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About the course

▶ Aims of lectures: theory, algorithms, some code
won’t repeat much of MAP557

▶ Aims of TD: modelling abilities in practice
with AMPL and Python

▶ Warning:
some disconnection between lectures and TD is normal

some theoretical topics do not lend themselves to implementation

▶ Lectures/TD: (generally) on fri afternoon
▶ Exam: mini-project (individual/pairs) or oral exam

http://www.lix.polytechnique.fr/~liberti/
teaching/dix/inf580

2 / 413

http://www.lix.polytechnique.fr/~liberti/teaching/dix/inf580
http://www.lix.polytechnique.fr/~liberti/teaching/dix/inf580


Outline

Introduction
MP language
Solvers
MP systematics
Some applications

Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability

Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations

Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok’s Naive Algorithm
Isomap revisited

Summary
Random projections in LP

Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression

Sparsity and ℓ1 minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements

Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound

Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

3 / 413



Outline

Introduction
MP language
Solvers
MP systematics
Some applications

Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability

Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations

Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok’s Naive Algorithm
Isomap revisited

Summary
Random projections in LP

Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression

Sparsity and ℓ1 minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements

Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound

Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again

4 / 413



What is Mathematical Optimization?

▶ Mathematics of solving optimization problems
▶ Formal language: Mathematical Programming (MP)
▶ Sentences: descriptions of optimization problems
▶ Interpreted by solution algorithms (“solvers”)
▶ As expressive as any imperative language
▶ Shifts focus from algorithmics to modelling
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Why Large-scale?

▶ Any process can be optimized
▶ Social, technical and business processes are complex
▶ Computer power limits model precision
▶ Nowadays, need to solve very complicated models
⇒ increase in model size

▶ ⇒ algorithmic complexity must grow slowly with size
▶ Focus on fast algs and heuristics
▶ Investigate tractable relaxations & dimensionality

reduction methods
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The syllabus

▶ Which optimization problems can be solved?
a tour of 20th century logic

▶ Complexity of optimization problems
basics of theoretical computer science

▶ Distance geometry
modern large-scale optimization and data science techniques

▶ Random projections
new approaches to approximately solving large-scale
problems

▶ Sparsity and ℓ1 minimization
integrality out of continuity

▶ Further topics
as time allows
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MP Formulations
Given functions f, g1, . . . , gm : Qn → Q and Z ⊆ {1, . . . , n}

minx f(x)
∀i ≤ m gi(x) ≤ 0
∀j ∈ Z xj ∈ Z

 [P ]

▶ More general than it looks:
▶ max f(x) = −min−f(x)
▶ gi(x) = 0 ⇔ (gi(x) ≤ 0 ∧ −gi(x) ≤ 0)
▶ L ≤ x ≤ U ⇔ (L− x ≤ 0 ∧ x− U ≤ 0)

▶ f, gi represented by expression DAGs

Class of all formulations P : MP
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Semantics of MP formulations
▶ JP K = optimum (or optima) of P
▶ Given P ∈MP, there are three possibilities:

JP K exists, P is unbounded, P is infeasible
▶ P is feasible iff JP K exists or P is unbounded

otherwise it is infeasible
▶ P has an optimum iff JP K exists

otherwise it is infeasible or unbounded
▶ Example:

min x1 + 2x2 − log(x1x2)
x1x

2
2 ≥ 1
x1 ∈ [0, 1]
x2 ∈ N


Exercise
Code this toy MP in AMPL and solve it with BARON
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Example: solution “by inspection”

P ≡ min{x1 +2x2 − log(x1x2) | x1x22 ≥ 1∧ 0 ≤ x1 ≤ 1∧ x2 ∈ N}

JP K = (opt(P ), val(P )) opt(P ) = (1, 1) val(P ) = 3
10 / 413



Feasibility and optimality

▶ Feasibility problem: [g(x) ≤ 0]
can be written as the MP [min{0 | g(x) ≤ 0]}

▶ Bounded MP [min{f(x) | g(x) ≤ 0}]:
equivalent to feasibility (up to an ϵ > 0 error)
bisection on f0 in feas. prob. [g(x) ≤ 0 ∧ f(x) ≤ f0]

for max problems use [g(x) ≤ 0 ∧ f(x)≥ f0] instead

▶ Unbounded MP: not equivalent to feasibility
in general, cannot prove unboundedness
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Bisection algorithm

▶ P ≡ min{f(x) | ∀i ∈ I gi(x) ≤ 0 ∧ x ∈ X}

▶ Assume global opt x∗ of P has value f(x∗) between
given lower/upper bounds

▶ Reformulate P to a parameterized feasibility problem
Q(f0) ≡ {x ∈ X | f(x) ≤ f0 ∧ ∀i ∈ I gi(x) ≤ 0}

use Q(f0) ≡ {x ∈ X | f(x)≥ f0 ∧ ∀i ∈ I gi(x) ≤ 0} for max problems
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Bisection algorithm for min optimal value

1: Input: lower & upper bound for f0
2: while lower and upper bounds differ by > ϵ do
3: let f0 be midway between bounds
4: if Q(f0) is feasible then
5: update upper bound to f0 lower for max problems

6: else
7: update lower bound to f0 upper for max problems

8: end if
9: end while
▶ solve an optimization problem with calls to feasibility oracle

▶ need only ⌈log2
(
UB−LB

ϵ

)
⌉ calls to oracle

Exercise
Solve the toy MP using this bisection algorithm in AMPL
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Bisection algorithm for minimum
1: Input: lower & upper bounds for f0,

candidate global optimum x̂
2: while lower and upper bounds differ by > ϵ do
3: let f0 be midway between bounds
4: if Q(f0) is feasible then
5: find a feasible point x′
6: if f(x′) better than f(x̂) then
7: update x̂ to x′
8: update upper bound to f(x̂) lower for max problems

9: end if
10: else
11: update lower bound to f0 upper for max problems

12: end if
13: end while
Exercise
Solve the toy MP using this bisection algorithm in AMPL
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Bisection algorithm for MP (formal)
Given:

▶ global optimal value approximation tolerance ϵ > 0
▶ lower bound f , upper bound f̄
▶ feasibility alg. F that finds an element in a set or certifies ∅ up to ϵ > 0

1: let (x̂, f̂) = (uninitialized, f̄)
2: while f̄ − f > ϵ do
3: let f0 = (f + f̄)/2
4: (x′, f ′) = F(Q(f0))
5: if (x′, f ′) ̸= (∅,∅) then
6: if f ′ < f̂ then
7: update (x̂, f̂)← (x′, f ′)

8: update f̄ ← f̂ or f ← f̂ for max problems

9: end if
10: else
11: update f ← f0 or f̄ ← f0 for max problems

12: end if
13: end while
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Subsection 1

MP language
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Entities of a MP formulation

▶ Sets of indices
▶ Parameters

problem input, or instance
▶ Decision variables

will encode the solution after solver execution
▶ Objective function
▶ Constraints
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MP Example

Linear Program (LP) in standard form
▶ m,n: number of rows and columns

corresponding index sets I = {1, . . . ,m}, J = {1, . . . , n}
▶ c ∈ Rn, b ∈ Rm, A an m× n matrix
▶ x ∈ Rn

▶ minx c
⊤x

▶ Ax = b ∧ x ≥ 0

Exercise
Code this example in AMPL and solve it with CPLEX
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MP language implementations

▶ Humans model with quantifiers (∀,
∑

,. . . )
e.g. ∀i ∈ I

∑
j∈J

aijxj ≤ bi

structured formulation

▶ Solution algorithms accept lists of explicit constraints
e.g. [4x1 + 1.5x2 + x4 ≤ 2, x1 + x2 + x3 + x4 ≤ 1]
flat formulation

▶ Translation from structured to flat formulation
▶ MP language implementations

AMPL , GAMS, Matlab+YALMIP,
Python+amplpy/cvxpy/pyomo , Julia+JuMP, . . .

Exercise
Use AMPL to derive the flat formulation from the standard form LP
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AMPL

▶ AMPL = A Mathematical Programming Language
▶ Syntax similar to human notation
▶ Bare-bone programming language

e.g. no function calls
▶ Commercial & closed-source

▶ extremely rapid prototyping
▶ we get free licenses for this course
▶ free open-source AMPL sub-dialect in GLPK glpsol

▶ Can also use Python+amplpy/cvxpy, or Julia+JuMP
Exercise
Formulate and solve the standard form LP using Python+amplpy
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Subsection 2

Solvers
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Solvers

▶ Solver:
a solution algorithm for a whole subclass of MP
examples: BARON, CPLEX

▶ Take formulation P as input

▶ Output JP K and possibly other information

▶ Trade-off between generality and efficiency
fast solvers for large MP subclasses: unlikely
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Some subclasses of MP

(i) Linear Programming (LP)
f, gi linear, Z = ∅

(ii) Mixed-Integer LP (MILP)
f, gi linear, Z ̸= ∅

(iii) Nonlinear Programming
(NLP)
some nonlinearity in f, gi, Z = ∅
f, gi convex: convex NLP (cNLP)

(iv) Mixed-Integer NLP
(MINLP)
some nonlinearity in f, gi, Z ̸= ∅
f, gi convex: convex MINLP
(cMINLP)

min f(x)
∀i ≤ m gi(x) ≤ 0
∀j ∈ Z xj ∈ Z

 [P ]

23 / 413



And their solvers

(i) Linear Programming (LP)
simplex algorithm, interior point method (IPM)
Implementations: CPLEX, GLPK, CLP

(ii) Mixed-Integer LP (MILP)
cutting plane alg., Branch-and-Bound (BB)
Implementations: CPLEX, GuRoBi

(iii) Nonlinear Programming (NLP)
IPM, gradient descent (cNLP), spatial BB (sBB)
Implementations: IPOPT (cNLP), Baron, Couenne

(iv) Mixed-Integer NLP (MINLP)
outer approximation (cMINLP), sBB
Implementations: Bonmin (cMINLP), Baron, Couenne
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Subsection 3

MP systematics
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Types of MP

Continuous variables:

▶ LP (linear functions)

▶ QP (quadratic objective over affine sets)

▶ QCP (linear objective over quadratic sets)

▶ QCQP (quadratic objective over quadratic sets)

▶ NLP (nonlinear functions)

▶ SOCP (LP over 2nd order cone)

▶ SDP (LP over PSD cone)

▶ CPP (LP over copositive cone)

▶ cNLP (convex sets, convex objective)
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Types of MP

Mixed-integer variables:

▶ IP (integer programming), MIP (mixed-integer programming)

▶ extensions: MILP, MIQP, MIQCP, MIQCQP, cMINLP, MINLP

▶ BLP (LP over {0, 1}n)

▶ BQP (QP over {0, 1}n)

Some more “exotic” classes:

▶ MOP (multiple objective functions)

▶ BLevP (optimization constraints)

▶ SIP (semi-infinite programming)
Example: nonlinear constraint y ≥ x2 equivalent to infinite linear constraint
set ∀p ∈ R (y ≥ 2px− p2)
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Subsection 4

Some applications
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Some application fields
▶ Production industry

planning, scheduling, allocation, . . .
▶ Transportation & logistics

facility location, routing, rostering, . . .
▶ Service industry

pricing, strategy, product placement, . . .
▶ Energy industry

power flow optimization, monitoring smart grids, . . .
▶ Machine Learning & Artificial Intelligence

clustering, support vector machines, ANN training, . . .
▶ Biochemistry & medicine

protein structure, blending, tomography, . . .
▶ Mathematics

Kissing number, packing of geometrical objects, . . .
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Easy example

A bank needs to invest C gazillion dollars, and focuses on
two types of investments: (a) guarantees a 15% return; (b)
guarantees 25%. At least one fourth of the budget C must
be invested in (a), and the quantity invested in (b) cannot
be more than double the quantity invested in (a). How do
we choose how much to invest in (a) and (b) so that revenue
is maximized?

Modelling school
Question 1: What data are we given?
Question 2: What are the decision variables?
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Easy example: formulation

▶ Parameters:
▶ budget C
▶ return on investment on (a): 15%, on (b): 25%

▶ Decision variables:
▶ xa = budget invested in (a)
▶ xb = budget invested in (b)

▶ Objective function: 1.15xa + 1.25xb
▶ Constraints:

▶ xa + xb = C
▶ xa ≥ C/4
▶ xb ≤ 2xa
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Easy example: remarks
▶ Missing trivial constraints:

verify that xa = C + 1, xb = −1 satisfies constraints
forgot x ≥ 0

▶ No “arbitrary” numbers in formulations:
replace numbers by parameter symbols

max
xa,xb≥0

caxa + cbxb

xa + xb = C
xa ≥ pC

dxa − xb ≥ 0


▶ Formulation generality:

extend to n investments:
max
x≥0

∑
j≤n

cjxj∑
j≤n

xj = C

x1 ≥ pC
dx1 − x2 ≥ 0


▶ Every parameter needs a numeric value: e.g. C = 1
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Example: monitoring an electrical grid
An electricity distribution company wants to monitor certain quantities
at the lines of its grid by placing measuring devices at the buses. There
are three types of buses: consumer, generator, and repeater. There are
five types of devices:

▶ A: installed at any bus, and monitors all incident lines (cost:
0.9MEUR)

▶ B: installed at consumer and repeater buses, and monitors two
incident lines (cost: 0.5MEUR)

▶ C: installed at generator buses only, and monitors one incident
line (cost: 0.3MEUR)

▶ D: installed at repeater buses only, and monitors one incident
line (cost: 0.2MEUR)

▶ E: installed at consumer buses only, and monitors one incident
line (cost: 0.3MEUR).

Provide a least-cost installation plan for the devices at the buses, so
that all lines are monitored by at least one device.
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Example: the electrical grid

gen1

con1 con2

rep1

rep2

rep3

rep4gen2

con20rep5 rep6rep7

con3 con4

con5 con6 con7

con8 con9

con10 con11

con12con13 con14 con15 con16con17 con18con19

rep10

rep11

rep8rep9
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Example: formulation

▶ Index sets:
▶ V : set of buses v
▶ E: set of lines {u, v}
▶ A: set of directed lines (u, v)
▶ ∀u ∈ V let Nu = buses adjacent to u
▶ D: set of device types
▶ DM : device types covering > 1 line
▶ D1 = D ∖DM

▶ Parameters:
▶ ∀v ∈ V bv = bus type
▶ ∀d ∈ D cd = device cost
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Example: formulation

▶ Decision variables
▶ ∀d ∈ D, v ∈ V xdv = 1

iff device type d installed at bus v
▶ ∀d ∈ D, (u, v) ∈ A yduv = 1

iff device type d installed at bus u measures line {u, v}
▶ all variables are binary

▶ Objective function

min
x,y

∑
d∈D

∑
v∈V

cdxdv
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Example: formulation

▶ Constraints
▶ device types:

∀v ∈ V bv = gen → xBv = 0

∀v ∈ V bv ∈ {con, rep} → xCv = 0

∀v ∈ V bv ∈ {gen, con} → xDv = 0

∀v ∈ V bv ∈ {gen, rep} → xEv = 0

▶ at most one device of any type at each bus

∀v ∈ V
∑
d∈D

xdv ≤ 1
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Example: formulation
▶ Constraints

▶ A: every line incident to installed device is monitored

∀u ∈ V, v ∈ Nu yAuv = xAu

▶ B: two monitored lines incident to installed device

∀u ∈ V
∑
v∈Nu

yBuv = min(2, |Nu|)xBu

▶ C,D,E: one monitored line incident to installed device

∀d ∈ D1, u ∈ V
∑
v∈Nu

yduv = xdu

▶ line is monitored

∀{u, v} ∈ E
∑
d∈D

yduv +
∑
e∈D

yevu ≥ 1
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Example: solution

gen1

devA

con1 con2

rep1

devD

rep2

devD

rep3

devD

rep4

devD

gen2

con20

devB

rep5

devA

rep6

devB

rep7

devA

con3

devE

con4

con5

devB

con6

devB

con7

con8 con9

devE

con10

devE

con11

con12con13 con14 con15

devE

con16con17 con18con19

rep10

devA

rep11

devA

rep8

devB

rep9

devD

all lines monitored, no redundancy, cost 9.2MEUR
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Can we solve MPs?

▶ “Solve MPs”: is there an algorithm D s.t.:

∀P ∈MP D(P ) =


infeasible P is infeasible
unbounded P is unbounded
JP K otherwise

▶ I.e. does there exist a single, all-powerful solver?
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Subsection 1

Formal systems
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Formal systems (FS)

▶ A formal system consists of:
▶ an alphabet
▶ a formal grammar

allowing the determination of formulæ and sentences
▶ a set A of axioms (given sentences)
▶ a set R of inference rules

allowing the derivation of new sentences from old ones
▶ A theory T is the smallest set of sentences that is

obtained by recursively applying R to A

[Smullyan, Th. of Formal Systems, 1961]
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Examples
▶ Alphabets:

B = {0, 1}, N = B ∪ {2, 3, . . . , }, V = {x0, x1, x2, . . .}
E = {(, ),+,−,×,÷,□□, exp, log, sin} ∪N ∪ V
PA 1 = {∀,∃,∨,∧,¬,=} ∪ E ,
MP = {min,max,

∑
,
∏
,≤,≥} ∪PA 1

▶ An expression grammar:

expr : term+ expr | term− expr | term

term : factor× term | factor÷ term | factor

factor : powerpower | power

power : log(unr) | exp(unr) | sin(unr) | (−unr) | unr
unr : (expr) | N | V

e.g. (1− sin(x)2)(1/2): expr = term→ factor→ powerpower →
unrunr → (expr)(expr) → (term− expr)(term) →
(factor− term)(factor÷factor) → · · · → (N − (sin(V ))N )N ÷N

▶ Axioms: see later
▶ Inference rules:

modus ponens, symbol replacement, A ⊢ A ∧A, A ⊢ A ∨A, . . .
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Example: PA1
▶ Theory: 1st order provable sentences about N
▶ Alphabet: +,×,∧,∨,→,∀,∃,¬,=, 0, S(·) and variable names
▶ Peano’s Axioms:

1. ∀x (0 ̸= S(x))

2. ∀x, y (S(x) = S(y)→ x = y)

3. ∀x (x+ 0 = x)

4. ∀x (x× 0 = 0)

5. ∀x, y (x+ S(y) = S(x+ y))

6. ∀x, y (x× S(y) = x× y + x)

7. axiom schema over all (k + 1)-ary ϕ: ∀y = (y1, . . . , yk)
(ϕ(0, y) ∧ ∀x(ϕ(x, y)→ ϕ(S(x), y)))→ ∀xϕ(x, y)

▶ Inference: see
https://en.wikipedia.org/wiki/List_of_rules_of_inference
e.g. modus ponens (P ∧ (P → Q))→ Q

▶ Generates ring (N,+,×) and arithmetical proofs
e.g. ∃x ∈ Nn ∀i (pi(x) ≤ 0) (polynomial MINLP feasibility)
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Example of PA1 derivation
Thm.
∀x (x = x)

Proof

A3 ∀x x+ 0 = x (1)
logic ∀t, r, s t = r → (t = s→ r = s) (2)
1, 2 ∀x x+ 0 = x→ (x+ 0 = x→ x = x) (3)
1, 3,mp ∀x x+ 0 = x→ x = x (4)
1, 4,mp ∀x x = x QED

Notes:
▶ truth tables of A→ B and (¬A) ∨B are the same
▶ logic indicates a “logical theorem”

[equality] (t = r ∧ t = s) → r = s; [truth tables] t = r → (t = s→ r = s)

▶ mp indicates application of modus ponens
▶ all derivations are completely syntactical
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Example: Reals

▶ Theory: 1st order provable sentences about R
▶ Alphabet: +,×,∧,∨,∀,∃,=, <,≤, 0, 1,variable names
▶ Axioms: field and order
▶ Inference: see

https://en.wikipedia.org/wiki/List_of_rules_of_inference

e.g. modus ponens (P ∧ (P → Q))→ Q

▶ Generates polynomial rings R[X1, . . . , Xk] (for all k)
e.g. ∃x ∈ Rn ∀i (pi(x) ≤ 0) (polynomial NLP feasibility)
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Phrases and sentences

▶ Phrase: sequence of symbols generated by FS grammar
e.g. x, S(x), x+ 0 = x, x× y = z

▶ Sentence: phrase, with no unquantified variable
symbol, stating a relation between variables
e.g. ∀x (x+ 0 = x), ∀x, y ∃z (x+ y = z)

▶ Only sentences can be decidable, provable (or not)
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Relevance of FSs to MP

Given a FS F :
▶ A decision problem is a set P of sentences

Decide if a given sentence f belongs to P
▶ Decidability in formal systems:

P ≡ provable sentences
▶ Proof of f : finite sequence of sentences ending with f

sentences: axioms, or derived from predecessors by inference rules

▶ PA1: decide if sentence f about N has a proof
e.g. ∃x ∈ Zn ∀i pi(x) ≤ 0 (polynomial p)

▶ Reals: decide if sentence f about R has a proof
e.g. ∃x ∈ Rn ∀i pi(x) ≤ 0 (polynomial p)

▶ Formal study of MINLP/NLP feasibility
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Decidability, computability, solvability

▶ Decidability: applies to decision problems
▶ Computability: applies to function evaluation

▶ Is the function mapping i to the i-th prime integer
computable?

▶ Is the function mapping Cantor’s “Continuum Hypothesis”
to 1 if provable in the ZFC axiom system, and to 0
otherwise, computable?

▶ Solvability: applies to other problems
E.g. to optimization problems
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Completeness and decidability
▶ Complete FS F :

for any f ∈ F , either f or ¬f is provable
otherwise F is incomplete

▶ Decidable FS F :
∃ algorithm D s.t.

∀f ∈ F
{
D(f) = 1 iff f is provable
D(f) = 0 iff f is not provable

otherwise F is undecidable
Example to underline the difference between completeness and decidability:
suppose there is a FS F such that

[a sentence f is provable iff it begins with the characters “∀x1∃x2”] (⋆)
then proving completeness requires a meta-theorem to prove (⋆) and to show that
there are no other sentences than those with given initial characters; proving
decidability only requires an algorithm D scanning the first few characters of f to
decide provability, without actually finding a proof.
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Example: PA1

▶ Gödel’s 1st incompleteness theorem:
PA1 is incomplete

▶ Turing’s theorem:
PA1 is undecidable

▶ ⇒ PA1 is incomplete and undecidable
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Subsection 2

Gödel
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Gödel’s 1st incompleteness theorem
▶ F : any FS extending PA1
▶ Thm. F complete iff inconsistent
▶ ϕ is a sentence stating [ϕ not provable in F ]

denoted F ̸⊢ ϕ; it can be constructed in F (hard part of thm.)
▶ ⊢: “is provable” in PA1; ⊢: in meta-language
▶ Assume F is complete: either F⊢ϕ or F⊢¬ϕ
▶ If F ⊢ϕ then F⊢(F ̸⊢ ϕ) i.e. F ̸⊢ϕ, contradiction
▶ If F⊢¬ϕ then F⊢¬(F ̸⊢ ϕ) i.e. F⊢(F ⊢ ϕ)

this implies F⊢ϕ, i.e. F⊢(ϕ ∧ ¬ϕ), F inconsistent
▶ Assume F is inconsistent:

Then any sentence is provable, i.e. F complete
Proof: if F is inconsistent then for some P we have P ∧ ¬P ;
hence P and ¬P both hold; since P , then for any Q we have P ∨Q;
but since ¬P , then P ∨Q implies that Q holds; therefore P ∧¬P → Q

▶ If we want PA1 to be consistent, it must be incomplete
▶ Warning: F ̸⊢ϕ ≡ ¬(F⊢ϕ) ̸≡ F⊢¬ϕ
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Gödel’s encoding

▶ For ψ a phrase in PA1, define a function ⌜ψ⌝ ∈ N
an integer which encodes the phrase
called “Gödel number” of the phrase

▶ ⌜·⌝ is an injective map
many ways to define ⌜·⌝

▶ Inverse: ⟨⌜ϕ⌝⟩ = ϕ
ϕ is the phrase corresponding to Gödel number ⌜ϕ⌝

▶ Encode/decode in N any phrase of PA1
⇒ sentences and proofs can be encoded as natural numbers
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Gödel’s self-referential sentence ϕ

▶ For integers x, y ∃g ∈ N ⟨g⟩ ≡ proof(x, y) :
⟨g⟩ is the sentence “⟨x⟩ is a proof in PA1 of the sentence ⟨y⟩”

▶ For integers m,n, p ∃g ∈ N g = sost(m,n, p) :
g encodes the phrase obtained by replacing the variable symbol
having Gödel number n with the integer p in the phrase ⟨m⟩
[this function replaces a symbol with a number in a phrase]

▶ Let y be the Gödel number of the phrase “y”, i.e. y = ⌜y⌝

▶ Define γ(y) ≡ ¬∃x ∈ N proof(x, sost(y, y, y)):
γ(y): ̸ ∃ proof in PA1 for the sentence obtained by replacing, in
the sentence ⟨y⟩, every variable symbol “y” with the integer y

▶ let q = ⌜γ(y)⌝, consider ϕ ≡ γ(q)
note ϕ ≡ ¬∃x ∈ N proof(x, sost(q, y, q))
q is a Gödel number ∈ N, and y is a variable symbol ranging over N: no “type mismatch”
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Gödel’s self-referential sentence ϕ

ϕ ≡ ¬∃x ∈ N proof(x, sost(q, y, q))

▶ Let ψ ≡ ⟨sost(q, y, q)⟩
ψ derived by replacing phrase “y” in ⟨q⟩ with integer q (†)

▶ ϕ ≡ “there is no proof in PA1 for ψ”
▶ How did we obtain ϕ? Since ϕ ≡ γ(q),

ϕ derived by replacing phrase “y” in γ(y) with integer q (‡)

▶ Only difference between ϕ and ψ: γ(y) instead of ⟨q⟩

▶ But recall that q = ⌜γ(y)⌝, i.e. γ(y) ≡ ⟨q⟩
▶ So, in fact, ψ ≡ ϕ

▶ Hence ϕ states “ϕ is not provable in PA1”

Note: replacement of y with q in meta-language (‡) is encoded by sost() in PA1 (†)
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Subsection 3

Turing
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Turing machines
▶ Turing Machine (TM): computation model

▶ infinite tape with cells storing finite alphabet letters
▶ head reads/writes/skips i-th cell, moves left/right
▶ states=program (e.g. if s write 0, move left, change to state t)
▶ initial tape content: input, final tape content: output
▶ final state ⊥: termination (nontermination denoted ∅)
▶ can represent operations in PA1

▶ ∃ universal TM (UTM) U s.t.
▶ input: the program of a TM T and an input x for T
▶ U simulates T running on x and returns output T (x)

▶ ⇒ The basis of the modern computer
▶ TMs can be represented as sentences in PA1

see this proof
we’ll see a similar proof while discussing Cook’s theorem in Ch. 3
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The halting problem

▶ Halting Problem (HP):
given TM M and input x, is M(x) = ⊥?

i.e. does a given TM terminate on its input?

