in-house clustering expertise — serious, high probability

3. Results not as useful as expected — low, medium probability

Address risks:

1. Insert clause in contract

2. Plan training

3. Insert clause in contract

Formalization of a commercial offer 11
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Chapter 3

System planning

We shall now suppose that T-Sale accepted VirtualClass’ offer and is now engaged in a contract. The
next step is to actually plan the system. The contract clearly states that T-Sale is under obligation to
provide T-Sale with database details, which are shown in Fig. 3.1.

3.1 Understanding T-Sale’s database structure

Aims of the meeting: analysis and documentation of T-Sales’ database structure. Note that the project’s
condition contains information about whether the project was a success or a failure, and other overall
properties. Make sure every software engineer understands the database structure by answering the
following questions:

1. How do we find the main occupation of an employee?

2. How do we find the expertises of an employee?

3. How do we find the condition of a project?

4. How do we find how many times a project was changed?

5. How do we find whether a project was paid for on time or late?

6. How do we find whether a customer usually pays on time or late?

7. How do we verify that the cost of all phases in a project sums up to the total project cost?

8. How do we evaluate the cost in function of time during the project’s lifetime?

9. How do we discriminate between the phase cost due to human resources and the cost due to other
reasons?

10. How do we find the expertises (with their levels) that were necessary in a given project?

11. How do we find out the abilities and skills (with their levels) that were necessary in a given project?

12. How do we find out which teams were most successful?

13. How do we find out the most dangerous personal incompatibilities?

Length: 1h.
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Figure 3.1: T-Sales’ database structure.

Understanding T-Sale’s database structure 14
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3.1.1 Meeting output

1. The table among technical, commercial, leadership which contains the employee’s ID gives its
main occupation.

2. We consult the expertise table. For a description of the expertise, we consult expertisemap.

3. We simply look at the condition field of the project table, whose description is in conditionmap.

4. We scan the phase table for a given project and count the times the isvalid field contains ‘true’.

5. We find the last phase of the project looking at the phase table and we compare the stop field
with the datepaid field of the financial table.

6. We scan the financial table for a given customer, and find whether the completion date (stop
field) of the last phase in the project (table phase, accessed through project) corresponds with
the datepaid field of the financial table.

7. We sum the costs of all the non-invalidated phases in the project and compare it to the total project
cost (amount field in financial table).

8. The function changes every time a phase is invalidated or created. The cost is the cumulative cost
of all the phases which are valid at any given time.

9. Since we only know the costs due to human resources, we must find the salaries of all the people
involved in the project and scale them by the percentage of their time they devoted to the project.
In other words, we must sum the scaled salaries over all phases of the project, over all teams involved
in the phase, and over all people associated to the team.

10. We find the people involved in the project through phases and teams, and we compute their expertise
level vector.

11. Similar to the above.

12. We match the teams involved in a project with indicators such as the project’s condition and the
number of invalidated phases (the fewer, the better).

13. We find the subsets of people from a team which occur most often in the most unsuccessful projects.

3.2 Brainstorming meeting

The commercial offer quotes: “Given some meaningful key-words or other well-defined indicators in the
description of a new project, we want to classify it by some quantitative indices [. . . ]”. Such concepts as
“meaningful key-words or other well-defined indicators” and “quantitative indices” are not well-defined,
and therefore pose the most difficult problem to be solved in order to arrive at a software architecture.
In order to solve the problem, a brainstorming meeting is called.

Aim of the meeting:

1. find a set of well-defined new project indicators which are suitable for searching similar terms in
the T-Sale database;

2. find a set of quantitative indices to be computed using the T-Sale database information, which
should shed light on the future life cycle of the new project;

3. document all ideas spawned during the meeting in a formal document.

Length: 1h.

Brainstorming meeting 15
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3.2.1 Meeting output

Here is one possible approach to solving these problems:

1. find all project indicators which are known at the initial stage (details of first phase, customer
history, personal compatibilities in teams);

2. propose a sizable number of quantitative indices that can be associated to a project (initial projected
cost, cost curve, required skill levels, total human resources cost, number of teams, number of people,
total cost, . . . );

3. cluster all projects with similar degree of success (i.e. look at the condition field and at the
number of invalidated phases) and produce a partition of the set of projects such that all projects
in a partition subset have the same degree of success;

4. the most meaningful quantitative indices in the proposed set are those having the least variance in
each partition subset;

5. finding the variance of the project indicators in the partition subsets will give an idea of the indicator
reliability.

