
LIX, École Polytechnique

C++ Notes

Leo Liberti

Last update: December 12, 2011

Lecture Notes C++ Notes L. Liberti

Contents

1 Introduction 5

2 Generalities 5

2.1 Definitions . 5

2.2 Data . 7

2.3 Memory . 7

2.4 The operating system . 7

2.5 Program execution . 8

2.6 The Unix shell . 9

3 Basic C++ 10

3.1 Types, objects, variables and pointers . 10

3.2 Preprocessing directives . 10

3.3 Statements . 11

3.4 Memory allocation . 12

3.5 Bugs . 13

3.6 C++ Syntax . 14

3.6.1 Declarations, assignments, tests, arithmetic/logical operations 15

3.6.2 Loops . 15

3.7 Functions . 15

3.7.1 Argument passing . 16

3.7.2 Overloading . 16

3.8 Pointers . 16

3.8.1 Warnings . 17

3.9 Human-side C++ syntax . 17

3.9.1 Indentation . 17

3.9.2 Comments . 18

3.10 Structure of a C++ program . 19

3.11 The building process . 19

3.11.1 Compilation and linking . 20

3.11.2 File types . 20

CONTENTS 2

Lecture Notes C++ Notes L. Liberti

3.11.3 Object files . 20

3.11.4 Debuggers . 21

3.11.5 Packaging and distribution . 21

4 Classes 21

4.1 Basic class semantics . 21

4.1.1 Classes: motivations . 21

4.1.2 The class concept . 22

4.1.3 Objects of a class . 22

4.1.4 Referring to the current object . 22

4.1.5 Constructors and destructors . 22

4.1.6 Lifetime of an object . 23

4.1.7 Data access privileges . 23

4.1.8 Namespaces . 23

4.1.9 Exceptions . 24

4.1.10 Overloading operators in and out of classes . 25

4.1.11 The stack and the heap . 26

4.1.12 User-defined memory allocation . 26

4.1.13 Using object pointers . 26

4.2 Input and output . 27

4.2.1 Streams . 27

4.2.2 Object onto streams . 27

4.2.3 Overloading the << and >> operators . 27

4.3 Inheritance and polymorphism . 28

4.3.1 Inheritance . 28

4.3.2 Nested inheritance . 28

4.3.3 Hiding . 29

4.3.4 Nested inheritance and hiding . 29

4.3.5 Inheritance vs. embedding . 30

4.3.6 Polymorphism . 30

4.3.7 Pure virtual classes . 31

4.3.8 Pure virtual classes . 31

CONTENTS 3

Lecture Notes C++ Notes L. Liberti

5 Templates 31

5.1 User-defined templates . 31

5.1.1 Templates . 31

5.1.2 Internals and warnings . 32

5.2 Standard Template Library . 33

5.2.1 The STL . 33

5.2.2 vector example . 33

5.2.3 map example . 34

CONTENTS 4

Lecture Notes C++ Notes L. Liberti

1 Introduction

This is a very brief introduction to the C++ programming language, to be used in courses held at the
Département d’Informatique and the Département de Mathématiques Appliquées of the École Polytech-
nique. The aim of the course is to teach the basics of the C++ language in a practical, hands-on way,
without many of the more technical details concerning the more advanced topics. These notes should be
paired with the associated presentation slides:

http://www.lix.polytechnique.fr/~liberti/teaching/c++/online/course.pdf

http://www.lix.polytechnique.fr/~liberti/teaching/c++/online/course-javausers.pdf

but most importantly with the exercise book (http://www.lix.polytechnique.fr/~liberti/teaching/
c++/online/exercises), where most of the material is analyzed in depth. All the didactical content can
be found online at http://www.lix.polytechnique.fr/~liberti/teaching/c++/online.

The main sources for these notes are:

1. Bjarne Stroustrup, The C++ Programming Language, 3rd edition, Addison-Wesley, Reading (MA),
1999

2. Stephen Dewhurst, C++ Gotchas: Avoiding common problems in coding and design, Addison-
Wesley, Reading (MA), 2002

3. Herbert Schildt, C/C++ Programmer’s Reference, 2nd edition, Osborne McGraw-Hill, Berkeley
(CA).

2 Generalities

This C++ course is based on the GNU C++ compiler v. 4.0 and above running under the Unix operating
system. Essential Unix tools, beside the compiler, are: make, tar, gzip/gunzip. As debuggers, we use
gdb with the ddd front-end, and valgrind.

By “computer”, here, we do not mean a theoretical computer science model such as a Turing machine,
but a real, physical desktop or laptop computer. Although any architecture capable of running a Unix
and the above-mentioned tools will do, the actual C++ course is given on desktop PCs with a 32 bit
Intel processor running a mainstream Linux distribution.

2.1 Definitions

The CPU (Central Processing Unit) of a computer is where all the logical and arithmetic tests, loops
and decisions take place, and where control commands and data exchanges are issued to devices such as
memory, disk, screen, etc. The behaviour of the CPU is determined by its state, which is described by
the content of all its registers and internal memory caches. Letting S be the set of possible CPU states,
the CPU acts like a deterministic function f : S → S. According to this model, to each state s ∈ S there
corresponds a next state s′ = f(s). The rate at which the CPU changes state is governed by the system
clock (usual rates are between 1 and 3 GHz). Thus, around every billionth of a second, the CPU changes
its state.

The form of the function f obviously depends on the CPU make and model. CPUs usually contain
some extremely fast but very small memory chunks called “registers” which are specifically designed to
store either values or memory addresses. The state of the CPU at each clock tick is then determined

Generalities 5

Lecture Notes C++ Notes L. Liberti

by the values contained in each of its registers. The CPU is designed in such a way that at each clock
tick the memory address contained in a certain register will automatically be incremented, and the value
contained at the new address is read and interpreted as a “machine code instruction”. This allows us
to interpret the function f in a different way: we can consider the next state s′ of the CPU as given
by a function p : I × S → S with s′ = p(i, s), where i is a machine code instruction in the set I of
all possible CPU instructions. Although each basic instruction in I is rather simple, this interpretation
of f makes it possible to group several simple instructions into more complex ones1. As some of the
instructions concern logical tests and loops, it becomes apparent that the full semantics of any modern
computer language (including C++) can indeed be exploited by a CPU after a suitable transformation
of the complex, high-level language into the simple machine code instruction set I.

Loosely speaking, the set I can be partitioned in the following instruction categories.

• Input: transfer data from external device to processor

• Output: transfer data from processor to external device

• Storage: transfer data from processor to memory

• Retrieval: transfer data from memory to processor

• AL operation: perform arithmetic/logical operation on data

• Test: verify condition on data and act accordingly

• Loop: repeat a sequence of operations

In practice, these instructions are encoded in machine language, i.e. sequences of bits. The length of each
instruction depends on the width of the CPU registers. The width of each register is measured in terms of
the amount of BInary digiTs {0, 1} (bits) it can contain. Traditionally, on Intel 16-bit architectures (32-
and 64- bit architectures are evolutions thereof, and each new version is guaranteed to retain backward
compatibility) there are four general-purpose registers: AX (accumulator), BX (base), CX (counter),
DX (data); four pointer registers: SI (source index), DI (destination index), BP (base pointer), SP
(stack pointer); four segment registers: CS (code segment), DS (data segment), ES (extra segment),
SS (stack segment); and finally, one instruction pointer IP. The machine code instruction i loaded at
each clock tick to compute s′ = p(i, s) is the value found at the address CS:IP. More information can
be found at http://www.ee.hacettepe.edu.tr/~alkar/ELE414/ and http://ourworld.compuserve.

com/homepages/r_harvey/doc_cpu.htm.

Consider now the following (informal) definitions:

• Program: set of instructions that can be interpreted by a computer

• Instructions: well-formed sequences of characters (syntax)

• Interpretation: sequence of operations performed by the computer hardware (semantics)

• Programming language: set of rules used to form valid instructions

• Algorithm: a program which terminates (though sometimes find “non-terminating algorithm” with
abuse of notation)

The well-formedness of the sequence of characters in each instruction corresponds to the C++ syntax
which is one of the subjects of these notes, and will therefore be explained in more detail later. The same
holds for the semantics of each C++ program.

1We use the terms “simple” and “complex” here with their natural English language meanings. In CPU-related technical
language, “simple instruction set” and “complex instruction set” have a very specific meaning (look for “RISC” and “CISC”
on Google for more information on this point).

Generalities 6

Lecture Notes C++ Notes L. Liberti

2.2 Data

Computers can only perform arithmetic and logic operations in the field F2 = {0, 1}. A set of 8 bits is
called a byte. The 8086 and 80286 had a 16-bit bus (the bus is the data transfer capacity per clock tick);
modern Intel-based processors have 32- or 64-bit wide buses. An n-bit wide memory chunk can hold 2n

different values, which are usually either from −2n−1 to 2n−1 − 1 or from 0 to 2n − 1. An integer in
C/C++ on an Intel architecture is usually stored in 32 bits (=4 bytes). Floating point values are stored
(usually in 8 bytes) according to a specific encoding. Any type of data that can be represented by an
encoding of finite-sized integers can be stored in a computer memory. In C/C++ data are categorized
according to their types. Data types can be elementary: bool (C++ only), char, short, int, long,
float, double or user-defined: union, struct, class (C++ only). A user-defined data type is a finite
sequence of existing data types and occupies either the sum (struct, class) or the maximum (union)
of the sizes of the sequence elements. Memory addresses, by contrast, normally occupy a fixed amount
of storage (32 bits in 32-bit CPUs).

2.3 Memory

Computers rely on different types of memory to store data (this means: values and addresses). Read-Only
Memory (ROM) can only be read. Random-Access Memory (RAM) can be read and written to. Other
types of memory include EEPROMs, Flash RAM, disks, CD-ROMs, tapes and so on. Within the scope
of these notes, we shall only be concerned with RAM type memory. This is very fast (in modern PCs
RAM chips are refreshed at frequencies that are around one tenth as that of the CPU), comparatively
expensive, and loses information if the power is switched off. The model of memory that best fits these
C++ notes is that of a linear array, as depicted in Fig. 1.

...

a1 a2 a3 a4 a5 a6 a7 a8

v1 v2 v3 v4 v5 v6 v7 v8

Figure 1: A linear array model of memory: the i-th box has address ai and contains value vi.

RAM can be seen as a long (finite) list of boxes; the i-th box in the list is addressed by a value ai
and contains a value vi. The size of an address is usually the same as the processor bus (normally 32 or
64 bit). The size of the value, on the other hand, can be anything depending on the type of value being
stored.

2.4 The operating system

An operating system is a set of running programs that handle the interactions between the computer (in
all its parts) and its users. The operating system assigns memory to each program and protects each
assigned memory segment from unauthorized access (so that a malfunctioning program cannot bring the
whole computer to a halt); it shares the CPU times amongst all the running processes; it operates all
data exchanges with external devices (keybord, screen, network, printers, disks). Operating systems have
three main parts.

• The user interface, or shell. It can be command-line driven or a Graphical User Interface (GUI).

• The kernel, containing the core functionalities.

Generalities 7

Lecture Notes C++ Notes L. Liberti

• The device drivers, a set of programs each of which handles the data exchange with a particular
device.

A process is a program being run. In practice, the computer keeps track of the machine code instruction
being executed for each running process. The operating system kernel stores information on currently
running processes on its process table (this lists for example the memory segments reserved for and by the
process, the amount of CPU time used by the process and so on). Processes may in turn be segmented
into threads, which can be seen as separate processes which do not have a separate entry on the process
table.

Any time a C++ program is compiled and linked, an executable file consisting of the equivalent
machine code instructions is created. Upon launching this executable, the operating system creates a
new corresponding process in the process table, and then starts executing the machine code instructions
during the CPU time slices allocated to it. By calling the operating system function fork(), a C/C++
program can create a new process in the process table with a copy of itself (this means that at the
clock tick immediately after the fork call has finished, the two processes are indistinguishable, save for
a different process ID and different allocated CPU time slices — later on, conditional instruction usually
differentiates the two processes: this is the standard way of creating new processes from within a C/C++
program). Threads can be dealt with by linking against special libraries, but this is outside the scope of
this document.

2.5 Program execution

When2 a program is loaded into memory, it is organized into three areas of memory, called segments:
the text segment, stack segment, and heap segment. The text segment (sometimes also called the code
segment) is where the compiled code of the program itself resides. This is the machine language repre-
sentation of the program steps to be carried out, including all functions making up the program, both
user defined and system.

The remaining two areas of system memory is where storage may be allocated by the compiler for
data storage. The stack is where memory is allocated for variables within functions. A stack is a Last In
First Out (LIFO) storage device where new storage is allocated and deallocated at only one “end” (the
top of the stack).

Every C/C++ program begins executing at a function called main(): space is allocated on the stack
for all variables declared within main(). If main() calls a function, say myFunction(), additional storage
is allocated for the variables in myFunction() at the top of the stack. Notice that the parameters passed
by main() to myFunction() are also stored on the stack. If myFunction() were to call any additional
functions, storage would be allocated at the new top of stack. When myFunction() returns, storage for
its local variables is deallocated, and the top of the stack is resumed at the old position. As can be seen,
the memory allocated in the stack area is used and reused during program execution. It should be clear
that memory allocated in this area will contain garbage values left over from previous usage.

The heap segment provides more stable storage of data for a program; memory allocated in the
heap remains in existence for the duration of a program. Manually allocated memory, global and static
variables are allocated on the heap.

On many architectures, including Intel-based PCs, the relative order of text and stack segment is such
that the text segment is placed after the stack segment. This means that if one uses a variable stored on
the stack to hold an array of bytes longer than the stack itself, one ends up overwriting parts of the text
segment. Since the text segment contains the executable machine code instructions, it is theoretically
possible to change the behaviour of the computer by simply entering some meaningful data in a variable.