▶ Turing’s theorem: HP is undecidable
TMs can be represented in PA1 ⇒ so can HP

▶ HP is an undecidable sentence in PA1
⇒ PA1 is undecidable
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Turing’s theorem: Computable functions

▶ TM T on input x yielding output y: write T (x) = y

▶ If a TM T terminates on all input, T (·) is computable
a.k.a. “total computable”

▶ If a function is not computable, then it’s uncomputable
▶ If T only terminates on some input, T (·) is

partial computable
Let T (x) = ∅ (undefined) if T does not terminate on input x

▶ Every total computable function is also (trivially) partial
computable

▶ If a partial computable function is not total, then it is
uncomputable
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Turing’s theorem: Proof
▶ Enumerate all TMs: (Mj | j ∈ N)

▶ Halting function halt(i, ℓ) =

{
1 if Mi(ℓ) = ⊥
0 if Mi(ℓ) = ∅

▶ Show halt ̸= F for any total computable F (i, ℓ):
▶ define G(i) = 0 if F (i, i) = 0, and undefined (∅) othw

G is partial computable because F is computable
▶ let Mj be the TM computing G
∀ input i, Mj(i) = ⊥ iff G(i) = 0 (since G(i) undefined othw)

▶ consider halt(j, j):
▶ halt(j, j) = 1→Mj(j) = ⊥ → G(j) = 0→ F (j, j) = 0
▶ halt(j, j) = 0→Mj(j) = ∅→ G(j) = ∅→F (j, j) ̸= 0

▶ so halt(j, j) ̸= F (j, j) for all j
▶ ⇒ halt is not total computable
⇒ ∃ inputs on which the TM for halt does not terminate
⇏ ∃ single terminating algorithm to solve all instances of HP
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Subsection 4

Tarski
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Example: Reals

▶ Tarski’s theorem: Reals is complete
▶ Algorithm:

constructs solution sets (YES) or contradictions (NO)
⇒ provides proofs or contradictions for all sentences

▶ ⇒ Reals is complete and also decidable
(since every complete theory is decidable, see next slide)
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Completeness ⇒ decidability

▶ Given ϕ ∈ F
i = 0
while 1 do

if proof(i, ⌜ϕ⌝) then
return YES

else if proof(i, ⌜¬ϕ⌝) then
return NO

end if
i = i+ 1

end while
▶ Since F complete, algorithm terminates on all ϕ
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Tarski’s theorem

▶ Algorithm based on quantifier elimination
▶ Feasible sets of polynomial systems p(x) ≤ 0

have finitely many connected components
▶ Each connected component recursively built of

cylinders over points or intervals
extremities: pts., ±∞, algebraic curves at previous recursion
levels

▶ In some sense, generalization of Reals in R1
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Dense linear orders
Given a sentence ϕ in DLO (similar to Reals in one dimension)

▶ Reduce to DNF w/clauses ∃xi qi(x) where qi =
∧
qij

▶ Each qij has form s = t or s < t (s, t vars or consts)
▶ s, t both constants:

s < t, s = t verified and replaced by 1 or 0
▶ s, t the same variable xi:

s < t replaced by 0, s = t replaced by 1
▶ if s is xi and t is not:

s = t means “replace xi by t” (eliminate xi)
▶ remaining case:

qi conjunction of s < xi and xi < t:
replace by s < t (eliminate xi)

▶ qi no longer depends on xi, rewrite ∃xi qi as qi
▶ Repeat over vars. xi, obtain real intervals or contradictions

Quantifier elimination
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Subsection 5

Completeness and incompleteness
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Decidability and completeness

▶ PA1 is incomplete and undecidable
▶ Reals is complete and decidable
▶ Are there FS F that are:

▶ incomplete and decidable?
▶ complete and undecidable?

this case already discussed, answer is NO
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Incomplete and decidable (trivial)

▶ NoInference:
Any FS with <∞ axiom schemata and no inference rules

▶ Only possible proofs: sequences of axioms
▶ Only provable sentences: axioms
▶ For any other sentence f : no proof of f or ¬f
▶ Trivial decision algorithm:

given f , output YES if f is a finite axiom sequence,
NO otherwise

▶ NoInference is incomplete and decidable
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Incomplete and decidable (nontrivial)
▶ ACF: Algebraically Closed Fields (e.g. C)

field axioms + “every polynomial splits” schema
▶ Theorem: ACF is incomplete

▶ ACFp: ACF ∧ Cp ≡ [
∑
j≤p

1 = 0] (with p prime)

▶ Claim: ∀p (prime) Cp independent of ACF
▶ suppose proof of Cp or ¬Cp possible for p
▶ then either ACF ∧ ¬Cp or ACF ∧ Cp inconsistent
▶ but ∃ field of any prime characteristic p
▶ ⇒ ACF ∧ Cp and ACF ∧ ¬Cp consistent for all p

▶ Theorem: ACF is decidable
Decision algorithm D(ψ) for ACF:
▶ if ψ is Cp or ¬Cp for some prime p, return NO
▶ else run quantifier elimination on ψ

▶ ⇒ ACF is incomplete and decidable
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The two meanings of completeness
▶ WARNING!!!

“complete” is used in two different ways in logic
1. Gödel’s 1st incompleteness theorem

FS F complete1 if ϕ or ¬ϕ provable ∀ϕ
2. Gödel’s completeness2 theorem

▶ A: set of sentences in F
▶ M a model of F (domain of values for var symbols)
▶ AM : each var in A replaced by corresp. value
▶ ∃M s.t. AM is true ⇒ A consistent

partial converse: corollary of Gödel’s completeness thm
▶ Complete2 FS: ∀M (AM )⇒ F ⊢ A
▶ Gödel’s completeness theorem:

1st order logic is complete2
▶ Note the strong assumption “∀M ”

incompleteness theorem only considers M = N

▶ Pay attention when reading literature/websites
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Subsection 6

MP solvability
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The issue

▶ Proved PA1 incomplete and undecidable
▶ Proved Reals complete and decidable
▶ But MP feasibility problems are existential statements

∃x s.t. g(x) ≤ 0 ?

▶ PA1 and Reals also involve universal quantifiers
⇒ MP feasibility provides smaller theories

▶ For Reals, if larger theory complete and decidable,
smaller theory also complete and decidable

▶ For PA1, larger theory incomplete and undecidable,
but smaller theory might be complete or decidable!
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Polynomial equations in integers

▶ Consider the feasibility-only MP

min{0 | ∀i ≤ m gi(x) = 0 ∧ x ∈ Zn}

with gi(x) multivariate polynomials in x

▶ Rewrite as a Diophantine equation (DE):

∃x ∈ Zn
∑
i≤m

(gi(x))
2 = 0 (1)

▶ Can restrict Z to N wlog, i.e. Eq. (1) ∈ PA1
write xi = x+i − x−i where x+i , x

−
i ∈ Nn

▶ Formulæ of PA1 are generally undecidable
but is the subclass (1) of PA1 decidable or not?
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Hilbert’s 10th problem
▶ Hilbert:

Given a Diophantine equation with any number of unknowns and
with integer coefficients: devise a process which could determine
by a finite number of operations whether the equation is solvable
in integers

▶ Davis & Putnam: conjecture DEs are undecidable
▶ consider set RE of recursively enumerable (r.e.) sets
▶ R ⊆ N is in RE if ∃ TM listing all and only elements in R

TM={M : N → N |M is a TM} ⇒ ∀R ∈ RE ∃MR∈TM (ranMR=R)
moreover, ∀r ∈ R we have MR(r) = ⊥

▶ some RE sets are undecidable, e.g. R = {⌜α⌝ | PA1 ⊢ α}
r.e.: list all proofs; undecidable: by Turing’s thm
“listing elements of set” different from “proving element in set”

▶ for each R ∈ RE show ∃ polynomial p(r, x) s.t.
r ∈ R↔ ∃x ∈ Nn p(r, x) = 0

▶ if we can prove this, ∃ undecidable DEs
othw ∀r ∈ N decide if r ∈ R by finding x ∈ Nn : p(r, x) = 0
against undecidability of PA1
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Proof strategy

▶ Strategy: “model” r.e. sets with polynomial equations
in integers

▶ D&P+Robinson: universal quantifiers removed, but
eqn system involves exponentials

▶ Matiyasevich: exploits exponential growth of Pell’s
equation solutions to remove exponentials

▶ ⇒ DPRM theorem, implying DE undecidable
Negative answer to Hilbert’s 10th problem
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Structure of the DPRM theorem
▶ Gödel’s proof of his 1st incompleteness thm.

r.e. sets ≡ DEs with <∞ ∃ and bounded ∀ quantifiers

▶ Davis’ normal form
one bounded quantifier suffices: ∃x0∀a ≤ x0∃x p(a, x) = 0

▶ (2 bnd qnt ≡ 1 bnd qnt on pairs) and induction

▶ Robinson’s idea
get rid of bounded universal quant. by using exponent vars

▶ idea: [∃x0∀a ≤ x0∃x p(a, x) = 0] “ → ”

[
∃x

∏
a≤x0

p(a, x) = 0

]
▶ precise encoding needs variables in exponents

▶ Matyiasevic’s contribution
express c = ba using polynomials
▶ use Pell’s equation x2 − dy2 = 1

▶ solutions (xn, yn) satisfy xn + yn
√
d = (x1 + y1

√
d)n

▶ xn = O(dn/2) ⇒ can express exponentials with polynomials
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MP is unsolvable

▶ R ∈ RE ⇒ ∃M ∈ TM s.t. ranM = R by defn, now prove converse

▶ Lemma: ∀M ∈ TM ranM ∈ RE
▶ Pf : Consider list of all TMs (Mi | i ∈ N)

if Mi(x) = ⊥ at t-th execution step, write M t
i (x) = ⊥

▶ Yields all sets in RE = (Ri | i ∈ N) by dovetailing
⇒ ∀k ∈ N, t < k, i ≤ t if M t

i (k − t) = ⊥ append k − t to Ri

⇒ Ri = {k − t | ∃k ∈ N, t < k : M t
i (k − t) = ⊥}

▶ DPRM theorem: ∀R ∈ RE, R represented by poly eqn
▶ By lemma, can choose UTM Mi with ranMi = Ri ∈ RE
⇒ ∃ Universal DE (UDE), say U(r, x) = 0

▶ min{0 | U(r, x) = 0 ∧ x ∈ Nn}: undecidable (feasibility) MP

▶ min
x∈Nn

(U(r, x))2: unsolvable (optimization) MP
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Common misconception
“Since N is contained in R, how is it possible that Reals is
decidable but DE (= Reals ∩ N, right?) is not?”

After all, if a problem contains a hard subproblem, it’s hard
by inclusion, right?

▶ Can you express DE p(x) = 0 ∧ x ∈ N in Reals?
▶ p(x) = 0 belongs to both DE and Reals, OK
▶ “x ∈ N” in Reals?

⇐ find poly q(x) s.t. ∃x q(x) = 0 iff x ∈ Nn

▶ q(x) = x(x− 1) · · · (x− a) only good for {0, 1, . . . , a}
q(x) =

∏
i∈ω

(x− i) is ∞ly long, invalid

▶ IMPOSSIBLE!
if it were possible, DE would be decidable, contradiction

▶ ⇒ Reals ⊉ DE
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MIQCP is undecidable

▶ [Jeroslow 1973]: MIQCP:

min c⊤x
∀i ≤ m x⊤Qix+ ai

⊤x+ bi ≥ 0
x ∈ Zn

 (†)

is undecidable
Proof:
▶ Let U(r, x) = 0 be an UDE
▶ P (r) ≡ min{u | (1−u)U(r, x) = 0∧u ∈ {0, 1}∧x ∈ Zn}

P (r) describes an unsolvable problem
▶ Linearize every product xixj by yij and add yij = xixj

until only degree 1 and 2 left
▶ Obtain instances of MIQCP (†) for every r
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Some MIQCQPs are decidable

▶ If each Qi is diagonal PSD, decidable [Witzgall 1963]

▶ If x are bounded in [xL, xU ] ∩ Zn, decidable
can express x ∈ {⌈xL⌉, ⌈xL⌉+ 1, . . . , ⌊xU⌋} by polynomial

∀i ≤ m
∏

xL
i ≤i≤xU

i

(x− i) = 0

turn into poly system in R (in Reals, decidable)

▶ ⇒ Bounded (vars) easier than unbounded (for Z)

▶ [MIQP decision vers.] is decidable
x⊤Qx+ c⊤x ≤ γ

Ax ≥ b
∀j ∈ Z xj ∈ Z

 (in NP [Del Pia et al. 2014])
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NLP is undecidable
We can’t represent unbounded subsets of N by polynomials

But we can if we allow some transcendental functions
x ∈ Z ←→ sin(πx) = 0

▶ Constrained NLP is undecidable:

min{0 | U(a, x) = 0 ∧ ∀j ≤ n sin(πxj) = 0}

▶ Even with just one nonlinear constraint:

min{0 | (U(a, x))2 +
∑
j≤n

(sin(πxj))
2 = 0}

▶ Unconstrained NLP is undecidable:

min(U(a, x))2 +
∑
j≤n

(sin(πxj))
2

▶ Box-constrained NLP is undecidable (boundedness doesn’t help):

min{(U(a, tanx1, . . . , tanxn))
2+
∑
j≤n

(sin(π tanxj))
2 | −π

2
≤ x ≤ π

2
}
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Some NLPs are decidable
▶ All polynomial NLPs are decidable

by decidability of Reals

▶ Quadratic Programming (QP) is decidable over Q

min x⊤Qx + c⊤x
Ax ≥ b

}
(P )

▶ Bricks of the proof
▶ if Q is PSD, JP K ∈ Q

1. remove inactive constr., active are eqn, use to replace vars
2. work out KKT conditions, they are linear in rational

coefficients
3. ⇒ solution is rational

▶ ∃ polytime IPM for solving P [Renegar&Shub 1992]
▶ unbounded case treated in [Vavasis 1990]

▶ ⇒ [QP decision version] is in NP
⇒ QP is decidable over Q

84 / 413



Rationals

▶ [Robinson 1949]:
RT (1st ord. theory over Q) is undecidable

▶ [Pheidas 2000]: existential theory of Q (ERT) is open
can we decide whether p(x) = 0 has solutions in Q? Boh!

▶ [Matyiasevich 1993]:
▶ equivalence between DEH and ERT
▶ DEH = [DE restricted to homogeneous polynomials]
▶ but we don’t know whether DEH is decidable

Note that Diophantus solved DE in positive rationals
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Worst-case algorithmic complexity
▶ Computational complexity theory:

worst-case time/space taken by an algorithm to complete
▶ Given an algorithm A

▶ e.g. to determine whether a graph G = (V,E) is
connected or not

▶ input: G; size of input: ν = |V |+ |E|
▶ How does cpu(A) vary with ν?

▶ cpu(A) = O(log ν): logarithmic (sublinear)
▶ cpu(A) = O(logk ν) for fixed k: polylogarithmic
▶ cpu(A) = O(ν): linear
▶ cpu(A) = O(ν2): quadratic
▶ cpu(A) = O(νk) for fixed k: polytime
▶ cpu(A) = O(2ν): exponential

▶ polytime ↔ efficient
▶ exponential ↔ inefficient
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The “O(·)” calculus

∀f, g : N→ N f <O g ↔ ∃n ∈ N ∀ν > n (f(ν) < g(ν))

∀g : N→ N O(g) = {f : N→ N | ∃C ∈ N (f <O Cg)}

∀f, g : N→ N O(f) < O(g) ↔ f ∈ O(g) ∧ g ̸∈ O(f)
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Are polytime algorithms “efficient”?

▶ Why are polynomials special?
▶ Many different variants of Turing Machines (TM)

more tapes, more heads, . . .
▶ Polytime is invariant to all definitions of TM

e.g. TM with ∞ly many tapes: simulate with a single tape
running along diagonals, similarly to dovetailing

▶ In practice, O(ν)-O(ν3) is an acceptable range covering
most practically useful efficient algorithms

▶ Many exponential algorithms are also usable in
practice for limited sizes

▶ Sublinear algorithms aren’t allowed to read their whole
input!
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Instances and problems

▶ An input to an algorithm A: instance
▶ Collection of all inputs for A: problem

in general, a problem P is an infinite set of instances
▶ A solves P if A solves every instance of P

▶ There are problems which no algorithm can solve
▶ A problem can be solved by different algorithms

▶ Given P find complexity of best alg. A solving P

min
<O

{cpu(A) | A solves P}

▶ We (generally) don’t know how to search over all algs for P
sometimes we can find complexity bounds
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Complexity classes: P, NP

▶ Focus on decision problems: one bit of output
▶ If ∃ polytime algorithm for P , then P ∈ P

▶ If there is a polytime checkable certificate for all YES
instances of P , then P ∈ NP
e.g. shortest s—t path with ≤ K edges in a graph G; path
itself is a certificate: it can be checked whether it has fewer than
K edges in time proportional to K ≤ |G|

▶ We know P ⊆ NP:
polytime alg for P provides polysized trace certifying YES
algorithmic trace: list of instructions with loops unfolded

▶ No-one knows whether P = NP: we think not
▶ Examples of NP problems unlikely to have polytime alg:

k-clique, subset-sum, knapsack, hamiltonian cycle, sat

91 / 413



Equivalent definition of NP
▶ NP: problems solved by nondeterministic polytime TM

nondeterministic: follow all paths concurrently, stop at first YES

▶ Equivalence with previous definition
▶ (⇒) Assume ∃ polysized certificate for every YES instance.

Nondeterministic polytime algorithm: concurrently explore all
possible polysized certificates, call verification oracle for each,
determine YES/NO.

▶ (⇐) Run nondeterministic polytime algorithm: trace will look like a
tree (branchings at tests, loops unrolled) with polytime depth. If YES
there will be a terminating polysized sequence of steps from start to
termination, serving as a polysized certificate
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Subsection 1

Some combinatorial problems in NP
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k-stable
▶ Instance: (G = (V,E), k)
▶ Problem: determine if G has a stable set of size k

▶ A subset U ⊆ V is stable if G[U ] is empty
▶ For G = (V,E) and U ⊆ V , the subgraph of G induced by U is

G[U ] = (U, {{u, v} ∈ E | u, v ∈ U})

▶ G = (V,E) is empty if E = ∅

▶ 1-stable? YES (every graph with ≥ 1 vertices is YES)
▶ 2-stable? YES (every non-complete graph is YES)
▶ 3-stable? NO
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MP formulations for stable

Variables? Objective? Constraints?

▶ Decision variables: ∀j ∈ V xj =

{
1 j ∈ k-stable
0 otherwise

▶ no objective (pure feasibility MP)
▶ “if {i, j} ∈ E, then xi = 1 or xj = 1 or neither but not both”

∀{i, j} ∈ E xi + xj ≤ 1

▶ “∃ a k-stable” ∑
i∈V

xi = k
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MP formulations for stable

▶ Pure feasibility problem: ∑
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xi = k

∀{i, j} ∈ E xi + xj ≤ 1
x ∈ {0, 1}n



▶ Max Stable:
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∑
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k-clique
▶ Instance: (G = (V,E), k)

▶ Problem: determine whether G has a clique of size k

▶ 1-clique? YES (every graph with ≥ 1 vertices is YES)

▶ 2-clique? YES (every non-empty graph is YES)

▶ 3-clique? YES (triangle {1, 2, 4} is a certificate)
certificate can be checked in O(k2) < O(n2) (k fixed)

▶ > 4-clique? NO
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MP formulations for clique
Variables? Objective? Constraints?

▶ Decision variables: ∀j ∈ V xj =

{
1 j ∈ k-clique
0 otherwise

▶ no objective (pure feasibility MP)
▶ Constraints:

▶ “∃ a k-clique” ∑
i∈V

xi = k

▶ for G = (V,E), the complement graph Ḡ = (V, Ē) has

Ē = {{u, v} | {u, v} ̸∈ E}

▶ Prop.: C clique in G ⇔ C stable in Ḡ
▶ ⇒ use constraints for k-stable in Ḡ:

“if {i, j} ∈ Ē then ¬(xi = xj = 1)”

∀{i, j} ̸∈ E xi + xj ≤ 1
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▶ ⇒ use constraints for k-stable in Ḡ:
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MP formulations for clique

▶ Pure feasibility problem: ∑
i∈V

xi = k

∀{i, j} ̸∈ E xi + xj ≤ 1
x ∈ {0, 1}n



▶ Max Clique:

max
∑
i∈V

xi

∀{i, j} ̸∈ E xi + xj ≤ 1
x ∈ {0, 1}n


Notice the tiny difference with stable
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AMPL code for Max Clique

File clique.mod

# clique.mod
param n integer, > 0;
set V := 1..n;
set E within {V,V};
var x{V} binary;
maximize clique_card: sum{j in V} x[j];
subject to notstable{i in V, j in V : i<j and (i,j) not in E}:

x[i] + x[j] <= 1;

File clique.dat

# clique.dat
param n := 5;
set E := (1,2) (1,4) (2,4) (2,5) (3,5);
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AMPL code for Max Clique
File clique.run:

# clique.run
model clique.mod;
data clique.dat;
option solver cplex;
solve;
printf "C =";
for {j in V : x[j] > 0} {

printf " %d", j;
}
printf "\n";

Run with “ampl clique.run” on command line
CPLEX 12.8.0.0: optimal integer solution; objective 3
0 MIP simplex iterations
0 branch-and-bound nodes
C = 1 2 4

Code and test the formulation for Max Stable
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subset-sum

▶ Instance: list a = (a1, . . . , an) ∈ Nn and b ∈ N
▶ Problem: is there J ⊆ {1, . . . , n} such that

∑
j∈J

aj = b?

▶ a = (1, 1, 1, 4, 5), b = 3: YES with J = {1, 2, 3}
all b ∈ {0, . . . , 12} yield YES instances

▶ a = (3, 6, 9, 12), b = 20: NO
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MP formulations for subset-sum

Variables? Objective? Constraints?

▶ Pure feasibility problem:∑
j≤n

ajxj = b

x ∈ {0, 1}n

}
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MP formulations for subset-sum

Variables? Objective? Constraints?
▶ Pure feasibility problem:∑

j≤n
ajxj = b

x ∈ {0, 1}n

}
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AMPL code for subset-sum
File subsetsum.mod
# subsetsum.mod
param n integer, > 0;
set N := 1..n;
param a{N} integer, >= 0;
param b integer, >= 0;
var x{N} binary;
subject to subsetsum: sum{j in N} a[j]*x[j] = b;

File subsetsum.dat
# subsetsum.dat
param n := 5;
param a :=
1 1
2 1
3 1
4 4
5 5
;
param b := 3;

Code your own subsetsum.run!
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knapsack
▶ Instance: c, w ∈ Nn, K ∈ N
▶ Problem:

find J ⊆ {1, . . . , n} s.t. c(J) ≤ K and w(J) is maximum

▶ notation: c(J) =
∑
j∈J

cj (similarly for w(J))

▶ natively expressed as an optimization problem

▶ n = 3, c = (5, 6, 7), w = (3, 4, 5), K = 11

▶ c(J) ≤ 11 feasible for J in ∅, {j}, {1, 2}
▶ w(∅) = 0, w({1, 2}) = 3 + 4 = 7, w({j}) ≤ 5 for j ≤ 3

⇒ Jmax = {1, 2}

▶ K = 4: trivial solution (J = ∅)
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n

wjxj∑
j≤n

cjxj ≤ K

x ∈ {0, 1}n
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MP formulation for knapsack

Variables? Objective? Constraints?

max
∑
j≤n
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j≤n
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x ∈ {0, 1}n
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AMPL code for knapsack
File knapsack.mod
# knapsack.mod
param n integer, > 0;
set N := 1..n;
param c{N} integer;
param w{N} integer;
param K integer, >= 0;
var x{N} binary;
maximize value: sum{j in N} w[j]*x[j];
subject to knapsack: sum{j in N} c[j]*x[j] <= K;

File knapsack.dat
# knapsack.dat
param n := 3;
param : c w :=
1 5 3
2 6 4
3 7 5 ;
param K := 11;

Code your own knapsack.run!
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Hamiltonian Cycle

▶ Instance: G = (V,E)

▶ Problem: does G have a Hamiltonian cycle?
cycle covering every v ∈ V exactly once

NO YES (cert. 1→ 2→ 5→ 3→ 4→ 1)
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MP formulation for Hamiltonian Cycle

Variables? Objective? Constraints?

∀i ∈ V
∑
j∈V
{i,j}∈E

xij = 1 (2)

∀j ∈ V
∑
i∈V
{i,j}∈E

xij = 1 (3)

∀∅ ⊊ S ⊊ V
∑

i∈S,j ̸∈S
{i,j}∈E

xij ≥ 1 (4)

WARNING: Eq. (4) is a second order statement!
(quantified over sets)
yields an exponentially large set of constraints
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AMPL code for Hamiltonian Cycle
File hamiltonian.mod

# hamiltonian.mod
param n integer, > 0;
set V default 1..n, ordered;
set E within {V,V};
set A := E union {i in V, j in V : (j,i) in E};
# index set for nontrivial subsets of V
set PV := 1..2**n-2;
# nontrivial subsets of V
set S{k in PV} := {i in V: (k div 2**(ord(i)-1)) mod 2 = 1};

var x{A} binary;
subject to successor{i in V} :

sum{j in V : (i,j) in A} x[i,j] = 1;
subject to predecessor{j in V} :

sum{i in V : (i,j) in A} x[i,j] = 1;

# breaking non-hamiltonian cycles
subject to breakcycles{k in PV}:

sum{i in S[k], j in V diff S[k]: (i,j) in A} x[i,j] >= 1;

Code your own .dat and .run files!
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Satisfiability (sat)

▶ Instance: boolean logic sentence f in CNF∧
i≤m

∨
j∈Ci

ℓj

where ℓj ∈ {xj, x̄j} for j ≤ n

▶ Problem: is there ϕ : x→ {0, 1}n s.t. ϕ(f) = 1?