3.3 Functional architecture

Propose a functional architecture for the software. This should include the main software components and
their interconnections, as well as a break-down of the architecture into sub-parts so that development
teams can be formed and assigned to each project part. Since system-wide faults arise from badly
interacting teams, it is naturally wise to minimize the amount of team interaction needed.

3.3.1 Solution

The only available point of departure for this analysis is the sketched architecture design contained in our
commercial offer, which at this point should be used and expanded into a detailed and fully implementable
software architecture. The following components are apparent:

1. Input web form (IWF): user inputs early indicator values concerning a new project

2. Output web form (OWF): user sees similar projects with relevant indicator values

3. Clustering engine (CE): given a set of objects and their pairwise distances, perform a clustering
minimizing the inter-cluster distances

4. Clustering significance evaluator (CSE): Given a clustering, does it match well to another given
clustering?

5. Classification (CLS): given an indicator for a given type of clustering, find the cluster it belongs
to in the given and all similar clusterings

6. Customer’s DB: split in Commercial (CDB), Human resources (HRDB), Technical (TDB) data
repositories

7. Clustering DB (CLDB): repository for existing clusterings.

Fig. 3.2 shows a high-level activity diagram based on this modularization. Vertices are either logic anchors
(black), actions (yellow), important data (green) and databases (blue). Arcs denote logic flow (black) or
data flow (blue).

Functional architecture 16
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Figure 3.2: Initial activity diagram.

3.3.1.1 Interfacing

We apply the interfacing operator to this graph on the blue arc color (data flow arcs, coded by the label
2 in the AMPL data file). The AMPL model file is as follows.

# interface.mod
# AMPL model for interface creation

# graph
param n >= 1, integer;
set V := 1..n;
set E within {V,V};

# edge weights
param c{E};

# edge inclusions
param I{E};

# vertex colours
param lambda{V};

# arc colours
param kmax default 10;
param k <= kmax, >= 0, integer, default 1;
param mu{E} >=0, integer, <= kmax;

# variables
var x{V} binary;
var y{(u,v) in E} >= 0, <= min(max(0, mu[u,v]-k+1), max(0,k-mu[u,v]+1));

# model

maximize densesubgraph : sum{(u,v) in E} I[u,v] * c[u,v] * y[u,v] -
sum{v in V} x[v];

# linearization constraints
subject to lin1 {(u,v) in E} : y[u,v] <= x[u];
subject to lin2 {(u,v) in E} : y[u,v] <= x[v];

Functional architecture 17



Exercises Software Modelling and Architecture L. Liberti

subject to lin3 {(u,v) in E} : y[u,v] >= x[u] + x[v] - 1;

The AMPL data file is as follows.

# activity1.dat
# AMPL dat file from UML activity diagram 1

param n := 15;
param : E : c I mu :=

1 15 1 1 1
2 15 1 1 1
2 3 1 1 1
2 4 1 1 1
3 5 1 1 1
4 5 1 1 1
5 6 1 1 1
5 11 1 1 2
5 12 1 1 2
5 13 1 1 2
5 14 1 1 2
6 9 1 1 1
7 8 1 1 1
7 11 1 1 2
7 12 1 1 2
7 13 1 1 2
7 14 1 1 2
7 15 1 1 1
8 10 1 1 1
8 14 1 1 2
11 12 1 1 2
11 13 1 1 2
12 13 1 1 2

;

param lambda :=
1 1
2 2
3 3
4 3
5 2
6 2
7 2
8 2
9 1
10 1
11 4
12 4
13 4
14 4
15 1 ;

The AMPL run file is as follows.

# file interface.run
model interface.mod;
data activity1.dat;
let k := 2; # choose the colour
option solver cplexstudent;
solve;
display y;
display x;

We solve the problem by issuing the command cat interface.run | ampl. We find the interface
subgraph H = (U,F ) where U = {5, 7, 11, 12, 13, 14} and F = {all blue arcs}. We add a new vertex 16
representing the interface, remove the arcs F and add the (bidirected) arcs F ′ = {{u, 16} | u ∈ U}. Since
16 is a database interface, we assign it the database vertex colour (blue). The activity diagrams evolves
into Fig. 3.3.

Functional architecture 18
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Figure 3.3: Activity diagram after interfacing.