2Parts of this section are taken from http://www-ee.eng.hawaii.edu/~tep/EE160/Book/chap14/subsection2.1.1.8.

html.

Generalities 8

Lecture Notes C++ Notes L. Liberti

This was the technique used by some of the most spectacular network hacks of the eighties and nineties
(see http://insecure.org/stf/smashstack.html).

The death of a process can occur by explicit program termination (returning from the main() func-
tion, use of the exit() system function) or by an operating system signal occurring because of some
extraordinary condition. The most common are user intervention (SIGINT, SIGKILL) and runtime errors
(SIGSEGV — segmentation violation — when the process tries to read or write memory that does not
belong to it). When the process terminates, it is removed from the process table along with all the
memory it occupies, and its ID becomes available for new processes.

2.6 The Unix shell

There are many types of shells in Unix. The most popular are bash and tcsh. Personally, I prefer the
first one, but the École Polytechnique installs the second by default in the didactical computer rooms. In
any case one can start either of them by simply opening a terminal and typing the corresponding name.
These notes are based on the bash shell, but most notions will work on either.

Basic commands:

• cd directoryName : change working directory

• pwd : print the working directory

• cat fileName : display the (text) file fileName to standard output

• mv file position : move file to a new position: e.g. mv /etc/hosts . moves the file hosts from the

directory /etc to the current working directory (.)

• cp file position : same as mv, but copy the file

• rm file : remove file

• rmdir directory : remove an empty directory

• grep string file(s) : look for a string in a set of files: e.g. grep -Hi complex * looks in all files in

the current directory (*) for the string complex ignoring upper/lower case (-i) and displays the
name of the file (-H) as well as the line where the match occurs.

Most Unix commands can be “chained”: the output of a command is read as the input of the next.

• By default, unix tools send their output messages to the standard output stream (stdout) and their
error messages to the standard error stream (stderr)

• Both streams can be redirected. E.g., to redirect both stdout and stderr, use:

sh -c ’command options arguments > outFile 2>&1’

• The output stream of a command can become the input stream of the next command in a chain:

e.g. find ˜ | grep \.cxx finds all files with extension .cxx in all subdirectories of the home direc-

tory; the first command (find) sends a recursive list across subdirectories of the home directory
(denoted by ˜) to stdout. This stream is transformed by the pipe character (|) in the standard
input (stdin) stream of the following command (grep), which filters out all lines not containing
.cxx.

Generalities 9

Lecture Notes C++ Notes L. Liberti

3 Basic C++

A C++ code consists of symbols denoting types, variables and functions linked by logical, arithmetical,
conditional and repetitional operations.

3.1 Types, objects, variables and pointers

The main C++ program entities are types and objects. As remarked in Sect. 2.2, types can be elementary
or user-defined. Each type describes a category of different values, also called objects. In practice, a type
is a record defining the size and memory layout of the objects of that type. Objects are values belonging
to an existing type that reside in a well-defined memory area. Consider the two objects:

float myFloat;

int myInt;

The myFloat object is of type float. In most architectures, this occupies 4 bytes of RAM. myInt is
an object of type int that also occupies 4 bytes. This means that both objects could be stored at the
very same memory location; yet, the fact that their type is different makes it impossible to misinterpret
myFloat as an integer or myInt as a float.

A variable is a symbol that is assigned a type and a memory area of the correct size. Although an
object is usually attached to a variable, it need not be so: one could manually create an object in memory
and then delete the variable without freeing the memory. The object still resides in memory but is not
attached to any variable. A pointer is a particular type of variable, whose assigned memory contains
an address pointing to another memory area where the actual object is kept. Since pointers allow user
access to an arbitrary part of the memory, they wield an unlimited control over the machine. Use with
care.

In Fig. 2, a new type class MyClass is first declared as consisting of a char and an int. An object
myObject of type MyClass is defined, and its components myChar and myInt are assigned values ‘x’ and
1 respectively. A pointer ptrObject of type MyClass* is then simultaneously declared and defined, and
assigned the address where the object myObject is stored.

’x’ 0 0... ...

0 1 2

0

43 5

1

6

class MyClass {

 char myChar;

 int myInt;

};

MyClass myObject;

myObject.myChar = ’x’;

myObject.myInt = 1;

MyClass* ptrObject = &myObject;

myObject

myInt

MyClass type: 1 byte of char, 4 bytes of int

myChar

ptrObject contains address "1"

Figure 2: Types, objects, variables and pointers.

3.2 Preprocessing directives

A C++ program consists of several types of preprocessing directives and statements. Preprocessing
directives are interpreted before compilation, must be limited to one line of text, are all prepended by

Basic C++ 10

Lecture Notes C++ Notes L. Liberti

a hash character ‘#’ and do not necessarily terminate with a semicolon character ‘;’. The purpose of
preprocessing directives is mostly to enable conditional compilation and include other source files in the
current compilation. Some examples:

#define MYCONSTANT 10

#include<iostream>

#include "myheader.h"

#ifdef DEBUG

const char version[] = "Debug";

#else

const char version[] = "Release";

#endif

The first line defines a constant called MYCONSTANT to take the value 10. Each time the string “MY-
CONSTANT” appears in the rest of the program being compiled, it will be replaced by the string “10”.
The purpose of isolating constants to the beginning of the source file, where all the #defines are usually
kept, is to avoid having to hunt for constants within the whole file each time the constant is changed.
Although #defines are very popular in the C language, in C++ one usually uses equivalent constructs
which are not preprocessing directives, such as

const int MYCONSTANT = 10;

which is a normal C++ statement. The second line instructs the compiler to look for a file called iostream

within the compiler’s include search path (i.e. a predetermined list of paths within the filesystem where
a lot of include files are stored; typically, on Unix systems, this is /usr/include:/usr/local/include),
read it, and compile it as if it was part of the source code being compiled. The third line is similar to
the second but the slightly different syntax indicates that the file myheader.h is a user-created file and
probably resides in the current directory. Lines 4-8 are a conditional preprocessing directive, instructing
the compiler to define the character array version differently according as to whether the preprocessing
symbol DEBUG was defined or not when the compiler was called. It is possible to define such symbols
either explicitly, by including a preprocessor directive #define DEBUG before the conditional statement,
or implicitly by launching the compiler from the shell with the -DDEBUG option.

3.3 Statements

The actual C++ program resides in the statements. Each statement can span multiple lines of texts.
All statements are terminated by a semicolon character ‘;’. A sequence of statements within braces ‘{’,
‘}’ is a block. The scope of an instruction is the extent of the block it belongs to. Statements and block
can be part of a declaration or a definition. Declarations specify a syntax, whereas definitions specify a
semantics.

A declaration is used to create a new type or make the calling syntax of a function explicit. Examples:

class MyClass {

char myChar;

int myInt;

};

defines a new class called MyClass.

int myFunction(int myArgument);

Basic C++ 11

Lecture Notes C++ Notes L. Liberti

defines calling syntax (also called prototype) of a function called myFunction, which is passed an int and
returns an int. Declarations do not use memory and do not generate code; rather, they instruct the
compiler on how handle variable symbols appearing subsequently in the code and how to issue function
calls. Declaration blocks are terminated by a semicolon.

A definition specifies the meaning attached to a symbol. For a computer, the meaning of a symbol is
given by what happens to the computer when the code relating to that particular symbol is executed. In
other words, virtually all C++ code is part of a definition. For example:

MyClass* myPointer = &myObject;

is simultaneously a declaration and a definition. It is a declaration insofar as myPointer is a symbol
being declared a pointer of type MyClass*. It is a definition because some memory of the correct size
(i.e. enough to hold an address in memory, which on 32 bit architectures would be 4 bytes) is set aside
and assigned to the symbol myPointer, and because that memory is filled with the address of memory
where the object myObject is stored (see Fig. 2). As another example,

int myFunction(int myArgument) {

int ret = myArgument * myArgument;

return ret;

}

is a definition of the semantics of the function myFunction: it takes an integer argument, squares it, and
returns it.

3.4 Memory allocation

The allocation of memory (i.e. obtaining some memory from the operating system) can be automatic or
manual. Automatic allocation is done transparently by the program; in this case, deallocation (giving the
memory back to the operating system) is automatic too, and occurs at the end of the scope. Automatic
allocation always occurs on the stack. Manual allocation is done explicitly by the user, and deallocation
must be done manually too. Manual allocation always occurs on the heap. Variables are always allocated
automatically on the stack. The memory pointed to by pointers, however, is manually assigned to each
pointer and may be manually allocated on the heap.

Examples.

1. The following code declares that myChar is a variable of type char, reserves 1 byte on the stack,
and fills that byte with the 8-bit number 120 (the ASCII code for ‘x’). The allocated stack byte is
deallocated (released) at the closing brace.

{

...

char myChar = ’x’;

...

}

2. The following code declares that ptrChar is a pointer of type char*, reserves 4 bytes on the stack,
and fills those bytes with the 32-bit address of the memory where the value corresponding to the
myChar variable is kept. The allocated stack space is released at the closing brace.

{

Basic C++ 12

Lecture Notes C++ Notes L. Liberti

...

char* ptrChar = &myChar;

...

}

3. The first line of the following code declares that ptrDouble is a pointer of type double* and reserves
4 bytes on the stack (enough for a 32-bit memory address). The second line obtains 8 bytes of heap
memory (enough to contain a double) and assigns its 32-bit address to the pointer ptrDouble. The
third line writes the floating point number 0.2 into the heap memory area whose address is stored
in ptrDouble. Notice that in order to actually use manually allocated heap memory, one needs to
allocate some stack space to hold the address. The deallocation of the stack space occurs at the
closing brace, but the deallocation of the heap space does not occur. In fact, this is an example
of memory leak: we allocate some heap space, assign the address to a pointer, but the pointer is
deallocated (and the address lost) before the heap space is deallocated; at this point, there is no
way to deallocate the heap space, apart from the operating system automatically reclaiming the
memory at the end of the execution.

{ // 1

double* ptrDouble; // 2

ptrDouble = new double; // 3

*ptrDouble = 0.2; // 4

} // 5

4. This is like the example above, but revised so that memory leak does not occur. In line 2, a pointer
ptrOther of type double is declared, and 4 bytes are allocated on the stack for holding a 32-bit
address. Lines 4-6 are as above. In line 7 we copy the 32-bit address held in ptrDouble to ptrOther
(this means that the heap memory address where the number 0.2 is stored is held in two different
pointers). At line 8, as above, the stack space for ptrDouble is released and the address within it
is lost. However, since ptrOther was allocated outside the scope being closed at line 8, ptrOther
still exists after line 8: since ptrOther contains the address for the heap memory allocated in line
5, we can issue a manual delete command to release the heap memory, at line 9. Although the
heap memory is released, the stack memory used for storing the ptrOther pointer is not: this is
released at line 10 (the end of the scope).

{ // 1

double* ptrOther; // 2

{ // 3

double* ptrDouble; // 4

ptrDouble = new double; // 5

*ptrDouble = 0.2; // 6

ptrOther = ptrDouble; // 7

} // 8

delete ptrOther; // 9

} // 10

3.5 Bugs

When programming, it is virtually impossible not to make mistakes. Programming errors are called
bugs. The etymology of the term “bug” is discussed in http://en.wikipedia.org/wiki/Computer_bug.
Some of the bugs concern the syntax, and can be caught by the compiler during compilation (i.e. at
compile-time). Others change the semantics of the program but do not invalidate the syntax. These bugs
only manifest themselves during execution (i.e. at run-time) and are the hardest to trace.

Compile-time bugs are easy to detect (the program does not compile) but it may be hard to pinpoint
the line of code where the bug actually is: although compile-time bugs invalidate the language syntax,

Basic C++ 13

Lecture Notes C++ Notes L. Liberti

they may not invalidate the syntax at the line where they appear. For example, inserting a spurious
open brace ‘{’ on a line by itself is often perfectly legal. It is only at the end of the file that the compiler
detects a mismatched number of brackets, and may not be able to trace the even to the spurious open
brace. Compiler error messages often refer to the implications of the bug rather than the bug itself, so
may be next to useless (or rather, they must be interpreted in the light of experience).

The run-time bugs that are hardest to trace are those that manifest themselves rarely and in nonde-
terministic ways. Since the computer is a deterministic machine, this sentence needs an explanation. One
source of nondeterminism, for example, is given by the values stored in unused memory. Since memory
is never implicitly initialized, these may be values left over from a terminated process, or simply random
values from the computer power-on procedure. Since C++ pointers make it possible to read the whole
computer memory, an erroneous use of pointers may yield random values nondeterministically. Nonde-
terministic runtime bugs are hard to trace because it is often impossible to recreate the conditions by
which they occur.

I personally had two nightmarish nondeterministic runtime bug experiences, and both took me
months to eradicate. The first one had something to do with the C++ Standard Template Library
(STL) sort() algorithm with a user-defined “less than” relation. I had erroneously defined my less
than as a ≤ relation instead of a strict ordering < relation. Depending on the contents and mem-
ory position of the array, then, in a completely irreproducible fashion, sorting succeeded or termi-
nated in a SIGSEGV abort. In the second one I was iterating over an STL vector<int> v as fol-

lows: for(vector<int>::iterator vi = v.begin(); vi < v.end(); vi++) {...} , mimicking the

usual integer iteration for(int i = 0; i < n; i++) { ...} . STL iterators, however, are more like

pointers than like integers, and STL vectors are not necessarily organized linearly in memory: which
means that although logically the array element corresponding to the iterator vi may be before the
end of the array (signalled by v.end()), the actual memory address contained in vi might be af-
ter it in the physical memory organization. Consequently, depending on the values contained in v,
the iterator loop sometimes aborted before reaching the end of the vector. Save yourselves a lot of
trouble by employing the correct syntax with a “different” (!=) instead of a “less than” (<) operator:

for(vector<int>::iterator vi = v.begin(); vi != v.end(); ++vi) {...} .