▶ f ≡ (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2)
x1 = x2 = 1, x3 = 0 is a YES certificate

▶ f ≡ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄1 ∨ x2) ∧ (x1 ∨ x̄2)
ϕ x = (1, 1) x = (0, 0) x = (1, 0) x = (0, 1)

false C2 C1 C3 C4
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MP formulation for sat
Variables? Objective? Constraints?

Algorithm ρ̂ to generate MP from given sat sentence
∧

i≤m

∨
j∈Ci

ℓj :

▶ Literals ℓj ∈ {xj, x̄j}: decision variables in {0, 1}

ρ̂(ℓj) 7−→
{

xj if ℓj ≡ xj
1− xj if ℓj ≡ x̄j

▶ Clauses Γi ≡
∨
j∈Ci

ℓj: constraints

ρ̂(Γi) 7−→
∑
j∈Ci

ρ̂(ℓj) ≥ 1

▶ Conjunction: feasibility-only ILP

ρ̂
(∧

i

Γi
)
7−→ ∀i ≤ m ρ̂(Γi)
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MP formulation for sat

▶ Prop.: sat instance q is YES iff ILP instance ρ̂(q) is YES

▶ Proof: Let L = (ℓ′1, . . . , ℓ
′
n) be a solution of sat. Then

x∗ = (x∗1, . . . , x
∗
n) where x∗j = 1 iff ℓ′j = xj = true and

x∗j = 0 iff ℓ′j = x̄j = true is a feasible solution of ILP
(satisfies each clause constraint by definition of ρ̂).

Conversely: if x solves ILP, then form solution L of
sat by mapping x∗j = 1 to true and x∗j = 0 to false,
result follows again by defn of ρ̂.

▶ Algorithm ρ̂ is called a reduction from sat to ILP
reductions from Q to P model Q in terms of P
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AMPL code for sat?

Using ρ̂ we can only obtain flat formulations
Example: file sat.run (flat formulation) for instance
(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2)

# sat.run
var x{1..3} binary;
subject to con1: x[1] + (1-x[2]) + x[3] >= 1;
subject to con2: (1-x[1])+ x[2] >= 1;
option solver cplex;
solve;
display x, solve_result;
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Subsection 2

NP-hardness
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NP-Hardness
▶ Do hard problems exist? Depends on P ̸= NP

▶ Next best thing: define hardest problem in NP

▶ Defn.: Problem P is NP-hard if ∀Q ∈ NP ∃ polytime alg. ρQ:

q ∈ Q 7→ ρQ(q) ∈ P with q YES iff ρQ(q) YES
ρQ : Q→ P is called a polynomial reduction from Q to P

▶ Prop.: P is hardest for NP

1. run best algorithm for P on ρQ(q)
get answer α ∈ {YES,NO}

2. return α as answer for q
3. so Q no harder than P

since solved Q with alg for P + polytime taken by ρQ(q)

4. holds ∀Q ∈ NP⇒ nothing in NP harder than P
▶ If P is in NP and is NP-hard, it is called NP-complete

▶ Reduction: model Q using language of P
▶ Thm. [Cook 1971]: everything in NP reduces to sat
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Cook’s theorem

TM dynamics modelled with Boolean vars
Definition of TM dynamics in CNF

Description of a dynamical system using a declarative program-
ming language (sat) — what MP is all about!
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The MP version of Cook’s theorem

Thm.
Any problem P in NP can be polynomially reduced to a MILP
Proof
Since P ∈ NP, every YES instance π ∈ P must have a polynomial-time
(say αP (|π|)) verifiable certificate cπ (wlog assume it is a {0, 1} string),
with length bounded by a polynomial (say βP (|π|)). This means that
a deterministic TM MP verifying cπ will reach termination in polytime
αP (π). Let κ be such that αP , βP ∈ O(|π|κ). We define a MILP on
binary variables holding the content of the tape of MP as it changes
according to the transition function of MP , such that the tape contains:
(i) “NO” in the first cell, and π in the subsequent |π| cells, at the initial
step k = 0; (ii) “YES” in the first cell at the final step k = |π|κ. Then the
MILP is feasible iff π is a YES instance of P . This provides a polytime
reduction from P to MILP.
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Cook’s theorem: sets and params

▶ Model a deterministic TM dynamics using MILP
▶ MP is a 5-tuple (Q,Σ, s, F, δ):

states, alphabet, initial, final, transition
▶ Transition function δ : Q∖ F × Σ→ Q× Σ× {−1, 1}

δ: state ℓ, symbol j 7→ state ℓ′, symbol j′, direction d
▶ MP polytime: terminates in |π|nκ

▶ Index sets:
states Q, characters Σ, tape cells I, steps K

▶ Parameters:
initial tape string (NO, π)
YES written in cell 1 when MP in final state
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Cook’s theorem: decision vars

▶ ∀i ∈ I, j ∈ Σ, k ∈ K
tijk = 1 iff tape cell i contains symbol j at step k

▶ ∀i ∈ I, k ∈ K
hik = 1 iff head is at tape cell i at step k

▶ ∀ℓ ∈ Q, k ∈ K
qℓk = 1 iff MP is in state ℓ at step k

120 / 413



Cook’s theorem: constraints (informal)
1. Initialization:

1.1 initial string (NO, π) on tape at step k = 0
1.2 MP in initial state s at step k = 0
1.3 initial head position on cell i = 0 at k = 0

2. Execution:

2.1 ∀i, k: cell i has exactly one symbol j at step k
2.2 ∀k: MP is in exactly one state ℓ
2.3 ∀k: tape head MP is at exactly one cell i
2.4 ∀i, k: if cell i changes symbol between steps k and

k + 1, head must be on cell i at step k
2.5 ∀k, i, j: cell i and symbol j in state k lead to cells,

symbol and states given by transition function δ

3. Termination:

3.1 MP terminates at step k ≤ nk w/YES written in cell 1
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Cook’s theorem: constraints
1. Initialization:

1.1 (t1,NO,0 = 1) ∧ (∀i > 1 ti,πi,0 = 1)
1.2 qs,0 = 1
1.3 h0,0 = 1

2. Execution:

2.1 ∀i, k
∑

j tijk = 1
2.2 ∀k

∑
ℓ qℓk = 1

2.3 ∀k
∑

i hik = 1
2.4 ∀i, j ̸= j′, k < nκ tijk ti,j′,k+1 ≤ hik

2.5 ∀i, ℓ, ℓ′, j, j′, k, d s.t. (ℓ′, j′, d) = δ(ℓ, j)
hik qℓk tijk = hi+d,k+1 qℓ′,k+1 ti,j′,k+1

3. Termination:

3.1 (t1,YES,nκ = 1) ∧
( ∑
f∈F,k

qfk = 1
)
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Cook’s theorem: linearization
▶ MP in previous slide: MINLP not MILP
▶ Fortet’s inequalities for products of binary vars:

For x, y ∈ {0, 1} and z ∈ [0, 1]
z = xy ⇔ z ≤ x ∧ z ≤ y ∧ z ≥ x+ y − 1

▶ MILP is feasibility only
▶ MILP has polynomial size
▶ ⇒ MILP is NP-hard
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Reduction graph
After Cook’s theorem
To prove NP-hardness of a new problem P , pick a known NP-hard
problem Q that “looks similar enough” to P and find a polynomial
reduction ρQ from Q to P [Karp 1972]
Why it works: suppose P easier than Q, solve Q by calling
AlgP ◦ ρQ, conclude Q as easy as P , contradiction as Q hardest in NP
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Example of polynomial reduction
▶ stable: given G = (V,E) and k ∈ N, does it contain a stable

set of size k?
▶ Assuming k-clique is NP-complete, reduce from it

▶ Given instance (G, k) of clique consider the complement
graph (computable in polytime)

Ḡ = (V, Ē = {{i, j} | i, j ∈ V ∧ {i, j} ̸∈ E})

▶ Prop.: G has clique of size k iff Ḡ has stable set of size k
▶ ρ(G) = Ḡ a polynomial reduction clique → stable

▶ ⇒ stable is NP-hard
▶ stable is also in NP

U ⊆ V is a stable set iff E(G[U ]) = ∅ (polytime verification)

▶ ⇒ stable is NP-complete
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Subsection 3

Complexity of solving MP formulations
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LP is in P

▶ Khachian’s algorithm (Ellipsoid method)
▶ Karmarkar’s algorithm
▶ IPM with crossover

IPM: penalize x ≥ 0 by −β log(x), polysized sequence of subproblems
crossover: polytime number of simplex pivots get to opt

▶ No known pivot rule makes simplex alg. polytime
▶ greedy pivot: exponential complexity on Klee-Minty cube
▶ simplex alg. polytime on uniformly random instances

[Borgwardt]
▶ for any LP instance ∃ nearby instance on which simplex

alg. is polytime [Spielman & Teng]
▶ ∃ randomized polytime simplex alg. [Kelner & Spielman]
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(Recall) MILP is NP-hard
▶ sat NP-hard by Cook’s theorem, reduce from sat∧

i≤m

∨
j∈Ci

ℓj

where ℓj is either xj or x̄j ≡ ¬xj
▶ Polynomial reduction ρ̂

sat xj x̄j ∨ ∧
MILP xj 1− xj + ≥ 1

▶ E.g. ρ̂ maps (x1 ∨ x2) ∧ (x̄2 ∨ x3) to

min{0 | x1 + x2 ≥ 1 ∧ x3 − x2 ≥ 0 ∧ x ∈ {0, 1}3}

▶ sat is YES iff MILP is feasible
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Complexity of Quadratic Programming (QP)

min x⊤Qx + c⊤x
Ax ≥ b

}
▶ Quadratic obj, linear constrs, continuous vars
▶ Many applications (e.g. portfolio selection)
▶ If Q has at least one negative eigenvalue, NP-hard
▶ Decision problem: “is the min. obj. fun. value ≤ 0?”
▶ If Q PSD then objective is convex, problem is in P

KKT conditions become linear system, data in Q ⇒ soln in Q
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QP is NP-hard
▶ By reduction from sat, let σ be an instance of sat
▶ ρ̂(σ, x) ≥ 1: linear constraints of (sat→ MILP) reduction

▶ Consider QP subclass

min f(x) =
∑
j≤n

xj(1− xj)

ρ̂(σ, x) ≥ 1
0 ≤ x ≤ 1

 (†)

▶ Claim: σ is YES iff val(†)≡ opt. obj. fun. val. of (†) = 0

▶ Proof:
▶ assume σ YES with soln. x∗, then x∗ ∈ {0, 1}n, hence

f(x∗) = 0, since f(x) ≥ 0 for all x, val(†) = 0
▶ assume σ NO, suppose val(†) = 0, then (†) feasible

with soln. x′, since f(x′) = 0 then x′ ∈ {0, 1}, feasible
in sat hence σ is YES, contradiction
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Box-constrained QP is NP-hard

min
x∈[xL,xU ]

x⊤Qx + c⊤x
}

▶ Add surplus vars v to sat→MILP constraints:
ρ̂(σ, x)− 1− v = 0

(denote by ∀i ≤ m (a⊤i x− bi − vi = 0))
▶ Consider special QP subclass

min
∑
j≤n

xj(1− xj) +
∑
i≤m

(a⊤i x− bi − vi)2

0 ≤ x ≤ 1, v ≥ 0

}

▶ Issue: v not bounded above
▶ Reduce from 3sat, get ≤ 3 literals per clause

⇒ can consider 0 ≤ v ≤ 2
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cQKP is NP-hard
▶ continuous Quadratic Knapsack Problem (cQKP)

min f(x) = x⊤Qx + c⊤x∑
j≤n

ajxj = γ

x ∈ [0, 1]n,


▶ Reduction from subset-sum

given list a ∈ Qn and γ, is there J ⊆ {1, . . . , n} s.t.
∑
j∈J

aj = γ?

reduce to cQKP subclass with f(x) =
∑

j xj(1− xj)

▶ σ is a YES instance of subset-sum
▶ let x∗j = 1 iff j ∈ J , x∗j = 0 otherwise
▶ feasible by construction
▶ f is non-negative on [0, 1]n and f(x∗) = 0: optimum

▶ σ is a NO instance of subset-sum
▶ suppose opt(cQKP) = x∗ with f(x∗) = 0

▶ then x∗ ∈ {0, 1}n because f(x∗) = 0

▶ feasibility of x∗ ⇒ J = supp(x∗) solves σ, contradiction ⇒ f(x∗) > 0
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QP on a simplex is NP-hard
min f(x) = x⊤Qx + c⊤x∑

j≤n

xj = 1

∀j ≤ n xj ≥ 0


▶ Reduce max clique to subclass with f(x) = −

∑
{i,j}∈E

xixj

Motzkin-Straus Formulation (MSF):

max{
∑

{i,j}∈E

xixj |
∑
j∈V

xj = 1 ∧ x ≥ 0}

▶ Theorem [Motzkin& Straus 1964]
Let C be max. clique of instance G = (V,E) ∈ max clique, and ω(G) = |C|

∃x∗ ∈ opt (MSF) with f∗ = f(x∗) = 1
2 −

1
2ω(G)

∀j ∈ V x∗j =

{ 1
ω(G) if j ∈ C
0 otherwise
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Proof of the Motzkin-Straus theorem
x∗ ∈ arg( max∑

j xj=1

x≥0

∑
ij∈E

xixj) s.t. |C = {j ∈ V | x∗j > 0}| smallest (‡)

1. C is a clique
▶ Suppose 1, 2 ∈ C but {1, 2} ̸∈ E, then x∗1, x∗2 > 0, can perturb x∗

by ϵ ∈ [−x∗1, x∗2], get xϵ = (x∗1 + ϵ, x∗2 − ϵ, x∗3, x∗4, . . .), feasible
w.r.t. simplex and bound constraints

▶ {1, 2} ̸∈ E ⇒ x1x2 does not appear in f(x) ⇒ f(xϵ) depends at
worst linearly on ϵ; by local optimality of x∗, f achieves max for
ϵ = 0, in interior of its range ⇒ f(xϵ) constant w.r.t. ϵ.
Hence f(xϵ) is globally optimal for all ϵ

▶ setting ϵ = −x∗1 or = x∗2 yields global optima with more zero
components than x∗, against assumption (‡), hence
{1, 2} ∈ E[C]; by relabeling C is a clique
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Proof of the Motzkin-Straus theorem
x∗ ∈ arg( max∑

j xj=1

x≥0

∑
ij∈E

xixj) s.t. |C = {j ∈ V | x∗j > 0}| is smallest

2. |C| = ω(G)
▶ square the simplex constraint

∑
j xj = 1, get

ψ(x) ≡
∑
j∈V

x2j + 2
∑

i<j∈V
xixj = 1

▶ by construction x∗j = 0 for j ̸∈ C ⇒
∑

i<j∈C
x∗i x
∗
j =

∑
ij∈E

x∗i x
∗
j ⇒

ψ(x∗) =
∑
j∈C

(x∗j )
2 + 2

∑
i<j∈C

x∗i x
∗
j =

∑
j∈C

(x∗j )
2 + 2f(x∗) = 1

▶ ψ(x) = 1 for all feasible x, so f(x) achieves maximum when
∑

j∈C(x∗j )
2 is

minimum, i.e. x∗j = 1
|C| for all j ∈ C (since

∑
j x∗

j = 1)

▶ again by simplex constraint

2f(x∗) = 1−
∑
j∈C

(x∗j )
2 = 1− |C|

1

|C|2
= 1−

1

|C|
≤ 1−

1

ω(G)

so f(x∗) attains max
(
1
2
− 1

2|C|
)

when |C| = ω(G) ⇒ ∀j ∈ C xj = 1
ω(G)
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Copositive programming (CPP)
▶ StQP: minx⊤Qx :

∑
j xj = 1 ∧ x ≥ 0

NP-hard by Motzkin-Straus
▶ Linearize: X = xx⊤

replace xixj by Xij and add constraints Xij = xixj

▶ Define A •B = tr(A⊤B) =
∑

i,j AijBij

write StQP (linearized) objective as minQ •X
▶ Let C = {X | X = xx⊤ ∧ x ≥ 0}, C̄ = conv(C)
▶
∑

j xj = 1⇔ (
∑

j xj)
2 = 12 ⇔ 1 •X = 1

▶ StQP ≡ minQ •X : 1 •X = 1 ∧X ∈ C
linear obj. ⇒ optima attained at extrema of feas. set
⇒ can replace C by its convex hull C̄

C̄ is a completely positive cone

▶ Dual ≡ max y : Q− y1 ∈ C̄∗ = {A | ∀x ≥ 0 (x⊤Ax ≥ 0)}
C̄∗ is a copositive cone

▶ ⇒ A pair of NP-hard cNLPs!
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An exercise and a project idea

You, a private investment banker, are seeing a customer.
She tells you “I have 3,450,000$ I don’t need in the next three
years. Invest them in low-risk assets so I get at least 2.5%
return per year.”

Model the problem of determining the required portfolio.
Missing data are part of the fun (and of real life).

[What are the decision vars, objective, constraints? What data are missing?]

Project idea 1: Consider the MILP formulation for Max Clique
and the Motzkin-Straus formulation. Can the latter have multiple
global optima? If so, do they all characterize a maximum clique?
What do local optima characterize? Pursue a computational study to
answer these questions, then check [Gibbons et al., Mathematics of
Operations Research, 22:754-768, 1997] and [Pelillo & Jagota,
J. Artif. Neural Networks, 2:411-420, 1995]
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A gem in Distance Geometry

▶ Heron’s theorem

▶ Heron lived around
year 0

▶ Hung out at
Alexandria’s library

a

c

b

A =
√
s(s− a)(s− b)(s− c)

▶ A = area of triangle
▶ s = 1

2
(a+ b+ c)

Useful to measure areas of agricultural land
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Heron’s theorem: Proof [M. Edwards, high school student, 2007]

A. 2α+2β+2γ = 2π ⇒ α+ β+ γ = π

r + ix = ueiα

r + iy = veiβ

r + iz = weiγ

⇒ (r+ ix)(r+ iy)(r+ iz) = (uvw)ei(α+β+γ) =

uvw eiπ = −uvw ∈ R

⇒ Im((r + ix)(r + iy)(r + iz)) = 0

⇒ r2(x+y+ z) = xyz ⇒ r =
√

xyz
x+y+z

B. s = 1
2 (a+ b+ c) = 1

2 (2x+ 2y + 2z) = x+ y + z

s− a = x+ y + z − y − z = x

s− b = x+ y + z − x− z = y

s− c = x+ y + z − x− y = z

⇒ A =
1

2
(ra+ rb+ rc) = r

a+ b+ c

2
= rs =

√
s(s− a)(s− b)(s− c)
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Subsection 1

The universal isometric embedding
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Representing metric spaces in Rn

▶ Given metric space (X, d) with dist. matrix (DM)
D = (dij), embed X in some RK so it has the same DM

▶ Consider i-th row xi = (di1, . . . , din) of D

▶ Embed i ∈ X by vector UD(i) = xi ∈ Rn

define UD : {1, . . . , n} → Rn s.t. UD(i) = xi

▶ Thm.: (ranUD, ℓ∞) is a metric space with DM D
i.e. ∀i, j ≤ n ∥xi − xj∥∞ = dij

▶ UD is called Universal Isometric Embedding (UIE)

▶ Practical issue: embedding is high-dimensional (Rn)

[Kuratowski 1935]
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Proof
▶ Consider i, j ∈ X with distance d(i, j) = dij
▶ Then

∥xi − xj∥∞ = max
k≤n
|dik − djk| ≤ max

k≤n
|dij| = dij

ineq. ≤ above from triangular inequalities in metric space:

∀k dik ≤ dij + djk ∧ djk ≤ dij + dik

⇒ dik − djk ≤ dij ∧ djk − dik ≤ dij
⇒ |dik − djk| ≤ dij

If valid ∀k then valid for maxk

▶ max |dik − djk| over k ≤ n achieved when k ∈ {i, j}

⇒ ∥xi − xj∥∞ = dij
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Subsection 2

Dimension reduction
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Schoenberg’s theorem

▶ [I. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la
définition axiomatique d’une classe d’espaces distanciés
vectoriellement applicable sur l’espace de Hilbert”, Ann. Math.,
1935]

▶ Question: Given n×n symmetric matrix D, what are necessary
and sufficient conditions s.t. D is a Euclidean DM (EDM)
corresponding to n points x1, . . . , xn ∈ RK with K minimum?

▶ Necessary and sufficient conditions for an EDM
Thm.
D = (dij) is an EDM iff 1

2(d
2
1i + d21j − d2ij | 2 ≤ i, j ≤ n) is

PSD (of rank K)

▶ Yields important result in data science:
Classic Multidimensional Scaling
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Gram matrices and EDMs

▶ Realization: n×K matrix x = (x1, . . . , xn) ⊆ RK

▶ Gram matrix of x: G = xx⊤ = (xi · xj)
Lemma: (i) G ⪰ 0; (i) each M ⪰ 0 is a Gram matrix of some x

▶ Theorem: given rlz x, Gram matrix G and EDM D satisfy

G = −1

2
JD2J (§)

▶ In the theorem, D2 = (d2ij) and

J = In − 1
n11

⊤ =


1− 1

n − 1
n · · · − 1

n
− 1
n 1− 1

n · · · − 1
n

...
...

. . .
...

− 1
n − 1

n · · · 1− 1
n


▶ This is a variant of Schoenberg’s theorem
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Multidimensional scaling (MDS)

▶ Often get approximate EDMs D̃ from raw data
(i.e. matrices that are not EDMs, but they are “not too far”)
(they measure dissimilarities, discrepancies, differences)

▶ G̃ = −1
2
JD̃2J is an approximate Gram matrix

▶ Approximate Gram ⇒ spectral decomposition P Λ̃P⊤ has Λ̃ ̸≥ 0

▶ Let Λ be a PSD diagonal matrix closest to Λ̃:
Λ obtained from Λ̃ by zeroing negative components

▶ x = P
√
Λ is an “approximate realization” of D̃

▶ Denote x = MDS(D)
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Classic MDS: Main result

1. Prove lemma: matrix is Gram iff it is PSD
2. Prove theorem: G = −1

2
JD2J
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Proof of lemma
▶ Gram ⊆ PSD

▶ x is an n×K real matrix
▶ G = xx⊤ its Gram matrix
▶ For each y ∈ Rn (y a row vector) we have

yGy⊤ = y(xx⊤)y⊤ = (yx)(x⊤y⊤) = (yx)(yx)
⊤
= ∥yx∥22 ≥ 0

▶ ⇒ G ⪰ 0

▶ PSD ⊆ Gram
▶ Let G ⪰ 0 be n× n
▶ Spectral decomposition: G = PΛP⊤

(P orthogonal, Λ ≥ 0 diagonal)

▶ Λ ≥ 0⇒
√
Λ ∈ Rn×n

▶ G = PΛP⊤ = (P
√
Λ)(
√
Λ
⊤
P⊤) = (P

√
Λ)(P

√
Λ)

⊤

▶ Let x = P
√
Λ, then G is the Gram matrix of x
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Proof of theorem (1/2)
▶ Translate x so that centroid 1

n

∑
j xj = 0, let G = xx⊤

▶ Expand: d2ij = ∥xi − xj∥22 = (xi − xj)(xi − xj) = xixi + xjxj − 2xixj (∗)
▶ Aim at “inverting” (∗) to express xixj in function of d2ij

▶ Sum (∗) over i:
∑

i d
2
ij =

∑
i xixi + nxjxj − 2xj���: 0 by zero centroid∑

i xi
▶ Similarly for j and divide by n, get:

1

n

∑
i≤n

d2ij =
1

n

∑
i≤n

xixi + xjxj (†)

1

n

∑
j≤n

d2ij = xixi +
1

n

∑
j≤n

xjxj (‡)

▶ Sum (†) over j, get:

1

n

∑
i,j

d2ij = n
1

n

∑
i

xixi +
∑
j

xjxj = 2
∑
i

xixi

▶ Divide by n, get:
1

n2

∑
i,j

d2ij =
2

n

∑
i

xixi (∗∗)
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Proof of theorem (2/2)
▶ Rearrange (∗), (†), (‡) as follows:

2xixj = xixi + xjxj − d2ij (5)

xixi =
1

n

∑
j

d2ij −
1

n

∑
j

xjxj (6)

xjxj =
1

n

∑
i

d2ij −
1

n

∑
i

xixi (7)

▶ Replace LHS of Eq. (6)-(7) in RHS of Eq. (5), get

2xixj =
1

n

∑
k

d2ik +
1

n

∑
k

d2kj − d2ij −
2

n

∑
k

xkxk

▶ By (∗∗) replace 2
n

∑
i
xixi with 1

n2

∑
i,j
d2ij , get

2xixj =
1

n

∑
k

(d2ik + d2kj)− d2ij −
1

n2

∑
h,k

d2hk (§)

which expresses xixj in function of D
▶ Finally, show RHS of (§) is (i, j)-th entry of −JD2J

See lecture notes, Thm. 10.3.5

151 / 413



Principal Component Analysis (PCA)

▶ Given an approximate EDM D

▶ find x = MDS(D)

▶ However, you want x = P
√
Λ in K dimensions

but rank(Λ) > K

▶ Only keep K largest components of Λ
zero the rest

▶ Get realization in desired space
▶ Denote x = PCA(D,K)
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Example 1/3
Mathematical genealogy skeleton
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Example 2/3
A partial view

Euler Thibaut Pfaff Lagrange Laplace Möbius Gudermann Dirksen Gauss
Kästner 10 1 1 9 8 2 2 2 2
Euler 11 9 1 3 10 12 12 8

Thibaut 2 10 10 3 1 1 3
Pfaff 8 8 1 3 3 1

Lagrange 2 9 11 11 7
Laplace 9 11 11 7
Möbius 4 4 2

Gudermann 2 4
Dirksen 4

D =



0 10 1 1 9 8 2 2 2 2
10 0 11 9 1 3 10 12 12 8
1 11 0 2 10 10 3 1 1 3
1 9 2 0 8 8 1 3 3 1
9 1 10 8 0 2 9 11 11 7
8 3 10 8 2 0 9 11 11 7
2 10 3 1 9 9 0 4 4 2
2 12 1 3 11 11 4 0 2 4
2 12 1 3 11 11 4 2 0 4
2 8 3 1 7 7 2 4 4 0
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Example 3/3

In 2D In 3D
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Subsection 3

Dealing with incomplete metrics
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Partial metrics

▶ If your metric space is missing some distances
▶ Get incomplete EDM D

▶ Cannot define vectors UD(i) in UIE
▶ Note: D defines a graph

1

4

2

3
D =


0 1

√
2 1

1 0 1 ?√
2 1 0 1

1 ? 1 0


▶ Complete graph with shortest path (SP) distances:
d24 = 2
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Floyd-Warshall algorithm 1/2

▶ Given n× n partial matrix D computes
all shortest path lengths

▶ For each triplet z, u, v of vertices in the graph, test:
when going u→ v, is it convenient to pass through z?