3.3.1.2 Clustering

We now apply the clustering operator to the new activity diagram, to identify some clusters such that
interconnections are minimized. Such clusters may help break down the architecture in logically discon-
nected parts; as system-wide faults usually emerge from inter-team lack of communication, assigning such
parts to different teams will minimize the chances of ending up with system-wide faults.

The AMPL model is as follows.

# flexcolour_clustering.mod
# flexible coloured clustering (colours on vertices) - AMPL model

# graph
param n >= 1, integer;
set V := 1..n;
set E within {V,V};

# edge weights
param c{E};

# edge inclusions
param I{E};

# vertex colours
param lambda{V};
param gamma{u in V, v in V : u != v} :=

if (lambda[u] = lambda[v]) then 0 else 1;

# arc colours
param mu{E};

# max number of clusters
param kmax default n;
set K := 1..kmax;

# original problem variables
var x{V,K} binary;

Functional architecture 19
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# linearization variables
var w{V,K,V,K} >= 0, <= 1;

# cluster existence variables
var z{K} binary;

# model
minimize intercluster :

sum{k in K, l in K, (u,v) in E : k != l} I[u,v] * c[u,v] * w[u,k,v,l] +
sum{k in K} z[k];

subject to assignment {v in V} : sum{k in K} x[v,k] = 1;

# use (ceil(card{V}/kmax)+1) as RHS for balanced multi-cluster cardinality
subject to cardinality {k in K} : sum{v in V} x[v,k] <= ceil(card{V}/2);

subject to existence {k in K} : sum{v in V} x[v,k] >= z[k];

subject to diffcolours {u in V, v in V, k in K, l in K : u != v and k != l} :
w[u,k,v,l] <= gamma[u,v];

### linearization constraints
subject to lin1 {u in V, v in V, h in K, k in K : (u,v) in E or (v,u) in E} :

w[u,h,v,k] <= x[u,h];
subject to lin2 {u in V, v in V, h in K, k in K : (u,v) in E or (v,u) in E} :

w[u,h,v,k] <= x[v,k];
subject to lin3 {u in V, v in V, h in K, k in K : (u,v) in E or (v,u) in E} :

w[u,h,v,k] >= x[u,h] + x[v,k] - 1;

The AMPL data file is as follows.

# activity2.dat
# AMPL dat file from UML activity diagram 2

param n := 16;
param : E : c I mu:=

1 15 1 1 1
2 15 1 1 1
2 3 1 1 1
2 4 1 1 1
3 5 1 1 1
4 5 1 1 1
5 6 1 1 1
5 16 1 1 2
6 9 1 1 1
7 8 1 1 1
7 16 1 1 2
8 10 1 1 1
8 16 1 1 2
11 16 1 1 2
12 16 1 1 2
13 16 1 1 2
14 16 1 1 2

;

param lambda :=
1 1
2 2
3 3
4 3
5 2
6 2
7 2
8 2
9 1
10 1
11 4
12 4
13 4
14 4
15 1
16 4 ;

The AMPL run file is as follows.

# file flexcolour_clustering.run

Functional architecture 20
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model flexcolour_clustering.mod;
data activity1.dat;
let kmax := 4; # maximum number of clusters
option solver cplexstudent;
solve;
display y;
display x;

We solve the problem by issuing the command cat flexcolour clustering.run | ampl. We ask
for at most 4 clusters (let kmax := 4;). We obtain two clusters: C1 = {1, 2, 3, 4, 5, 6, 9, 15} and C2 =
{7, 8, 10, 11, 12, 13, 14, 16}. The activity diagram is now as in Fig. 3.4.
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Figure 3.4: Activity diagram after clustering.

The architecture is composed of two main subsystems C1, C2, corresponding to two activity processes
IWF→CLS→OWF (performed by the user) and CE↔CSE↔DBI (performed by the program) that we
may call respectively the foreground and background processes. The foreground subsystem consists of
three main components (input, classifier and output); the background subsystem consists of a database
sub-subsystem (with an interface and four databases) and two main components (clustering engine and
clustering significance evaluator). Very high-level specifications may now be given as follows:

1. IWF: input indicator(s) and clustering distance(s) from the user

2. CLS: classify new project according to given indicator(s) and distance(s) using a database of existing
clusterings with cluster-matching information

3. OWF: output set of existing projects close to the new project w.r.t. given indicator(s)

4. CE: given a set of indicator values and an associated distance metric, cluster the values; pass the
clustering to the DB interface for storage

5. CSE: given two clusterings, match them and verify their compatibility; pass the matching informa-
tion to the DB interface for storage
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6. DBI: interface to customer and clustering DBs.