As a last piece of advice when confronted with a bug that just wouldn’t go away: if you spent weeks
looking for a runtime bug without finding it, it probably means it’s so simple it has escaped your attention.
Question your simplest statements.

3.6 C++ Syntax

See http://www.csci.csusb.edu/dick/c++std/cd2/gram.html for an ANSI C++ grammar.

• boolean value: bool (1 bit), true or false

• ASCII character: char (1 byte), integer between -128 and 127

• integer number:

– int (usually 4 bytes), between −231 and 231 − 1

– long (usually 8 bytes)

– can be prefixed by unsigned

• floating point: double (also float, rarely used)

• arrays:

typeName variableName[constArraySize] ; char myString[15];

Basic C++ 14

Lecture Notes C++ Notes L. Liberti

• pointers (a pointer contains a memory address): typeName * pointerName ; char* stringPtr;

3.6.1 Declarations, assignments, tests, arithmetic/logical operations

• declaration: typeName variableName ; int i;

• assignment: variableName = expression ; i = 0;

• test:

if (condition) {
statements ;

} else {
statements ;

}

if (i == 0) {
i = 1;

} else if (i < 0) {
i = 0;

} else {
i += 2;

}

• logical operators: and (&&), or (||), not (!)

condition1 logical op condition2 ; if (!(i == 0 || (i > 5 && i % 2 == 1))) { ...

• arithmetic operators: +, -, *, /, %, ++, --, +=, -=, *=, /=, . . .

3.6.2 Loops

• loop (while):

while (condition) {
statements ;

}

while (i < 10) {
i = i + 1;

}

• loop (for):

for (initial statement ; condition ;

itn statement) {
statements ;

}

for (i = 0; i < 10; i++) {
std::cout << "i = " << i <<

std::endl;

}

3.7 Functions

• function declaration: typeName functionName(typeName1 argName1, . . .);

double performSum(double op1, double op2);

• function call: varName = functionName(argName1, . . .) ;

double d = performSum(1.0, 2.1);

• return control to calling code: return value ;

double performSum(double op1, double op2) {
return op1 + op2;

}

Basic C++ 15

Lecture Notes C++ Notes L. Liberti

3.7.1 Argument passing

• Arguments are passed from the calling function to the called function in two possible ways:

1. by value

2. by reference

• Passing by value (default): the calling function makes a copy of the argument and passes the copy
to the called function; the called function cannot change the argument

double performSum(double op1, double op2);

• Passing by reference (prepend a &): the calling function passes the argument directly to the called
function; the called function can change the argument

void increaseArgument(double& arg) { arg++; }

3.7.2 Overloading

• Different functions with the same name but different arguments: overloading

• Often used when different algorithms exist to obtain the same aim with different data types

void getInput(int theInput) {
std::cout << "an integer" << std::endl;

}
void getInput(std::string theInput) {

std::cout << "a string" << std::endl;
}

• Can be used in recursive algorithms to differentiate initialization and recursive step

void retrieveData(std::string URL, int maxDepth, Digraph& G,
bool localOnly, bool verbose);

void retrieveData(std::string URL, int maxDepth, Digraph& G,
bool localOnly, bool verbose,
int currentDepth, VertexURL* vParent);

3.8 Pointers

• retrieve the address of a variable:

pointerName = &variableName ;
int* pi;

pi = &i;

• retrieve the value stored at an address:

variableName = *pointerName ;
int j;

j = *i;

• using pointers as arrays:
const int bufferSize = 10;

char buffer[bufferSize] = "J. Smith";

char* bufPtr = buffer;

while(*bufPtr != ’ ’) {
bufPtr++;

}
std::cout << ++bufPtr << std::endl;

Basic C++ 16

Lecture Notes C++ Notes L. Liberti

3.8.1 Warnings

As already remarked, pointers allow direct access to the computer memory, and hence deliver an enormous
power into the programmer’s hands.

• Pointers allow you to access memory directly, hence can be very dangerous

• Attempted memory corruption results in “segmentation fault” error and abort, or garbage output,
or unpredictable behaviour

• Most common dangers:

1. writing to memory outside bounds

char buffer[] = "LeoLiberti";

char* bufPtr = buffer;

while(*bufPtr != ’ ’) {
*bufPtr = ’ ’;

bufPtr++;

}

2. deallocating memory more than once

• Pointer bugs are usually very hard to track

3.9 Human-side C++ syntax

There are many different ways to write perfectly legal C++ programs. Some of these ways make the
program clear when read by humans, others are less perspicuous. Within this document, we propose a
programming style that should be clear to read. Code clarity is the main weapon against bugs.

Examples of particulary obscure code stylings can be found in the International Obfuscated C Code
Contest (http://www.ioccc.org/). A 2004 finalist reads as follows:

When compiled with the command cc -o anonymous anonymous.c and executed with:

./anonymous "ash nazg durhbatuluhk, ash nazg gimbatul, ash nazg thrakatuluhk, agh burzhumh-ishi krimpatul."

> anonymous.pgm

it produces an output file anonymous.pgm containing the graphics below.

3.9.1 Indentation

Indentation is a coding style that emphasizes the logical structure of blocks. It is the easiest way to
prevent bugs. More details can be found in the exercise book.

• Not necessary for the computer

• Absolutely necessary for the programmer / maintainer

Basic C++ 17

Lecture Notes C++ Notes L. Liberti

• After each opening brace {: new line and tab (2 characters)

• Each closing brace } is on a new line and “untabbed”

double x, y, z, epsilon;
. . .
if (fabs(x) < epsilon) {

if (fabs(y) < epsilon) {
if (fabs(z) < epsilon) {

for(int i = 0; i < n; i++) {
x *= y*z;

}
}

}
}

Proper indentation can be obtained by editing source files with the GNU Emacs text editor.

• Traditional GNU/Linux text editor: emacs emacs programName.cxx

• Many key-combination commands (try ignoring menus!)

• Legenda: C-key: CTRL+key, M-key: ALT+key (for keyboards with no ALT key or for remote
connections can obtain same effect by pressing and releasing ESC and then key)

• Basics:

1. C-x C-s: save file in current buffer (screen) with current name (will ask for one if none is
supplied)

2. C-x C-c: exit (will ask for confirmation for unsaved files)

3. C-space: start selecting text (selection ends at cursor position)

4. C-w: cut, M-w: copy, C-y: paste

5. tab: indents C/C++ code

6. M-x indent-region: properly indents all selected region

3.9.2 Comments

• Not necessary for the computer

• Absolutely necessary for the programmer / maintainer

• One-line comments: introduced by //

• Multi-line comments: /* . . . */

• Avoid over- and under-commentation

• Example of over-commentation

// assign 0 to x
double x = 0;

• Example of under-commentation

char buffer[] = "01011010 01100100";

char* bufPtr = buffer;

while(*bufPtr &&

(*bufPtr++ = *bufPtr == ’0’ ? ’F’ : ’T’));

Basic C++ 18

Lecture Notes C++ Notes L. Liberti

3.10 Structure of a C++ program

Example.

• Each executable program coded in C++ must have one function called main()

int main(int argc, char** argv);

• The main function is the entry point for the program

• It returns an integer exit code which can be read by the shell

• The integer argc contains the number of arguments on the command line

• The array of character arrays **argv contains the arguments: the command ./mycode arg1 arg2

gives rise to the following storage:
argv[0] is a char pointer to the string ./mycode

argv[1] is a char pointer to the string arg1

argv[2] is a char pointer to the string arg2

argc is an int variable containing the value 3

• C++ programs are stored in one or more text files

• Source files: contain the C++ code, extension .cxx

• Header files: contain the declarations which may be common to more source files, extension .h

• Source files are compiled

• Header files are included from the source files using the preprocessor directive #include

#include<standardIncludeHeader> #include "userDefinedIncludeFile.h"

3.11 The building process

All source code is held in ASCII text files. The process by which these files are transformed into an
executable program consisting of machine code instructions is called building. A program may involve
many source files written in many different languages. Some of the code may already be pre-compiled
into libraries, against which the program must be linked. Handling the whole process may be a nontrivial
task, and is therefore an important part of the programming knowledge. To a program we associate a
project, which loosely speaking is a workspace containing everything that is needed to build the program.

The stages for building a project are as follows.

• Creating a directory for your project(s) mkdir directoryName

• Entering the directory cd directoryName

• Creating/editing the C++ program

• Building the source

• Debugging the program/project

• Packaging/distribution (Makefiles, READMEs, documentation. . .)

Basic C++ 19

Lecture Notes C++ Notes L. Liberti

3.11.1 Compilation and linking

The translation process from C++ code to executable is called building, carried out in two stages:

1. compilation: production of an intermediate object file (.o) with unresolved external symbols

2. linking: resolve external symbols by reading code from standard and user-defined libraries

int

getReturnValue(void);

int main() {
int ret = 0;

ret =

getReturnValue();

return ret;

}

Compilation → OBJECT
CODE: dictionary asso-
ciating function name to
machine language, save
for undefined symbols
(getReturnValue)

main: 0010 1101

...getReturnValue

Linking → looks up
libraries (.a and
.o) for unresolved
symbols defini-
tions, produces
executable

3.11.2 File types

• C++ declarations are stored in text files with extension .h (header files)

• C++ source code is stored in text files with extension .cxx

• Executable files have no extensions but their “executable” property is set to on (e.g. ls -la /bin/bash

returns ’x’ in the properties field)

• Each executable must have exactly one symbol main corresponding to the first function to be
executed

• An executable can be obtained by compiling many source code files (.cxx), exactly one of which

contains the definition of the function int main(int argc, char** argv); , and linking all the

objects together

• Source code files are compiled into object files with extension .o by the command

c++ -c sourceCode.cxx

3.11.3 Object files

• An object file (.o) contains a table of symbols used in the corresponding source file (.cxx)

• The symbols whose definition was given in the corresponding source file are resolved

• The symbols whose definition is found in another source file are unresolved

• Unresolved symbols in an object file can be resolved by linking the object with another object file
containing the missing definitions

• An executable cannot contain any unresolved symbol

• A group of object files file1.o, . . . , fileN.o can be linked together as a single executable file

by the command c++ -o file file1.o . . . fileN.o only if:

1. the symbol main is resolved exactly once in exactly one object file in the group

2. for each object file in the group and for each unresolved symbol in the object file, the symbol
must be resolved in exactly one other file of the group

Basic C++ 20

Lecture Notes C++ Notes L. Liberti

3.11.4 Debuggers

• GNU/Linux debugger: gdb

• Graphical front-end: ddd

• Designed for Fortran/C, not C++

• Can debug C++ programs but has troubles on complex objects (use the “insert a print statement”
technique when gdb fails)

• Memory debugger: valgrind (to track pointer bugs)

• In order to debug, compile with -g flag: c++ -g -o helloworld helloworld.cxx

• More details in the exercise book

3.11.5 Packaging and distribution

• For large projects with many source files, a Makefile (detailing how to build the source) is essential

• Documentation for a program is absolutely necessary for both users and maintainers

• Better insert a minimum of help within the program itself (to be displayed on screen with a particular
option, like -h)

• A README file to briefly introduce the software is usual

• There exist tools to embed the documentation within the source code itself and to produce Makefiles
more or less automatically

• UNIX packages are usually distributed in tarred, compressed format (extension .tar.gz obtained

with the command tar zcvf directoryName.tar.gz directoryName

4 Classes

4.1 Basic class semantics

4.1.1 Classes: motivations

1. Problem analysis is based on data and algorithm break-down structuring ⇒ hierarchical design for
data and algorithms

2. Fewer bugs if data inter-dependency is low ⇒ design data structure first, then associate algorithms
to data (not the reverse)

3. Data structures are usually complex entities ⇒ need for sufficiently rich expressive powers for data
design

4. Different data objects may share some properties ⇒ exploit this fact in hierarchical design

Classes 21

Lecture Notes C++ Notes L. Liberti

4.1.2 The class concept

A class is a user-defined data type. It contains some data fields and the methods (i.e. algo-
rithms) acting on them.

class TimeStamp {
public: // can be accessed from outside

TimeStamp(); // constructor

T̃imeStamp(); // destructor

long get(void) const; // some methods

void set(long theTimeStamp);

void update(void);

private: // can only be accessed from inside

long timestamp; // a piece of data

};

4.1.3 Objects of a class

• An object is a piece of data having a class data type

• A class is declared, an object is defined

• In a program there can only be one class with a given name, but several objects of the same class

• Example:

TimeStamp theTimeStamp; // declare an object

theTimeStamp.update(); // call some methods

long theTime = theTimeStamp.get();

std::cout << theTime << std::endl;

4.1.4 Referring to the current object

• Occasionally, we may want to know the address of an object within one of its methods

• Each object is endowed with the this pointer cout << this << endl;

4.1.5 Constructors and destructors

• The class constructor defines the data fields and performs all user-defined initialization actions
necessary to the object

• The class constructor is called only once when the object is defined

• The class destructor performs all user-defined actions necessary to object destruction

• The class destructor is called only once when the object is destroyed

• An object is destroyed when its scope ends (i.e. at the first brace } closing its level)

Classes 22

Lecture Notes C++ Notes L. Liberti

4.1.6 Lifetime of an object

int main(int argc, char** argv) {
using namespace std;