▶ If so, then change the path length
▶ Complete missing entries duv in D shortest path

lengths u→ v

▶ Denote D̄ = FloydWarshall(D)
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Floyd-Warshall algorithm 2/2
# initialization
for u ≤ n, v ≤ n do

if duv =? then
duv ←∞

end if
end for
# main loop (outer loop must be on triangulation vertex)

for z ≤ n do
for u ≤ n do

for v ≤ n do
if duv > duz + dzv then
duv ← duz + dzv

end if
end for

end for
end for
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Subsection 4

The Isomap heuristic
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Isomap embedding in RK

▶ Given a partial EDM D

1. D̄ = FloydWarshall(D)
2. x = PCA(D̄,K)

▶ Intuition of why it works well:

▶ Denote x = Isomap(D,K)

[Tenenbaum et al., Science, 2000]

161 / 413



Subsection 5

Distance geometry problem
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The Distance Geometry Problem (DGP)

Given K ∈ N and G = (V,E, d) with d : E → R+,
find x : V → RK s.t.

∀{i, j} ∈ E ∥xi − xj∥22 = d2ij

Given a weighted graph , draw it so edges are drawn as

segments with lengths = weights
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Some applications

▶ clock synchronization (K = 1)
▶ sensor network localization (K = 2)
▶ molecular structure from distance data (K = 3)
▶ autonomous underwater vehicles (K = 3)
▶ EDM completion (whatever K)
▶ finding graph embeddings (whatever K)
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Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from partial
measurements of their time differences

▶ K = 1

▶ V : timestamps
▶ {u, v} ∈ E if known time difference between u, v
▶ d: values of the time differences

Used in time synchronization of distributed networks
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Clock synchronization
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to
locate a set of geographically distributed objects using

measurements of the distances between some object pairs

▶ K = 2

▶ V : (mobile) sensors
▶ {u, v} ∈ E iff distance between u, v is measured
▶ d: distance values

Used whenever GPS not viable (e.g. underwater)
duv ∝∼ battery consumption in P2P communication betw. u, v
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Sensor network localization
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Molecular structure from distance data
From [Liberti et al., SIAM Rev., 2014]

▶ K = 3

▶ V : atoms
▶ {u, v} ∈ E iff distance between u, v is known
▶ d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances ⪅ 5.5 measured approximately by NMR
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Graph embeddings

▶ Relational knowledge best represented by graphs
▶ We have fast algorithms for clustering vectors
▶ Task: represent a graph in Rn

▶ “Graph embeddings” and “distance geometry”:
almost synonyms

▶ Used in Natural Language Processing (NLP)
obtain “word vectors” & “sentence vectors”

Project idea 2: create a graph-of-words from a sentence, enrich it
with semantic distances, then use the DG methods in these lectures to
embed the graph in a low-dimensional space; then evaluate sentence
similarity using vector angles
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Complexity

▶ DGP1 with d : E → Q+ is in NP
▶ if instance YES ∃ realization x ∈ Rn×1

▶ if some component xi ̸∈ Q translate x so xi ∈ Q
▶ consider some other xj
▶ let ℓ = |sh. path p : i→ j| =

∑
{u,v}∈p

(−1)suvduv ∈ Q

for some suv ∈ {0, 1}
▶ then xj = xi ± ℓ→ xj ∈ Q (∀j)
▶ ⇒ polytime verification of

∀{i, j} ∈ E |xi − xj | = dij

▶ DGPK may not be in NP for K > 1
don’t know how to polytime check ∥xi − xj∥2 = dij for x ̸∈ QnK
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Hardness
Partition is NP-hard
Given a = (a1, . . . , an) ∈ Nn, ∃ I ⊆ {1, . . . , n} s.t.

∑
i∈I

ai =
∑
i̸∈I

ai ?

▶ Reduce Partition to DGP1 on single-cycle graphs

▶ a −→ cycle C
V (C) = {1, . . . , n}, E(C) = {{1, 2}, . . . , {n, 1}}

▶ For i < n let di,i+1 = ai
For i = n, let dn,n+1 = dn1 = an

▶ E.g. for a = (1, 4, 1, 3, 3), get cycle graph:

[Saxe, 1979]
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Partition is YES ⇒ DGP1 is YES

▶ Given: I ⊂ {1, . . . , n} s.t.
∑
i∈I
ai =

∑
i ̸∈I
ai

▶ Construct: realization x of C in R
1. x1 = 0 // start

2. induction step: suppose xi known
if i ∈ I

let xi+1 = xi + di,i+1 // go right

else
let xi+1 = xi − di,i+1 // go left

▶ Correctness proof: by the same induction
but careful when i = n: have to show xn+1 = x1
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Partition is YES ⇒ DGP1 is YES

Proof that xn+1 = x1:

(1) =
∑
i∈I

(xi+1 − xi) =
∑
i∈I

di,i+1 =

=
∑
i∈I

ai =
∑
i ̸∈I

ai =

=
∑
i ̸∈I

di,i+1 =
∑
i ̸∈I

(xi − xi+1) = (2)

(1) = (2)⇒
∑
i∈I

(xi+1 − xi) =
∑
i ̸∈I

(xi − xi+1)⇒
∑
i≤n

(xi+1 − xi) = 0

⇒ (xn+1 − xn) + (xn − xn−1) + · · ·+ (x3 − x2) + (x2 − x1) = 0

⇒ xn+1 = x1
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Partition is NO ⇒ DGP1 is NO
▶ By contradiction: suppose DGP1 is YES, x realization of C
▶ F = {{u, v} ∈ E(C) | xu ≤ xv},

E(C)∖ F = {{u, v} ∈ E(C) | xu > xv}
▶ Trace x1, . . . , xn: follow edges in F (→) and in E(C)∖ F (←)

DGP1 instance is YES ⇒∑
{u,v}∈F

(xv − xu) =
∑

{u,v}̸∈F

(xu − xv)

∑
{u,v}∈F

|xu − xv| =
∑

{u,v}̸∈F

|xu − xv|

∑
{u,v}∈F

duv =
∑

{u,v}̸∈F

duv

▶ Let J = {i < n | {i, i+ 1} ∈ F} ∪ {n | {n, 1} ∈ F}

⇒
∑
i∈J

ai =
∑
i ̸∈J

ai

▶ So J solves Partition instance, contradiction
▶ ⇒ DGP is NP-hard, DGP1 is NP-complete
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Number of solutions

▶ (G,K): DGP instance
▶ X̃ ⊆ RKn: set of solutions
▶ Congruence: composition of translations, rotations,

reflections
▶ C = set of congruences in RK

▶ x ∼ y means ∃ρ ∈ C (y = ρx):
distances in x are preserved in y through ρ

▶ ⇒ if |X̃| > 0, |X̃| = 2ℵ0
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Number of solutions modulo congruences

▶ Congruence is an equivalence relation ∼ on X̃
(reflexive, symmetric, transitive)

▶ Partitions X̃ into equivalence classes
▶ X = X̃/∼

sets of representatives of equivalence classes
▶ Focus on |X| rather than |X̃|
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Rigidity, flexibility and |X|

▶ infeasible ⇔ |X| = 0

▶ rigid graph ⇔ |X| < ℵ0
▶ globally rigid graph ⇔ |X| = 1

▶ flexible graph ⇔ |X| = 2ℵ0

▶ |X| = ℵ0: impossible by Milnor’s theorem

178 / 413



Milnor’s theorem implies |X| ≠ ℵ0

▶ System S of polynomial equations of degree 2

∀i ≤ m pi(x1, . . . , xnK) = 0

▶ Let X be the set of x ∈ RnK satisfying S

▶ Number of connected components of X is O(3nK)
[Milnor 1964]

▶ Assume |X| is countable; then G cannot be flexible
⇒ each incongruent rlz is in a separate component
⇒ by Milnor’s theorem, there’s finitely many of them
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Examples
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Subsection 6

Distance geometry in MP
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DGP formulations and methods

▶ System of equations
▶ Unconstrained global optimization (GO)
▶ Constrained global optimization
▶ SDP relaxations and their properties
▶ Diagonal dominance
▶ Concentration of measure in SDP
▶ Isomap for DGP
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System of quadratic equations

∀{u, v} ∈ E ∥xu − xv∥2 = d2uv (8)

Computationally: useless
reformulate using slacks:

min
x,s

{ ∑
{u,v}∈E

s2uv
∣∣ ∀{u, v} ∈ E ∥xu−xv∥2 = d2uv+suv

}
(9)
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Unconstrained Global Optimization

min
x

∑
{u,v}∈E

(∥xu − xv∥2 − d2uv)2 (10)

Globally optimal obj. fun. value of (10) is 0 iff x solves (8)

Computational experiments in [Liberti et al., 2006]:
▶ GO solvers from >15 years ago

▶ randomly generated protein data: ≤ 50 atoms

▶ cubic crystallographic grids: ≤ 64 atoms
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Constrained global optimization
▶ minx

∑
{u,v}∈E

|∥xu − xv∥2 − d2uv| exactly reformulates (8)

▶ Relax objective f to concave part, remove constant term,
rewrite min−f as −max f

minx
∑

uv(d
2
uv − ∥xu − xv∥22) =

∑
uv d

2
uv −maxx

∑
uv ∥xu − xv∥22

▶ Reformulate convex part of obj. fun. to convex constraints
∀{u, v} ∈ E ∥xu − xv∥22 ≤ d2uv

▶ Exact reformulation (“push-and-pull”)

maxx
∑

{u,v}∈E
∥xu − xv∥2

∀{u, v} ∈ E ∥xu − xv∥2 ≤ d2uv

 (11)

Theorem (Activity)
At a glob. opt. x∗ of a YES instance, all constraints of (11) are active
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Push-and-pull linearization

Linearization of nonlinear terms ∥xi − xj∥22
for all {i, j} ∈ E:

⇒ ∀{i, j} ∈ E ∥xi∥22 + ∥xj∥22 − 2xi · xj = d2ij

⇒
{
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij

X = x x⊤
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Relaxation

X = x x⊤

⇒ X − x x⊤ = 0

(relax) ⇒ X − x x⊤ ⪰ 0

Schur(X, x) =
(
IK x⊤

x X

)
⪰ 0

If x does not appear elsewhere ⇒ get rid of it (e.g. choose x = 0):

replace Schur(X, x) ⪰ 0 by X ⪰ 0
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SDP relaxation

▶ Relaxation:

minF •X
∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij

X ⪰ 0

▶ Note SDP ≡ linear obj. s.t. linear constrs ∧ PSD cone
▶ DGP linearization/relaxation only defines feasible set
▶ Note F •X = tr(F⊤X) =

∑
ij FijXij

▶ Can we choose a “good” objective function F?
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Some possible objective functions

▶ For protein conformation:

min
∑

{i,j}∈E

(Xii +Xjj − 2Xij)

with = changed to ≥ in constraints (or max and ≤)

“push-and-pull” relaxation

▶ [Ye, 2003], application to wireless sensors localization

min tr(X)

tr(X) = tr(P−1ΛP ) = tr(P−1PΛ) = tr(Λ) =
∑

i λi
⇒ hope to minimize rank

▶ How about “just random”?
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How do you choose?
for want of some better criterion. . .

TEST!

▶ Download protein files from Protein Data Bank (PDB)
they contain atom realizations

▶ Mimick a Nuclear Magnetic Resonance experiment
Keep only pairwise distances < 5.5

▶ Try and reconstruct the protein shape from those weighted
graphs

▶ Quality evaluation of results:

▶ LDE(x) = max
{i,j}∈E

| ∥xi − xj∥ − dij |

▶ MDE(x) = 1
|E|

∑
{i,j}∈E

| ∥xi − xj∥ − dij |
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Empirical choice

▶ Ye faster but often imprecise

▶ Random good but nondeterministic

▶ Push-and-Pull: can relax Xii +Xjj − 2Xij = d2ij to
Xii +Xjj − 2Xij ≥ d2ij
easier to satisfy feasibility, useful later on

▶ Heuristic: add +ηtr(X) to objective, with η ≪ 1
might help minimize solution rank

▶ min
∑

{i,j}∈E
(Xii +Xjj − 2Xij) + ηtr(X)

appears to be a good objective function
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Retrieving realizations in RK

▶ SDP relaxation yields n× n PSD matrix X∗

▶ We need n×K realization matrix x∗

▶ Recall PSD ⇔ Gram

▶ Apply PCA to X∗, keep K largest comps, get x′

▶ This yields solutions with errors

▶ Use x′ as starting pt for local NLP solver

Later on: Barvinok’s Naive Algorithm, an SDP-specific alternative to PCA
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When SDP solvers hit their size limit

▶ SDP solver: technological bottleneck

▶ Can we use an LP solver instead?

▶ Diagonally Dominant (DD) matrices are PSD

▶ Not vice versa: inner approximate PSD cone Y ⪰ 0

▶ Idea by A.A. Ahmadi [Ahmadi & Hall 2015]

193 / 413



Diagonally dominant matrices

n× n symmetric matrix X is DD if

∀i ≤ n Xii ≥
∑
j ̸=i

|Xij|.

E.g.


1 0.1 −0.2 0 0.04 0
0.1 1 −0.05 0.1 0 0
−0.2 −0.05 1 0.1 0.01 0
0 0.1 0.1 1 0.2 0.3

0.04 0 0.01 0.2 1 −0.3
0 0 0 0.3 −0.3 1
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Gershgorin’s circle theorem
▶ Let A be symmetric n× n
▶ ∀i ≤ n let Ri =

∑
j ̸=i
|Aij| and Ii = [Aii −Ri, Aii +Ri]

▶ Then ∀λ eigenvalue of A ∃i ≤ n s.t. λ ∈ Ii
Proof

▶ Let λ be an eigenvalue of A with eigenvector y

▶ Normalize y s.t. ∃i ≤ n yi = 1 and ∀j ̸= i |yj | ≤ 1
let i = argmaxj |yj |, divide y by sgn(yi)|yi|. Now fix i:

▶ Ay = λy ⇒
∑

j≤n:j ̸=i

Aijyj +Aiiyi =
∑

j≤n:j ̸=i

Aijyj +Aii = λyi = λ

▶ Hence
∑

j≤n:j ̸=i

Aijyj = λ−Aii

▶ Triangle+Cauchy-Schwarz inequalities & ∀j ̸= i |yj | ≤ 1⇒
|λ−Aii| = |

∑
j≤n:j ̸=i

Aijyj | ≤
∑

j≤n:j ̸=i

|Aij | |yj | ≤
∑

j≤n:j ̸=i

|Aij | = Ri

hence λ ∈ Ii
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DD ⇒ PSD

▶ Assume A is DD, λ an eigenvalue of A
▶ ⇒ ∀i ≤ n Aii ≥

∑
j ̸=i |Aij| = Ri

▶ ⇒ ∀i ≤ n Aii −Ri ≥ 0

▶ By Gershgorin’s circle theorem λ ≥ 0

▶ ⇒ A is PSD

196 / 413



DD Linearization

∀i ≤ n Xii ≥
∑
j ̸=i

|Xij| (∗)

▶ linearize | · | by additional matrix var T
⇒ write |X| as T

▶ ⇒ (∗) becomes
Xii ≥

∑
j ̸=i

Tij

▶ add “sandwich” constraints −T ≤ X ≤ T
▶ Can easily prove (∗) in case X ≥ 0 or X ≤ 0:

X ≥ 0 ⇒ Xii ≥
∑
j ̸=i

Tij ≥
∑
j ̸=i

Xij =
∑
j ̸=i

|Xij |

X ≤ 0 ⇒ Xii ≥
∑
j ̸=i

Tij ≥
∑
j ̸=i

−Xij =
∑
j ̸=i

|Xij |
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DD Linearization: the general case
Thm.
Let:
▶ D = {X | ∀i ≤ n (Xii ≥

∑
j ̸=i |Xij|)}

▶ T = {X | ∃T (∀i ≤ n Xii ≥
∑

j ̸=i Tij ∧ −T ≤ X ≤ T )}
Then D = T
Proof
(⇒) let T = |X|, then T = D, hence D ⊆ T
(⇐) consider T :

▶ from −T ≤ X ≤ T we have ∀i ̸= j (−Tij ≤ Xij ≤ Tij)
▶ then −Tij ≤ Xij implies Tij ≥ −Xij (⋆)
▶ by (⋆) and Xij ≤ Tij we have Tij ≥ |Xij |
▶ therefore ∀i ≤ n (Xii ≥

∑
j ̸=i Tij ≥

∑
j ̸=i |Xij |) i.e. T ⊆ D

whence D = T as claimed
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DD Programming (DDP)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij
X is DD

}

⇒


∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij
∀i ≤ n

∑
j≤n
j ̸=i

Tij ≤ Xii

−T ≤ X ≤ T
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The issue with inner approximations

DDP could be infeasible!
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Exploit push-and-pull

▶ Enlarge the feasible region
▶ From

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij

▶ Use “push” objective min
∑
ij∈E

Xii +Xjj − 2Xij

▶ Relax to

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2ij
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Hope to achieve LP feasibility

202 / 413



DDP formulation for the DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij ≥ d2ij
∀i ≤ n

∑
j≤n
j ̸=i

Tij ≤ Xii

−T ≤ X ≤ T


Solve, then retrieve solution in RK with PCA
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Subsection 7

DGP cones
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Cones
▶ Set C is a cone if:

∀A,B ∈ C, α, β ≥ 0 αA+ βB ∈ C

▶ If C is a cone, the dual cone is

C∗ = {y | ∀x ∈ C ⟨x, y⟩ ≥ 0}

vectors making acute angles with all elements of C
▶ If C ⊂ Sn (set n× n symmetric matrices)

C∗ = {Y | ∀X ∈ C (Y •X ≥ 0)}

▶ A n× n matrix cone C is finitely generated by X ⊂ Rn if

X = {x1, . . . , xp} ∧ ∀X ∈ C ∃δ ∈ Rp
+ X =

∑
ℓ≤p

δℓ xℓxℓ
⊤
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Representations of DD
▶ Consider Eii, E+

ij , E
−
ij in Sn

Define E0 = {Eii | i ≤ n}, E1 = {E±
ij | i < j}, E = E0 ∪ E1

▶ Eii = diag(0, . . . , 0, 1i, 0, . . . , 0)

▶ E+
ij has minor

(
1ii 1ij
1ji 1jj

)
, 0 elsewhere

▶ E−
ij has minor

(
1ii −1ij
−1ji 1jj

)
, 0 elsewhere

▶ Thm. DD = cone generated by E [Barker & Carlson 1975]

Pf. Rays in E are extreme, all DD matrices generated by E
▶ Cor. DD finitely gen. by
XDD = {ei | i ≤ n} ∪ {(ei ± ej) | i < j ≤ n}
Pf. Verify Eii = eie

⊤
i , E±

ij = (ei ± ej)(ei ± ej)⊤, where ei
is the i-th std basis element of Rn
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Finitely generated dual cone representation
Thm. If C finitely gen. by X , then

C∗ = {Y ∈ Sn | ∀x ∈ X (Y • xx⊤ ≥ 0)}
recall C∗ ≜ {Y ∈ Sn | ∀X ∈ C Y •X ≥ 0}

▶ (⊇) Let Y s.t. ∀x ∈ X (Y • xx⊤ ≥ 0)
▶ ∀X ∈ C, X =

∑
x∈X

δxxx
⊤ (by fin. gen.)

▶ hence Y •X =
∑

x δxY • xx⊤ ≥ 0 (by defn. of Y )
▶ whence Y ∈ C∗ (by defn. of C∗)

▶ (⊆) Suppose Z ∈ C∗ ∖ {Y | ∀x ∈ X (Y • xx⊤ ≥ 0)}
▶ then ∃X ′ ⊂ X s.t. ∀x ∈ X ′ (Z • xx⊤ < 0)
▶ consider any Y =

∑
x∈X ′

δxxx
⊤ ∈ C with δ ≥ 0

▶ then Z • Y =
∑
x∈X ′

δxZ • xx⊤ < 0 so Z ̸∈ C∗

▶ contradiction ⇒ C∗ = {Y | ∀x ∈ X (Y • xx⊤ ≥ 0)}
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Dual cone constraints

▶ Remark: for v ∈ Rn, X • vv⊤ = v⊤Xv

▶ Use finitely generated dual cone theorem
▶ Decision variable matrix X
▶ Constraints:

∀v ∈ X v⊤Xv ≥ 0

▶ Cor. DD∗ ⊃ PSD
Pf. X ∈ PSD iff ∀v ∈ Rn vXv ≥ 0, so certainly valid ∀v ∈ X

▶ If |X | polysized, get compact formulation
otherwise use column generation

▶ |XDD| = |E| = O(n2)
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Dual cone DDP formulation for DGP

min
∑

{i,j}∈E
(Xii +Xjj − 2Xij)

∀{i, j} ∈ E Xii +Xjj − 2Xij = d2ij
∀v ∈ XDD v⊤Xv ≥ 0


▶ v⊤Xv ≥ 0 for v ∈ XDD equivalent to:

∀i ≤ n Xii ≥ 0

∀{i, j} ̸∈ E Xii +Xjj − 2Xij ≥ 0

∀i < j Xii +Xjj + 2Xij ≥ 0

Note we went back to equality “pull” constraints (why?)

Quantifier ∀{i, j} ̸∈ E should be ∀i < j but we already have those constraints

∀{i, j} ∈ E
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Properties

▶ SDP relaxes original problem

▶ DualDDP relaxes SDP
hence also relaxes original problem

▶ Yields tight obj fun bounds w.r.t. SDP

▶ Solutions may have large negative rank
in some applications, retrieving feasible solutions may be difficult

Project idea 3: Apply the DG methods seen in these lectures in
order to control a fleet of submarine robots (for each time instant
t ∈ T they define a different distance graph)
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Subsection 8

Barvinok’s Naive Algorithm
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a random
point of a “big” probability space X is “very close”
to the mean value of the function.

and

In a sense, measure concentration can be considered
as an extension of the law of large numbers.
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Concentration of measure

Given Lipschitz function f : X → R s.t.

∀x, y ∈ X |f(x)− f(y)| ≤ L∥x− y∥2

for some L ≥ 0, there is concentration of measure if ∃
constants c, C s.t.

∀ε > 0 Px(|f(x)− E(f)| > ε) ≤ c e−Cε
2/L2

where E(·) is w.r.t. given Borel measure µ over X

≡ “discrepancy from mean is unlikely”
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Barvinok’s theorem

Consider:

▶ for each k ≤ m, manifolds Xk = {x ∈ Rn | x⊤Qkx = ak}
where m ≤ poly(n)

▶ feasibility problem F ≡
[⋂

k≤m Xk

?

̸= ∅
]

▶ SDP relaxation ∀k ≤ m (Qk •X = ak) ∧X ⪰ 0 with soln. X̄

▶ Algorithm: T ← factor(X̄); y ∼ Nn(0, 1); x′ ← Ty

Then:

▶ ∃c > 0, n0 ∈ N such that ∀n ≥ n0

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
∥X̄∥2 lnn

)
≥ 0.9.
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Algorithmic application

▶ x′ is “close” to each Xk: try local descent from x′

▶ ⇒ Feasible QP solution from an SDP relaxation
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Elements of Barvinok’s formula

Prob
(
∀k ≤ m dist(x′,Xk) ≤ c

√
∥X̄∥2 lnn

)
≥ 0.9.

▶
√
∥X̄∥2 arises from T (a factor of X̄)

▶
√
lnn arises from concentration of measure

▶ 0.9 follows by adjusting parameter values in “union bound”
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Application to the DGP

▶ ∀{i, j} ∈ E Xij = {x | ∥xi − xj∥22 = d2ij}

▶ DGP can be written as
⋂

{i,j}∈E
Xij

?

̸= ∅

▶ SDP relaxation Xii +Xjj − 2Xij = d2ij ∧X ⪰ 0 with
soln. X̄

▶ Difference with Barvinok: x ∈ RKn, rk(X̄) ≤ K

▶ IDEA: sample y ∼ NnK(0, 1√
K
)

▶ Thm. Barvinok’s theorem works in rank K
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Proof structure
▶ Show that, on average, ∀k ≤ m tr((Ty)⊤Qk(Ty)) = Qk • X̄ = ak

▶ compute multivariate integrals
▶ bilinear terms disappear because y normally distributed
▶ decompose multivariate int. to a sum of univariate int.

▶ Exploit concentration of measure to show errors happen rarely
▶ a couple of technical lemmata yielding bounds
▶ ⇒ bound Gaussian measure µ of ε-neighbourhoods of

A−
i = {y ∈ Rn×K | Qi(Ty) ≤ Qi • X̄}

A+
i = {y ∈ Rn×K | Qi(Ty) ≥ Qi • X̄}
Ai = {y ∈ Rn×K | Qi(Ty) = Qi • X̄}.

▶ use “union bound” for measure of A−
i (ε) ∩A

+
i (ε)

▶ show A−
i (ε) ∩A

+
i (ε) = Ai(ε)

▶ use “union bound” to measure intersections of Ai(ε)
▶ appropriate values for some parameters ⇒ result

218 / 413



The heuristic

1. Solve SDP relaxation of DGP, get soln. X̄
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X̄)
b. y ∼ NnK(0, 1√

K
)

c. x′ = Ty

3. Use x′ as starting point for a local NLP solver on
formulation

min
x

∑
{i,j}∈E

(
∥xi − xj∥2 − d2ij

)2
and return improved solution x
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Subsection 9

Isomap revisited
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Isomap for the DGP
▶ Given DGP instance (K,G = (V,E, d)):

1. D = square weighted adjacency matrix of G
2. D̄ = completion of D
3. x′ = PCA(D̄,K)
4. x = locally optimal solution closest to x

▶ Step 4 is the “refinement step”
calls a local solver for the DGP with starting point x′

▶ Vary Step 2 to generate Isomap-based heuristics
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm on G
(classic Isomap)

B. Find a spanning tree (SPT) of G and compute a random
realization in x̄ ∈ RK , use its sqEDM

C. Solve a push-and-pull SDP/DDP/DualDDP to find a realization
x′ ∈ Rn, use its sqEDM

Project idea 4: implement and test at least 6 different variants of
Isomap for DGP: the three above, and at least three new ones of your
own conception
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Subsection 10

Summary
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Matrix reformulations

▶ Quadratic nonconvex too difficult?
▶ Solve SDP relaxation
▶ SDP relaxation too large?
▶ Solve DDP approximation
▶ Get n× n matrix solution, need K × n!
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Solution rank reduction methods

▶ Multidimensional Scaling (MDS)
▶ Principal Component Analysis (PCA)
▶ Barvinok’s naive algorithm (BNA)
▶ Isomap

All provide good starting points for local solvers

Can also use them for general dimensionality reduction:
they map n vectors in Rn −→ n vectors in RK
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The gist of random projections (RP)

▶ Let A be a m×n data matrix (columns in Rm, m≫ 1)
▶ T short & fat, normally sampled componentwise(

· · · · · ·· · · · · ·· · · · · ·

)
︸ ︷︷ ︸

T

( ...
...