The two processes (corresponding to C1, C2) are linked by arcs (15, 7) (a logical flow arc) and (5, 16)
(a data flow arc). The logical path choices (1, 15, 2) and (1, 15, 7) identify the foreground and background
processes respectively. If we consider two separate starting points for the two processes we can eliminate
vertex 15 and all its adjacent arcs (including (15, 7)). We then introduce a starting vertex (labelled 15,
since the old vertex 15 was reformulated out of the graph) for the background process (see Fig. 3.5).
The data flow arc (5, 16) is crucial to the process interplay and cannot be eliminated. It actually gives
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Figure 3.5: Final activity diagram: separating the processes.

the extent and the type of interconnection between the processes. It also suggests where the two teams
developing the different process will need to interact, namely in the design of the database interface (DBI,
vertex 16): more precisely, the background process team will need to explain to the other team what data
is made available by the interface, and the foreground process team will need to require the appropriate
data exchange formats and protocols.

The precise breakdown of each component into classes and methods is part of the technical architec-
ture.

3.4 Technical architecture

Propose a technical architecture detailing the inner working of each system component, as well as the
system as a whole. This should include a class diagram and component APIs (application programming
interfaces).
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3.4.1 Solution

In order to build a class diagram and the APIs, we need to know how input data are transformed into
the output data, and exactly which data is passed from one component to another. As the background
process is in some way a server to the foreground one, we shall model the latter first (top-down approach).

Informally, the data flow for the foreground process is as follows:

input
IWF
−→ (early indicator, indicator value, distance value)

CLDB
−→

→ (corresponding early clustering, cluster)
CLS
−→

→ (matching late clustering(s), cluster(s))
OWF
−→

→ output projects in identified cluster(s).

In order for the foreground process data flow to make any sense, the CLDB database must contain all
the clusterings relative to the given early indicator value and distance, and the CLS component must be
able to match early and late clusterings (and to draw the appropriate “close” clusters from the matched
clusterings). The background process must therefore supply the necessary information. Recall that the
foreground process is ran by each user, and so should be as fast as possible. It is therefore necessary to
delegate most of the computational work to the background process: all data transformation should draw
from information that was pre-computed by the background process. In particular, finding a matching
late clustering should be as simple as looking up a pre-computed boolean value in an array; in turn, this
means that the background process must pre-compute all possible matching information and store it in
the CLDB database.

Informally, the data flow for the background process is as follows:

start → all possible pairs ((early indicator,distance), (late indicator,distance))
CE
−→

→ (clustering)
DBI
−→

→ store (clustering)
CSE
−→

→ (do clustering match?, list of matching clusters)
DBI
−→

→ store (matching info) → stop.

To make the data flow descriptions more formal, we must make clear what we mean precisely by such
concepts as indicator, distance, cluster, clustering, clustering comparison.

3.4.1.1 Indicators

An indicator is a non-negative real-valued function v : P → R+ defined on the set of projects P . Given
an indicator v, we let:

v̄ = max
p∈P

v(p)

v = min
p∈P

v(p).

Early indicators are indicators whose value can be defined before the project is started; late indicators
may only be defined after the project ends. Consider early indicators vE

i for i ≤ m and late indicators vL
j

for j ≤ n. For each early indicator i ≤ m we also consider finite sets of distances1 DE
i with (and likewise

for late indicators).

1By distance we mean here a generic measure of similarity, without implying the triangular inequality.
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3.4.1.2 Clusterings

Given an indicator v on P and a distance value d ∈ R+, a clustering γvd of P is a set of Kvd = |γvd|
subsets γvdk of P , where k ≤ Kvd and

Kvd =

⌈

v̄i − vi

d

⌉

,

such that:

(a) ∀p ∈ P ∃k ≤ Kvd (p ∈ γvdk) (covering condition).

(b) ∀k ≤ Kvd ∀p ∈ γvdk (vi + kd ≤ v(p) ≤ vi + (k + 1)d) (cluster extent).

Notice we define clusterings so that γvd is unique for each choice of v, d and can be computed in O(|P |).
This is not the only possible such definitions. Other definitions allow for non-uniqueness and for higher
computational complexity orders.