TimeStamp theTimeStamp; // object created here

theTimeStamp.update();

long theTime = theTimeStamp.get();

if (theTime > 0) {
cout << "seconds from 1/1/1970: "

<< theTime << endl;

}
return 0;

} // object destroyed before brace (scope end)

Constructor and destructor code:
TimeStamp::TimeStamp() {

std::cout << "TimeStamp object constructed at address "

<< this << std::endl;

}
TimeStamp::̃ TimeStamp() {

std::cout << "TimeStamp object at address "

<< this << " destroyed" << std::endl;

}

Output:
TimeStamp object constructed at address 0xbffff24c

seconds from 1/1/1970: 1157281160

TimeStamp object at address 0xbffff24c destroyed

4.1.7 Data access privileges

class ClassName {
public:
members with no access restriction

protected:
access by: this, derived classes, friends

private:
access by: this, friends

} ;

• a derived class is a class which inherits from this (see inheritance below)

• a function can be declared friend of a class to be able to access its protected and private data

class TheClass {
...
friend void theFriendMethod(void);

};

4.1.8 Namespaces

• All C++ symbols (variable names, function names, class names) exist within a namespace

Classes 23

Lecture Notes C++ Notes L. Liberti

• The complete symbol is namespaceName::symbolName

• The only pre-defined namespace is the global namespace
(its name is the empty string ::varName)

• Standard C++ library: namespace std std::string

namespace WET {
const int maxBufSize = 1024;
const char charCloseTag = ’>’;

}

char buffer[WET::maxBufSize];

using namespace WET;
for(int i = 0; i < maxBufSize - 1; i++) {

buffer[i] = charCloseTag;
}

4.1.9 Exceptions

• Upon failure, a method may abort its execution

• We do not wish the whole program to abort

• Mechanism:

1. method throws an exception

2. caller method catches it

3. called method handles it if it can

4. otherwise it re-throws the exception

• Exceptions are passed on the method calling hierarchy levels until one of the method can handle it

• If exceptions reaches main(), the program is aborted

An exception is a class. Exceptions can be thrown and caught by methods. If a method throws

an exception, it must be declared: returnType methodName(arguments) throw (ExceptionName)

• The TimeStamp::update() method obtains the current time through the operating system, which
is outside the program’s control

• update() does not know how to deal with a failure directly, as it can only update the time; should
failure occur, control is delegated to higher-level methods

class TimeStampException {
public:
TimeStampException();
T̃imeStampException();

}

Classes 24

Lecture Notes C++ Notes L. Liberti

void TimeStamp::update(void) throw (TimeStampException) {
using namespace std;
struct timeval tv;
struct timezone tz;
try {

int retVal = gettimeofday(&tv, &tz);
if (retVal == -1) {

cerr << "TimeStamp::updateTimeStamp(): "
<< "could not get system time" << endl;

throw TimeStampException();
}

} catch (...) {
cerr << "TimeStamp::updateTimeStamp(): "

<< "could not get system time" << endl;
throw TimeStampException();

}
timestamp = tv.tv sec;

}

4.1.10 Overloading operators in and out of classes

• Suppose you have a class Complex with two pieces of private data, double real; and double

imag;

• You wish to overload the + operator so that it works on objects of type Complex

• There are two ways: (a) declare the operator outside the class as a friend of the Complex class; (b)
declare the operator to be a member of the Complex class

• (a) declaration:

class Complex {
public:
Complex(double re, double im) : real(re), imag(im) {}
...
friend Complex operator+(Complex& a, Complex& b);

private:
double real;
double imag;

}

definition (out of the class):

Complex operator+(Complex& a, Complex& b) {
Complex ret(a.real + b.real, a.imag + b.imag);
return ret;

}

• (b) declaration:

class Complex {
public:
Complex(double re, double im) : real(re), imag(im) {}
...
Complex operator+(Complex& b);

private:
double real;
double imag;

}

Classes 25

Lecture Notes C++ Notes L. Liberti

definition (in the class):

Complex Complex::operator+(Complex& b) {
Complex ret(this->real + b.real, this->imag + b.imag);
return ret;

}

• this-> is not strictly required, but it makes it clear that the left operand is now the object calling
the operator+ method

4.1.11 The stack and the heap

• Executable program can either refer to near memory (the stack) or far memory (the heap)

• Accessing the stack is faster than accessing the heap

• The stack is smaller than the heap

• Variables are allocated on the stack TimeStamp tts;

• Common bug (but hard to trace): stack overflow char veryLongArray[1000000000];

• Memory allocated on the stack is deallocated automatically at the end of the scope where it was
allocated (closing brace })

• Memory on the heap can be accessed through user-defined memory allocation

• Memory on the heap must be deallocated explicitly, otherwise memory leaks occur, exhausting all
the computer’s memory

• Memory on the heapmust not be deallocated more than once (causes unpredictable behaviour)

4.1.12 User-defined memory allocation

• Operator new: allocate memory from the heap pointerType* pointerName = new pointerType ;

TimeStamp* ttsPtr = new TimeStamp;

• Operator delete: release allocated memory delete pointerName; delete ttsPtr;

• Commonly used with arrays in a similar way:

pointerType* pointerName = new pointerType [size];

double* positionVector = new double [3];

delete [] pointerName ; delete [] positionVector;

• Improper user memory management causes the most difficult C++ bugs!!

4.1.13 Using object pointers

• Suppose ttsPtr is a pointer to a TimeStamp object

• Two equivalent ways to call its methods:

1. (*ttsPtr).update();

2. ttsPtr->update();

• Prefer second way over first

Classes 26

Lecture Notes C++ Notes L. Liberti

4.2 Input and output

4.2.1 Streams

• Data “run” through streams

• Stream types: input, output, input/output, standard, file, string, user-defined

outputStreamName << varName or literal . . . ; std::cout << "i = " << i << std::endl;

inputStreamName >> varName ; std::cin >> i;

stringstream buffer;
char myFileName[] = "config.txt";
ifstream inputFileStream(myFileName);
char nextChar;
while(inputFileStream && !inputFileStream.eof()) {

inputFileStream.get(nextChar);
buffer << nextChar;

}
cout << buffer.str();

4.2.2 Object onto streams

• Complex objects may have a complex output procedure

• Example: we want to be able to say cout << theTimeStamp << endl; and get

Thu Sep 7 12:23:11 2006 as output

• Solution: overload the << operator

std::ostream& operator<<(std::ostream& s,

TimeStamp& t)
throw (TimeStampException);

#include <ctime>
std::ostream& operator<<(std::ostream& s, TimeStamp& t)

throw (TimeStampException) {
using namespace std;
time t theTime = (time t) t.get();
char* buffer;
try {

buffer = ctime(&theTime);
} catch (...) {

cerr << "TimeStamp::updateTimeStamp(): "
"couldn’t print system time" << endl;

throw TimeStampException();
}
buffer[strlen(buffer) - 1] = ’\0’;
s << buffer;
return s;

}

4.2.3 Overloading the << and >> operators

• How does an instruction like cout << "time is " << theTimeStamp << endl; work?

• Can parenthesize is as (((cout << "time is ") << theTimeStamp) << endl); to make it clearer

Classes 27

Lecture Notes C++ Notes L. Liberti

• Each << operator is a binary operator whose left operand is an object of type ostream (like the
cout object); we need to define an operator overloading for each new type that the right operand
can take

• Luckily, many overloadings are already defined in the Standard Template Library

• The declaration to overload is:
std::ostream& operator<<(std::ostream& outStream,

newType& newObject)

• To output objects of type TimeStamp, use:

std::ostream& operator<<(std::ostream& outStream,
TimeStamp& theTimeStamp)

• Note: in order for the chain of << operators to output all their data to the same ostream object,
each operator must return the same object given at the beginning of the chain (in this case, cout)

• In other words, each overloading must end with the statement return outStream; (notice outStream
is the very same name of the input parameter — so if the input parameter was, say, cout, then
that’s what’s being returned by the overloading)

4.3 Inheritance and polymorphism

4.3.1 Inheritance

• Consider a class called FileParser which is equipped with methods for parsing text occurrences
like tag = value in text files

• We now want a class HTMLPage representing an HTML page with all links

• HTMLPage will need to parse an HTML (text) file to find links; these are found by looking at
occurrences like HREF="url"

• It is best to keep the text file parsing data/methods and HTML-specific parts independent

• HTMLPage can inherit the public data/methods from FileParser:

class HTMLPage : public FileParser {...} ;

4.3.2 Nested inheritance

• Consider a corporate personnel database

• Need class Employee;

• Certain employees are “empowered” (have more responsibilities): need

class Empowered : public Employee;

• Among the empowered employees, some are managers: need class Manager : public Empowered;

• Manager contains public data and methods from Empowered, which contains public data and meth-
ods from Employee

Classes 28

Lecture Notes C++ Notes L. Liberti

class Employee {
public:
Employee();
Ẽmployee();
double

getMonthlySalary(void);
void getEmployeeType(void);

};

←

class Empowered : public Employee

{
public:
Empowered();
Ẽmpowered();
bool isOverworked(void);
void getEmployeeType(void);

};

↑
class Manager : public Empowered

{
public:
Manager();
M̃anager();
bool isIncompetent(void);
void getEmployeeType(void);

};

4.3.3 Hiding

Consider method getEmployeeType: can be defined in different ways for Manager, Empowered, Employee:
hiding

void Employee::getEmployeeType(void) {
std::cout << "Employee" << std::endl;

}
void Empowered::getEmployeeType(void) {

std::cout << "Empowered" << std::endl;
}
void Manager::getEmployeeType(void) {

std::cout << "Manager" << std::endl;
}

4.3.4 Nested inheritance and hiding

Examples of usage
Employee e1;
Empowered e2;
Manager e3;
cout << e1.getMonthlySalary(); // output the monthly salary
cout << e2.getMonthlySalary(); // call to the same fn as above
e1.getEmployeeType(); // output: Employee
e2.getEmployeeType(); // output: Empowered (call to different

fn)
e3.getEmployeeType(); // output: Manager (call to different fn)
e3.Employee::getEmployeeType(); // output: Employee (forced

call)
cout << e1.isIncompetent(); // ERROR, not in base class

Classes 29

Lecture Notes C++ Notes L. Liberti

4.3.5 Inheritance vs. embedding

• Consider example of a salary object:

class Salary {
Salary();
S̃alary();
void raise(double newSalary);
...

};

• Might think of deriving Employee from Salary so that we can say theEmployee.raise(); to raise
the employee’s salary

• Technically, nothing wrong

• Architecturally, very bad decision!

• Rule of thumb: derive B from A only if B can be considered as an A

• In this case, better embed a Salary object as a data field of the Employee class

4.3.6 Polymorphism

• Hiding provides compile-time polymorphism

• Almost always, this is not what is desired, and should be avoided!

• Want to be able to choose the class type of an object at run-time

• Suppose we want to write a function such as:

void use(Employee* e) {
e->getEmployeeType();

}

and then call it using Employee, Empowered, Manager objects:

use(&e1); // output: Employee
use(&e2); // output: Employee
use(&e3); // output: Employee

• As far as use() is concerned, the pointers are all of Employee type, so wrong method is called

Run-time polymorphism can be obtained by declaring the relevant methods as virtual

class Employee {
...
virtual void getEmployeeType(void);
...

};

class Empowered : public Employee {
...
virtual void getEmployeeType(void);
...

};

class Manager : public Empowered {
...
virtual void getEmployeeType(void);
...

};

use(&e1); // output: Employee
use(&e2); // output: Empowered
use(&e3); // output: Manager

Classes 30

Lecture Notes C++ Notes L. Liberti

4.3.7 Pure virtual classes

• Get objects to interact with each other: need conformance to a set of mutually agreed methods

• In other words, need an interface

• All classes derived from the interface implement the interface methods as declared in the interface

• Can guarantee the formal behaviour of all derived objects

• In C++, an interface is known as a pure virtual class: a class consisting only of method declarations
and no data fields

• A pure virtual class has no constructor — no object of that class can ever be created (only objects
of derived classes)

• A pure virtual class may have a virtual destructor to permit correct destruction of derived objects

• All methods (except the destructor) are declared as follows: returnType methodName(args) = 0;

• All derived classes must implement all methods

4.3.8 Pure virtual classes

class EmployeeInterface {
public:
virtual ẼmployeeInterface() { }
virtual void getEmployeeType(void) = 0;

};

class Employee : public virtual EmployeeInterface {...};
class Empowered : public Employee, public virtual EmployeeInterface {...};
class Manager : public Empowered, public virtual EmployeeInterface {...};

void use(EmployeeInterface* e) {...}
...
use(&e1); // output: Employee
use(&e2); // output: Empowered
use(&e3); // output: Manager

• Code behaves as before, but clearer architecture

• public virtual inheritance: avoids having many copies of EmployeeInterface in Empowered and
Manager

5 Templates

5.1 User-defined templates

5.1.1 Templates

• Situation: action performed on different data types

• Possible solution: write many functions taking arguments of many possible data types.

Templates 31

Lecture Notes C++ Notes L. Liberti

• Example: swapping the values of two variables

void varSwap(int& a, int& b);
void varSwap(double& a, double& b);
. . .