...
...

...
...

)
︸ ︷︷ ︸

A

=
(

...
...

...
)

︸ ︷︷ ︸
TA

▶ Then ∀i < j ∥Ai − Aj∥2 ≈ ∥TAi − TAj∥2 “wahp”
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wahp
“wahp” = “with arbitrarily high probability”
the probability of Ek (depending on some parameter k)

approaches 1 “exponentially fast” as k increases

P(Ek) ≥ 1−O(e−k)
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Johnson-Lindenstrauss Lemma (JLL)

Thm.
Given A ⊆ Rm with |A| = n and ε > 0 there is k = O( 1

ε2
lnn)

and a k ×m matrix T s.t.

∀x, y ∈ A (1− ε)∥x− y∥ ≤ ∥Tx− Ty∥ ≤ (1 + ε)∥x− y∥

If k ×m matrix T is sampled componentwise from N(0, 1√
k
), then

P(A and TA approximately congruent) ≥ 1
n

(nontrivial) — result follows by probabilistic method

Note that 1/
√
k is the standard deviation, not the variance
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In practice

▶ P(A and TA approximately congruent) ≥ 1
n

▶ re-sampling sufficiently many times gives wahp
▶ Empirically, sample T few times (once will do)

ET (∥Tx− Ty∥) = ∥x− y∥
probability of error decreases wahp

Surprising fact:
k is independent of the original number of dimensions m
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Clustering Google images

[L. & Lavor, 2017]
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Clustering without RPs

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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Clustering with RPs

Get["Projection.m"];
VKimg = JohnsonLindenstrauss[VHimg, 0.1];
VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]
Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Projecting formulations
▶ Given:

▶ F (p, x): MP formulation with params p & vars x
▶ sol(F ): solution of F
▶ C : formulation class (e.g. LP, NLP, MILP, MINLP)
▶ Given RP T , define T F (p, x) as

F (Tp, x) or F (Tp, Tx)

▶ Want to show: ∀F ∈ C sol(F ) ≈ sol(TF ) wahp
▶ Issues:

▶ RPs project points not vars/constrs
▶ approximate congruence ̸= feasibility/optimality
▶ JLL applies to finite pt sets, vars encode ∞ pts

▶ Today we see this for C = LP
▶ Can also be applied to QP, SDP, QCQP, and more
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Subsection 1

Random projection theory
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The shape of a set of points
▶ Lose dimensions but not too much accuracy

Given A1, . . . , An ∈ Rm find k ≪ m and A′
1, . . . , A

′
n ∈ Rk s.t.

A and A′ “have almost the same shape”

▶ What is the shape of a set of points?

A’

A

congruence ⇔ same shape: ∥Ai −Aj∥ = ∥A′
i −A′

j∥

▶ Approximate congruence ≡ small distortion:
A,A′ have almost the same shape if
∀i < j ≤ n (1− ε)∥Ai −Aj∥ ≤ ∥A′

i −A′
j∥ ≤ (1 + ε)∥Ai −Aj∥

for some small ε > 0

Assume norms are all Euclidean
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Losing dimensions = “projection”

In the plane, hopeless

In 3D: no better
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Recall the JLL

Thm.
Given A ⊆ Rm with |A| = n and ε > 0 there is k = O( 1

ε2
lnn)

and a k ×m matrix T s.t.

∀x, y ∈ A (1− ε)∥x− y∥ ≤ ∥Tx− Ty∥ ≤ (1 + ε)∥x− y∥

238 / 413



Approximate congruence: proof sketch

2

1Thm.
Let T be a k × m RP sampled from
N(0, 1√

k
), and u ∈ Rm s.t. ∥u∥ = 1.

Then E(∥Tu∥2) = ∥u∥2

3
6

4
5
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RPs preserve norms on average
Thm.
Let T be a k×m rectangular matrix with each component sampled from
N(0, 1√

k
), and u ∈ Rm s.t. ∥u∥ = 1. Then E(∥Tu∥2) = 1

Proof
▶ Let v = Tu, i.e. ∀i ≤ k let vi =

∑
j≤n

Tijuj

▶ E(vi) = E

( ∑
j≤m

Tijuj

)
=
∑
j≤m

E(Tij)uj = 0

▶ Var(vi) =
∑
j≤m

Var(Tijuj) =
∑
j≤m

Var(Tij)u
2
j =

∑
j≤m

u2
j

k = 1
k∥u∥

2 = 1
k

▶ 1
k = Var(vi) = E(v2i − (E(vi))2) = E(v2i − 0) = E(v2i )

▶ E(∥Tu∥2) = E(∥v∥2) = E

(∑
i≤k

v2i

)
=
∑
i≤k

E(v2i ) =
∑
i≤k

1
k = 1

Can we argue that the variance decreases wahp?
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Surface area of a slice of hypersphere
S̄m(r): surface of m-dimensional sphere of radius r

S̄m(r) =
2πm/2rm−1

Γ(m/2)
Sm ≜ S̄m(1)

Lateral surface of infinitesimally high hypercylinder

dS̄m(
√
1− t2) = Sm−1(1− t2)

m−2
2 dt
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Area of polar caps

Apc = 2

∫ 1

t

dS̄m(s) = 2Sm−1

∫ 1

t

(1− s2)
m−2

2 ds

1 + x ≤ ex for all x and
1∫
t

f(s)ds ≤
∞∫
t

f(s)ds for f ≥ 0

⇒ Apc ≤ 2Sm−1

∫ ∞

t

e−
m−2

2 s2ds =
2Sm−1√
m− 2

√
π

2
erfc

(√
m− 2t√

2

)
“≈”O(e−t2)

▶ Polar caps area
decreases as m→∞
with t fixed

▶ Concentration of
measure of the
equatorial band
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An intuitive explanation
▶ Polar caps area µ(Am

t ) = µ({u ∈ Sm−1 | |um| > t}) decreases
with t fixed as m→∞ ⇒ area of equatorial band Ām

t increases
with same conditions

▶ T Ām
t = {u ∈ Sm−1 |

∣∣∥Tu∥2 − 1
∣∣ ≤ t} has concentration of

measure (if T is stereographic)
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Intermezzo: The union bound
▶ Events E1, . . . , Ek such that P(Ei) ≥ 1− p for each i ≤ k

▶ What is P(all Ei)?

▶ P(all Ei) = 1−P(at least one ¬Ei)⇒

P
(∧
i≤k

Ei
)

= 1−P
(∨
i≤k

(¬Ei)
)
≥

≥ 1−
k∑
i=1

P(¬Ei) ≥ 1−
k∑
i=1

(1− (1− p)) = 1− kp

▶ So P(all Ei) ≥ 1− kp
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A syntactical explanation for k = O(ε−2 lnn)

▶ B = set of unit vectors; by “intuitive explanation”
⇒ ∀u ∈ B ∃C > 0 s.t. P(1− t ≤ ∥Tu∥ ≤ 1 + t) ≥ 1− e−Ct2

▶ By union bound:
⇒ P(∀u ∈ B 1− t ≤ ∥Tu∥ ≤ 1 + t) ≥ 1− |B|e−Ct2

▶ Prob. ∈ [0, 1]⇒ require 1− |B|e−Ct2 > 0:
⇒ |B|e−Ct2 < 1

▶ (arbitrarily) Let t = ε
√
k:

⇒ |B|e−Cε2k < 1

▶ ⇒ k > Cε−2 ln(|B|)
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Apply to vector differences
▶ Let A ⊂ Rm, |A| = n

▶ ∀x, y ∈ A we have

∥Tx−Ty∥2 = ∥T (x−y)∥2 = ∥x−y∥2
∥∥T x− y
∥x− y∥

∥∥2 = ∥x−y∥2∥Tu∥2

where ∥u∥2 = 1

▶ E(∥Tu∥2) = ∥u∥ = 1 ⇒ E(∥Tx− Ty∥2) = ∥x− y∥2

▶ Let B = { x−y
∥x−y∥ | x, y ∈ A}

|B| = O(n2)⇒ k = Cε−2 ln(n) for some constant C

▶ By concentration of measure on T Ām, ∃ε ∈ (0, 1) s.t.

(1− ε)∥x− y∥2 ≤ ∥Tx− Ty∥2 ≤ (1 + ε)∥x− y∥2 (∗)

holds with positive probability

▶ Probabilistic method: ∃T such that (∗) holds
⇒ JLL follows
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Randomized algorithm
▶ Distortion has low probability [Gupta 02]:

∀x, y ∈ A P(∥Tx− Ty∥ ≤ (1− ε)∥x− y∥) ≤ 1/n2

∀x, y ∈ A P(∥Tx− Ty∥ ≥ (1 + ε)∥x− y∥) ≤ 1/n2

▶ Probability ∃ pair x, y ∈ A distorting Euclidean distance:
union bound over

(
n
2

)
pairs

P(¬(A and TA have almost the same shape)) ≤
(n
2

) 2

n2
= 1− 1

n
P(A and TA have almost the same shape) ≥ 1/n

▶ Algorithm:
▶ P(∃x, y ∈ A with large JLL discrepancy) ≤ 1− 1/n
▶ Consider t > 1 independent samplings of random RP T
▶ Probability that all have large discrepancy: ≤ (1− 1/n)t

▶ Choose t so at least one T will be good with prob. ≥ 0.99:
(1− 1/n)t ≤ 1− 0.99 = 0.01 yields t ≥ ln(0.01)/ ln(1− 1/n)

if n = 100, get t ≥ 459
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Subsection 2

Projecting LP feasibility
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Pure feasibility LP: easy cases
Thm.
T : Rm → Rk a RP, and b, A1, . . . , An ∈ Rm. For any given vector
x ∈ X, we have:

(i) If b =
n∑

i=1

xiAi then Tb =
n∑

i=1

xiTAi

by linearity of T

(ii) If b ̸=
n∑

i=1

xiAi then P

(
Tb ̸=

n∑
i=1

xiTAi

)
≥ 1− 2e−Ck

by JLL applied to ∥b−
∑

i xiAi∥

(iii) If b ̸=
n∑

i=1

yiAi for all y ∈ X ⊆ Rn, where |X| is finite, then

P

(
∀y ∈ X Tb ̸=

∑n
i=1 yiTAi

)
≥ 1− 2|X|e−Ck

for some constant C > 0 (independent of n, k)
by union bound

[Vu et al., Math of OR, 2018]
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Separating hyperplanes

When |X| is large, project separating hyperplanes instead

▶ Convex C ⊆ Rm, x ̸∈ C:
then ∃ hyperplane c separating x from C

▶ In particular, true if C = cone(A1, . . . , An) for A ⊆ Rm

▶ Can show x ∈ C ⇔ Tx ∈ TC with high probability

▶ As above, if x ∈ C then Tx ∈ TC by linearity of T
Difficult part is proving the converse

▶ Can also project point-to-cone distances

250 / 413



Projection of separating hyperplanes
Thm.
Given c, b, A1, . . . , An ∈ Rm of unit norm s.t. b /∈ cone{A1, . . . , An} pointed, ε > 0,
c ∈ Rm s.t. c⊤b < −ε, c⊤Ai ≥ ε (i ≤ n), and T a RP:

P
[
Tb /∈ cone{TA1, . . . , TAn}

]
≥ 1− 4(n+ 1)e−C(ε

2−ε3)k

for some constant C.
Proof
Let A be the event that T approximately preserves ∥c − χ∥2 and ∥c + χ∥2 for all
χ ∈ {b, A1, . . . , An}. Since A consists of 2(n + 1) events, by the JLL (“squared
variant”) and the union bound, we get

P(A ) ≥ 1− 4(n+ 1)e−C(ε
2−ε3)k

Now consider χ = b

⟨Tc, T b⟩ =
1

4
(∥T (c+ b)∥2 − ∥T (c− b)∥2)

by JLL ≤
1

4
(∥c+ b∥2 − ∥c− b∥2) +

ε

4
(∥c+ b∥2 + ∥c− b∥2)

= c⊤b+ ε < 0

and similarly ⟨Tc, TAi⟩ ≥ 0

[Vu et al., Math. OR, 2018]
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The feasibility projection theorem

Thm.
Given δ > 0, ∃ sufficiently large m ≤ n such that:

for any LFP input A, b where A is m× n
we can sample a random k ×m matrix T with k ≪ m

and

P(orig. LFP feasible⇐⇒ proj. LFP feasible) ≥ 1− δ
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Subsection 3

Projecting LP optimality
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Notation

▶ P ≡ min{cx | Ax = b ∧ x ≥ 0} (original problem)

▶ TP ≡ min{cx | TAx = Tb ∧ x ≥ 0} (projected problem)

▶ v(P ) = optimal objective function value of P

▶ v(TP ) = optimal objective function value of TP
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The optimality projection theorem

▶ Assume feas(P ) is bounded
▶ Assume all optima of P satisfy

∑
j xj ≤ θ for some

given θ > 0
(prevents unboundedness)

Thm.
Given γ > 0,

v(P )− γ ≤ v(TP ) ≤ v(P ) (∗)

holds with arbitrarily high probability (w.a.h.p.)

more precisely, (∗) holds with prob. 1− 4ne−C(ε2−ε3)k where
ε = γ/(2(θ + 1)η) and η = O(∥y∥2) where y is a dual optimal
solution of P having minimum norm
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The easy part

Show v(TP ) ≤ v(P ):
▶ Constraints of P : Ax = b ∧ x ≥ 0

▶ Constraints of TP : TAx = Tb ∧ x ≥ 0

▶ ⇒ constraints of TP are lin. comb. of constraints of P

▶ ⇒ any solution of P is feasible in TP
(btw, the converse holds almost never)

▶ P and TP have the same objective function

▶ ⇒ TP is a relaxation of P ⇒ v(TP ) ≤ v(P )
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The hard part (sketch)
▶ Eq. (12) equivalent to P for γ = 0

cx ≤ v(P )− γ
Ax = b
x ≥ 0

 (12)

Note: for γ > 0, Eq. (12) is infeasible

▶ By feasibility projection theorem,

cx ≤ v(P )− γ
TAx = Tb

x ≥ 0


is infeasible w.a.h.p. for γ > 0

▶ Re-state: cx < v(P )− γ ∧ TAx = Tb ∧ x ≥ 0 infeasible w.a.h.p.
▶ ⇒ cx ≥ v(P )− γ holds w.a.h.p. for x ∈ feas(TP )

▶ ⇒ v(P )− γ ≤ v(TP )
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Subsection 4

Solution retrieval
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Projected solutions are infeasible in P

▶ Ax = b ⇒ TAx = Tb by linearity

▶ However,
Thm.
For x ≥ 0 s.t. TAx = Tb, Ax = b with probability zero

if not, an x belonging to (n− k)-dim. subspace would belong to
an (n−m)-dim. subspace (with k ≪ m) with positive probability

▶ Can’t get solution for original LFP using projected
LFP!

259 / 413



Solution retrieval by duality

▶ Primal min{c⊤x | Ax = b ∧ x ≥ 0} ⇒
dual max{b⊤y | A⊤y ≤ c}

▶ Let x′ = sol(TP ) and y′ = sol(dual(TP ))

▶ ⇒ (TA)⊤y′ = (A⊤T⊤)y′ = A⊤(T⊤y′) ≤ c

▶ ⇒ T⊤y′ is a solution of dual(P )

▶ ⇒ we can compute an optimal basis J for P

▶ Solve AJxJ = b, get xJ , obtain a solution x∗ of P

▶ Won’t work in practice: errors in computing J
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Solution retrieval by projected basis
▶ H: optimal basis of TP

we can trust that — given by solver
▶ |H| = k ⇒ AH is m× k (tall and slim)
▶ Pseudoinverse: solve k × k system A⊤

HAHxH = A⊤
Hb

⇒ xH = (A⊤
HAH)

−1A⊤
Hb

▶ let x = (xH , 0)

▶ Can prove small feasibility error wahp
▶ ISSUE: may be slightly infeasible

empirically: x ̸≥ 0 but x− = min(0, x)→ 0 as k →∞
Project idea 5: Test the output of duality and projected basis
retrieval methods on a set of 50 random large feasible standard-form
LPs: you should find that the duality method is worse than the
projected basis method. Formulate a reasoned hypothesis about the
reason why this happens
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Projected LP duals
▶ The dual of P ≡ min{cx | Ax = b ∧ x ≥ 0} is

D ≡ max{yb | yA ≤ c}
▶ A projected dual on y ∈ Rm can be derived as follows:

max{(yT⊤)Tb | (yT⊤)TA ≤ c}
▶ Replacing u = yT⊤ ∈ Rk, we obtain

TD ≡ max{ub̄ | uĀ ≤ c} where b̄ = Tb, Ā = TA

▶ Theory [D’Ambrosio et al. MPB 2020]:
▶ if original dual is feasible, projected dual is feasible
▶ approximation guarantees on projected dual objective function
▶ retrieval: if ū ∈ arg opt(TD), let ỹ = ūT , ỹ is feasible in D

Project idea 6: Develop an algorithm for finding a candidate
solution x′ of P from ỹ. Sample 50 random large standard form LP
instances, solve P, TP, TD for each instance. Collect soln. x∗ from P,
x̃ from TP, x′ from TD, then compute objective function value and
feasibility error w.r.t. P of x∗, x̃, x′. Plot all this data in function of
the number of rows of A and ε
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Subsection 5

Application to quantile regression
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Conditional random variables

▶ random variable B conditional on A1, . . . , Ap

▶ assume B depends linearly on {Aj | j ≤ p}

▶ want to find x1, . . . , xn ∈ R s.t.

B =
∑
j≤p

xjAj

▶ use samples b, a1, . . . , ap ∈ Rm to find estimates

▶ ai = row, aj = column
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Sample statistics
▶ expectation:

µ̂ = argmin
µ∈R

∑
i≤m

(bi − µ )2

▶ conditional expectation (linear regression):

ν̂ = argmin
ν∈Rp

∑
i≤m

(bi − νai )2

▶ sample median:

ξ̂ = argmin
ξ∈R

∑
i≤m

|bi − ξ|

= argmin
ξ∈R

∑
i≤m

(
1

2
max(bi − ξ, 0)−

1

2
min(bi − ξ, 0)

)

▶ conditional sample median: similarly
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Quantile regression

▶ sample τ -quantile:

ξ̂ = argmin
ξ∈R

∑
i≤m

(τ max(bi − ξ, 0)− (1− τ)min(bi − ξ, 0))

▶ conditional sample τ -quantile (quantile regression):

β̂ = argmin
β∈Rp

∑
i≤m

(
τ max(bi − βai, 0)− (1− τ)min(bi − βai, 0)

)
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Linear Programming formulation
Let A = (aj | j ≤ n); then

β̂ = argmin τu+ + (1− τ)u−
A(β+ − β−) + u+ − u− = b

β, u ≥ 0


▶ parameters: A is m× p, b ∈ Rm, τ ∈ R
▶ decision variables: β+, β− ∈ Rp, u+, u− ∈ Rm

▶ LP constraint matrix is m× (2p+ 2m)
density: p/(p+m) — can be high

Project idea 7: Test the application of RPs on at least 50 large
random MultiCommodity Flow (MCF) problems. Plot the ratio of
projected to original objective, retrieved to original objective, and
infeasibility errors in function of the number of rows of the equality
system Ax = b and ε. Is MCF a good application testbed for RP?
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Large datasets
▶ Russia Longitudinal Monitoring Survey hh1995f

▶ m = 3783, p = 855

▶ A = hf1995f, b = log avg(A)
▶ 18.5% dense
▶ poorly scaled data, CPLEX yields infeasible (!!!) after around 70s

CPU
▶ quantreg in R fails

▶ 14596 RGB photos on my HD, scaled to 90× 90 pixels

▶ m = 14596, p = 24300

▶ each row of A is an image vector, b =
∑
A

▶ 62.4% dense
▶ CPLEX killed by OS after ≈30min (presumably for lack of RAM) on

16GB
▶ could not load dataset in R

▶ Results ⇒ LP too large, projected LP can be solved
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Electricity prices
▶ Every hour over 365 days in 2015 (8760 rows)
▶ From 22 countries (columns) from the European zone

orig proj
1 5.82e-01 5.69e-01
2 9.46e-02 0
3 0 0
4 1.06-01 1.18e-01
5 2.73e-04 6.92e-05
6 -4.81e-06 -2.07e-05
7 1.32e-01 1.36e-01
8 0 0
9 0 0
10 0 0
11 -3.46e-08 -2.45e-05
12 0 0
13 5.66e-02 5.49e-02
14 -2.50e-04 2.91e-03
15 2.86e-02 2.81e-02
16 0 0
17 0 0
18 0 9.35e-02
19 0 0
20 2.23e-09 0
21 0 -7.99e-06

▶ Permutation (18,2) (21,20) applied to
proj gives same nonzero pattern and
reduces ℓ2 error from 0.13 to 0.01

▶ For every proj solution I found I could
always find a permutation with this
property!!

▶ . . . On closer inspection, many columns
reported equal data

▶ Small numerical error
▶ Approximate solutions respect Nonzero

pattern
▶ LP too small for approximation to have

an impact on CPU time
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Subsection 1

Motivation
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Coding problem for costly channels

▶ Task:
send long sparse vector y ∈ Rn on costly channel

1. construct m× n encoding matrix A with m ≤ n
both parties know A

2. encode b = Ay ∈ Rm (shorter than y)
3. send b (spend less than by sending y)

▶ Decode by finding sparsest x s.t. Ax = b
can we expect x ≈ y, i.e. small ∥x− y∥?

▶ Summary:

1. given long sparse vector y
2. shorten it to b, send b
3. upon receiveing b, recover long sparse vector x ≈ y
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Coding problem for noisy channels
▶ Task: send vector w ∈ Rd on a noisy channel
▶ Encoding: n× d matrix Q with n > d, send z = Qw ∈ Rn

z longer than w for redundancy both parties know Q

▶ Error prob. e: e n components of z sent wrong
▶ Receive (wrong) vector z̄ = z + x where x is sparse
▶ Can we recover z?

▶ Choose m× n matrix A s.t. m = n− d and AQ = 0
▶ Let b = Az̄ = A(z + x) = A(Qw + x) = AQw +Ax = Ax
▶ Suppose we can find sparsest x′ s.t. Ax′ = b
▶ ⇒ we can recover z′ = z̄ − x′

▶ Recover w′ = (Q⊤Q)−1Q⊤z′ (pseudoinverse)
What is the likelihood of getting small ∥w − w′∥?

Summary: 1. given short dense vector w, 2. lengthen it to z for
redundancy; 3. send z and receive z̄ = z+x; 4. find long sparse error
vector x using short vector b = Az̄; 5. recover z′ then w′
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What these tasks have in common

▶ Given matrix A with fewer rows than columns
▶ Given vector b
▶ Find sparsest solution x∗ of Ax = b

▶ Note: Ax = b feasible iff rank(A) = rank(A|b)
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Subsection 2

Basis pursuit

275 / 413



Sparsest solution of a linear system
▶ Problem P 0(A, b) ≡ min{∥x∥0 | Ax = b} is NP-hard

Reduction from Exact Cover by 3-Sets [Garey&Johnson 1979, A6[MP5]]

MILP: min{
∑

j yj | ∀j −Myj ≤ xj ≤Myj ∧ Ax = b ∧ y ∈ {0, 1}n}

▶ P 1(A, b) ≡ min{∥x∥1 | Ax = b}
is a relaxation

▶ Reformulate to LP:
min

∑
j≤n

sj

∀j ≤ n −sj ≤ xj ≤ sj
Ax = b

 (†)

▶ Empirical observation: P 1 often finds optimum of P 0

Too often for this to be a coincidence
▶ Theoretical justification by Candès, Tao, Donoho

Mathematics of sparsity, Compressed sensing, Compressive sampling

▶ Note: we always assume b ̸= 0 in P 0(A, b) and P 1(A, b)
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Graphical intuition

▶ Wouldn’t work with ℓ2, ℓ∞ norms
Ax = b flat at poles — “zero probability of sparse solution”

Warning: this is not a proof, and ∃ cases not explained by this drawing [Candès 2014]
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Phase transition in sparse recovery
For x ∈ Rn, A ∈ Rm×n: consider P 1(A,Ax) and its opt. x∗

Pixel grayscale: avg density of x∗ over many samplings of A; white = sparse, black = dense

Prob(x∗ has sparsity s) undergoes a phase transition
For a given n, if m is too small P 1 fails to find the optimum of P 0

[Tropp et al., Information and Inference, 2014]
278 / 413



Subsection 3

Theoretical results
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Main theorem and proof structure
Defn. (i) Given a small ϵ ≥ 0, a scalar α is near-zero if |α| < ϵ;
(ii) a vector is s-sparse if it has ≤ s nonzero components

▶ Thm. Let:

1. A ∼ N(0, 1)mn with m < n but m “not too small”
2. x̂ ∈ Rn have s nonzeros and n− s zeros or near-zeros
3. x̄ be the best approx of x̂ with exactly s nonzeros
4. b̂ = Ax̂ and x∗ be the unique s-sparse min of P 1(A, b̂)

then x∗ is a “good approximation” of x̄ (⋆)

▶ Proof sketch:

▶ Prop. A has the null space property (NSP) ⇒ (⋆)
▶ Prop. A has restricted isometry prop. (RIP) ⇒ A has NSP
▶ Prop. A ∼ N(0, 1)mn ⇒ A has RIP
▶ adapt to near-zeros by modifying NSP
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Some notation

Defn. (i) For any n ∈ N define [n] = {1, . . . , n};
(ii) for z ∈ Rn and S ⊆ [n] let z[S] = ((zj iff j ∈ S) xor 0 | j ≤ n) be
the restriction of z to S

▶ Consider Ax = b where A is m× n with m < n
⇒ if feasible it has uncountably many solutions

▶ Let x ∈ Rn s.t. Ax = b, NA = null(A), N0
A = NA ∖ {0}

⇒ ∀y ∈ NA we have A(x+ y) = Ax+ Ay = Ax+ 0= b

▶ For S ⊆ [n] let S̄ = [n]∖ S

▶ Note that ∀z ∈ Rn we have z = z[S] + z[S̄]
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Null space property
Defn. For x ∈ Rn let supp(x) = {j ≤ n | xj ̸= 0}

▶ Defn. NSPs(A) ≡
∀S ⊆ [n]

(
|S| = s → ∀y ∈ N0

A ∥y[S]∥1 < ∥y[S̄]∥1
)

A has the null space property of order s

▶ Significance: Ax = b→ A(x+ y) = b for every y ∈ N0
A

⇒ y ∈ N0
A has smaller ℓ1 norm value from y[S] than y[S̄]

▶ We show that A has the NSP of order s is the same as
every s-sparse x∗ is the unique optimum of P 1(A,Ax∗)

▶ Prop. NSPs(A)⇔
∀x∗ ∈ Rn (|supp(x∗)| ≤ s→ x∗ = uniqP 1(A,Ax∗))
the “NSP proposition”
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Strength of NSPt as t grows
NSP Prop. states |supp(x∗)| ≤ s but NSPs(A) assumes |S| = s: why?