Each subset γvdk of a clustering is called a cluster; because of (b), we can assign to each cluster γvdk an
interval Ivdk = [vi + kd, vi +(k +1)d]. Let γE

id be the clustering of P corresponding to the early indicator
vE

i and distance d ∈ DE
i , with Kid = |γE

id|; let γE
idk be the k-th cluster of γE

id for k ≤ Kid (and likewise
for late indicators). Fig. 3.6 shows an example of a clustering where P = {1, . . . , 10}, v = 0, v̄ = 3, d = 1.
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Figure 3.6: Clustering example. We obtain three clusters γvd1 = {4, 5, 6, 10} with Ivd1 = [0, 1], γvd2 =
{2, 3, 4, 7} with Ivd2 = [1, 2] and γvd3 = {1, 8, 9} with Ivd3 = [2, 3].

3.4.1.3 Clustering comparison

Our software relies on our ability to succesfully compare early and late clusterings and say if they match
or not. Given two indicators u, v and distances d, δ with relative clusterings γud and γvδ, we first scale
the indicator values and distances so that they are comparable. This can be easily done by scaling the
two clustering intervals Iud and Ivδ to the interval [0, 1]: for all p ∈ P let

ũ(p) =
u(p) − u(p)

ū(p) − u(p)

ṽ(p) =
v(p) − v(p)

v̄(p) − v(p)

d̃ =
d − u(p)

ū(p) − u(p)

δ̃ =
δ − v(p)

v̄(p) − v(p)
.
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We define the dissimilarity between the two clusterings γud, γvδ as:

∆(γud, γvδ) = (d̃ − δ̃)2 +
∑

p∈P

(ũ(p) − ṽ(p))2.

Notice this definition does not actually consider the clustering itself, but just the indicator and the
distance: this occurs because of the way our clusterings are defined. More precisely, this occurs because
the cluster each p ∈ P belongs to is determined by p alone and not by the other elements of P .

Given an overall tolerance ε > 0, an early indicator clustering γE
id (where i ≤ m and d ∈ DE

i ) matches

a late indicator clustering γL
jδ (where j ≤ n and δ ∈ DL

j ) if either one of the two conditions below is
satisfied:

1. ∆(γE
id, γ

L
jδ) ≤ ε;

2. ∆(γE
id, γ

L
jδ) = min

h≤n,b∈DL

h

∆(γE
id, γ

L
hb);

we denote the matching by M(γE
id, γ

L
jδ) = 1 and a mismatch by M(γE

id, γ
L
jδ) = 0. If two matching

clusterings satisfy the first condition, it is a close match. The second condition is a “catch-all” condition
which ensures that we can match each early indicator clustering to at least one late indicator clustering.

Given two matching clusterings γud, γvδ, we must now find indices h ≤ Kud and k ≤ Kvδ such that
γudh and γvδk are “as close as possible”. We extend the dissimilarity definition ∆ to clusters as follows:

∆(γudh, γvδk) = (d̃ − δ̃)2 +
∑

p∈γudh∩γvδk

(ũ(p) − ṽ(p))2 + |γudh△γvδk|,

where A△B = (A∪B) r (A∩B) is the symmetric difference of two sets A,B. This definition is justified
by the fact that the difference in normalized indicator value for a project p in γudh△γvδk is simply the
diameter of the corresponding normalized interval [0, 1], namely 1, and that 12 = 1. With this extended
definition, we can compute ∆(γudh, γvδk) for each possible pair (h, k) and determine a pair of closest
clusters. We denote the set of clusters γvδk in γvδ closest to a given cluster γudh by Γ(γudh, γvδ).

3.4.1.4 The foreground process

The data transformation model of the foreground process is as follows: we are given a new project π;
we select an early indicator vE

i , compute w = vE
i (π), select a meaningful distance d ∈ DE

i , find the
corresponding clustering γE

id and the cluster γE
idk such that w ∈ Iidk. We then find a late indicator

clustering γL
jδ (where j ≤ n and δ ∈ DL

j ) such that M(γE
id, γ

L
jδ) = 1, and the corresponding closest

clusters γL
jδh ∈ Γ(γE

idk, γL
jδ). The formal data flow description of the foreground process is:

input
IWF
→ (π, vE

i , d)
CLDB
−→ (γE

id, γE
idk : vE

i (π) ∈ Iidk)
CLS
−→

→ O = {(j, δ, h) | M(γE
id, γ

L
jδ) = 1 ∧ γL

jδh ∈ Γ(γE
idk, γL

jδ))}
OWF
−→

→ ∀(j, δ, h) ∈ O output projects in γL
jδh

The required data structures are:

• project (p, class): contains project attributes as defined in the T-Sale DB;

• cluster (list of projects);

• clustering (γ: list of clusters);
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• indicator (v, class): contains

– methods to retrieve the indicator value given a project

– list of clustering distances D (floating point numbers)

– extremal values v̄, v (floating point numbers)

– list of clusterings γvd for this indicator, relative to all distances d ∈ D

– methods to scale the indicator values and distances in D to the interval [0, 1]

• foreground process (class): contains

– list of early indicators (vE
i | i ≤ m);

– list of late indicators (vL
j | j ≤ n);

– matching information (M , array of booleans indexed on i ≤ m, d ∈ DE
i , j ≤ n, δ ∈ DL

j );

– matching cluster information (Γ, maps clusters γidk for varying k ≤ Kid to list of matching
clusters (γjδh) for varying h ∈ {1, . . . ,Kjδ}).

3.4.1.5 The background process

The data transformation model of the background process is as follows: given an early indicator vE
i

(i ≤ m), a distance d ∈ DE
i , a late indicator vL

j (j ≤ n) and a distance δ ∈ DL
j :

• if γE
id is present in the CLDB database retrieve it, else compute it and store it;

• if γL
jδ is present in the CLDB database retrieve it, else compute it and store it.

Determine M(γE
id, γ

L
jδ) and store it in the CLDB database; if M(γE

id, γ
L
jδ) = 1, for each k ∈ Kid compute

the set Γ(γE
idk, γL

jδ) and store it in the CLDB database. The formal data flow description of the background
process is:

start → {((vE
i , d), (vL

j , δ)) | i ≤ m ∧ d ∈ DE
i ∧ j ≤ n ∧ δ ∈ DL

j }
CE
−→

→ C = {(γE
id, γ

L
jδ) | i ≤ m ∧ d ∈ DE

i ∧ j ≤ n ∧ δ ∈ DL
j }

DBI
−→

→ store C
CSE
−→

→ M = ((M(c) | c ∈ C), (Γ(γE
idk, γL

jδ) | (γE
id, γ

L
jδ) ∈ C, k ∈ Kid))

DBI
−→

→ store M → stop.

The required data structures are all those listed in Section 3.4.1.4 aside from the foreground process
class, plus a background process class containing:

• list of early indicators (vE
i | i ≤ m)

• list of late indicators (vL
j | j ≤ n)

• matching information (M , array of booleans indexed on i ≤ m, d ∈ DE
i , j ≤ n, δ ∈ DL

j )

• matching cluster information (Γ, maps clusters γidk for varying k ≤ Kid to list of matching clusters
(γjδh) for varying h ∈ {1, . . . ,Kjδ})

• methods for computing ∆ applied to clusterings

• methods for computing intersections of clusters

• methods for computing symmetric differences of clusters

• methods for computing ∆ applied to clusters.
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3.4.1.6 Class structure

The class structure is detailed in Fig. 3.7.

Project

[DB−specific attributes]

vector<Project*>

Cluster

int ID
int ClusteringID

int ID
int IndicatorID
int DistanceID

vector<Cluster*>

Clustering

Indicator

void scale(void)

vector<double> D
double vL, vU

double getValue(Project* p)

map<double,Clustering*> gamma

ForegroundProcess

void Classify(void)

Indicator* vE
Project* pi

double d
vector<triplet<int,int,int> > O

DBInterface

vector<Project> P
vector<Indicator> I
vector<Cluster> C
vector<Clustering> CL
map<pair<pair<int,double>,pair<int,double> >, bool> M

map<Cluster*, vector<Cluster*> > Gamma

vector<Indicator*> Early
vector<Indicator*> Late

BackgroundProcess

double Delta(Clustering*, Clustering*)
vector<Project*> intersection(Cluster*, Cluster*)
vector<Project*> symmetricDifference(Cluster*, Cluster*)
double Delta(Cluster*, Cluster*)
void Cluster(void)
void Match(void)

contains_pointer_of

contains_pointer_of

contains
contains

uses contains_pointer_of
uses

Figure 3.7: The class diagram of the fore- and background processes.
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