• Potentially an unlimited number of objects ⇒ invalid approach

• Need for templates

template<class TheClassName> returnType functionName(args);

template<class T> void varSwap(T& a, T& b) {
T tmp(b);
b = a;
a = tmp;

}

Behaviour with predefined types:
int ia = 1;
int ib = 2;
varSwap(ia, ib);
cout << ia << ", " << ib << endl; // output: 2, 1

double da = 1.1;
double db = 2.2;
varSwap(da, db);
cout << da << ", " << db << endl; // output: 2.2, 1.1

Behaviour with user-defined types:

class MyClass {
public:
MyClass(std::string t) : myString(t) { }
M̃yClass() { }
std::string getString(void) { return myString; }
void setString(std::string& t) { myString = t; }

private:
std::string myString;

};

MyClass ma("A");
MyClass mb("B");
varSwap(ma, mb);
cout << ma << ", " << mb << endl; // output: B, A

5.1.2 Internals and warnings

• Many hidden overloaded functions are created at compile-time (one for each argument list that
is actually used)

• Very difficult to use debugging techniques such as breakpoints (which of the hidden overloaded
functions should get the breakpoints?)

• Use sparingly

• But use the Standard Template Library as much as possible (already well debugged and very
efficient!)

Templates 32

Lecture Notes C++ Notes L. Liberti

5.2 Standard Template Library

5.2.1 The STL

• Collection of generic classes and algorithms

• Born at the same time as C++

• Well defined

• Very flexible

• Reasonably efficient

• Use it as much as possible, do not reinvent the wheel!

• Documentation: http://www.sgi.com/tech/stl/

• Contains:

– Classes: vector, map, string, I/O streams, . . .

– Algorithms: sort, swap, copy, count, . . .

5.2.2 vector example

#include<vector>
#include<algorithm>
...
using namespace std;
vector<int> theVector;
theVector.push back(3);
theVector.push back(0);
if (theVector.size() >= 2) {

cout << theVector[1] << endl;
}
for(vector<int>::iterator vi = theVector.begin();

vi != theVector.end(); vi++) {
cout << *vi << endl;

}
sort(theVector.begin(), theVector.end());
for(vector<int>::iterator vi = theVector.begin();

vi != theVector.end(); vi++) {
cout << *vi << endl;

}

Templates 33

Lecture Notes C++ Notes L. Liberti

5.2.3 map example

#include<map>
#include<string>
...
using namespace std;
map<string, int> phoneBook;
phoneBook["Liberti"] = 3412;
phoneBook["Baptiste"] = 3800;
for(map<string,int>::iterator mi = phoneBook.begin();

mi != phoneBook.end(); mi++) {
cout << mi->first << ": " << mi->second << endl;

}
cout << phoneBook["Liberti"] << endl;
cout << phoneBook["Smith"] << endl;
for(map<string,int>::iterator mi = phoneBook.begin();

mi != phoneBook.end(); mi++) {
cout << mi->first << ": " << mi->second << endl;

}

Templates 34

LIX, École Polytechnique

Introduction to C++: Exercises

Leo Liberti

Last update: December 12, 2011

Exercises Introduction to C++ L. Liberti

2

Contents

1 Generalities 5

1.1 Definition of program . 5

1.2 Definition of programming language . 5

1.3 Indentation . 5

2 Basic syntax 7

2.1 A minimal C++ program . 7

2.2 Variables and pointers . 7

2.3 The second word . 8

2.4 Random numbers . 8

2.5 The second column . 9

3 Classes 11

3.1 Complex numbers . 11

3.2 Virtual inheritance . 12

3.3 Virtual and nonvirtual inheritance . 14

3.4 Nonvirtual base class destructor . 15

4 Debugging 17

4.1 Segmentation fault . 17

4.2 Pointer bug . 17

4.3 Scope of local variables . 18

4.4 Erasing elements from a vector . 19

5 A full-blown application 21

5.1 The software architecture . 22

3

Exercises Introduction to C++ L. Liberti

5.1.1 Description . 22

5.1.2 Formalization of requirements . 22

5.1.3 Modularization of tasks . 22

5.1.4 Main algorithm . 23

5.1.5 Fundamental data structures . 23

5.1.6 Classes . 23

5.2 The TimeStamp class . 24

5.3 The FileParser class . 25

5.4 The HTMLPage class . 27

5.5 The URL class . 27

5.6 The Vertex interface and VertexURL implementation . 28

5.7 The Arc and Digraph classes . 28

5.8 Putting it all together: main() . 29

6 Exam questions 31

6.1 Debugging question 1 . 31

6.2 Debugging question 2 . 32

6.3 Debugging question 3 . 32

6.4 Debugging question 4 . 34

6.5 Debugging question 5 . 34

6.6 Debugging question 6 . 38

6.7 Specification coding question 1 . 38

6.8 Specification coding question 2 . 40

6.9 Task question 1 . 43

6.10 Task question 2 . 43

6.11 Task question 3 . 43

7 Questions from a banking C++ test 45

7.1 Question 1 . 45

7.2 Question 2 . 45

7.3 Question 3 . 46

7.4 Question 4 . 46

7.5 Question 5 . 46

CONTENTS 4

Chapter 1

Generalities

1.1 Definition of program

(a) Your clothes are dirty and you want to put them in the washing machine. You put the temperature
at 50 C◦ and set the cycle at “coloured cottons”; you satisfy yourself that you don’t have a full load,
so you press the “half-load” button; finally, you start the washing cycle. Is this a program? (b) Now
suppose your girlfriend tells you to “do the washing, please”. Is this a program? Justify your answers.

1.2 Definition of programming language

Are the rules of chess a programming language? Justify your answer.

1.3 Indentation

Give a precise definition of the concept “well-indented C++ program”. Check whether your definition
correctly classifies the following snippets of code. In the case of programs that are not well-indented, find
the reason why they are not.

// 1. this is a well-indented C++ program

#include<iostream>

int main(int argc, char** argv) {

int ret = 0;

std::cout << "Hello world" << std::endl;

return ret;

}

// 2. this is a well-indented C++ program

#include<iostream>

const int theGlobalValue = 0;

int main(int argc, char** argv) {

theGlobalValue = 1;

std::cout << theGlobalValue << std::endl;

return 0;

5

Exercises Introduction to C++ L. Liberti

}

// 3. this is NOT a well-indented C++ program (why?)

#include<iostream>

int main(int argc, char** argv) {

if (argc < 2) {

std::cerr << "error" << std::endl;

} else {

std::cout << argv[1] << std::endl;

}

}

// 3. this is NOT a well-indented C++ program (why?)

#include<iostream>

const int theGlobalValue = 0;

bool isArgcGood(int argc) {

if (argc < 2) {

std::cout << "error" << std::endl;

return false; }

return true;

}

int main(int argc, char** argv) {

if (isArgcGood(argc)) {

std::cout << argv[1] << std::endl;

}

return 0;

}

// 4. this is NOT a well-indented C++ program (why?)

#include<iostream>

int main(int argc, char** argv) {

int i = 0;

while(argv[i]) i++;

std::cout << i << std::endl;

}

Indentation 6

Chapter 2

Basic syntax

2.1 A minimal C++ program

Edit, save and build the following program.

/***

* Name: minimal.cxx

* Author: Leo Liberti

* Source: GNU C++

* Purpose: minimal C++ program

* Build: c++ -o minimal minimal.cxx

* History: 060818 work started

***/

#include<iostream>

int main(int argc, char** argv) {

using namespace std;

int ret = 0;

// your code goes here

return ret;

}

Now modify it to print the array of characters argv[0].

2.2 Variables and pointers

Consider the following program.

#include<iostream>

const char endOfCharArray = ’\0’;

7

Exercises Introduction to C++ L. Liberti

int main(int argc, char** argv) {

using namespace std;

int ret = 0;

if (argc < 2) {

cerr << "error: no arguments on cmd line" << endl;

ret = 1;

} else {

for(int i = 0; i < argc; i++) {

while(*(argv[i]) != endOfCharArray) {

cout << *(argv[i]);

argv[i]++;

}

cout << endl;

}

}

return ret;

}

(a) List the variables in the program and their types. (b) List the pointers in the program and
their types. (c) How many pointers are there in the program when it is run with the command line
./variables pointers 123 456 789? (d) Edit, save, build and run the program with the command
line above. What is the output?

2.3 The second word

(a) Write a program that writes the second word (and its length) in an array of characters. Words are
separated by spaces, punctuation and tabs. Test your code on the sentence “Actually, couldn’t you come
with me?” The correct answer should be couldn’t(8). If you’re stuck, you can follow the template
below.

// test if c is in the array containing all the valid separators

bool isSeparator(char c, char* separators);

// return the length of the char array a

int charArrayLength(char *a);

int main(int argc, char** argv) {

// find the beginning of the second word

// find the end of the second word

}

2.4 Random numbers

The following code can be used to generate pseudo-random floating point numbers in [0, 1].

#include<iostream>
#include<sys/time.h>

int main(int argc, char** argv) {
using namespace std;

// initialize randomizer

Random numbers 8

Exercises Introduction to C++ L. Liberti

struct timeval theTV;
struct timezone theTZ;
gettimeofday(&theTV, &theTZ);
srandom(theTV.tv_usec);

// pick a random number between 0 and 1
double normalizedRndCoeff = (double) random() / (double) RAND_MAX;
cout << normalizedRndCoeff << endl;
return 0;

}

Write a small program that generates a random sample of given size N (input from command line)
and that computes the mean and the variance. Use your program to show empirically that

α = lim
N→∞

Var(X) ∼= 0.083,

where X is a random variable. Prove that α = 1

12
.

Optional: update your program to generate a random sample whose elements are within given
numerical bounds.

2.5 The second column

Write a program that reads in a text file and prints the sum of the numbers found in the second column
(a word is in the second column of a file if its first character is the first non-space character after the first
space character in the line). An example for opening and reading a text file is given below.

#include <iostream>
#include <fstream>
#include <cstdlib>

const int BUFSIZE = 1024;

int main(int argc, char** argv) {
using namespace std;
int ret = 0;
if (argc < 2) {

cerr << argv[0] << ": need filename on cmd line" << endl;
exit(1);

}
char buffer[BUFSIZE];
ifstream myStream(argv[1]);
while(!myStream.eof()) {

myStream.getline(buffer, (streamsize) BUFSIZE-1);
cout << buffer << endl;

}
return ret;

}

The second column 9

Exercises Introduction to C++ L. Liberti

The second column 10

Chapter 3

Classes

3.1 Complex numbers

The following code is the class header describing a complex number class.

/*
** Name: complex.h
** Author: Leo Liberti
** Purpose: header file for a complex numbers class
** Source: GNU C++
** History: 061019 work started
*/

#ifndef _COMPLEXH
#define _COMPLEXH

#include<string>
#include<iostream>

class Complex {

public:

Complex();
Complex(double re, double im);
~Complex();

double getReal(void);
double getImaginary(void);
void setReal(double re);
void setImaginary(double im);
void fromString(const std::string& complexString);

Complex operator+(Complex& theComplex);
Complex operator-(Complex& theComplex);
Complex operator*(Complex& theComplex);
Complex operator/(Complex& theComplex);

private:
double real;
double imag;

};

std::ostream& operator<<(std::ostream& out, Complex& theComplex);

#endif

Write the corresponding implementation file complex.cxx. Test it on the following main() function

definition, using the command ./test 2.1+0.2i / 0.2-0.3i . The output should be 2.76923 + 5.15385i .

/*

11

Exercises Introduction to C++ L. Liberti

** Name: test.cxx
** Author: Leo Liberti
** Purpose: testing the complex numbers class
** Source: GNU C++
** History: 061019 work started
*/

#include <iostream>
#include <string>
#include "complex.h"

int main(int argc, char** argv) {
using namespace std;
if (argc < 4) {

cerr << "need an operation on command line" << endl;
cerr << " e.g. ./test 4.3+3i - 2+3.1i" << endl;
cerr << " (no spaces within each complex number, use spaces to\n";
cerr << " separate the operands and the operator - use arithmetic\n";
cerr << " operators only)" << endl;
return 1;

}
string complexString1 = argv[1];
string complexString2 = argv[3];
Complex complex1;
complex1.fromString(complexString1);

Complex complex2;
complex2.fromString(complexString2);

Complex complex3;
if (argv[2][0] == ’+’) {

complex3 = complex1 + complex2;
} else if (argv[2][0] == ’-’) {

complex3 = complex1 - complex2;
} else if (argv[2][0] == ’*’ || argv[2][0] == ’.’) {

argv[2][0] = ’*’;
complex3 = complex1 * complex2;

} else if (argv[2][0] == ’/’) {
complex3 = complex1 / complex2;

}
cout << complex1 << " " << argv[2][0] << " (" << complex2 << ") = "

<< complex3 << endl;
return 0;

}

Use the following Makefile to compile (use tabs, not spaces after each label — for that you need to
use the Emacs editor):

Name: complex.Makefile
Author: Leo Liberti
Purpose: makefile for complex class project
Source: GNU C++
History: 061019 work started

CXXFLAGS = -g

all: test

test: complex.o test.cxx
c++ $(CXXFLAGS) -o test test.cxx complex.o

complex.o: complex.cxx complex.h
c++ $(CXXFLAGS) -c -o complex.o complex.cxx

clean:
rm -f *~ complex.o test

3.2 Virtual inheritance

The code below defines a virtual base class VirtualBase and a derived class Derived which implements
it. The VirtualBase interface is simply to set and get an integer value. The Derived adds a method
for printing the value. We then have two functions in the global namespace, printTheValue1() and

Virtual inheritance 12

Exercises Introduction to C++ L. Liberti

printTheValue2(), which print out the values in different ways: the first simply uses the get method
of the interface to retrieve the value; the second tries to transform the VirtualBase interface pointer
passed as argument to a pointer to the Derived class, and then calls the Derived class’ print method.

// this program does not compile!