Lemma
∀A ∈ Rm×n, t < s ≤ n NSPs(A)⇒ NSPt(A)

Proof
NSPs(A) ≡ ∀S ⊆ [n] (|S| = s→ ∀y ∈ N0

A ∥y[S]∥1 < ∥y[S̄]∥1), hence:

given T,U ⊆ [n] with T,U nontrivial disjoint, |T | = t and |T ∪ U | = s,

• ∀y ∈ N0
A ∥y[T ∪ U ]∥1 < ∥y[T ∪ U ]∥1 = ∥y[[n]∖ (T ∪ U)]∥1 ⇒

(†) ∀y ∈ N0
A ∥y[T ]∥1 + ∥y[U ]∥1 < ∥y∥1 − ∥y[T ]∥1 − ∥y[U ]∥1 ⇒

(‡) ∀y ∈ N0
A ∥y[T ]∥1 < ∥y[T̄ ]∥1 − 2∥y[U ]∥1

• whence ∀T ⊆ [n] (|T | = t → ∀y ∈ N0
A ∥y[T ]∥1 < ∥y[T̄ ]∥1)

since ∥y[U ]∥1 > 0, and so NSPt(A)

(†) ∥y[T ∪ U ]∥1 =
∑

j∈T∪U |yj | =
∑

j∈T |yj |+
∑

j∈U |yj | = ∥y[T ]∥1 + ∥y[U ]∥1
∥y[[n] ∖ V ]∥1 =

∑
j∈[n]∖V |yj | =

∑
j∈[n] |yj | −

∑
j∈V |yj | = ∥y∥1 − ∥y[V ]∥1

(‡) ∥y∥1−∥y[T ]∥1 =
∑

j≤n |yj |−
∑

j∈T |yj | =
∑

j ̸∈T |yj | =
∑

j∈T̄ |yj | = ∥yj [T̄ ]∥1
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Proof of the NSP proposition (⇒)
∀x∗(|supp(x∗)|=s→ x∗=uniqP 1(A,Ax∗))⇒ NSPs(A)
▶ Claim ∀y ∈ N0

A and S ⊆ [n] with |S| = s we have Ay[S] ̸= 0

Pf. y[S] has |supp(x)| = s, by hyp y[S] uniq min of
P 1(A,Ay[S]); if Ay[S] = 0 then 0 solves P 1(A,Ay[S]) and
∥0∥1 < ∥y[S]∥1 contradicting min, so Ay[S] ̸= 0

▶ ∀y ∈ Rn and S ⊆ [n] we have y = y[S] + y[S̄]

▶ ⇒ for any y ∈ N0
A we have Ay = Ay[S] + Ay[S̄] = 0

⇒ A(−y[S̄]) = Ay[S] ̸= 0 by claim

▶ Therefore, −y[S̄] is feasible in P 1(A,A y[S])

▶ y[S] ̸= −y[S̄] othw by y = y[S] + y[S̄] both would be scalings
of y and hence both in N0

A, which cannot happen as Ay[S] ̸= 0

▶ ∥y[S]∥1 uniq min value and −y[S̄] feas in P 1(A,Ay[S]) ⇒
∥− y[S̄]∥1 = ∥y[S̄]∥1 > ∥y[S]∥1 ⇒ NSPs(A)
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Proof of the NSP proposition (⇐)
NSPs(A)⇒ ∀x∗(|supp(x∗)|=s→ x∗=uniqP 1(A,Ax∗))

▶ Let x∗ ∈ Rn, b = Ax∗, S = supp(x∗) and |S| = s

▶ Let x̄ soln. of Ax = b, then x̄ = x∗ − y with y ∈ N0
A

[add and subtract same qty] ∥x∗∥1 = ∥(x∗ − x̄[S]) + x̄[S]∥1
[by triangle inequality] ≤ ∥x∗ − x̄[S]∥1 + ∥x̄[S]∥1

[S = supp(x∗) ⇒ x∗ = x∗[S]] = ∥x∗[S]− x̄[S]∥1 + ∥x̄[S]∥1
[since x∗ − x̄ = y] = ∥y[S]∥1 + ∥x̄[S]∥1

[since y ∈ N0
A and NSPs(A) holds] < ∥y[S̄]∥1 + ∥x̄[S]∥1

[since y = x∗ − x̄ and x∗[S̄] = 0] = ∥ − x̄[S̄]∥1 + ∥x̄[S]∥1
[since ∥−z∥1 = ∥z∥1 ∧ z[S] + z[S̄] = z] = ∥x̄∥1

⇒ ∥x∗∥1 < ∥x̄∥1

if x∗ min of P 1(A,Ax∗) and any other feas x̄ not a min⇒ x∗ uniq min
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A variant of the null space property
▶ Motivation: “almost sparse solutions”

given x̂ with |supp(x̂)| > s and b = Ax̂
let S = argmax

T⊆[n]:|T |=s
∥x̂[T ]∥1 and x̄ = x̂[S] (⇒ |supp(x̄)| = s)

▶ Assume ∥x̂[S̄]∥1 ≪ ∥x̂[S]∥1 and ϵ = maxj∈S̄ |x̂j | is small
x̂ “almost” has support size s: all nonzeroes in x̂[S̄] are “almost zero” (≤ ϵ)

▶ Show min x∗ of P 1(A,Ax̂) is s-sparse and close to x̂

▶ Generalize NSP with ρ ∈ (0, 1): NSPρs(A)⇔
∀S ⊆ [n] (|S| = s→ ∀y ∈ N0

A ∥y[S]∥1 ≤ ρ∥y[S̄]∥1)

▶ Prop. NSPρs(A)⇒ if x∗ min of P 1(A,Ax̂) then
∥x∗ − x̂∥1 ≤ 21+ρ

1−ρ∥x̄− x̂∥1 ≤ (n− s)ϵ
i.e. x∗ is a good approximation of x̄

▶ Moreover, if |supp(x̂)| = s then x∗ = x̂ = x̄
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Proof of the NSPρs proposition
▶ x∗ feasible in Ax = Ax̂ so ∃!y ∈ NA (x∗ = x̂+ y)

▶ ⇒ ∥x∗∥1 = ∥x̂+ y∥1 ≤ ∥x̂∥1 since x∗ min of P 1(A,Ax̂) (‡)
▶ ∥x̂+ y∥1 =

∑
j∈S |x̂j + yj |+

∑
j∈S̄ |x̂j + yj |

≥
∑

j∈S(|x̂j | − |yj |) +
∑

j∈S̄(|yj | − |x̂j |) by triangle ineq

▶ = ∥x̂[S]∥1−∥y[S]∥1 + ∥y[S̄]∥1−∥x̂[S̄]∥1 (add and subtract ∥x̂[S̄]∥1 ⇒)

= ∥x̂∥1 − 2∥x̂[S̄]∥1 + ∥y[S̄]∥1 − ∥y[S]∥1 (since x̄ = x̂[S]⇒)

= ∥x̂∥1 − 2∥x̂− x̄∥1 + ∥y[S̄]∥1 − ∥y[S]∥1 (∗)
▶ Therefore (∗) ≤ ∥x̂+ y∥1 ≤ ∥x̂∥1 by (‡), whence
∥x̂∥1 ≥ ∥x̂∥1 − 2∥x̂− x̄∥1 + ∥y[S̄]∥1 − ∥y[S]∥1 (cancel ∥x̂∥1 ⇒)

2∥x̂− x̄∥1 ≥ ∥y[S̄]∥1 − ∥y[S]∥1
▶ By NSPρ

s , −∥y[S]∥1 ≥ −ρ∥y[S̄]∥1, so
2∥x̂− x̄∥1 ≥ (1− ρ)∥y[S̄]∥1 whence ∥y[S̄]∥1 ≤ 2

1−ρ∥x̂− x̄∥1 (†)
▶ x∗ = x̂+ y ⇒ ∥x∗ − x̂∥1 = ∥y∥1 = ∥y[S]∥1 + ∥y[S̄]∥1

by NSPρ
s ∥y[S]∥1 ≤ ρ∥y[S̄]∥1 hence ∥x∗ − x̂∥1 ≤ (1 + ρ)∥y[S̄]∥1

by (†) ∥x∗ − x̂∥1 ≤ 2 1+ρ
1−ρ∥x̂− x̄∥1

▶ Further, ∥x̂− x̄∥1 = ∥x̂− x̂[S]∥1 = ∥x̂[S̄]∥ ≤ |S̄|ϵ = (n− s)ϵ
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Restricted isometry property

▶ A is an m× n matrix, δ ∈ (0, 1), s ∈ N

▶ RIPδs(A) ⇔ ∀x ∈ Rn s.t. |supp(x)| = s we have

(1− δ) ∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ) ∥x∥22

▶ Prop. RIPδ2s(A) ∧ ρ =
√
2δ

1−δ < 1 ⇒ NSPρs(A)
See Thm. 5.12 in [Damelin & Miller 2012] for a proof

▶ It suffices that δ <
√
2− 1 ≈ 0.4142
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RIP and P 0(A, b)

▶ Recall P 0(A, b) ≡ min{∥x∥0 | Ax = b} is NP-hard
find solution to Ax = b with smallest support size

▶ Thm. Let x̂ ∈ Rn with |supp(x̂)| = s, δ < 1, A a matrix
s.t. RIPδ2s(A), x∗ ∈ argP 0(A,Ax̂); then x∗ = x̂

Pf. Suppose false, let y = x∗ − x̂ ̸= 0; by defn of x∗ we have
∥x∗∥0 ≤ ∥x̂∥0 ≤ s, hence ∥y∥0 ≤ 2s; since A has RIP get
∥Ay∥22 ∈ (1± δ)∥y∥22, but Ay = Ax∗ −Ax̂ = 0 while y ̸= 0, and
δ ∈ (0, 1)→ 1± δ > 0, hence 0 ∈ (α, β) where α, β > 0,
contradiction
Thm. 23.6 [Shwartz & Ben-David, 2014]

▶ Result of limited scope, since we don’t know if P 0(A, b)
can be solved efficiently if A has the RIP

289 / 413



Sufficient eigenvalue conditions for RIP

▶ Recall RIPδs(A): ∀x with S = supp(x) and |S| = s

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22
▶ Let AJ = (Aj | j ∈ J), where Aj is the j-th col. of A

▶ ∥Ax∥22 = ⟨Ax,Ax⟩ = ⟨ASx[S], ASx[S]⟩ = ⟨BSx[S], x[S]⟩
where BS = (AS)⊤AS is s× s and PSD, and consider x[S] as a vector in Rs

▶ ⇒ 0 ≤ λmin(BS)∥x∥22 ≤ ⟨BSx, x⟩ ≤ λmax(BS)∥x∥22
replace BS by its spectral decomp PΛP⊤, note Λ = diag(λmin, . . . , λmax)

▶ Let λL = min
|S|=s

λmin(BS), λU = max
|S|=s

λmax(BS)

▶ ⇐ ∃δ > 0 s.t. 1− δ ≤ λL ≤ λU ≤ 1 + δ
i.e. all eigenvalues of B(S) close to 1 for all S ⊂ [n] with |S| = s
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Construction of A s.t. RIPδs(A)
▶ Need λ ≈ 1 for each eigenvalue λ of BS

▶ ⇒ Need ∀S ⊆ N |S| = s → (AS)⊤AS ≈ Is
▶ ⇒ Need

∀i < j ≤ n (Ai)⊤Aj ≈ 0

∀i ≤ n (Ai)⊤Ai = ∥Ai∥22 ≈ 1

▶ Sufficient condition: A sampled from N
(
0, 1√

m

)mn
▶ Difference with JLL

RIP holds for uncountably many vectors x with |supp(x)| = s
JLL holds for given sets of finitely many vectors with any support

Project idea 8: What other types of rectangular matrices M have
the property M⊤M = I or ≈ I? Can they be used to prove the main
theorem? How do they work, computationally, compared with
matrices sampled from normal distributions? Compare on at least 50
random instances of P 1(A, b)
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Isotropic vectors
1. Defn. Rnd vect a ∈ Rm is isotropic iff cov(a) = Im

remark: (a) cov(a) = E(aa⊤); (b) if a ∼ N(0, 1)m then a isotropic

2. If rnd vect a isotropic, then ∀x ∈ Rm E(⟨a, x⟩2) = ∥x∥22
For two sq. symm. matrices B,C we have B = C iff ∀x (x⊤Bx = x⊤Cx);
hence E(⟨a, x⟩2) = x⊤E(aa⊤)x = x⊤Imx = ∥x∥22

3. If rnd vect a ∈ Rm isotropic, then E(∥a∥22) = m
E(∥a∥22) = E(a⊤a) = E(tr(a⊤a)) = E(tr(aa⊤)) = tr(E(aa⊤)) = tr(Im) = m

4. If rnd vect a, c ∈ Rm indep. isotropic, then E(⟨a, c⟩2) = m
By conditional expectation E(⟨a, c⟩2) = Ec(Ea(⟨a, c⟩2 | c)); by Item 2 inner
expectation is ∥c∥22, by Item 3 outer is m

5. If a ∼ N(0, 1)m, ∥a∥2 = O(
√
m) wahp

by Thm. 3.1.1 in [Vershynin, 2018]

6. Independent rnd vectors are almost orthogonal
Results above ⇒ ∥a∥2, ∥c∥2, ⟨a, c⟩ = O(

√
m), normalize a, c to ā, c̄ to get

⟨ā, c̄⟩ = O(1/
√
m) ⇒ for m large ⟨ā, c̄⟩ ≈ 0
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Construction of A s.t. RIPδs(A)
▶ Thm. For A ∼ N(0, 1)m×n and δ ∈ (0, 1) ∃C1, C2 > 0

depending on δ s.t.

∀s < m

(
m ≥ s ln(n/s)

C1

→ Prob(RIPδs(A)) ≥ 1−e−C2m

)
Pf. see Thm. 5.17 in [Damelin & Miller, 2012]

Remark: extra
√
m factor in A comes from ∥ · ∥2 ≤ ∥ · ∥1 ≤

√
m∥ · ∥2

▶ In practice:

▶ Prob(RIPδ
s(A)) = 0 for m too small w.r.t. s fixed

▶ as m increases Prob(RIPδ
s(A)) > 0

▶ as m increases even more Prob(RIPδ
s(A))→ 1 wahp

▶ achieve logarithmic compression for large n and fixed s
▶ A ∼ N(0, 1)mn ∧m ≥ 10s ln n

s
⇒ RIP

1/3
s (A) wahp

Lem. 5.5.2 [Moitra 2018]

▶ works better than worst case bounds ensured by theory
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Subsection 4

Application to noisy channel encoding
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Noisy channel encoding procedure
Algorithm:

1. message: character string µ
2. w = string2bitlist(µ) ∈ {0, 1}d

3. send z = Qw, receive z̄ = z + x̂, let b = Az̄
∆ = s/n = density of x̂, Q is n× d full rank with n > d

4. x∗ ∈ argP 1(A, b)

5. z∗ = z̄ − x∗

6. w∗ = cap(round( (Q⊤Q)−1Q⊤z∗), [0, 1])
cap(t, [α, β]) = (α if t < α) xor (β if t > β) xor (t othw)

7. µ∗ = bitlist2string(w∗)

8. evaluate µerr = ∥µ− µ∗∥
Parameter choice [Matousek]:
▶ noise ∆ = 0.08
▶ redundancy n = Rd, where R = 4

296 / 413



Finding orthogonal A,Q

▶ [Matousek, Gärtner 2007]:
▶ sample A componentwise from N(0, 1)
▶ then “find Q s.t. QA = 0”
▶ Gaussian elim. on underdetermined system AQ = 0

▶ Faster:
▶ sample n× n matrix M from uniform distr

full rank with probability 1
▶ find eigenvector matrix of M⊤M (orthonormal basis)

random rotation of standard basis (used in original JLL proof)
▶ Concatenate d eigenvectors to make Q

Concatenate m = n− d eigenvectors to make A
AQ = 0 by construction!
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Subsection 5

Improvements
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LP size reduction

▶ Motivation

▶ Reduce CPU time spent on LP
▶ R = 4 redundancy for ∆ = 0.08 noise seems excessive

▶ Size of basis pursuit LP

▶ Ax = b is an m× n system where m = n− d
▶ If n = Rd≫ d, m “relatively close” to n
▶ Use random projections for LP
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Computational results
d n ∆ ϵ α µorg

err µprj
err CPUorg CPUprj

80 320 0.08 0.20 0.02 0 0 1.05 0.56
128 512 0.08 0.20 0.02 0 0 2.72 1.10
216 864 0.08 0.20 0.02 0 0 8.83 2.12
248 992 0.08 0.20 0.02 0 0 12.53 2.53
320 1280 0.08 0.20 0.02 0 0 23.70 3.35
408 1632 0.08 0.20 0.02 0 0 43.80 4.75

▶ d = |µ|, n = 4d, ∆ = 0.08, ϵ = 0.2

▶ α = Achlioptas density
P(Tij = −1) = P(Tij = 1) = α

2
P(Tij = 0) = 1− α

▶ µerr = number of different characters

▶ CPU: seconds of elapsed time

▶ 1 sampling of A,Q, T

Sentence: Conticuere omnes intentique ora tenebant, inde toro [...]
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Reducing redundancy in n

▶ How about taking n = (1 + ∆)d?
▶ m = n− d ≈ ∆d is very small
▶ Makes Ax = b very short and fat
▶ Prevents compressed sensing from working correctly

not enough constraints
▶ Would need both m and d to be ≈ n and AQ = 0:

impossible
Rn too small to host m+ d ≈ 2n orthogonal vectors

▶ Relax to AQ ≈ 0?
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Almost orthogonality by the JLL
Aim at A⊤, Q with m+ d ≈ 2n and AQ ≈ 0

▶ JLL Corollary: ∃O(ek) approx orthog vectors in Rk

Pf. Let T be a k × p RP, use concentration of measure on ∥z∥22
Prob( (1− ε)∥z∥22 ≤ ∥Tz∥22 ≤ (1 + ε)∥z∥22 ) ≥ 1− 2e−C(ε

2−ε3)k

given x, y ∈ Rp apply to x+ y, x− y and union bound:

|⟨Tx, Ty⟩ − ⟨x, y⟩| = 1
4

∣∣∥T (x+ y)∥2 − ∥T (x− y)∥2 − ∥x+ y∥2 + ∥x− y∥2
∣∣

≤ 1
4

∣∣∥T (x+ y)∥2 − ∥x+ y∥2
∣∣+ 1

4

∣∣∥T (x− y)∥2 − ∥x− y∥2
∣∣

≤ ε
4
(∥x+ y∥2 + ∥x− y∥2) = ε

2
(∥x∥2 + ∥y∥2)

with prob ≥ 1− 4e−C(ε
2−ε3)k; apply to std basis matrix Ip, get

−ε ≤ ⟨Tei, Tej⟩ − ⟨ei, ej⟩ ≤ ε

⇒ ∃p almost orthogonal vectors in Rk, and k = O( 1
ε2

ln p) ⇒ p = O(ek)

▶ Algorithm: k = n, p = ⌈en⌉, get 2k columns from T Ip

Also see [https://terrytao.wordpress.com/2013/07/18/
a-cheap-version-of-the-kabatjanskii-levenstein-bound-for-almost-orthogonal-vectors/]
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Almost orthogonality by the JLL

▶ Aim at m× n A and n×m Q s.t. AQ ≈ 0
with n = (1 +∆′)m and ∆′ “small” (say ∆′ < 1)

▶ Need 2m approx orthog vectors in Rn with n < 2m

▶ Computationally: get large ∥AQ∥2
JLL theory requires exceedingly large sizes to work well

▶ JLL ⇒ orthog row(A) and col(Q)
but we only need AQ = 0!
can accept non-orthogonality in rows of A & cols of Q
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Almost orthogonality by LP

▶ Sample Q and compute A using an LP
▶ max

∑
i≤m
j≤n

Uniform(−1, 1)Aij

▶ subject to AQ = 0 and A ∈ [−1, 1]
▶ for m = 328 and n = 590 (i.e. ∆′ = 0.8):

▶ error:
∑
AiQ

j = O(10−10)
▶ rank: full up to error precision (not really though)
▶ CPU: 688s (meh)

▶ for m = 328 and n = 492 (i.e. ∆′ = 0.5): the same
▶ for m = 328 and n = 426 (i.e. ∆′ = 0.3): CPU 470s
▶ Reduce CPU time by solving m LPs deciding Ai

for all i ≤ m
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Computational results

m n ∆′ µorg
err µprj

err CPUorg CPUprj

328 426 0.3 182 15 2.45 1.87
328 426 0.3 154 0 2.20 1.49
328 459 0.4 0 1 4.47 2.45
328 459 0.4 5 17 2.86 1.46
328 492 0.5 60 0 4.53 1.18
328 492 0.5 34 0 5.38 1.18
328 590 0.8 14 0 8.30 1.41
328 590 0.8 107 4 6.76 1.43

▶ CPU for computing A,Q not counted:
can pre-compute them (valid for most messages)

▶ Approximate beats precise!
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In summary
▶ If µ is short, set ∆′ = ∆ and use compressed sensing (CS)
▶ If µ is longer, try increasing ∆′ and use CS
▶ If µ is very long, use JLL-projected CS
▶ Can use approximately orthogonal A,Q too

Conticuere omnes, intentique ora tenebant.
Inde toro pater Aeneas sic orsus ab alto:
Infandum, regina, iubes renovare dolorem.
Troianas ut opes et lamentabile regnum eruerint Danai
Quaequae ipse miserrima vidi et quorum pars magna fui.
[Virgil, Aeneid, Cantus II]

m = 1896, n = 2465
∆′ = 0.3: min s.t. CS is accu-
rate

method error CPU
CS 0 29.67s
JLL-CS 2 17.13s

These results are consistent over

3 samplings

Project idea 9: Implement and test RPs applied to CS, as described
in the last slides. Aim at setting the redundancy n equal to the noise
(1 +∆)d, and use CPLEX to compute A such that AQ ≈ 0. Test your
code on at least 10 different texts of various lengths, up to around 500
characters. How does decoding quality depend on ∥AQ∥2?
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Definition

▶ Optimization version. Given K ∈ N, determine the
maximum number kn(K) of unit spheres that can be
placed adjacent to a central unit sphere so their
interiors do not overlap

▶ Decision version. Given n,K ∈ N, is kn(K) ≤ n?
in other words, determine whether n unit spheres can be placed
adjacent to a central unit sphere so that their interiors do not
overlap

Funny story: Newton and Gregory went down the pub. . .
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Some examples

n = 6, K = 2 n = 12, K = 3 more dimensions

2 1 0 -1 -2210-1-2

-2

-1

0

1

2

309 / 413



Radius formulation

Given n,K ∈ N, determine whether there exist n vectors
x1, . . . , xn ∈ RK such that:

∀i ≤ n ∥xi∥22 = 4

∀i < j ≤ n ∥xi − xj∥22 ≥ 4
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Contact point formulation

Given n,K ∈ N, determine whether there exist n vectors
x1, . . . , xn ∈ RK such that:

∀i ≤ n ∥xi∥22 = 1

∀i < j ≤ n ∥xi − xj∥22 ≥ 1
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Spherical codes
▶ SK−1 ⊂ RK unit sphere centered at origin
▶ K-dimensional spherical z-code:

▶ (finite) subset C ⊂ SK−1

▶ ∀x ̸= y ∈ C x · y ≤ z
▶ non-overlapping interiors:

∀i < j ∥xi − xj∥22 ≥ 1

⇔ ∥xi∥22 + ∥xj∥22 − 2xi · xj ≥ 1

⇔ 1 + 1− 2xi · xj ≥ 1

⇔ 2xi · xj ≤ 1

⇔ xi · xj ≤
1

2
= cos

(π
3

)
= z

▶ we aim at maximizing knz(K) ≜ |C|
let kn(K) = kn 1

2
(K)
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Subsection 1

Lower bounds
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Lower bounds

▶ Construct spherical 1
2
-code C with |C| large

▶ Nonconvex NLP formulations
▶ SDP relaxations
▶ Combination of the two techniques
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MINLP formulation

Maculan, Michelon, Smith 1995

Parameters:
▶ K: space dimension
▶ n: upper bound to kn(K)

Variables:
▶ xi ∈ RK : contact pt. of i-th surrounding sphere
▶ αi = 1 iff sphere i in configuration

max
n∑
i=1

αi

∀i ≤ n ||xi||2 = αi
∀i < j ≤ n ||xi − xj ||2 ≥ αiαj
∀i ≤ n xi ∈ [−1, 1]K
∀i ≤ n αi ∈ {0, 1}
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Reformulating the binary products

▶ Additional variables: βij = 1 iff vectors i, j in
configuration

▶ Linearize αiαj by βij
▶ Add constraints:

∀i < j ≤ n βij ≤ αi

∀i < j ≤ n βij ≤ αj

∀i < j ≤ n βij ≥ αi + αj − 1
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Computational experiments

AMPL and Baron
▶ Certifying YES

▶ n = 6,K = 2: OK, 0.60s
▶ n = 12,K = 3: OK, 0.07s
▶ n = 24,K = 4: FAIL, CPU time limit (100s)