#include<iostream>

class VirtualBase {

public:

virtual ~VirtualBase() { }

virtual void setValue(int i) = 0;

virtual int getValue(void) = 0;

};

class Derived : public virtual VirtualBase {

public:

~Derived() { }

void setValue(int i) {

theValue = i;

}

int getValue(void) {

return theValue;

}

void printValue(void) {

std::cout << "Derived::printValue(): value is " << theValue << std::endl;

}

private:

int theValue;

};

void printTheValue1(VirtualBase* v) {

std::cout << "printTheValue1(): value is " << v->getValue() << std::endl;

}

void printTheValue2(VirtualBase* v) {

Derived* d = v;

d->printValue();

}

int main(int argc, char** argv) {

int ret = 0;

Derived d;

VirtualBase* v = &d;

v->setValue(1);

printTheValue1(v);

printTheValue2(v);

return ret;

}

The desired output is:

printTheValue1(): value is 1

Derived::printValue(): value is 1

Virtual inheritance 13

Exercises Introduction to C++ L. Liberti

However, the program fails to compile with the error:

virtual2.cxx: In function ’void printTheValue2(VirtualBase*)’:

virtual2.cxx:31: error: invalid conversion from ’VirtualBase*’ to ’Derived*’

virtual2.cxx:31: error: cannot convert from base ’VirtualBase’

to derived type ’Derived’ via virtual base ’VirtualBase’

What has gone wrong? How can you fix this program? [Hint: look at C++ casting operators]

3.3 Virtual and nonvirtual inheritance

What is the output of the following code?

#include<iostream>

class A {

public:

void f() {

std::cout << "A::f" << std::endl;

}

virtual void g() {

std::cout << "A::g" << std::endl;

}

};

class B : public A {

public:

void f() {

std::cout << "B::f" << std::endl;

}

virtual void g() {

std::cout << "B::g" << std::endl;

}

};

int main(int argc, char** argv) {

A a;

B b;

A* aPtr = &a;

A* bPtr = &b;

aPtr->f();

aPtr->g();

bPtr->f();

bPtr->g();

return 0;

}

Is there anything surprising? Can you explain it?

Since this is produced by this code:

aPtr->f();

Virtual and nonvirtual inheritance 14

Exercises Introduction to C++ L. Liberti

aPtr->g();

bPtr->f();

bPtr->g();

It is surprising that the pointer to the B object does not print B::f but A::f. The reason is that the
derived class B hides the method A::f(), which was not declared virtual. This is known as compile-time

polymorphism: at compile-time, the compiler only knows that bPtr is of type A*, and therefore binds
to it the f() method found in A. The g() method, however, was declared virtual in the base class,
which means that the compiler will implement run-time polymorphism (almost always the desired kind),
and will delegate binding decisions (i.e. , deciding what method to call) to run-time. At run-time, even
though bPtr is of type A*, it is possible to find out that in fact it points to an object of type B, so the
correct binding takes place.

3.4 Nonvirtual base class destructor

The code below shows the ill effects of hiding a non-virtual constructor of a base class, and then using
the derived class as a base one.

// this program is buggy!

#include<iostream>

class Base {

public:

Base() {

std::cerr << "constructing Base " << this << std::endl;

i = new int;

}

~Base() {

std::cerr << "destroying Base " << this << std::endl;

delete i;

}

private:

int* i;

};

class Derived : public Base {

public:

Derived() {

std::cerr << "constructing Derived " << this << std::endl;

d = new double;

}

~Derived() {

std::cerr << "destroying Derived " << this << std::endl;

delete d;

}

private:

double* d;

};

int main(int argc, char** argv) {

using namespace std;

int ret = 1;

Nonvirtual base class destructor 15

Exercises Introduction to C++ L. Liberti

Base* thePtr = new Derived;

delete thePtr;

return ret;

}

The output of this program is

constructing Base 0x804a008

constructing Derived 0x804a008

destroying Base 0x804a008

This is a bug, because the Derived object was never deallocated. At best, this is a memory leak. In
some other cases it may become the source of more serious problems. Can you explain what happened
and how to fix the program?

Nonvirtual base class destructor 16

Chapter 4

Debugging

4.1 Segmentation fault

The following code contains three serious memory bugs, usually ending in a segmentation fault. Find the
bugs, solve them and explain them.

// this program is buggy

#include<iostream>

int main(int argc, char** argv) {

using namespace std;

double* d = new double;

for(unsigned int i = 0; i < 3; i++) {

d[i] = 1.5 + i;

}

for(unsigned int i = 2; i >= 0; i--) {

cout << d[i] << endl;

}

}

4.2 Pointer bug

The following snippet of code behaves unpredictably: it will often print a value for testInt which is
different from 1, although in the variable testInt is never explicitly changed. Debug the program using
ddd and valgrind. What is the bug? How can you fix it? Change the order of the statements marked
(a), (b), (c) and test the resulting programs: what is the behaviour? Can you explain it?

// this program is buggy!

#include<iostream>

#include<cstring>

const int bufSize = 20;

int main(int argc, char** argv) {

17

Exercises Introduction to C++ L. Liberti

using namespace std;

if (argc < 3) {

cerr << "need a char and a word as arguments on cmd line" << endl;

return 1;

}

// a test integer to which we assign the value 1

int testInt = 1; // (a)

// get the first char of the first argument

char theChar = argv[1][0]; // (b)

// get the second argument as word

char buffer[bufSize]; // (c)

strncpy(buffer, argv[2], bufSize);

char* wordPtr = buffer;

// skip characters in the word and delete them, until we find theChar

while(*wordPtr != theChar) {

*wordPtr = ’ ’;

wordPtr++;

cout << (int) (wordPtr - buffer) << endl;

}

// now see what value has the test integer

cout << testInt << endl;

return 0;

}

4.3 Scope of local variables

Inspect the following code. Convince yourself that the expected output should be 0 1 2 3 4 . Compile
and test the code. The output is unpredictable (may be similar to

134524936 134524968 134524952 134524984 134525024 depending on the machine and circumstances).
How do you explain this bug? How can you fix it?

#include<iostream>

#include<vector>

class ValueContainer {

public:

ValueContainer() : theInt(0) { }

~ValueContainer() { }

void set(int* t) {

theInt = t;

}

int get(void) {

return *theInt;

}

private:

int* theInt;

Scope of local variables 18

Exercises Introduction to C++ L. Liberti

};

ValueContainer* createContainer(int i) {

ValueContainer* ret = new ValueContainer;

ret->set(&i);

return ret;

}

const int vecSize = 5;

int main(int argc, char** argv) {

using namespace std;

vector<ValueContainer*> value;

for(int i = 0; i < vecSize; i++) {

value.push_back(createContainer(i));

}

for(int i = 0; i < vecSize; i++) {

cout << value[i]->get() << " ";

}

cout << endl;

for(int i = 0; i < vecSize; i++) {

delete value[i];

}

return 0;

}

4.4 Erasing elements from a vector

The following code initializes an STL vector of integers to (2, 1) then iterates to erase all elements with
value 1. The code compiles but on running it we get a segmentation fault abort. Find and fix the bug.

// this program is buggy!

#include<vector>

int main(int argc, char** argv) {

using namespace std;

int ret = 0;

vector<int> theVector;

theVector.push_back(2);

theVector.push_back(1);

vector<int>::iterator vi;

for(vi = theVector.begin(); vi != theVector.end(); vi++) {

if (*vi == 1) {

theVector.erase(vi);

}

}

return ret;

}

Erasing elements from a vector 19

Exercises Introduction to C++ L. Liberti

Erasing elements from a vector 20

Chapter 5

A full-blown application

In this chapter we will describe in a step-by-step fashion how to build a full-blown application in C++.
The application is called WET (WWW Exploring Topologizer) and its purpose is to explore a neighbour-
hood of a given URL in the World Wide Web and to output it in the shape of a graph. This application
can be used to trace website maps or relations between websites (which often underline relations between
the corresponding corporations); see for examples the maps of the IEEE (Fig. 5.1) and PSA (Fig. 5.2)
websites.

www.ieee.com

ieeexplore.ieee.org?WT.mc_id=tu_xplore

spectrum.ieee.org

www.spectrum.ieee.org

www.ieee.org

www.scitopia.org

careers.ieee.org

ieeexplore.ieee.orgwww.adicio.com

Thu Jan 10 18:18:18 2008

Figure 5.1: The IEEE website map.

We delegate graph visualization to the GraphViz library www.graphviz.org, and in particular to the
dot and neato UNIX utilities. These accept the input graph in a particular format

digraph graphName {

list of nodes with special properties

0 [label = "thenode", color = red];

list of arcs

21

Exercises Introduction to C++ L. Liberti

www.psa-peugeot-citroen.com

www.peugeot.com www.sustainability.psa-peugeot-citroen.com b2b.psa-peugeot-citroen.com www.psa.net.cn www.slovakia.psa-peugeot-citroen.com

www.developpement-durable.psa.fr’ www.peugeot.sk www.citroen.sk

www.peugeot-avenue.com www.citroen-bazar.sk www.nascortech.com

Thu Jan 10 18:43:51 2008

Figure 5.2: The PSA website map.

0 -> 1;

1 -> 2;

}

So the task performed by WET is to download a given URL and explore its links up to the n-th
recursion level, then to put the obtained graph in the above format.

This chapter starts with a section on the software architecture; each class is then described and its
implementation mostly delegated as exercise. The software architecture section does not contain any
exercises, but it is a prerequisite for understanding what follows. Moreover, it is a (crude) example
showing how to formalize the architecture of a software.

5.1 The software architecture

5.1.1 Description

Given an URL, this tool explores a local neighbourhood of the URL. Each web page is represented by a
vertex in a graph, and given two vertices u, v there is an arc between them if there is a hyperlink citing
the web page v in the web page u. The graph is then printed on the screen.

5.1.2 Formalization of requirements

• Input:

– the URL we must start the retrieval from

– the maximum hyperlink depth

• Output:

– graph and time when the exploration was undertaken shown on screen

5.1.3 Modularization of tasks

• web page retrieval: downloads the HTML page for a given URL

• web page parser: finds all the hyperlinks in a given HTML page

• watch: returns the current time

• graph: stores vertices, arcs and a timestamp; outputs the graph to screen

The software architecture 22

Exercises Introduction to C++ L. Liberti

5.1.4 Main algorithm

1. Input options and necessary data (from command line)

2. Start recursive URL retrieval algorithm

retrieveData(URL, maxDepth, Graph) {

get current timestamp;

store timestamp in graph

retrieveData(URL, maxDepth, Graph, 0);

}

store graph on disk

retrieveData(URL, maxDepth, Graph, currentDepth) {

if (currentDepth < maxDepth) {

retrieve URL;

parse HTML, get list of sub-URLs;

for each sub-URL in list {

store arc (URL, sub-URL) in graph

retrieveData(sub-URL, maxDepth, graph, currentDepth + 1);

}

}

}

5.1.5 Fundamental data structures

• URL

• timestamp

• vertex

• arc

• graph

5.1.6 Classes

class TimeStamp; // stores a time stamp

class fileParser; // parses text files for tag=value (or tag="value") cases

class HTMLPage : public fileParser; // stores an HTML page

class URL; [contains HTMLPage object] // retrieves an HTML page

class Vertex; // public virtual class for a vertex

class VertexURL : public virtual Vertex; [contains URL] // implements a vertex

class Arc; [contains two Vertex objects] // arc

class Digraph; [contains a list of arcs and a timestamp] // graph

The diagram below shows the class interactions.

The software architecture 23

Exercises Introduction to C++ L. Liberti

5.2 The TimeStamp class

Design and implement a class called TimeStamp managing the number of seconds elapsed since 1/1/1970.
The class should have three methods: long get(void) to get the number of seconds since 1/1/1970, void
set(long t) to set it, void update(void) to read it off the operating system. Furthermore, it must be
possible to pass a TimeStamp object (call it timeStamp) on to a stream, as follows: cout << timeStamp;

to obtain the date pointed at by timeStamp. Failures should be signalled by throwing an exception called
TimeStampException.

You can use the following code to find the number of seconds elapsed since 1970 from the operating
system:

#include<sys/time.h>

[...]

struct timeval tv;

struct timezone tz;

int retVal = gettimeofday(&tv, &tz);

long numberOfSecondsSince1970 = tv.tv_sec;

The following code transforms the number of seconds since 1970 into a meaningful date into a string:

#include<string>

#include<ctime>

#include<cstring>

[...]

time_t numberOfSecondsSince1970;

char* buffer = ctime(&numberOfSecondsSince1970);

buffer[strlen(buffer) - 1] = ’\0’;

std::string theDateString(buffer);

Write the class declaration in a file called timestamp.h and the method implementation in timestamp.cxx.
Test your code with the following program tsdriver.cxx: and verify that the output is:

The TimeStamp class 24

Exercises Introduction to C++ L. Liberti

seconds since 1/1/1970: 999999999 corresponding to Sun Sep 9 03:46:39 2001

Mon Sep 11 11:33:42 2006 corresponds to 1157967222 number of seconds since 1970

The solution to this exercise is included as an example of coding style. The rest of the exercises in
this chapter should be solved by the student.

5.3 The FileParser class

Design and implement a class called FileParser that scans a file for a given string tag followed by a
character ’=’ and then reads and stores the string after the ’=’ either up to the first space character
or, if an opening quote character ’"’ is present after ’=’, up to the closing quote character. The class
functionality is to be able to detect all contexts such as tag = string or tag = "string" in a text file,
store the strings and allow subsequent access to them.

The class should be declared in fileparser.h and implemented in fileparser.cxx. You can use
the following header code for class declaration. Pay attention to the following details:

• It is good coding practice to provide all classes with a set of get/set methods to access/modify
internal (private) data.