▶ Certifying NO
▶ n = 7,K = 2: FAIL, CPU time limit (100s)
▶ n = 13,K = 3: FAIL, CPU time limit (100s)
▶ n = 25,K = 4: FAIL, CPU time limit (100s)

Almost useless
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Modelling the decision problem

max
x,α

α

∀i ≤ n ||xi||2 = 1
∀i < j ≤ n ||xi − xj||2 ≥ α
∀i ≤ n xi ∈ [−1, 1]K

α ≥ 0


▶ Feasible solution (x∗, α∗)

▶ KNP instance is YES iff α∗ ≥ 1

[Kucherenko, Belotti, Liberti, Maculan, Discr. Appl. Math. 2007]
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Computational experiments
AMPL and Baron

▶ Certifying YES
▶ n = 6,K = 2: FAIL, CPU time limit (100s)
▶ n = 12,K = 3: FAIL, CPU time limit (100s)
▶ n = 24,K = 4: FAIL, CPU time limit (100s)

▶ Certifying NO
▶ n = 7,K = 2: FAIL, CPU time limit (100s)
▶ n = 13,K = 3: FAIL, CPU time limit (100s)
▶ n = 25,K = 4: FAIL, CPU time limit (100s)

Apparently even more useless
But more informative (arccosα = min. angular sep)

Certifying YES by α ≥ 1
▶ n = 6,K = 2: OK, 0.06s
▶ n = 12,K = 3: OK, 0.05s
▶ n = 24,K = 4: OK, 1.48s
▶ n = 40,K = 5: FAIL, CPU time limit (100s)
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What about polar coordinates?
▶ ∀i ≤ n xi = (xi1, . . . , xiK) 7→ (ϑi1, . . . , ϑi,K−1)

▶ Formulation

(†) ∀k ≤ K ρ sinϑi,k−1

K−1∏
h=k

cosϑih = xik

(‡) ∀i < j ≤ n ∥xi − xj∥22 ≥ ρ2

∀i ≤ n, k ≤ K (sin(ϑik))
2 + (cos(ϑik))

2 = 1

(optional) ρ = 1

▶ Only need to decide sik = sinϑik and cik = cosϑik
▶ Replace x in (‡) using (†): get polyprog in s, c
▶ Numerically more challenging to solve (polydeg 2K)

▶ OPEN QUESTION: useful for bounds?
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Subsection 2

Upper bounds from SDP?
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SDP relaxation of Euclidean distances

▶ Linearization of scalar products

∀i, j ≤ n xi · xj −→ Xij

where X is an n× n symmetric matrix
▶ ∥xi∥22 = xi · xi = Xii

▶ ∥xi−xj∥22 = ∥xi∥22+ ∥xj∥22− 2xi ·xj = Xii +Xjj − 2Xij

▶ X = xx⊤ ⇒ X − xx⊤ = 0 makes linearization exact
▶ Relaxation:

X − xx⊤ ⪰ 0⇒ Schur(X, x) =
(
IK x⊤

x X

)
⪰ 0
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SDP relaxation of binary constraints

▶ ∀i ≤ n αi ∈ {0, 1} ⇔ α2
i = αi

▶ Let A be an n× n symmetric matrix

▶ Linearize αiαj by Aij (hence α2
i by Aii)

▶ A = αα⊤ makes linearization exact

▶ Relaxation: Schur(A,α) ⪰ 0

323 / 413



SDP relaxation of [MMS95]

max
n∑
i=1

αi

∀i ≤ n Xii = αi
∀i < j ≤ n Xii +Xjj − 2Xij ≥ Aij
∀i ≤ n Aii = αi

∀i < j ≤ n Aij ≤ αj
∀i < j ≤ n Aij ≤ αi
∀i < j ≤ n Aij ≥ αi + αj − 1

Schur(X, x) ⪰ 0
Schur(A,α) ⪰ 0

∀i ≤ n xi ∈ [−1, 1]K
α ∈ [0, 1]n

X ∈ [−1, 1]n2

A ∈ [0, 1]n
2
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Computational experiments

▶ Python, PICOS and Mosek
or Octave and SDPT3

▶ bound always equal to n
▶ prominent failure :-(
▶ Why?

▶ can combine inequalities to remove A from SDP

∀i < j Xii +Xjj − 2Xij ≥ Aij ≥ αi + αi − 1

⇒ Xii +Xjj − 2Xij ≥ αi + αi − 1

(then eliminate all constraints in A)
▶ integrality of α completely lost
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SDP relaxation of [KBLM07]

max α
∀i ≤ n Xii = 1

∀i < j ≤ n Xii +Xjj − 2Xij ≥ α

X ∈ [−1, 1]n2

X ⪰ 0
α ≥ 0
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Computational experiments

With K = 2

n α∗

2 4.00
3 3.00
4 2.66
5 2.50
6 2.40
7 2.33
8 2.28
9 2.25

10 2.22
11 2.20
12 2.18
13 2.16
14 2.15
15 2.14

327 / 413



Computational experiments
With K = 3

Always −→ 2?
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An SDP-based heuristic?

1. X∗ ∈ Rn2 : SDP relaxation solution of [KBLM07]
2. Perform PCA, get x̄ ∈ RnK

3. Local NLP solver on [KBLM07] with starting point x̄

However. . .
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The Uselessness Theorem

Thm.
1. The SDP relaxation of [KBLM07] is useless
2. In fact, it is extremely useless

1. Part 1: Uselessness
▶ Independent of K:

no useful bounds in function of K
2. Part 2: Extreme uselessness

(a) For all n, the bound is 2n
n−1

(b) ∃ opt. X∗ with eigenvalues 0, n
n−1 , . . . ,

n
n−1

By 2(b), applying MDS/PCA makes no sense
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Proof of extreme uselessness

Strategy:
▶ Pull a simple matrix solution out of a hat
▶ Write primal and dual SDP of [KBLM07]
▶ Show it is feasible in both
▶ Hence it is optimal
▶ Analyse solution:

▶ all n− 1 positive eigenvalues are equal
▶ its objective function value is 2n/(n− 1)
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Primal SDP

∀1 ≤ i ≤ j ≤ n let Bij = (1ij) and 0 elsewhere

quantifier natural form standard form dual var
maxα maxα

∀i ≤ n Xii = 1 Eii •X = 1 ui
∀i < j ≤ n Xii +Xjj − 2Xij ≥ α Aij •X + α ≤ 0 wij

Aij = −Eii − Ejj + Eij + Eji

∀i < j ≤ n Xij ≤ 1 (Eij + Eji) •X ≤ 2 yij
∀i < j ≤ n Xij ≥ −1 (−Eij − Eji) •X ≤ 2 zij

X ⪰ 0 X ⪰ 0
α ≥ 0 α ≥ 0
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Dual SDP

min
∑
i

ui + 2
∑
i<j

(yij + zij)∑
i

uiEii +
∑
i<j

(
(yij − zij)(Eij − Eji) + wijAij

)
⪰ 0

∑
i<j

wij ≥ 1

w, y, z ≥ 0

Simplify |v| = y + z, v = y − z:

min
∑
i

ui + 2
∑
i<j

|vij |∑
i

uiEii +
∑
i<j

(
vij(Eij − Eji) + wijAij

)
⪰ 0

∑
i<j

wij ≥ 1

w, v ≥ 0
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Pulling a solution out of a hat

α∗ =
2n

n− 1

X∗ =
n

n− 1
In −

1

n− 1
1n

u∗ =
2

n− 1

w∗ =
1

n(n− 1)

v∗ = 0

where 1n = all-one n× n matrix
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Solution verification
▶ linear constraints: by inspection
▶ X ⪰ 0: eigenvalues of X∗ are 0, n

n−1
, . . . , n

n−1

▶
∑

i uiEii +
∑

i<j(vij(Eij − Eji) + wijAij) ⪰ 0:∑
i

u∗iEii +
∑
i<j

w∗
ijAij

=
2

n− 1

∑
i

Eii +
1

n(n− 1)

∑
i<j

Aij

=
2

n− 1
In +

1

n(n− 1)

(
− (n− 1)In + (1n − In)

)
=

1

n(n− 1)
1n ⪰ 0
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Corollary

lim
n→∞

v(n, [KBLM07]) = lim
n→∞

2n

n− 1
= 2

as observed in computational experiments
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Subsection 3

Gregory’s upper bound
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Surface upper bound
Gregory 1694, Szpiro 2003

Consider a kn(3) configuration
inscribed into a super-sphere of
radius 3. Imagine a lamp at the
centre of the central sphere that
casts shadows of the surrounding
balls onto the inside surface of
the super-sphere. Each shadow
has a surface area of 7.6; the to-
tal surface of the super-ball is
113.1. So 113.1

7.6 = 14.9 is an up-
per bound to kn(3).

At end of XVII century, yielded Newton/Gregory dispute
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Subsection 4

Delsarte’s upper bound
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Pair distribution on sphere surface
▶ Spherical z-code C has xi · xj ≤ z (i < j ≤ n = |C|)

∀t ∈ [−1, 1] σt =
1

n

∣∣{(i, j) | i, j ≤ n ∧ xi · xj = t}
∣∣

▶ z-code: let σt = 0 for t ∈ (z, 1) (z = 1/2 for KNP)
▶ |C| = n <∞: only finitely many σt ̸= 0∫

[−1,1]

σtdt =
∑

t∈[−1,1]
σt ̸=0

σt =
1

n
|all pairs| = n2

n
= n

σ1 =
1

n
n = 1

∀t ∈ (z, 1) σt = 0

∀t ∈ [−1, 1] σt ≥ 0

|{σt > 0 | t ∈ [−1, 1]}| < ∞
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Growing Delsarte’s LP
▶ Decision variables: σt, for t ∈ [−1, 1]
▶ Objective function:

max |C| = maxn = max
σ

∑
t∈[−1,1]
σt ̸=0

σt

= σ1 +max
σ

∑
t∈[−1,z]
σt ̸=0

σt = 1 +max
σ

∑
t∈[−1,z]
σt ̸=0

σt

Note n not a parameter in this formulation

▶ Constraints:
∀t ∈ [−1, z] σt ≥ 0

▶ LP unbounded! — need more constraints
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The general approach

▶ We need σ to encode the fact that

∀t ∈ [−1, 1] σt =
1

n

∣∣{(i, j) | i, j ≤ n ∧ xi · xj = t}
∣∣

▶ We use the algebraic theory in [Delsarte et al., “Spherical codes
and designs”, Geometriæ Dedicata 6:363-388, 1977]

▶ It involves the expression of a non-negative polynomial by means
of a linear combination of Gegenbauer polynomials weighted by
the σt
I will skip over the details

▶ You can also see the proof in [Odlyzko, Sloane, “New bounds on
the number of unit spheres that can touch a unit sphere in n
dimensions”, J. of Comb. Theory A, 26:210-214, 1979]
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Gegenbauer cuts
▶ Look for function family F : [−1, 1]→ R s.t.

∀ϕ ∈ F
∑

t∈[−1,1]
σt ̸=0

ϕ(t)σt ≥ 0

▶ Most popular F : Gegenbauer polynomials GK
h

▶ Special case GK
h = P γ,γ

h of Jacobi polynomials (where γ = (K − 2)/2)

Pα,β
h (t) =

1

2h

h∑
i=0

(
h+ α

i

)(
h+ β

h− 1

)
(t+ 1)i(t− 1)h−i

▶ Matlab knows them: GK
h (t) = gegenbauerC(h, (K − 2)/2, t)

▶ Octave knows them: GK
h (t) = gsl_sf_gegenpoly_n(h, K−2

2 , t)

need command pkg load gsl before function call

▶ They encode dependence on K
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Delsarte’s LP
▶ Primal: (given some Gegenbauer polynomial index set H)

1 + max
∑

t∈[−1, 1
2
]

σt

∀h ∈ H
∑

t∈[−1, 12 ]

σt ̸=0

GK
h (t)σt ≥ −GK

h (1)

∀t ∈ [−1, z] σt ≥ 0.

 [DelP]

MP syntax error: decision variables σ in sum quantifier!

▶ Dual:

1 + min
∑
h∈H

(−GK
h (1))dh

∀t ∈ [−1, z]
∑
h∈H

GK
h (t)dh ≥ 1

∀h ∈ H dh ≤ 0.

 [DelD]
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Delsarte’s theorem

▶ [Delsarte et al., 1977; Odlyzko & Sloane, 1979]

Theorem
Let d ∈ Rℓ

+ with d0 > 0, and F : [−1, 1]→ R s.t.:
(i) ∀t ∈ [−1, 1] F (t) =

∑
h≤ℓ

dhG
K
h (t)

(ii) ∀t ∈ [−1, z] F (t) ≤ 0

Then knz(K) ≤ F (1)
d0

▶ Proof based on properties of Gegenbauer polynomials

▶ Best upper bound: minF (1)/d0 ⇒ min
d0=1

F (1) ⇒ [DelD]

▶ [DelD] “models” Delsarte’s theorem (take ℓ = |H|)
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Delsarte’s normalized LP (GK
h (1) = 1)

▶ Primal:

1 + max
∑

t∈[−1, 12 ]

σt ̸=0

σt

∀h ∈ H
∑

t∈[−1, 12 ]

σt ̸=0

GK
h (t)σt ≥ −1

∀t ∈ [−1, 1
2
] σt ≥ 0


[DelP]

▶ Dual:

1 + min
∑
h∈H

(−1)dh

∀t ∈ [−1, 1
2
]
∑
h∈H

GK
h (t)dh ≥ 1

∀h ∈ H dh ≤ 0

 [DelD]

▶ d0 = 1⇒ remove 0 from H
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Focus on normalized [DelD]

Rewrite −dh as dh:

1 + min
∑
h∈H

dh

∀t ∈ [−1, 1
2
]
∑
h∈H

GK
h (t)dh ≤ −1

∀h ∈ H dh ≥ 0

 [DelD]

Issue: semi-infinite LP (SILP) (how do we solve it?)
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Approximate SILP solution

▶ Only keep finitely many constraints
▶ Discretize [−1, 1] with a finite T ⊂ [−1, 1]
▶ Obtain relaxation [DelD]T :

val([DelD]T ) ≤ val([DelD])

▶ Risk: val([DelD]T ) < minF (1)/d0
not a valid upper bound to knz(K)

▶ Happens if soln. of [DelD]T infeasible in [DelD]
i.e. infeasible w.r.t. some of the ∞ly many removed constraints
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SILP feasibility

▶ Given SILP S̄ ≡ min{c⊤x | ∀t ∈ T̄ ⟨a(t), x⟩ ≤ b(t)}
▶ Relax to LP S ≡ min{c⊤x | ∀t ∈ T ⟨a(t), x⟩ ≤ b(t)}

with T ⊊ T̄ and |T | <∞

▶ Solve S, get solution x∗

▶ Let ϵ = maxt{⟨a(t), x∗⟩ − b(t) | t ∈ T̄}
continuous NLP with a single var. t

▶ If ϵ ≤ 0 then x∗ feasible in S̄
⇒ val(S̄) ≤ c⊤x∗

▶ If ϵ > 0 refine S and repeat
▶ Apply to [DelD]T , get solution d∗ feasible in [DelD]
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[DelD] feasibility

1. Choose discretization T of [−1, z]
2. Solve

1 + min
∑
h∈H

dh

∀t ∈ T
∑
h∈H

GK
h (t)dh ≤ −1

∀h ∈ H dh ≥ 0

 [DelD]T

get solution d∗

3. Solve PP ϵ = maxt{1 +
∑
h∈H

GK
h (t)d

∗
h | t ∈ [−1, z]}

4. If ϵ ≤ 0 then d∗ feasible in [DelD]
⇒ knz(K) ≤ 1 +

∑
h∈H d

∗
h

5. Else refine T and repeat from Step 2
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Subsection 5

Pfender’s upper bound
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Pfender’s upper bound theorem
Thm.
Let Cz = {xi ∈ SK−1 | i ≤ n∧∀j ̸= i (xi · xj ≤ z)}; c0 > 0; f : [−1, 1]→ R s.t.:
(i)

∑
i,j≤n

f(xi ·xj) ≥ 0 (ii) f(t)+c0 ≤ 0 for t ∈ [−1, z] (iii) f(1)+c0 ≤ 1

Then knz(K) = n ≤ 1
c0

([Pfender 2006])
Let g(t) = f(t) + c0

n2c0 ≤ n2c0 +
∑
i,j≤n

f(xi · xj) by (i)

=
∑
i,j≤n

(f(xi · xj) + c0) =
∑
i,j≤n

g(xi · xj)

≤
∑
i≤n

g(xi · xi) since g(t) ≤ 0 for t ≤ z and xi ∈ Cz for i ≤ n

= ng(1) since ∥xi∥2 = 1 for i ≤ n
≤ n since g(1) ≤ 1.
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Pfender’s LP

▶ Condition (i) of Theorem valid for conic combinations of suitable
functions F :

f(t) =
∑
h∈H

chfh(t) where ch ≥ 0 for h ∈ H,

e.g. F = Gegenbauer polynomials (again)

▶ Get SILP

max
c∈R|H|

c0 (minimize 1/c0 ≥ n)

∀ t ∈ [−1, z]
∑
h∈H

chG
K
h (t) + c0 ≤ 0 (ii)∑

h∈H

chG
K
h (1) + c0 ≤ 1 (iii)

∀ h ∈ H ch ≥ 0 (conic comb.)


▶ Discretize [−1, z] by finite T , solve LP, check validity (again)
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Delsarte’s and Pfender’s theorem compared
▶ Delsarte & Pfender’s theorem look similar:

Delsarte Pfender
(i) F (t) G. poly comb (i) f(t) G. poly comb
(ii) ∀t ∈ [−1, z] F (t) ≤ 0 (ii) ∀t ∈ [−1, z] f(t) + c0 ≤ 0

(iii) f(1) + c0 ≤ 1

⇒ knz(K) ≤ F (1)
d0

⇒ knz(K) ≤ 1
c0

▶ Try setting F (t) = f(t) + c0: condition (ii) is the same
▶ By condition (iii) in Pfender’s theorem

knz(K) ≤ F (1)

d0
=
f(1) + c0

c0
≤ 1

c0

⇒ Delsarte bound at least as tight as Pfender’s
▶ Delsarte (i) ⇒

∫
[−1,1]

F (t)dt ≥ 0⇒
∫
[−1,1]

(f(t) + c0)dt ≥ 0

Pfender (i) ⇒
∫
[−1,1]

f(t)dt ≥ 0 more stringent

If F are Gegenbauer polynomials, Delsarte requires weaker condition and yields
tighter bound; but Pfender allows for more general F , can get improved results
see [Pfender, “Improved Delsarte bounds for spherical codes in small dimensions”,
J. Comb. Theory A, 114:1133-1147, 2007]
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The final, easy improvement

▶ However you compute your upper bound B:
▶ The number of surrounding balls is integer
▶ If knz(K) ≤ B, then in fact knz(K) ≤ ⌊B⌋
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Outline

Introduction
MP language
Solvers
MP systematics
Some applications

Decidability
Formal systems
Gödel
Turing
Tarski
Completeness and incompleteness
MP solvability

Efficiency and Hardness
Some combinatorial problems in NP
NP-hardness
Complexity of solving MP formulations

Distance Geometry
The universal isometric embedding
Dimension reduction
Dealing with incomplete metrics
The Isomap heuristic
Distance geometry problem
Distance geometry in MP
DGP cones
Barvinok’s Naive Algorithm
Isomap revisited

Summary
Random projections in LP

Random projection theory
Projecting LP feasibility
Projecting LP optimality
Solution retrieval
Application to quantile regression

Sparsity and ℓ1 minimization
Motivation
Basis pursuit
Theoretical results
Application to noisy channel encoding
Improvements

Kissing Number Problem
Lower bounds
Upper bounds from SDP?
Gregory’s upper bound
Delsarte’s upper bound
Pfender’s upper bound

Clustering in Natural Language
Clustering on graphs
Clustering in Euclidean spaces
Distance instability
MP formulations
Random projections again
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Job offers
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A typical job offer
Under the responsibility of the Commercial Director, the Optimisation / Operations Senior Manager
will have the responsibility to optimise and develop operational aspects for VINCI Airports current
and future portfolio of airports. They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering the objectives of the Technical
Services Agreements activities of VINCI Airports. The Optimisation Manager will support the Commercial
Director in the development and implementation of plans, strategies and reporting processes. As part
of the exercise of its function, the Optimisation Manager will undertake the following: Identification
and development of cross asset synergies with a specific focus on the operations and processing functions
of the airport. Definition and implementation of the Optimisation Strategy in line with the objectives
of the various technical services agreements, the strategy of the individual airports and the Group.
This function will include: Participation in the definition of airport strategy. Definition of this
airport strategy into the Optimisation Strategy. Regularly evaluate the impact of the Optimisation
Strategy. Ensure accurate implementation of this strategy at all airports. Management of the various
technical services agreements with our airports by developing specific technical competences from the
Head Office level. Oversee the management and definition of all optimisation projects. Identification,
overview and management of the project managers responsible for the delivery of the various optimization
projects at each asset. Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Development and implementation of the Group
optimisation plan. Definition of economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of processing efficiency, service
levels, passenger convenience and harmonization of the non-aeronautical activities. Monitoring the
strategies, trends and best practices of the airport industry and other reference industries in terms of
the applicability to the optimization plan. Study of the needs and preferences of the passengers,
through a continuous process of marketing research at all of the airports within the VINCI Airports
portfolio. Development of benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Development and participation in the expansion or refurbishment projects
of the airports, to assure a correct configuration and positioning of the operational and commercial
area that can allow the optimization of the revenues and operational efficiency. Support the Director
Business Development through the analysis and opportunity assessment of areas of optimization for all
target assets in all bids and the preparation and implementation of the strategic plan once the
assets are acquired. Maintain up to date knowledge of market trends and key initiatives related
to the operational and commercial aspects of international airports [...]

. . . and blah blah blah: Is this appropriate for my CV? 358 / 413



Rationalizing the application process

▶ You collect many offers
▶ Don’t have time to tailor application to each offer
▶ Partition offers into groups: clustering
▶ Need a similarity relation

given two offers, do they describe “similar jobs”?
▶ Try Natural Language Processing (NatLangProc):

▶ Automated summary
▶ Relation Extraction
▶ Named Entity Recognition (NER)
▶ Keywords
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Automated summary
./summarize.py job01.txt

They will also be responsible for driving forward and managing key
optimisation projects that assist the Commercial Director in delivering
the objectives of the Technical Services Agreements activities of VINCI
Airports. The Optimisation Manager will support the Commercial Director
in the development and implementation of plans, strategies and reporting
processes. Identification and development of cross asset synergies with
a specific focus on the operations and processing functions of the airport.
Construction of good relationships with the key stakeholders, in order to
contribute to the success of each optimization project. Definition of
economic and quality of service criteria, in order to define performance
goals. Evaluation of the performance of the Group operations in terms of
processing efficiency, service levels, passenger convenience and
harmonization of the non-aeronautical activities. Development of
benchmarking studies in order to evaluate the trends, in international
airports or in the local market. Maintain up to date knowledge of market
trends and key initiatives related to the operational and commercial
aspects of international airports. You have a diverse range of
experiences working at or with airports across various disciplines such
as operations, ground handling, commercial, etc. Demonstrated high
level conceptual thinking, creativity and analytical skills.

Does it help? hard to say
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Relation Extraction
./relextr-mitie.py job01.txt

======= RELATIONS =======
Optimisation Strategy [ INCLUDES_EVENT ] VINCI Airports
Self [ INCLUDES_EVENT ] Head Office
Head Office [ INFLUENCED_BY ] Self
Head Office [ INTERRED_HERE ] Self
VINCI Airports [ INTERRED_HERE ] Optimisation Strategy
Head Office [ INVENTIONS ] Self
Optimisation Strategy [ LOCATIONS ] VINCI Airports
Self [ LOCATIONS ] Head Office
Self [ ORGANIZATIONS_WITH_THIS_SCOPE ] Head Office
Self [ PEOPLE_INVOLVED ] Head Office
Self [ PLACE_OF_DEATH ] Head Office
Head Office [ RELIGION ] Self
VINCI Airports [ RELIGION ] Optimisation Strategy

Does it help? hardly
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Named Entity Recognition
./ner-mitie.py job01.txt

==== NAMED ENTITIES =====
English MISC
French MISC
Head Office ORGANIZATION
Optimisation / Operations ORGANIZATION
Optimisation Strategy ORGANIZATION
Self PERSON
Technical Services Agreements MISC
VINCI Airports ORGANIZATION

Does it help? . . . maybe

For a document D, let NER(D) = named entity words
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Subsection 1

Clustering on graphs

363 / 413



Constructing the graph

1. Recognize named entities from all documents
2. Use them to compute similarities among documents
3. Use modularity clustering
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The named entities
1. Operations Head Airports Office VINCI Technical Self French / Strategy Agreements English Services

Optimisation
2. Europe and P&C Work Optimization Head He/she of Price Global PhDs Direct Asia Earnix AGD AXA

Innovation Coordinate International English
3. Scientist Product Analyze Java Features & Statistics Science PHP Pig/Hive/Spark Optimization

Crunch/analyze Team Press Performance Deezer Data Computer
4. Lean6Sigma Lean-type Office Banking Paris CDI France RPA Middle Accenture English Front Benelux
5. Partners Management Monitor BC Provide Support Sites Regions Mtiers Program Performance market

develop Finance & IS&T Saint-Ouen Region Control Followings VP Sourcing external Corporate Sector
and Alstom Tax Directors Strategic Committee

6. Customer Specialist Expedia Service Interact Paris Travel Airline French France Management Egencia
English Fares with Company Inc

7. Paris Integration France Automation Automotive French . Linux/Genivi HMI UI Software EB Architecture
Elektrobit technologies GUIDE Engineers German Technology SW well-structured Experts Tools

8. Product Google Managers Python JavaScript AWS JSON BigQuery Java Platform Engineering HTML
MySQL Services Professional Googles Ruby Cloud OAuth

9. EHR Aledades Provide Wellness Perform ACO Visits EHR-system-specific Coordinator Aledade Medicare
Greenway Allscripts

10. Global Java EXCEL Research Statistics Mathematics Analyze Smart Teradata & Python Company GDIA
Ford Visa SPARK Data Applied Science Work C++ R Unix/Linux Physics Microsoft Operations Monte
JAVA Mobility Insight Analytics Engineering Computer Motor SQL Operation Carlo PowerPoint

11. Management Java CANDIDATE Application Statistics Gurobi Provides Provider Mathematics Service
Maintains Deliver SM&G SAS/HPF SAS Data Science Economics Marriott PROFILE Providers OR
Engineering Computer SQL Education

12. Alto Statistics Java Sunnyvale Research ML Learning Science Operational Machine Amazon Computer
C++ Palo Internet R Seattle

13. LLamasoft Work Fortune Chain Supply C# Top Guru What Impactful Team LLamasofts Makes Gartner
Gain

14. Worldwide Customer Java Mosel Service Python Energy Familiarity CPLEX Research Partnering Amazon
R SQL CS Operations

15. Operations Science Research Engineering Computer Systems or Build
16. Statistics Italy Broad Coins France Australia Python Amazon Germany SAS Appstore Spain Economics

Experience R Research US Scientist UK SQL Japan Economist
17. Competency Statistics Knowledge Employer communication Research Machine EEO United ORMA Way

OFCCP Corporation Mining & C# Python Visual Studio Opportunity Excellent Modeling Data
Jacksonville Arena Talent Skills Science Florida Life Equal AnyLogic Facebook CSX Oracle The Strategy
Vision Operations Industrial Stream of States Analytics Engineering Computer Framework Technology
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Word similarity: WordNet
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WordNet example: hyponyms of “boat”
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Wu-Palmer word similarity
Semantic WordNet similarity between words w1, w2:

wup(w1, w2) =
2 depth(lca(w1, w2))

len(shpath(w1, w2)) + 2 depth(lca(w1, w2))

▶ lca: lowest common ancestor
earliest common word in paths from both words to WordNet root

▶ depth: length of path from root to word

Example: wup(dog, boat)?
lca( dog, boat ) = whole; depth( whole ) = 4

18 -> dog -> canine -> carnivore -> placental -> mammal -> vertebrate
-> chordate -> animal -> organism -> living_thing -> whole -> artifact
-> instrumentality -> conveyance -> vehicle -> craft -> vessel -> boat

13 -> dog -> domestic_animal -> animal -> organism -> living_thing
-> whole -> artifact -> instrumentality -> conveyance -> vehicle
-> craft -> vessel -> boat

wup(dog, boat) = 8/21 = 0.380952380952
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Extensions of Wu-Palmer similarity

▶ to lists of words H,L:

wup(H,L) =
1

|H| |L|
∑
v∈H

∑
w∈L

wup(v, w)

▶ to pairs of documents D1, D2:

wup(D1, D2) = wup(NER(D1),NER(D2))

▶ wup and its extensions are always in [0, 1]
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The Wu-Palmer similarity matrix

Too uniform! Try zeroing values below median

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.38 0.49 0.47 0.47 0.44 0.54 0.31 0.44
0.63 1.00 0.45 0.45 0.54 0.40 0.42 0.42 0.57 0.49 0.46 0.45 0.59 0.35 0.43 0.42 0.42 0.41 0.47 0.32 0.40
0.51 0.45 1.00 0.40 0.53 0.35 0.37 0.37 0.58 0.47 0.43 0.40 0.59 0.28 0.39 0.37 0.38 0.35 0.43 0.24 0.35
0.51 0.45 0.40 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.38 0.48 0.47 0.47 0.45 0.53 0.33 0.44
0.66 0.54 0.53 0.63 1.00 0.34 0.35 0.35 0.49 0.42 0.39 0.37 0.50 0.29 0.36 0.35 0.35 0.34 0.40 0.26 0.34
0.45 0.40 0.35 0.45 0.34 1.00 0.42 0.43 0.66 0.54 0.49 0.45 0.67 0.34 0.44 0.43 0.43 0.40 0.49 0.28 0.40
0.46 0.42 0.37 0.46 0.35 0.42 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.34 0.45 0.45 0.44 0.42 0.50 0.28 0.40
0.47 0.42 0.37 0.46 0.35 0.43 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.36 0.47 0.45 0.45 0.43 0.51 0.30 0.42
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.33 0.31 0.29 0.40 0.23 0.28 0.27 0.28 0.26 0.31 0.21 0.26
0.58 0.49 0.47 0.56 0.42 0.54 0.54 0.55 0.33 1.00 0.46 0.43 0.59 0.34 0.42 0.41 0.41 0.39 0.46 0.31 0.39
0.54 0.46 0.43 0.52 0.39 0.49 0.49 0.51 0.31 0.46 1.00 0.39 0.56 0.29 0.38 0.36 0.36 0.34 0.41 0.24 0.35
0.50 0.45 0.40 0.49 0.37 0.45 0.47 0.48 0.29 0.43 0.39 1.00 0.70 0.40 0.50 0.49 0.48 0.46 0.54 0.35 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.40 0.59 0.56 0.70 1.00 0.23 0.29 0.29 0.29 0.28 0.33 0.20 0.27
0.38 0.35 0.28 0.38 0.29 0.34 0.34 0.36 0.23 0.34 0.29 0.40 0.23 1.00 0.48 0.45 0.46 0.42 0.52 0.30 0.43
0.49 0.43 0.39 0.48 0.36 0.44 0.45 0.47 0.28 0.42 0.38 0.50 0.29 0.48 1.00 0.39 0.39 0.36 0.45 0.26 0.37
0.47 0.42 0.37 0.47 0.35 0.43 0.45 0.45 0.27 0.41 0.36 0.49 0.29 0.45 0.39 1.00 0.48 0.46 0.54 0.33 0.44
0.47 0.42 0.38 0.47 0.35 0.43 0.44 0.45 0.28 0.41 0.36 0.48 0.29 0.46 0.39 0.48 1.00 0.43 0.51 0.32 0.43
0.44 0.41 0.35 0.45 0.34 0.40 0.42 0.43 0.26 0.39 0.34 0.46 0.28 0.42 0.36 0.46 0.43 1.00 0.53 0.31 0.43
0.54 0.47 0.43 0.53 0.40 0.49 0.50 0.51 0.31 0.46 0.41 0.54 0.33 0.52 0.45 0.54 0.51 0.53 1.00 0.36 0.46
0.31 0.32 0.24 0.33 0.26 0.28 0.28 0.30 0.21 0.31 0.24 0.35 0.20 0.30 0.26 0.33 0.32 0.31 0.36 1.00 0.47
0.44 0.40 0.35 0.44 0.34 0.40 0.40 0.42 0.26 0.39 0.35 0.46 0.27 0.43 0.37 0.44 0.43 0.43 0.46 0.47 1.00
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The Wu-Palmer similarity matrix

Too uniform! Try zeroing values below median

1.00 0.63 0.51 0.51 0.66 0.45 0.46 0.47 0.72 0.58 0.54 0.50 0.72 0.00 0.49 0.47 0.47 0.44 0.54 0.00 0.44
0.63 1.00 0.45 0.45 0.54 0.00 0.00 0.00 0.57 0.49 0.46 0.45 0.59 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00
0.51 0.45 1.00 0.00 0.53 0.00 0.00 0.00 0.58 0.47 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.51 0.45 0.00 1.00 0.63 0.45 0.46 0.46 0.67 0.56 0.52 0.49 0.68 0.00 0.48 0.47 0.47 0.45 0.53 0.00 0.44
0.66 0.54 0.53 0.63 1.00 0.00 0.00 0.00 0.49 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.45 0.00 0.00 0.45 0.00 1.00 0.00 0.00 0.66 0.54 0.49 0.45 0.67 0.00 0.44 0.00 0.00 0.00 0.49 0.00 0.00
0.46 0.00 0.00 0.46 0.00 0.00 1.00 0.44 0.66 0.54 0.49 0.47 0.67 0.00 0.45 0.45 0.44 0.00 0.50 0.00 0.00
0.47 0.00 0.00 0.46 0.00 0.00 0.44 1.00 0.67 0.55 0.51 0.48 0.68 0.00 0.47 0.45 0.45 0.00 0.51 0.00 0.00
0.72 0.57 0.58 0.67 0.49 0.66 0.66 0.67 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.58 0.49 0.47 0.56 0.00 0.54 0.54 0.55 0.00 1.00 0.46 0.43 0.59 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00
0.54 0.46 0.00 0.52 0.00 0.49 0.49 0.51 0.00 0.46 1.00 0.00 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.45 0.00 0.49 0.00 0.45 0.47 0.48 0.00 0.43 0.00 1.00 0.70 0.00 0.50 0.49 0.48 0.46 0.54 0.00 0.46
0.72 0.59 0.59 0.68 0.50 0.67 0.67 0.68 0.00 0.59 0.56 0.70 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.48 0.45 0.46 0.00 0.52 0.00 0.43
0.49 0.00 0.00 0.48 0.00 0.44 0.45 0.47 0.00 0.00 0.00 0.50 0.00 0.48 1.00 0.00 0.00 0.00 0.45 0.00 0.00
0.47 0.00 0.00 0.47 0.00 0.00 0.45 0.45 0.00 0.00 0.00 0.49 0.00 0.45 0.00 1.00 0.48 0.46 0.54 0.00 0.44
0.47 0.00 0.00 0.47 0.00 0.00 0.44 0.45 0.00 0.00 0.00 0.48 0.00 0.46 0.00 0.48 1.00 0.00 0.51 0.00 0.00
0.44 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.46 0.00 1.00 0.53 0.00 0.00
0.54 0.47 0.00 0.53 0.00 0.49 0.50 0.51 0.00 0.46 0.00 0.54 0.00 0.52 0.45 0.54 0.51 0.53 1.00 0.00 0.46
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.47
0.44 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.00 0.43 0.00 0.44 0.00 0.00 0.46 0.47 1.00
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The similarity graph

G = (V,E), weighted adjacency matrix A
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Modularity clustering
“Modularity is the fraction of the edges that fall within a cluster minus
the expected fraction if edges were distributed at random.”

▶ “at random” = random graphs over same degree sequence
▶ degree sequence = (k1, . . . , kn) where ki = |N(i)|
▶ “expected” = over all possible “half-edge” recombinations

degree sequence invariant operation

▶ expected edges between u, v: kukv/(2m) where m = |E|
▶ mod(u, v) = 1

2m (Auv − kukv/(2m)) param

▶ mod(G) =
∑

{u,v}∈E

mod(u, v)xuv

xuv = 1 if u, v in the same cluster and 0 otherwise var

▶ “Natural extension” to weighted graphs: ku =
∑

v Auv, m =
∑

uv Auv
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Use modularity to define clustering
▶ What is the “best clustering”?

▶ Maximize discrepancy between actual and expected
“as far away as possible from average”

max
∑

{u,v}∈E
mod(u, v)xuv

∀u ∈ V, v ∈ V xuv ∈ {0, 1}


▶ Issue: optimum could be intransitive

▶ Idea: treat clusters as cliques (even if zero weight)
⇒ clique partitioning constraints for transitivity

∀i < j < k xij + xjk − xik ≤ 1

∀i < j < k xij − xjk + xik ≤ 1

∀i < j < k − xij + xjk + xik ≤ 1

if i, j ∈ C and j, k ∈ C then i, k ∈ C
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The resulting clustering

cluster 1: job01, job02, job03, job05, job10

cluster 2: job04, job06, job22

cluster 3: job07, job08, job11, job12, job20

cluster 4: job13, job21, job23, job24, job25, job26, job27, job28
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Is it good?

Vinci Accenture Elektrobit Amazon 1-3
Axa Expedia Google CSX
Deezer fragment1 Ford Westrock
Alstom Marriott Mitre
Aledade Llamasoft Clarity

fragment2

▶ ? — named entities rarely appear in WordNet
▶ Desirable property: chooses number of clusters
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Subsection 2

Clustering in Euclidean spaces
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Clustering vectors
Most frequent words w over collection C of documents d

./keywords.py
global environment customers strategic processes teams sql job industry use
java developing project process engineering field models opportunity drive
results statistical based operational performance using mathematical computer
new technical highly market company science role dynamic background products
level methods design looking modeling manage learning service customer
effectively technology requirements build mathematics problems plan services
time scientist implementation large analytical techniques lead available plus
technologies sas provide machine product functions organization algorithms
position model order identify activities innovation key appropriate different
complex best decision simulation strategy meet client assist quantitative
finance commercial language mining travel chain amazon pricing practices
cloud supply

tfidfC(w, d) =
|(t ∈ d | t = w)| |C|
|{h ∈ C | w ∈ h}|

keywordC(i, d) = word w having ith best tfidfC(w, d)value
vecmC (d) = (tfidfC(keywordC(i, d), d) | i ≤ m)

Transforms documents to vectors
tfidf: text frequency inverse document frequency 378 / 413



Minimum sum-of-squares clustering

▶ MSSC, a.k.a. the k-means problem
▶ Given points p1, . . . , pn ∈ Rm, find clusters C1, . . . , Ck

min
∑
j≤k

∑
i∈Cj

∥pi − centroid(Cj)∥22

where centroid(Cj) = 1
|Cj |

∑
i∈Cj

pi

▶ k-means alg.: given initial clustering C1, . . . , Ck

1: ∀j ≤ k compute yj = centroid(Cj)
2: ∀i ≤ n, j ≤ k if yj is the closest centr. to pi let xij = 1 else 0
3: ∀j ≤ k update Cj ← {pi | xij = 1 ∧ i ≤ n}
4: repeat until stability
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k-means with k = 2

Vinci AXA
Deezer Alstom
Accenture Elektrobit
Expedia Ford
Google Marriott
Aledade Amazon 1-3
Llamasoft CSX

WestRock
MITRE
Clarity

fragments 1-2

380 / 413



k-means with k = 2: another run

Deezer Vinci
Elektrobit AXA
Google Accenture
Aledade Alstom

Expedia
Ford

Marriott
Llamasoft

Amazon 1-3
CSX

WestRock
MITRE
Clarity

fragments 1-2
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k-means with k = 2: third run!

AXA Vinci
Deezer Accenture
Expedia Alstom
Ford Elektrobit
Marriott Google
Llamasoft Aledade
Amazon 1-3
CSX
WestRock
MITRE
Clarity
fragments 1-2

A fickle algorithm
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We can’t trust k-means: why?
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Subsection 3

Distance instability
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Nearest Neighbours
k-Nearest Neighbours (k-NN).
Given:
▶ k ∈ N
▶ a distance function d : Rn × Rn → R+

▶ a set X ⊂ Rn

▶ a point z ∈ Rn ∖ X ,

find the subset Y ⊂ X such that:

(a) |Y| = k

(b) ∀y ∈ Y, x ∈ X (d(z, y) ≤ d(z, x))

▶ basic problem in data science
▶ pattern recognition, computational geometry, machine learning, data

compression, robotics, recommender systems, information retrieval, natural
language processing and more

▶ Example: Used in Step 2 of k-means:
assign points to closest centroid

[Cover & Hart 1967]
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With random variables

▶ Consider 1-NN
▶ Let ℓ = |X |
▶ Let m be an abstract parameter

to index symbols with
In other words, reason about sequences
for concreteness, think of m = n (dimensions)

▶ Distance function family
{dm : Rn × Rn → R+}m

▶ For each m:
▶ random variable Zm with some distribution over Rn
▶ for i ≤ ℓ, random var. Xm

i with some distrib. over Rn
▶ Xm

i iid w.r.t. i, Zm independent of all Xm
i

▶ Dm
min = min

i≤ℓ
dm(Zm, Xm

i )

▶ Dm
max = max

i≤ℓ
dm(Zm, Xm

i )
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Distance Instability Theorem

▶ Let p > 0 be a constant
just makes the proof more general, think of p = 1

▶ If

∃i ≤ ℓ (dm(Zm, Xm
i ))p converges as m→∞

then, for any ε > 0,

closest and furthest point are at about the same distance

Note “∃i” suffices since ∀m we have Xm
i iid w.r.t. i

[Beyer et al. 1999]
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Distance Instability Theorem
▶ Let p > 0 be a constant

just makes the proof more general, think of p = 1

▶ If

∀i ≤ ℓ lim
m→∞

Var

(
(dm(Zm, Xm

i ))p

E((dm(Zm, Xm
i ))p)

)
= 0

then, for any ε > 0,

lim
m→∞

P(Dm
max ≤ (1 + ε)Dm

min) = 1

Note “∃i” suffices since ∀m we have Xm
i iid w.r.t. i

[Beyer et al. 1999]
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Preliminary results
▶ Lemma. {Bm}m seq. of rnd. vars with finite variance

and lim
m→∞

E(Bm) = b ∧ lim
m→∞

Var(Bm) = 0; then

∀ε > 0 lim
m→∞

P(∥Bm − b∥ ≤ ε) = 1

denoted Bm →P b

▶ Slutsky’s theorem. {Bm}m seq. of rnd. vars and g a
continuous function; if Bm →P b and g(b) exists, then
g(Bm)→P g(b)

▶ Corollary . If {Am}m, {Bm}m seq. of
rnd. vars. s.t. Am →P a and Bm →P b ̸= 0 then
Am

Bm →P
a
b
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Proof
1. µm = E((dm(Zm, Xm

i ))p) independent of i
(since all Xm

i iid)

2. Vm =
(dm(Zm,Xm

i ))p

µm
→P 1:

▶ E(Vm) = 1 (rnd. var. over mean) ⇒ limm E(Vm) = 1
▶ Hypothesis of thm. ⇒ limm Var(Vm) = 0
▶ Lemma ⇒ Vm →P 1

3. Vm = (Vm | i ≤ ℓ)→P 1 (by iid)

4. Slutsky’s thm. ⇒ min(Vm)→P min(1) = 1
similarly for max

5. Corollary ⇒ max(Vm)
min(Vm)

→P 1

6. Dmmax
Dm

min
= µm max(Vm)

µm min(Vm)
→P 1

7. Result follows (defn. of →P and Dm
max ≥ Dm

min)
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A precision limit

▶ Closest and farthest point from z:
can’t be told apart unless precision ≤ ε

▶ In algorithms, often want “closest”
▶ Hope of telling apart closest from second-closest?
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Loss of precision ε for n ≤ 10000
Uniform(0, 1) Normal(0, 1)

Exponential(1)

▶ Precision falls exponentially fast

▶ Generates algorithmic instability
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When it applies

▶ iid random variables from any distribution
▶ Particular forms of correlation

e.g. Ui ∼ Uniform(0,
√
i), X1 = U1, Xi = Ui + (Xi−1/2) for i > 1

▶ Variance tending to zero
e.g. Xi ∼ N(0, 1/i)

▶ Discrete uniform distribution on m-dimensional
hypercube
for both data and query

▶ Computational experiments with k-means:
instability already with n > 15
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. . . and when it doesn’t

▶ Complete linear dependence on all distributions
can be reduced to NN in 1D

▶ Exact and approximate matching
query point = (or ≈) data point

▶ Query point in a well-separated cluster in data
▶ Implicitly low dimensionality

project; but NN must be stable in lower dim.
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Subsection 4

MP formulations
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Why?

▶ With k-means being so fast, why bother with MP?
▶ Principle:

changing an MP is easier than changing an algorithm

▶ Side constraints
e.g. clusters are spheres, or other shapes

▶ Clustering subproblems
e.g. assign resources subject to optimal clustering

▶ MP delivers a bound
“can’t do better than bound” guarantee
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MP formulation

min
x,y,s

∑
i≤n

∑
j≤k
∥pi − yj∥22 xij

∀j ≤ k 1
sj

∑
i≤n

pixij = yj

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k
∑
i≤n

xij = sj

∀j ≤ k yj ∈ Rm

x ∈ {0, 1}nk
s ∈ Nk


(MSSC)

MINLP: nonconvex terms; continuous, binary and integer
variables
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Reformulation
The (MSSC) formulation has the same optima as:

min
x,y,P

∑
i≤n

∑
j≤k

Pij xij

∀i ≤ n, j ≤ k ∥pi − yj∥22 ≤ Pij
∀j ≤ k

∑
i≤n

pixij =
∑
i≤n

yjxij

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ ([min
i≤n

pih,max
i≤n

pih] | h ≤ k)

x ∈ {0, 1}nk
P ∈ [0, PU ]nk


▶ The only nonconvexities are

products of binary by continuous bounded variables
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Products of binary and continuous vars.
▶ Suppose term xy appears in a formulation
▶ Assume x ∈ {0, 1} and y ∈ [0, 1] is bounded
▶ means “either z = 0 or z = y”
▶ Replace xy by a new variable z
▶ Adjoin the following constraints:

z ∈ [0, 1]

y − (1− x) ≤ z ≤ y + (1− x)
−x ≤ z ≤ x

▶ ⇒ Everything’s linear now!

[Fortet 1959]
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Products of binary and continuous vars.
▶ Suppose term xy appears in a formulation
▶ Assume x ∈ {0, 1} and y ∈ [yL, yU ] is bounded
▶ means “either z = 0 or z = y”
▶ Replace xy by a new variable z
▶ Adjoin the following constraints:

z ∈ [min(yL, 0),max(yU , 0)]

y − (1− x)max(|yL|, |yU |) ≤ z ≤ y + (1− x)max(|yL|, |yU |)
−xmax(|yL|, |yU |) ≤ z ≤ xmax(|yL|, |yU |)

▶ ⇒ Everything’s linear now!

[L. et al. 2009]
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MSSC is a convex MINLP
min

x,y,P,χ,ξ

∑
i≤n

∑
j≤k

χij

∀i ≤ n, j ≤ k 0 ≤ χij ≤ Pij

∀i ≤ n, j ≤ k Pij − (1− xij)P
U ≤ χij ≤ xijP

U

∀i ≤ n, j ≤ k ∥pi − yj∥22 ≤ Pij ⇐ convex

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

ξij

∀i ≤ n, j ≤ k yj − (1− xij)max(|yL|, |yU |) ≤ ξij ≤ yj + (1− xij)max(|yL|, |yU |)

∀i ≤ n, j ≤ k − xij max(|yL|, |yU |) ≤ ξij ≤ xij max(|yL|, |yU |)

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ [yL, yU ]

x ∈ {0, 1}nk

P ∈ [0, PU ]nk

χ ∈ [0, PU ]nk

∀i ≤ n, j ≤ k ξij ∈ [min(yL, 0),max(yU , 0)]

yj , ξij , yL, yU are vectors in Rm
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How to solve it

▶ cMINLP is NP-hard
▶ Algorithms:

▶ Outer Approximation (OA)
▶ Branch-and-Bound (BB)

▶ Best (open source) solver: Bonmin
▶ Another good (commercial) solver: KNitro
▶ With k = 2, unfortunately. . .

Cbc0010I After 8300 nodes, 3546 on tree, 14.864345 best solution,
best possible 6.1855969 (32142.17 seconds)

▶ Interesting feature: the bound
guarantees we can’t do better than bound
all BB algorithms provide it
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Bonmin

Alstom Vinci
Elektrobit AXA
Ford Deezer
Llamasoft Accenture
Amazon 2 Expedia
CSX Google
MITRE Aledade
Clarity Marriott
fragment 2 Amazon 1 & 3

WestRock
fragment 1
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Couple of things left to try

▶ Approximate ℓ2 by ℓ1 norm
ℓ1 is a linearizable norm

▶ Randomly project the data
lose dimensions but keep approximate shape
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Linearizing convexity
▶ Replace ∥pi − yj∥22 by ∥pi − yj∥1
▶ Warning: optima will change

but still within “clustering by distance” principle

∀i ≤ n, j ≤ k ∥pi − yj∥1 =
∑
a≤d
|pia − yja|

▶ Replace each | · | term by new vars. Qija ∈ [0, PU ]
Adjust PU in terms of ∥ · ∥1

▶ Adjoin constraints

∀i ≤ n, j ≤ k
∑
a≤d

Qija ≤ Pij

∀i ≤ n, j ≤ k, a ≤ d −Qija ≤ pia − yja ≤ Qija

▶ Obtain a MILP
MILP solver: use e.g. CPLEX
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CPLEX

objective 112.24, bound 39.92, in 44.74s

AXA Vinci
Deezer Accenture
Ford Alstom
Marriott Expedia
Amazon 1-3 Elektrobit
Llamasoft Google
CSX Aledade
WestRock
MITRE
Clarity
fragments 1-2

Interrupted after 281s with bound 59.68
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Subsection 5

Random projections again
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Works on the MSSC MP formulation too!

min
x,y,s

∑
i≤n

∑
j≤d
∥Tpi − Tyj∥22 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = Tyj

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d yj ∈ Rm

x ∈ {0, 1}nd
s ∈ Nd


where T is a k ×m random projector
replace Ty by y′
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Works on the MSSC MP formulation too!

min
x,y′,s

∑
i≤n

∑
j≤d
∥Tpi − y′j∥22 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = y′j

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d y′j ∈ Rk

x ∈ {0, 1}nd
s ∈ Nd


(MSSC′)

▶ where k = O( 1
ε2
lnn)

▶ less data, |y′| < |y| ⇒ get solutions faster
▶ Yields smaller cMINLP
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Bonmin on randomly proj. data
objective 5.07, bound 0.48, stopped at 180s

Deezer Vinci
Ford AXA
Amazon 1-3 Accenture
CSX Alstom
MITRE Expedia
fragment 1 Elektrobit

Google
Aledade
Marriott

Llamasoft
WestRock

Clarity
fragment 2
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CPLEX on randomly proj. data

. . . although it doesn’t make much sense for ∥ · ∥1 norm. . .

objective 53.19, bound 20.68, stopped at 180s

Vinci AXA
Deezer Accenture
Expedia Alstom
Google Elektrobit
Aledade Marriott
Ford Llamasoft
Amazon 1-3 WestRock
CSX MITRE
Clarity fragment 1-2
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Many clusterings?

Compare them with clustering measures
e.g. “adjusted mutual information score”

bonmRP bonmin cplxRP cplex kmea1 kmea2 kmea3 modul
bonminRP 1.000 0.170 0.095 0.333 0.333 0.316 0.315 0.346
bonmin 0.170 1.000 0.021 0.079 0.179 0.179 0.086 0.178
cplexRP 0.095 0.021 1.000 0.044 0.095 0.185 0.069 0.055
cplex 0.333 0.079 0.044 1.000 0.317 0.316 0.775 0.271
kmeans2-1 0.333 0.179 0.095 0.317 1.000 0.316 0.249 0.271
kmeans2-2 0.316 0.179 0.185 0.316 0.316 1.000 0.381 0.286
kmeans2-3 0.315 0.086 0.069 0.775 0.249 0.381 1.000 0.252
modularity 0.346 0.178 0.055 0.271 0.271 0.286 0.252 1.000
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THE END
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