• The compareCaseInsensitive and isTailCaseInsensitive methods are declared protected be-
cause they may not be accessed externally (i.e. they are for the class’ private usage) but it may
be useful to make them accessible to derived classes. Here is the definition of these two (technical)
methods:

int FileParser::compareCaseInsensitive(const std::string& s1,

const std::string& s2) const {

using namespace std;

string::const_iterator p1 = s1.begin();

string::const_iterator p2 = s2.begin();

while(p1 != s1.end() && p2 != s2.end()) {

if (toupper(*p1) < toupper(*p2)) {

return -1;

} else if (toupper(*p1) > toupper(*p2)) {

return 1;

}

p1++;

p2++;

}

if (s1.size() < s2.size()) {

return -1;

} else if (s1.size() > s2.size()) {

return 1;

}

return 0;

}

bool FileParser::isTailCaseInsensitive(const std::string& s1,

const std::string& s2) const {

using namespace std;

int s2len = s2.size();

if (s1.size() >= s2.size() &&

compareCaseInsensitive(s1.substr(s1.size() - s2len, s2len), s2) == 0) {

The FileParser class 25

Exercises Introduction to C++ L. Liberti

return true;

}

return false;

}

• In order to write the parse method, you have to scan the file one character at a time. The parser
can be in any of the following three states: outState, inTagState, inValueState. Normally, the
status is outState. When the parse tag is detected, a transition is made to inTagState. After that,
if an ’equal’ character (’=’) is found, another transition is made to inValueState. The parser has
three different behaviours, one in each state. When in outState, it simply looks for the parse tag
parseTag. When in inTagState, it looks for the character ’=’, when in inValueState, it stores
the value up to the first separating space or between quotes.

• The following code can be used to open a file and scan it one character at a time:

#include<iostream>

#include<fstream>

#include<istream>

#include<sstream>

#include<iterator>

[...]

// opens the file for input

string fileName("myfilename.ext");

ifstream is(fileName.c_str());

if (!is) {

// can’t open file, throw exception

}

// save all characters to a string buffer

char nextChar;

stringstream buffer;

while(!is.eof()) {

is.get(nextChar);

buffer << nextChar;

}

// output the buffer

cout << buffer.str() << endl;

// erase the buffer

buffer.str("");

• You can test your code with the following program fpdriver.cxx: Make a small HTML file as
follows, and call it myfile.html:

<html>

<head>

<title>MyTitle</title>

</head>

<body>

My absolute link

and my relative link.

</body>

</html>

Now run the fpdriver code as follows: ./fpdriver myfile.html href , and verify that it pro-

duces the following output:

The FileParser class 26

Exercises Introduction to C++ L. Liberti

http://mywebsite.com/mywebpage.html

otherfile.html

5.4 The HTMLPage class

Design and implement a class called HTMLPage which inherits from FileParser. It should have the
following functionality: opens an HTML file (of which the URL is known), reads and stores its links
(transforming relative links into absolute links), allows external access to the stored links. This class is
derived from FileParser because it uses FileParser’s functionality in a specific manner, performing
some specific task (relative links are transformed into absolute links) of which FileParser knows nothing
about.

• A link in an HTML page is the value in the tag href="value" (or simply href=value). HTML is
a case insensitive language, so you may also find HREF instead of href.

• A WWW link is absolute if it starts with http:// and a DNS name and is relative otherwise.
Given a relative link (i.e. not starting with a slash ’/’ character, e.g. liberti/index.html) and
an absolute link (e.g. http://www.lix.polytechnique.fr/users), the relative link is transformed
into an absolute link by concatenating the two URLs (absolute and relative) with any missing
slashes in between (e.g. http://www.lix.polytechnique.fr/users/liberti/index.html. On
the other hand, if the relative link starts with a slash ’/’ (e.g. / liberti/index.html) then
the transformation of the relative link to absolute occurs by concatenating the first part of the
absolute link (up to and including the DNS name) and the relative one (e.g. http://www.lix.
polytechnique.fr/~liberti/index.html).

• Remember that not all links found next to HREF tags are valid HTTP links, some may concern
different protocols. You should make sure that the link introduced by HREF is either relative (in
which case you should make it absolute as explained above) or specifically an http link.

• Test your class implementation using the following driver hpdriver.cxx: and check that the

output of the command ./hpdriver http://127.0.0.1 myfile.html is

http://mywebsite.com/mywebpage.html

http://127.0.0.1/otherfile.html

5.5 The URL class

Design and implement a class called URL containing a pointer to an HTMLPage object. Its functionality is
to download an HTML file from the internet given its URL, to allow access to the links contained therein,
and to return the hostname of the URL.

• We shall make use of the wget external utility to download the HTML file. This can be used from

the shell: wget http://my.web.site/mypage.html will download the specified URL to a local

file called mypage.html. We can specify the output file with the option -O output file name. In
order to call an external program from within C++, use the following code.

#include<cstdlib>

[...]

char charQuote = ’\"’;

The URL class 27

Exercises Introduction to C++ L. Liberti

string theURL = "http://127.0.0.1/index.html";

string outputFile = ".wet.html";

string cmd = "wget --quiet -O " + outputFile + " " + charQuote + theURL + charQuote;

int status = system(cmd.c_str());

• You will need to delete the temporary file .wet.html after having parsed it — use the following
code.

#include<unistd.h>

[...]

unlink(outputFile.c_str());

• The URL class will expose a method std::string getNextLink(void) to read the links in the
downloaded HTML page in the order in which they appear. Each time the method is called,
the next link is returned. When no more links are present, the empty string should be returned.
Subsequent calls to getNextLink() should return the sequence of links again as in a cycle.

• The URL class will contain a pointer to an HTMLPage object which parses the HTML code and finds
the relevant links. Note that this means that a user memory allocation/deallocation will need to
be performed.

• Test your URL implementation using the driver program urldriver.cxx: Run the program

./urldriver http://www.enseignement.polytechnique.fr/profs/informatique/Leo.

Liberti/test.html

and verify that the output is

http://www.enseignement.polytechnique.fr/profs/informatique/Leo.Liberti/test3.html

http://www.enseignement.polytechnique.fr/profs/informatique/Leo.Liberti/test2.html

5.6 The Vertex interface and VertexURL implementation

Design and implement a class VertexURL inheriting from the pure virtual class Vertex: VertexURL is
an encapsulation of a URL object which conforms to the Vertex interface. This will be used later in the
Digraph class to store the vertices of the graph. This separation between the Vertex interface and its
particular implementation (for example the VertexURL class) allows the Digraph class to be re-used with
other types of vertices, and therefore makes it very useful. An object conforming to the Vertex interface
must know (and be able to set and get): its own integer ID, the IDs of the vertices adjacent to it, a text
label associated to the vertex. Note that Vertex has a virtual destructor for the following reason: should
any agent attempt a direct deallocation of a Vertex object, the destructor actually called will be the
destructor of the interface implementation (VertexURL in this case, but might be different depending on
run-time conditions) rather than the interface destructor.

Test your implementation on the following code: Run the program

./vurldriver http://kelen.polytechnique.fr and verify that the output is vertex 0: star 1 2 .

5.7 The Arc and Digraph classes

1. Design and implement an Arc class to go with the Vertex class above. In practice, an Arc object
just needs to know its starting and ending vertex IDs.

The Arc and Digraph classes 28

Exercises Introduction to C++ L. Liberti

2. Design and implement a Digraph class to go with the Vertex and Arc classes defined above. This
needs to store a TimeStamp object, a vector of pointers to Vertex objects, a vector of pointers to
Arc objects. We need methods both for constructing (addVertex, addArc) as well as accessing the
graph information (getNumberOfVertices, getNumberOfArcs, getVertex, getArc). We also want
to be able to send a Digraph object to the cout stream to have a GraphViz compatible text output
which we shall display using the GraphViz utilities.

Test your implementation on the following program dgdriver.cxx: and verify that the output is:

graphviz output by WET (L. Liberti 2006)

digraph www_1158015497 {

0 [label = "name1"];

1 [label = "name2"];

2 [label = "name3"];

3 [label = "Thu Jan 10 19:24:53 2008", color = red];

1 -> 2;

1 -> 3;

2 -> 1;

3 -> 3;

}

5.8 Putting it all together: main()

Code the main function and all auxiliary functions into the files wet.h (declarations) and wet.cxx (def-
initions). The program should: read the given URL and the desired downloading recursion depth limit
from the command line, then recursively download the given URL and all meaningful sub-links up to the
given depth limit, whilst storing them as vertices and arcs of a digraph, which will then be printed out
in GraphViz format.

• The recursive part of the algorithm can be coded into a pair of functions (one is the “driver”
function, the other is the truly recursive one) declared as follows:

// retrieve the data, driver

void retrieveData(std::string URL, int maxDepth, Digraph& G,

bool localOnly, bool verbose);

// retrieve the data, recursive

void retrieveData(std::string URL, int maxDepth, Digraph& G,

bool localOnly, bool verbose,

int currentDepth, VertexURL* vParent);

(also see Section 5.1.4).

• Endow your WET application with a command line option -v (stands for “verbose”) that prints
out the URLs as they are downloaded

• Endow your WET application with a command line option -l (stands for “local”) that ignores all
URLs referring to webservers other than localhost (127.0.0.1). Optional: also try to devise an
option -L that ignores all URLs referring to webservers different from the one given on command
line.

• The GraphViz system can read a text description of a given graph and output a graphical rep-
resentation of the graph in various formats. The WET application needs to output the text de-
scription of the Digraph object. One self-explanatory example of the required format has been

Putting it all together: main() 29

Exercises Introduction to C++ L. Liberti

given at the beginning of this chapter. You can type man dot at the shell to get more infor-
mation. Implement WET so that it outputs the graph description in the correct format on cout.
When your WET application is complete, run it so that it saves the output to a file with the

.dot extension: ./wet http://kelen.polytechnique.fr/ 3 > mygraph.dot . The command

dot -Tgif -o mygraph.gif mygraph.dot builds a GIF file which you can display using the

command xv mygraph.gif .

Test your WET application by running
[./wet http://www.enseignement.polytechnique.fr/profs/informatique/Leo.Liberti/test.html

4] and verifying that the output is

graphviz output by WET (L. Liberti 2006)

digraph www_1199989821 {

0 [label = "www.enseignement.polytechnique.fr"];

1 [label = "www.enseignement.polytechnique.fr"];

2 [label = "www.enseignement.polytechnique.fr"];

3 [label = "Thu Jan 10 19:30:21 2008", color = red];

0 -> 1;

1 -> 0;

1 -> 2;

2 -> 0;

2 -> 1;

0 -> 2;

}

By saving wet’s output as wetout.dot and running dot -Tgif -o wetout.gif wetout.dot we get

Fig. 5.3, left. Reducing the depth level to 2 yields Fig. 5.3, right.

www.enseignement.polytechnique.fr

www.enseignement.polytechnique.fr

www.enseignement.polytechnique.fr

Thu Jan 10 19:30:28 2008 www.enseignement.polytechnique.fr

www.enseignement.polytechnique.fr

www.enseignement.polytechnique.fr

Thu Jan 10 19:31:24 2008

Figure 5.3: The neighbourhoods graphs (depth 4, left; depth 2, right).

Putting it all together: main() 30

Chapter 6

Exam questions

This section contains a set of typical exam questions.

6.1 Debugging question 1

The following code causes some compilation errors. Find them and correct them.

// this code contains errors

#include <iostream>

#include <cassert>

int main(int argc, char** argv) {

int ret = 0;

if (argc < 2) {

cerr << "error: need an integer on command line";

return 1;

}

int theInt = atoi(argv[1]);

if (isPrime(theInt)) {

cout << theInt << "is a prime number!" >> endl;

} else {

cout << theInt << "is composite" << endl;

return ret;

}

bool isPrime (int num) {

assert(num >= 2);

if (num == 2) {

return true;

} else if (num % 2 == 0) {

return false;

} else {

bool prime = true;

int divisor = 3;

int upperLimit = sqrt(num) + 1;

while (divisor <= upperLimit) {

31

Exercises Introduction to C++ L. Liberti

if (num % divisor == 0) {

prime = false;

}

divisor +=2;

}

return prime;

}

}

What is the corrected program output when executed with ./debug1 1231 ?

6.2 Debugging question 2

The following code causes some compilation errors. Find them and correct them.

// this code contains errors

#include <iotsream>

class A {

A() {

std::cout << "constructing object of class A" << std::endl;

}

~A() {

std::cout << "destroying object of class A" << std::endl;

}

setDatum(int i) {

theDatum = i;

}

getDatum(void) {

return theDatum;

}

private:

int theDatum;

}

int main(int argc, char** argv) {

A a;

a.SetDatum(5);

std::cout << a.GetDatum() << std::endl;

return;

}

What is the corrected program output when executed with ./debug2 ?

6.3 Debugging question 3

The following code looks for a word in a text file and replaces it with another word:

// this code contains errors

Debugging question 3 32

Exercises Introduction to C++ L. Liberti

// [search and replace a word in a text file]

#include<iostream>

#include<fstream>

#include<string>

int main(int argc, char** argv) {

using namespace std;

if (argc < 4) {

cout << "need a filename, a word and its replacement on cmd line" << endl;

return 1;

}

ifstream ifs(argv[1]);

if (!ifs) {

cout << "cannot open file " << argv[1] << endl;

return 2;

}

string s;

while(!ifs.eof()) {

ifs >> s;

if (ifs.eof()) {

break;

}

if (s == argv[2]) {

cout << argv[3];

} else {

cout << s;

}

cout << " ";

}

cout << endl;

ifs.close();

return 0;

}

Test it on the folling file, called story.txt, with the command ./debug3 story.txt wolf teddy-bear :

This is just a stupid little story with no meaning whatsoever. The wolf

came out of his den and chased little red hood, found her and pounced on

her. Little red hood cried, "the wolf!", just stepped aside and the

wolf cracked his neck on the pavement, his brain in pulp.

She was to hear of him no more.

The output is:

This is just a stupid little story with no meaning whatsoever. The teddy-bear

came out of his den and chased little red hood, found her and pounced on her.

Little red hood cried, "the wolf!", just stepped aside and the

teddy-bear cracked his neck on the pavement, his brain in pulp. She was to

hear of him no more.

Note that one occurrence of the word “wolf” was not actually changed to “teddy-bear”. Fix this
problem.

Debugging question 3 33

Exercises Introduction to C++ L. Liberti

6.4 Debugging question 4

Compile and run the following code:

// if you change t with s in the snippet, the code has the same effect

#include<iostream>

#include<string>

std::string method(std::string& s) {

s = s.substr(1, s.npos);

return s;

}

int main(int argc, char** argv) {

using namespace std;

string s("ciao");

cout << s << endl;

while(true) {

string& t = s;

//////////// snippet ////////////////

t = method(t);

if (t.length() == 0) {

break;

}

cout << t << endl;

//////////// end snippet ////////////

}

return 0;

}

the output is:

ciao

iao

ao

o

Now examine the part of the code marked “snippet”: it has the curious property that if you replace any
occurrence of the t variable symbol with the s variable symbol, you still obtain the same output. Explain
why.

6.5 Debugging question 5

The following code contains a simple list implementation and a main() which creates a list, prints it,
finds a node and removes it, then prints the list again.

// this code contains errors

// [form and print a list of integers]

#include <iostream>

Debugging question 5 34

Exercises Introduction to C++ L. Liberti

class Node {

public:

// constructors / destructor

Node() : next(NULL), previous(NULL) { }

Node(int a) : next(NULL), previous(NULL), data(a) { }

~Node() {

if (next) {

delete next;

}

}

// set/get interface

void setData(int a) {

data = a;

}

int getData(void) {

return data;

}

void setNext(Node* theNext) {

next = theNext;

}

Node* getNext(void) {

return next;

}

void setPrevious(Node* thePrevious) {

previous = thePrevious;

}

Node* getPrevious(void) {

return previous;

}

// list capabilities

// return true if node is the first of the list, false otherwise

bool isFirst(void) {

return !previous;

}

// return true if node is the last of the list, false otherwise

bool isLast(void) {

return !next;

}

// return the size of the sublist starting from this node

int size(void) {

Node* t = this;

int ret = 1;

while(!t->isLast()) {

t = next;

ret++;

}

return ret;

}

Debugging question 5 35

Exercises Introduction to C++ L. Liberti

// append a new given node at the end of the list

void append(Node* theNext) {

Node* t = this;

while(!t->isLast()) {

t = next;

}

t->setNext(theNext);

theNext->setPrevious(t);

}

// create a new node with value ’a’ and append it at the end of the list

void appendNew(int a) {

Node* t = this;

while(!t->isLast()) {

t = next;

}

Node* theNewNode = new Node(a);

t->setNext(theNewNode);

theNewNode->setPrevious(t);

}

// remove this node from the list

void erase(void) {

previous->setNext(next);

next->setPrevious(previous);

}

// replace this node with a given node

void replaceWith(Node* replacement) {

previous->setNext(replacement);

next->setPrevious(replacement);

}

// find first node with a specified value in sublist starting from this node

// return NULL if not found

Node* find(int needle) {

if (data == needle) {

return this;

}

Node* t = this;

while(!t->isLast()) {

t = next;

if (t->getData() == needle) {

return t;

}

}

return NULL;

}

// print the data in the sublist starting from this node

void print(void) {

Node* t = this;

while(!t->isLast()) {

std::cout << t.getData() << ", ";

Debugging question 5 36

Exercises Introduction to C++ L. Liberti

t = next;

}

std::cout << t->getData() << std::endl;

}

protected:

// pointer to next node in list

Node* next;

// pointer to previous node in list

Node* previous;

private:

// the integer data stored in the node

int data;

};

int main(int argc, char** argv) {

using namespace std;

int c = 1;

// create a new list

Node start(c);

// add 10 nodes to the list

while(c < 10) {

c++;

start.appendNew(c);

}

// print the list

start.print();

// find the node with value 5

Node* t = start.find(5);

// erase this node

t->erase();

// print the list again

start.print();

return 0;

}

The code contains:

1. one compilation error;

2. some run-time errors;

3. a memory leak.

Correct the compilation error, then compile the code — it should simply hang. Use the ddd debugger to
find the run-time errors, find all instances thereof, and correct them (remember to compile with the -g

option for debugging). Satisfy yourself that the code output is:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1, 2, 3, 4, 6, 7, 8, 9, 10

Debugging question 5 37

Exercises Introduction to C++ L. Liberti

Now use the valgrind memory debugger to check for memory leaks. Run the command

valgrind --leak-check=yes ./debug5

and using its output find and fix the error.

6.6 Debugging question 6

Compile the following code with cc -o schnitzi schnitzi.c and run it with ./schnitzi 36 to test
it, and try other numbers. Explain what it does and why.

#include<stdio.h>

main(l,i,I)char**i;{l/=!(l>(I=atoi(*++i))||fork()&&main(l+1,i-1)||I%l);

return printf("%d\n",l);}

6.7 Specification coding question 1

Write the implementation of the following SimpleString class.

/* name: simplestring.h

** author: L. Liberti

*/

#ifndef _SIMPLESTRINGH

#define _SIMPLESTRINGH

#include<iostream>

class SimpleString {

public:

// default constructor: initialise an empty string

SimpleString();

// initialise a string from an array of characters

SimpleString(char* initialiseFromArray);

// destroy a string

~SimpleString();

// return the size (in characters)

int size(void) const;

// return the i-th character (overloading of [] operator)

char& operator[](int i);

// copy from another string

void copyFrom(SimpleString& s);

Specification coding question 1 38

Exercises Introduction to C++ L. Liberti

// append a string to this

void append(SimpleString& suffix);

// does this string contain needle?

bool contains(SimpleString& needle) const;

private:

int theSize;

char* buffer;

int theAllocatedSize;

static const int theMinimalAllocationSize = 1024;

char theZeroChar;

};

std::ostream& operator<<(std::ostream& out, SimpleString& s);

#endif

Test it with with the following main program:

/* name: ssmain.cxx

author: Leo Liberti

*/

#include<iostream>

#include "simplestring.h"

int main(int argc, char** argv) {

using namespace std;

SimpleString s("I’m ");

SimpleString t("very glad");

SimpleString u("so tired I could pop");

SimpleString v("very");

cout << s << endl;

cout << t << endl;

cout << u << endl << endl;

SimpleString w;

w.copyFrom(s);

s.append(t);

w.append(u);

cout << s << endl;

cout << w << endl << endl;

if (s.contains(v)) {

cout << "s contains very" << endl;

} else {

cout << "s does not contain very" << endl;

}

if (w.contains(v)) {

cout << "w contains very" << endl;

} else {

cout << "w does not contain very" << endl;

}

return 0;

Specification coding question 1 39

Exercises Introduction to C++ L. Liberti

}

and check that the output is as follows.

I’m

very glad

so tired I could pop

I’m very glad

I’m so tired I could pop

s contains very

w does not contain very

Write also a makefile for building the object file simplestring.o and the executable ssmain.

6.8 Specification coding question 2

Write the implementation of the following IntTree class (a tree data structure for storing integers).

/* Name: inttree.h

Author: Leo Liberti

*/

#ifndef _INTTREEH

#define _INTTREEH

#include<vector>

class IntTree {

public:

// constructs an empty tree

IntTree();

// destroys a tree

~IntTree();

// add a new subnode with value n

void addSubNode(int n);

// get the number of subtrees

int getNumberOfSubTrees(void);

// get a pointer to the i-th subtree

IntTree* getSubTree(int i);

// removes a subtree without deleting it (and returning it)

IntTree* removeSubTree(int i);

// adds a tree as a subtree of the current tree

void addSubTree(IntTree* t);

Specification coding question 2 40

Exercises Introduction to C++ L. Liberti

// get pointer to the parent tree

IntTree* getParent(void);

// set parent pointer

void setParent(IntTree* p);

// get value of current tree

int getValue(void);

// set value in current tree

void setValue(int n);

// find the first subtree containing given value by depth-first search

// and put its pointer in ’found’

// PRECONDITION: found must be NULL on entry

// POSTCONDITION: if found is NULL on exit, value was not found

void findValue(int n, IntTree* &found);

// print a tree to standard output

void print(void);

protected:

// value stored in the node (tree)

int value;

// pointer to parent tree

IntTree* parent;

// vector of subtree pointers

std::vector<IntTree*> subTree;

private:

// iterator sometimes used in methods

std::vector<IntTree*>::iterator stit;

};

#endif

Test it with with the following main program:

/* name: itmain.cxx

author: Leo Liberti

*/

#include <iostream>

#include "inttree.h"

int print(IntTree& t) {

using namespace std;

cout << "T = ";

t.print();

Specification coding question 2 41

Exercises Introduction to C++ L. Liberti

cout << endl;

}

int main(int argc, char** argv) {

using namespace std;

IntTree myTree;

myTree.setValue(0);

myTree.addSubNode(1);

myTree.addSubNode(2);

myTree.addSubNode(3);

print(myTree);

int st = myTree.getNumberOfSubTrees();

for(int i = 0; i < st; i++) {

IntTree* t = myTree.getSubTree(i);

t->addSubNode(2*i + st);

t->addSubNode(2*i + 1 + st);

}

print(myTree);

IntTree* anotherTree = new IntTree;

anotherTree->setValue(-1);

anotherTree->addSubNode(-2);

anotherTree->addSubNode(-3);

IntTree* t = NULL;

myTree.findValue(2, t);

if (t) {

st = t->getNumberOfSubTrees();

IntTree* u = t->removeSubTree(st - 1);

print(myTree);

delete u;

t->addSubTree(anotherTree);

}

print(myTree);

myTree.findValue(-3, t);

int level = 1;

while(t != NULL) {

t = t->getParent();

level++;

}

cout << "node (-3) is at level " << level << " (root has level 1)" << endl;

return 0;

}

and check that the output is as follows.

T = 0 (1 2 3)

T = 0 (1 (3 4) 2 (5 6) 3 (7 8))

T = 0 (1 (3 4) 2 (5) 3 (7 8))

T = 0 (1 (3 4) 2 (5 -1 (-2 -3)) 3 (7 8))

node (-3) is at level 3 (root has level 1)

Specification coding question 2 42

Exercises Introduction to C++ L. Liberti

6.9 Task question 1

Write a program that prints its own (executable) file size in bytes and in number of printable characters
(a character char c is printable if (isalnum(c) > 0 || ispunct(c) > 0 || isspace(c) > 0)).

6.10 Task question 2

Write a program that prints the name of the image files referenced in the the web page http://www.

enseignement.polytechnique.fr/index.html. Image files are referenced in HTML both by the at-
tribute HREF of the tag A (e.g.) and by the attribute SRC

of the tag IMG (e.g.). The output should be as follows.

images/entete1.gif

images/remise.gif

images/amphi.gif

/icones/home.gif

6.11 Task question 3

Write a program that reads an m× n matrix A = (aij) from a text file with m lines is a list of n double

entries separated by a space, then output the homogeneous system Ax = 0 in explicit algebraic form with
m lines of text having the following format:

ai1 * x[1] + . . . ain * x[n].

The name of the file containing the matrix and the integer n should be read from the command line.

For example, for the text file

1 -2.3 3 0.0

-9.123 2 -50 -1

you should obtain the following output:

x[1] - 2.3*x[2] + 3*x[3] = 0

-9.123*x[1] + 2*x[2] - 50*x[3] - x[4] = 0

Hint: if you have a file stream ifs and you want to read a double value off it, use the following
construct.

double t;

ifs >> t;

Task question 3 43

Exercises Introduction to C++ L. Liberti

Task question 3 44

Chapter 7

Questions from a banking C++ test

In this chapter we group some questions taken from a real online C++ test used by banks worldwide.
You have 60 seconds to answer each multiple choice question.

7.1 Question 1

Code:

char a [] = "ABCD\r\n";

Question: How many elements will be in the array created by the declaration in the sample above?

1. 6

2. 7

3. 8

4. 9

5. 4

7.2 Question 2

Question: Which of the following statements is true when a derivation inherits both a virtual and
non-virtual instance of a base class?

1. Each base class object has derived objects only from the non-virtual instance.

2. Each base class object has derived objects only from the virtual instance.

3. Each derived class object has base objects only from the virtual instance.

4. Each derived class object has base objects only from the non-virtual instance.

5. Each derived class object has a base object from the virtual instance and a base object from non-
virtual instance.

45

Exercises Introduction to C++ L. Liberti

7.3 Question 3

Code:

string somestring ;

Question: Which of the following choices will convert a standard C++ string object ”somestring”
to a C string?

1. Copy.somestring () ;

2. somestring.c str ()

3. std::cstring (somestring)

4. (char *) somestring

5. &somestring [1]

7.4 Question 4

Code:

#include <iostream>

Question: Referring to the sample code above, which of the following could you use to make the standard
I/O stream classes accessible without requiring the scope resolution operator?

1. using iostream ;

2. using namespace iostream ;

3. using namespace std ;

4. using namespace std::iostream ;

5. using std::iostream ;

7.5 Question 5

Code:

class basex {

int x;

public:

void setx(int y) {x=y;}

};

class derived : basex {};

Question: What is the access level for the member function setx in the class derived above?

Question 5 46

Exercises Introduction to C++ L. Liberti

1. protected

2. public

3. local

4. private

5. global

Question 5 47

